THE MINIMAL HIDDEN COMPUTER NEEDED TO IMPLEMENT A VISIBLE COMPUTATION

David H. Wolpert

Santa Fe Institute, MIT, ASU http://davidwolpert.weebly.com

Joint work with

Artemy Kolchinsky, Santa Fe Institute; Jeremy Owen, MIT

• Visible states arrayed along black lines

- Visible states arrayed along black lines
- Hidden states arrayed along dotted purple lines

- Visible states arrayed along black lines
- Hidden states arrayed along dotted purple lines
- Each "column" of arrows = one timestep

ROADMAP

PHYSICALLY IMPLEMENTING CONDITIONAL DISTRIBUTIONS

- Consider a physical system implementing a conditional distribution π(x₁ | x₀) over "visible" state space X (X finite, time units arbitrary)
 - π observed to govern some naturally occurring system
 - π constructed by human engineers
 - **Example**: Update function of a (re-usable) gate in a digital circuit (a single-valued conditional distribution)
 - **Example**: Update function of an entire (re-usable) digital computer

Will mostly focus here on π that are functions (like gates)

- Consider a physical system implementing a conditional distribution $\pi(x_1 \mid x_0)$ over a visible state space X
- "Implement" here means the dynamics for *t* ∈ [0, 1] is described by a *(time-inhomogeneous) continuous-time Markov chain (CTMC)*
 - This encompasses stochastic thermodynamics
 - However our results are even more general
- **Example**: Stochastic thermodynamic analysis of flipping a bit stored as state of a quantum dot.

• Consider a system governed by a CTMC that implements a conditional distribution $\pi(x_1 | x_0)$ over a "visible" state space X

We prove that for many π 's, the CTMC must actually evolve over a space including "hidden" states Z, in addition to the visible states X

- More precisely:
 - For many $\pi(x_1 | x_0)$, <u>any</u> CTMC implementing π over X must actually evolve across some space $X \cup Z$
 - $\pi(x_1 \mid x_0)$ is the restriction to X of the CTMC over $X \cup Z$

For many π 's, the CTMC must actually evolve over a space including hidden states Z, in addition to the visible states X

- Bit flip example:
 - $X = \{0, 1\}$
 - Start in either state 0 or 1

For many π 's, the CTMC must actually evolve over a space including hidden states Z, in addition to the visible states X

- Bit flip example:
 - $X = \{0, 1\}$
 - Start in either state 0 or 1

For many π 's, the CTMC must actually evolve over a space including hidden states Z, in addition to the visible states X

- Bit flip example:
 - $X = \{0, 1\}, Z = \{2\}$
 - Start in either state 0 or 1

 $1 \rightarrow 0$

For many π 's, the CTMC must actually evolve over a space including hidden states Z, in addition to the visible states X

- Bit flip example:
 - $X = \{0, 1\}, Z = \{2\}$
 - Start in either state 0 or 1

• Consider a system governed by a CTMC that implements a conditional distribution $\pi(x_1 | x_0)$ over a visible state space X

There is a natural way to view any CTMC as dividing $t \in [0, 1]$ into a countable number of contiguous intervals

- I.e., any CTMC taking x₀ to π(x₁ | x₀) runs through a sequence of "hidden timesteps" within [0, 1]
- Often there is a cost to any engineer constructing a CTMC to implement π, which increases with the number of hidden timesteps

- Example: To implement a bit flip requires at least *three hidden timesteps*
- Bit flip example:
 - $X = \{0, 1\}, Z = \{2\}$
 - Start in either state 0 or 1

• Consider a system governed by a CTMC that implements a conditional distribution $\pi(x_1 | x_0)$ over a visible state space X

There is a natural way to view any CTMC as dividing $t \in [0, 1]$ into a countable number of contiguous intervals

- In general, for any $\pi(x_1 | x_0)$, *the more hidden states* a CTMC can use, *the fewer hidden timesteps* it needs to implement π .
- I.e., a *tradeoff* between number of hidden states and minimal number of hidden timesteps needed to implement π with a CTMC
- This tradeoff depends on the details of π

ROADMAP

PAST WORK ON EMBEDDING

- Given any $\pi(x_1 | x_0)$, the *embedding problem* is to determine if there is a CTMC with rate matrix $R_{x,x'}(t)$ such that $OE(R)[1] = \pi(x_1 | x_0)$
- First studied by Kingman (1962) who derived necessary and sufficient conditions for any $\pi(x_1 | x_0)$ to be embeddable *for binary X*, by a time-homogeneous CTMC
- We still do not know necessary and sufficient conditions for larger X, even for time-homogeneous CTMCs

PAST WORK ON EMBEDDING

- Given any $\pi(x_1 | x_0)$, the embedding problem is to determine if there is a CTMC with rate matrix $R_{x,x'}(t)$ such that $OE(R)[1] = \pi(x_1 | x_0)$
- Goodman (1970) derived necessary conditions for π to be embeddable by a (time-*inhomogeneous*) CTMC for arbitrary finite X
- In particular,

If det $\pi \leq 0, \pi$ cannot be embedded by any CTMC

• Intuition: For any time-varying $R_{x,x'}(t)$,

 $\det \pi = e^{\int_0^1 dt \operatorname{Tr} R(t)} > 0$

• Lencastre et al. (2016) is a nice review.

CONTINUALLY-EMBEDDABLE π

If det $\pi \leq 0, \pi$ cannot be embedded by any CTMC

- But ... bit erasure is the stochastic matrix $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$
- This has determinant 0, and yet many physical systems erase bits.

???

• *Intuitive Solution*: A "quasi-static" CTMC, that is arbitrarily close to bit erasure.

(So the determinant of the matrix π that it implements is infinitesimal - but positive)

CONTINUALLY-EMBEDDABLE π

If det $\pi \leq 0, \pi$ cannot be embedded by any CTMC

- Intuitive Solution: A "quasi-static" CTMC, that is arbitrarily close to bit erasure (so determinant is infinitesimal but positive)
- Formally: π is *continually-embeddable* if \exists sequence of CTMCs with transition matrices { $\mathbf{T}^{(n)}(t, t')$: n = 1, 2, ...} such that

1) T(*t*, *t'*) is continuous in *t* and *t'* for all *t*, *t'* ∈ [0, 1] : *t* < *t'* **2**) π = T(0, 1)

where for all $t, t' \in [0, 1], \mathbf{T}(t, t') = \lim_{n \to \infty} \mathbf{T}^{(n)}(t, t')$

ROADMAP

Theorem: <u>Any</u> noninvertible function (like bit erasure) is continually embeddable
Theorem: <u>No</u> invertible function (except the identity) is continually-embeddable

- So bit-flip is not continually-embeddable
 - Intuition: bit-flip is the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ with determinant -1.

- This is not infinitesimally close to a positive determinant

• But many physical systems flip bits (not to mention perform more complicated invertible maps)

- Illustration of flipping a bit:
 - Visible states $X = \{0, 1\}$, hidden states $Z = \{2\}$
 - Start in either (visible) state 0 or 1

- Each step is noninvertible, and so continually-embeddable but over X ∪ Z.
- *Not* continually-embeddable over X

ROADMAP

• Example of flipping a bit:

If construct a CTMC with transition matrix T(t, t') to do this, you find that at transitions from column 1 to 2 and from column 2 to 3, *a term in T(t, t') changes from 0 to nonzero or vice-versa*

• Example of flipping a bit:

In conventional single heat-bath stochastic thermodynamics, such changes typically correspond to changing energy gaps from being *infinite* to being *finite* or vice-versa

• Example of flipping a bit:

Often difficult for an engineer to construct a system whose transition matrix has terms that change from zero to nonzero or vice-versa. *Treat number of such changes as a cost*

• Example of flipping a bit:

- Visible states $X = \{0, 1\}$, hidden states $Z = \{2\}$
- Start in either (visible) state 0 or 1

- 3 successive idempotent functions
 - Is that fewest possible? I.e., does *timestep cost = 3*?

ROADMAP

TIMESTEP COST

Theorem: Timestep cost of noninvertible π is minimal number of idempotent functions whose product is π

• Analyzing a formally identical semigroup theory question, Saito (1989) showed that this cost is either

$$\left[\frac{|X| + \operatorname{cycl} \pi - \operatorname{fix} \pi}{|X| - |\operatorname{img} \pi|}\right]$$

or 1 more than this, where:

- $cycl(\pi)$ is number of (invertible) cyclic orbits of π
- fix(π) is number of fixed points of π
- $img(\pi)$ is size of image of X under π

<u>TRADEOFF OF</u> <u>HIDDEN STATES AND TIMESTEPS</u>

Theorem: Timestep cost of noninvertible π is minimal number of idempotent functions whose product is π

Simple extension of this result to allow *k hidden states*, and include *invertible π*: Timestep cost is either

$$\left\lceil \frac{k + |X| + \max\left(\operatorname{cycl}(\pi) - k, 0\right) - \operatorname{fix}(\pi)}{k + |X| - |\operatorname{img}(\pi)|} \right\rceil$$

or 1 more than this

EXAMPLE: BIT FLIP

• Timestep cost of π with k hidden states:

$$\left[\frac{k+|X|+\max\left(\operatorname{cycl}(\pi)-k,0\right)-\operatorname{fix}(\pi)\right)}{k+|X|-|\operatorname{img}(\pi)|}\right]$$

• |X| = 2, $cycl(\pi) = 1$, $fix(\pi) = 0$, $img(\pi) = 2$, k = 1

• So timestep cost = 3 – three successive steps is smallest possible.

EXAMPLE – Maps over 4 bits

- Space/time trade-off for two functions over $X = \{0, ..., 15\}$: -
 - 'Cycle' is $x \rightarrow x + 1 \mod 16$.
 - **'Complement'** represents each element of X as a four-bit string and then applies bitwise NOT.

- Analysis so far assumes can use arbitrary idempotent functions
- In real world, *severe constraints on set of idempotent functions* we can build into our devices
- Ex: X is all bit strings of length 128
 - Number of possible idempotent functions lower-bounded by the number of partitions of X, i.e., the Bell number of 2¹²⁸
 - This is *huge* so results above, which assume we can use all those functions are not appropriate for such an X

How does analysis change with realistic constraints on set of idempotent functions we can use?

<u>REALISTIC SETS OF</u> <u>IDEMPOTENT FUNCTIONS</u>

Ex: X is all bit strings of length 128

Suppose only *two types of idempotent function* we can use:

- Functions that work on one spin (bit) at a time
- Functions that work on two spins (bits) at a time
- The set of all such functions includes all logical ANDs, NOTs or ORs of individual bits
- So can implement any Boolean function of x by a sequence of such idempotent functions

Calculating timestep cost with k hidden states similar to circuit complexity, *but different*

CONCLUSIONS

- Derived a **novel "hidden" space/time trade-off** applicable to all continuous-time Markov chains
- **Physical meaningful** as minimal "costs" of any stochastic thermodynamic process that implements a given function
- Unlike traditional costs in thermodynamics of computation, these new ones involve *state-space resources* and *timestep resources*
- Can extend to non-single-valued ("stochastic") π (another talk).
- Space / time tradeoffs of **a single gate** within an overall circuit of many gates... that is *itself* subject to space / time tradeoffs...
- Lots of future work!