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Time-series analysis

measure data analyse data
“Do what I did during my PhD”

“Use standard analysis methods
from my field”

it’s an art

“Apply a hot new method
I read about this week”

How? Non-systematic

• Is your proposed method best, or can another (perhaps simpler) method outperform it? 

• Are ‘new’ methods really new, or do they reproduce the performance of existing 
methods (e.g., from another field, or developed in the past)? Is any progress being 
made? 

• Comparison required, but not done in practice (an average of 0.91 other methods, and 
1.85 different datasets*).

*Keogh, E. and Kasetty, S., Data Min. Knowl. Disc. 7, 349 (2003)



Time-series modeling

“I knew it! My years of mathematical 
training are so useful!”

“Shit.”

• Domain knowledge
• Some key interactions
• Periodicities
• Noise model
• Analyze and understand 

mechanistic / statistical 
underpinnings of time series

• Minimal/no domain knowledge
• Complex interactions
• Just data

With little hope of making progress with any 
mechanistic approach to time-series modeling, 
how can we learn about structure in our data?

Case 1: “the dream” Case 2: “the common reality”



Competing interdisciplinary approaches

“Everyone knows 
you can’t apply
AR time-series 

models to 
nonstationary 

biomedical data!”

“ARIMA models
are a waste

of time”

“I know 
someone 

smart who 
uses wavelets”

vast and growing volumes of data and methods
leads to variety of inconsistent opinions



Solution?

Collect many scientific time series

Collect many scientific time-series analysis methods

Use performance of methods on data to 
organize our methods

Use properties of data as measure by the methods to 
organize our data



dynamical systems

text: sentence lengths

zooplankton growth

autoregressive processes

medical: normal sinus rhythm

rainfall

finance: oil prices

noise

SDEs

climatology: sea level pressure

medical CO2 fluctuations

audio: brushing teeth

atmospheric CO2 fluctuations

satellite position

Many of our measurements of the world are in the form of 
time series



Correlation
Linear autocorrelation

Nonlinear autocorrelations

Decay properties

Time reversal asymmetry
Generalized self-correlation

Additive noise titration

(Phys) Nonlinear

Recurrence structure
Autocorrelation robustness

Model fits

2D embedding structure

Stationarity
StatAv

Bootstraps
Sliding window measures

Scaling and fluctuation analysis

Distribution comparisons

Basis Functions
Wavelet transform

Spectral measures
Biased walker
simulations

Permutation robustness

Local prediction

Peaks of power spectrum

Power in frequency bands

Static distribution
Quantiles

Moments

Fits to standard distributions

Local extrema

AR models
Fourier fits

Exponential smoothing

GARCH models

Hidden Markov models

Gaussian Processes

TISEAN

TSTOOL

Nonlinear prediction error

Correlation dimension

Fractal dimension

Poincaré sections Surrogate data

Lyapunov exponent estimate

Piecewise splines

False nearest neighbors

State space models

ARMA models

Others
Transition matrices

Dynamical system coupling

Stick angle distribution
Visibility graph

Extreme events

Local motifs

Step detection

Singular spectrum analysis

Seasonality tests

Domain-specific techniques

Taken’s estimator

Rank-orderings

Outliers

Trimmed means

Standard deviation

Zero crossing rates

Information Theory

Entropy rate

Sample Entropy

Approximate 
EntropyTsallis entropies

Automutual information

Entropy

>7700 time-series features



stochastic processes

share prices

dynamical systems

EEGs

space recordings

heart beat intervals

air temperature

rainfall

random numbers

audio

maps

autoregressive processes

ECGs

Time series
feature vectors nonlinear

prediction
error

wavelet
coefficients

fluctuation
analysis

distributional
moment

dimension
estimate

power
spectrum
measure

sliding
window

stationarity

AR
model

fit
Sample
Entropy

Operations
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A flexible, powerful, and data-driven means of comparing time 
series, and analysis methods.

Empirical fingerprints

 =  operation of type ‘blue’ = time series of type ‘green’
captures behaviour across a range
 of empirical time series

captures properties measured
by diverse scientific methods



Organizing our methods
Which time-series analysis methods

are similar to the methods I use?

Connects scientific methods using
their empirical behaviour

a pair of similar methods 
from a distant literature

an unexpected
method with similar
behaviourmy favourite

analysis method



entropy

stationarity

long-range scaling

complexity
information theory

correlation dimension

linear time-series
models

power spectral 
density

BIG PICTURE

distribution



“hello, 
what are 
you?”

“hello, i am 
SampleEntropy(1,0.2)”

ZOOMING IN



Local neighborhoods

Automatically find
interdisciplinary

connections
between our methods

for time-series
analysis

ApEn(2,0.2)

Automutual
Information

Shannon
Entropy

Lempel-Ziv
Complexity

Randomized
Sample Entropy

Sample Entropy

Approximate
Entropy



Organizing our data
What types of real-world and

model-generated time series are
similar to my data?

matching model-generated data

matching real data

my favourite
time series



Duffing Two-Well Oscillator(a) Burger’s Map(b) M5 Stochastic DEs(c)

Electrooculogram (14)(d) (e) Speech (19) Airway CO2(f)

Space: Power Index (15)(g) Congestive Heart Failure ECGs (25)(h) Music(i) Clusters of time 
series

group systems
with common 

dynamical 
properties



finance

stochastic models

stochastic
processes

speech

suggest models, or similar real-world processes to our data

Fishing for data



sine wave
(longer period)

sine wave
(longer period)

Jerk system

speech phoneme

speech phoneme

satellite position

EEG: seizure

EEG: seizure

Hadley flow

Rössler flow

noisy sine wave
(η=0.22)
noisy sine wave
(η=0.19)

noisy sine wave
(η=0.26)
noisy sine wave
(η=0.17)
noisy sine wave
(η=0.2, T=25)

monthly
temperature

phoneme

vibrating phone
sound effect

monthly air
pressure

space:
ionosophere

noisy sine wave
(η=0.72)

daily magnetic
field

relative
humidity

EEG

music

animal sound

noisy sine wave
(η=0.45)

noisy sine wave
(η=0.80, T=25)

noisy sine wave
(η=0.60, T=25)

noisy sine wave
(η=0.60, T=50)

noisy sine wave
(η=2.1)

noisy sine wave
(η=1.6, T=50)

AR(8) process

MA(9) process

Gaussian noise

monthly rainfall

meat slicer
audio

phoneme

relative humidity

finance: high-low
log returns

(a) (b)

(c) (d)

Brings our data
and models 

closer
together



Highly comparative time-series analysis for classification

A very general problem: what method should I use?



Time-series analysis 101: 
always look at your data





0 200 400 600
Standard deviation

 

 

seizure

no seizure

StatAv (L150) (26%)

sp
re

ad
 o

f w
in

do
w

ed
 m

ax
im

um
s 

(3
6%

)

17%
 

location

control
entropies

pNNx

linear
models

scaling

|R|

0.9

1

0.8

0.7

0.6

0.5

<0.5B

C

D

E 0 1 2 3

outlier measure
(13 ± 7 %)

0.6 0.6 1 1.2

mean
(8 ± 5 %)

1 2 3

SampEn(3,0.05)
(15 ± 8 %)

0.4 0.8 1.2

variance ratio test
(14 ± 7 %)

normal sinus
rhythm

congestive heart
failure

BA

C

D

E

Swedish Leaf

First Principal Component

Se
co

nd
 P

rin
ci

pa
l C

om
po

ne
nt

A B

Applications

BD Fulcher, MA Little, and NS Jones. J. R. Soc. Interface, 10:83 (2013), DOI: 10.1098/rsif.2013.0048

BD Fulcher,  AE Georgieva, C Redman, NS Jones, Annual International Conference of the IEEE, EMBC, 3135 (2012), DOI: 10.1109/EMBC.2012.6346629

BD Fulcher, NS Jones. IEEE KDE (2014), DOI: 10.1109/TKDE.2014.2316504

• Seismic data 
• Simulated chaos 
• Fetal heart rate 
• Heart rate intervals 
• Parkinsonian 

speech 
• Epileptic EEGs 
• Emotional speech

http://dx.doi.org/10.1109/TKDE.2014.2316504


Logistic Map

logistic maps:
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Criticality
[15] (ind=461) CO_CompareMinAMI_std2_2_80_mean (-0.97) [correlation,AMI]
[16] (ind=2571) EN_mse_1-10_2_015_sampen_s3 (0.97) [entropy,sampen,mse]
[17] (ind=3087) ST_LocalExtrema_l50_stdext (0.97) [distribution,stationarity]

[18] (ind=837) EN_rpde_3_1_meanNonZero (-0.97) [entropy]
[19] (ind=836) EN_rpde_3_1_propNonZero (0.97) [entropy]

[20] (ind=2572) EN_mse_1-10_2_015_sampen_s4 (0.97) [entropy,sampen,mse]
[21] (ind=2009) SY_SpreadRandomLocal_100_100_meanstd (0.97) [stationarity]

[22] (ind=6538) PP_ModelFit_ar_2_rmserrrat_p2_20 (-0.97) [preprocessing,trend]
[23] (ind=6535) PP_ModelFit_ar_2_rmserrrat_p1_40 (-0.97) [preprocessing,trend]
[24] (ind=3089) ST_LocalExtrema_l50_meanabsext (0.97) [distribution,stationarity]

[25] (ind=122) AC_37 (-0.97) [correlation]
[26] (ind=299) IN_AutoMutualInfoStats_40_gaussian_ami40 (-0.97) [information,correlation,AMI]
[27] (ind=296) IN_AutoMutualInfoStats_40_gaussian_ami37 (-0.97) [information,correlation,AMI]

[28] (ind=123) AC_38 (-0.97) [correlation]
[29] (ind=297) IN_AutoMutualInfoStats_40_gaussian_ami38 (-0.97) [information,correlation,AMI]

[30] (ind=121) AC_36 (-0.97) [correlation]
[31] (ind=124) AC_39 (-0.97) [correlation]

[32] (ind=295) IN_AutoMutualInfoStats_40_gaussian_ami36 (-0.97) [information,correlation,AMI]
[33] (ind=7186) CP_ML_StepDetect_l1pwc_10_E (0.97) [stepdetection]

[34] (ind=125) AC_40 (-0.97) [correlation]
[35] (ind=298) IN_AutoMutualInfoStats_40_gaussian_ami39 (-0.97) [information,correlation,AMI]
[36] (ind=294) IN_AutoMutualInfoStats_40_gaussian_ami35 (-0.97) [information,correlation,AMI]

[37] (ind=120) AC_35 (-0.97) [correlation]
[38] (ind=5111) TSTL_localdensity_5_40_1_3_medianden (0.97) [nonlinear,tstool]

[39] (ind=119) AC_34 (-0.97) [correlation]
[40] (ind=2504) PH_Walker_runningvar_15_50_w_std (0.97) [trend]

[41] (ind=219) CO_HistogramAMI_std2_2_5 (-0.97) [information,correlation,AMI]
[42] (ind=293) IN_AutoMutualInfoStats_40_gaussian_ami34 (-0.97) [information,correlation,AMI]
[43] (ind=292) IN_AutoMutualInfoStats_40_gaussian_ami33 (-0.97) [information,correlation,AMI]

[44] (ind=2582) EN_mse_1-10_2_015_meanSampEn (0.97) [entropy,sampen,mse]
[45] (ind=118) AC_33 (-0.97) [correlation]

[46] (ind=291) IN_AutoMutualInfoStats_40_gaussian_ami32 (-0.97) [information,correlation,AMI]
[47] (ind=5107) TSTL_localdensity_5_40_1_3_iqrden (0.97) [nonlinear,tstool]

[48] (ind=117) AC_32 (-0.97) [correlation]
[49] (ind=1993) SY_SpreadRandomLocal_50_100_meanstd (0.97) [stationarity]

[50] (ind=116) AC_31 (-0.96) [correlation]
[51] (ind=2570) EN_mse_1-10_2_015_sampen_s2 (0.96) [entropy,sampen,mse]

[52] (ind=290) IN_AutoMutualInfoStats_40_gaussian_ami31 (-0.96) [information,correlation,AMI]
[53] (ind=114) AC_29 (-0.96) [correlation]

[54] (ind=289) IN_AutoMutualInfoStats_40_gaussian_ami30 (-0.96) [information,correlation,AMI]
[55] (ind=286) IN_AutoMutualInfoStats_40_gaussian_ami27 (-0.96) [information,correlation,AMI]
[56] (ind=288) IN_AutoMutualInfoStats_40_gaussian_ami29 (-0.96) [information,correlation,AMI]

[57] (ind=6539) PP_ModelFit_ar_2_rmserrrat_p2_40 (-0.96) [preprocessing,trend]
[58] (ind=115) AC_30 (-0.96) [correlation]
[59] (ind=112) AC_27 (-0.96) [correlation]

[60] (ind=285) IN_AutoMutualInfoStats_40_gaussian_ami26 (-0.96) [information,correlation,AMI]
[61] (ind=113) AC_28 (-0.96) [correlation]

[62] (ind=287) IN_AutoMutualInfoStats_40_gaussian_ami28 (-0.96) [information,correlation,AMI]
[63] (ind=111) AC_26 (-0.96) [correlation]

[64] (ind=6259) WL_coeffs_db3_5_med_coeff (0.96) [wavelet]
[65] (ind=3201) EX_MovingThreshold_01_002_meanqover (0.96) [outliers]

[66] (ind=5307) NL_TSTL_LargestLyap_n1_01_001_3_1_4_expfit_r2 (0.96) [nonlinear,tstool]
[67] (ind=284) IN_AutoMutualInfoStats_40_gaussian_ami25 (-0.96) [information,correlation,AMI]

[68] (ind=110) AC_25 (-0.96) [correlation]
[69] (ind=7189) CP_ML_StepDetect_l1pwc_10_rmsoff (-0.96) [stepdetection]

[70] (ind=109) AC_24 (-0.96) [correlation]
[71] (ind=2757) EN_Randomize_permute_sampen2_015diff (0.96) [entropy,slow]

[72] (ind=218) CO_HistogramAMI_std2_2_4 (-0.96) [information,correlation,AMI]
[73] (ind=108) AC_23 (-0.96) [correlation]

[74] (ind=283) IN_AutoMutualInfoStats_40_gaussian_ami24 (-0.96) [information,correlation,AMI]
[75] (ind=6257) WL_coeffs_db3_5_mean_coeff (0.96) [wavelet]

[76] (ind=2573) EN_mse_1-10_2_015_sampen_s5 (0.96) [entropy,sampen,mse]
[77] (ind=834) EN_rpde_3_1_H (0.96) [entropy]

[78] (ind=835) EN_rpde_3_1_H_norm (0.96) [entropy]
[79] (ind=282) IN_AutoMutualInfoStats_40_gaussian_ami23 (-0.96) [information,correlation,AMI]

[80] (ind=6318) WL_dwtcoeff_sym2_5_stdd_l5 (0.96) [wavelet,dwt]
[81] (ind=3223) EX_MovingThreshold_1_002_meanqover (0.96) [outliers]

[82] (ind=2517) PH_Walker_runningvar_15_50_sw_ansarib_pval (0.96) [trend]
[83] (ind=107) AC_22 (-0.96) [correlation]

[84] (ind=281) IN_AutoMutualInfoStats_40_gaussian_ami22 (-0.96) [information,correlation,AMI]
[85] (ind=5299) NL_TSTL_LargestLyap_n1_01_001_3_1_4_vse_minbad (0.96) [nonlinear,tstool]
[86] (ind=280) IN_AutoMutualInfoStats_40_gaussian_ami21 (-0.96) [information,correlation,AMI]

[87] (ind=106) AC_21 (-0.96) [correlation]
[88] (ind=4144) SP_Summaries_welch_rect_wmax_75 (0.96) [spectral]

[89] (ind=2040) SY_DriftingMean20_max (-0.96) [stationarity]
[90] (ind=831) SY_LocalGlobal_AC1_unicg500 (0.96) [stationarity]

[91] (ind=4678) NL_TSTL_acp_mi_1__10_ac1_acpf_2 (-0.96) [nonlinear,correlation]
[92] (ind=4489) SY_TISEAN_nstat_z_4_1_3_min (0.96) [nonlinear,tisean,model,stationarity]

[93] (ind=4305) SP_Summaries_fft_logdev_linfitsemilog_all_a1 (0.96) [spectral]
[94] (ind=105) AC_20 (-0.96) [correlation]

[95] (ind=278) IN_AutoMutualInfoStats_40_gaussian_ami19 (-0.96) [information,correlation,AMI]
[96] (ind=279) IN_AutoMutualInfoStats_40_gaussian_ami20 (-0.96) [information,correlation,AMI]
[97] (ind=5308) NL_TSTL_LargestLyap_n1_01_001_3_1_4_expfit_rmse (-0.96) [nonlinear,tstool]

[98] (ind=104) AC_19 (-0.96) [correlation]



Time series matching
Cluster and classify short time-series ‘patterns’

Distances between
temporal objects

A Distances between sets
of extracted features

i. Time series

ii. Extensive
feature vector

iii. Reduced
feature vector

1000s features

e.g., 10 selected features e.g., 10 selected features

1000s features

B

B. D. Fulcher & N. S. Jones, Highly comparative feature-based time-series classification. IEEE Trans. Knowl. Data Eng. 26, 3026–3037 (2014)



Swedish Leaf
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1 2 3 4 5
0

2

4

6

8

10

12

14

16

 

 

t: 1-NN DTW with
best warping window

t: 1-NN DTW

t: 1-NN Euclidean

test

training

Number of features selected

Te
st

 s
et

 li
ne

ar
 m

is
cl

as
si

fic
at

io
n 

ra
te

 (%
)

−4000 −2000 0 2000 4000
0

0.2

0.4

0.6

0.8

Feature 1: Measure of trend direction (14.7%, 15.7%)

Fe
at

ur
e 

2:
 m

ea
su

re
 o

f l
ow

-m
id

 fr
eq

ue
nc

y 
po

w
er

 (5
1.

7%
, 5

2.
3%

)

 

 

BA



2 4 6 8 10 12 14
0

10

20

30

40

50

Te
st

 s
et

 li
ne

ar
 m

is
cl

as
si

fic
at

io
n 

ra
te

 (%
)

 

 

1-NN DTW with best warping window

1-NN DTW

1-NN Euclidean

test

training

Number of features selected

massive dimensionality
reduction

automatic

diverse, interpretable features

fast classification of new examples

B. D. Fulcher & N. S. Jones, Highly comparative feature-based time-series classification. IEEE Trans. Knowl. Data Eng. 26, 3026–3037 (2014)





standard deviation

outlier properties

local autocorrelation

Useful properties come in three main types, 
with different spatial maps

1

2

3





Summary

hctsa allows you to leverage a large 
interdisciplinary literature on time-series 

analysis automatically



https://github.com/benfulcher/hctsa







www.comp-engine.org/timeseries

• Web resource for interdisciplinary scientific 
collaboration on time-series analysis 

• Explore relationships between ~30,000 time series 
and thousands of features

http://www.comp-engine.org/timeseries




New interactive compEngine website is coming early 2018!





Conclusions

• An automated approach to time-series analysis 
that compares thousands of interdisciplinary 
methods 

• Can be viewed as a starting point to guide more 
focused time-series analysis 

• Results provide insights into underlying 
dynamical mechanisms
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