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Conditional distribution of state 
at t = 1 given state at t = 0

•   Visible states arrayed along black lines
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•   Visible states arrayed along black lines
•   Hidden states arrayed along dotted purple lines
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•   Visible states arrayed along black lines
•   Hidden states arrayed along dotted purple lines
•   Each “column” of arrows = one timestep
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More hidden states allows fewer timesteps
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PHYSICALLY  IMPLEMENTING
CONDITIONAL  DISTRIBUTIONS

•  Consider a physical system implementing a conditional distribution 
π(x1 | x0) over “visible” state space X (X finite, time units arbitrary)

- π  observed to govern some naturally occurring system

- π  constructed by human engineers

     Example: Update function of a (re-usable) gate in a digital 
circuit (a single-valued conditional distribution)

     Example: Update function of an  entire (re-usable) digital 
computer

Will mostly focus here on π that are functions (like gates)



•  Consider a physical system implementing a conditional distribution 
π(x1 | x0) over a visible state space X

•  “Implement” here means the dynamics for t ∈  [0, 1] is described by a 
(time-inhomogeneous) continuous-time Markov chain (CTMC)

- This encompasses stochastic thermodynamics 
- However our results are even more general

•  Example: Stochastic thermodynamic analysis of flipping a bit
stored as state of a quantum dot.

PHYSICALLY  IMPLEMENTING
CONDITIONAL  DISTRIBUTIONS



•  Consider a system governed by a CTMC that implements a 
conditional distribution π(x1 | x0) over a “visible” state space X

•  More precisely: 
      -  For many π(x1 | x0), any CTMC implementing π over X 

must actually evolve across some space X ∪ Z

      -  π(x1 | x0) is the restriction to X of the CTMC over X ∪ Z

HIDDEN STATES

We prove that for many π’s, the CTMC must actually 
evolve over a space including “hidden” states Z, 

in addition to the visible states X



•  Bit flip example:
-  X = {0, 1}
-  Start in either state 0 or 1

HIDDEN STATES

For many π’s, the CTMC must actually evolve over a 
space including hidden states Z, 
in addition to the visible states X

1 →  0   0
              1
              

0 →  1   0
                   1
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•  Bit flip example:
-  X = {0, 1}, Z = {2}
-  Start in either state 0 or 1
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•  Consider a system governed by a CTMC that implements a 
conditional distribution π(x1 | x0) over a visible state space X

•  I.e., any CTMC taking x0 to π(x1 | x0) runs through a sequence of 
“hidden timesteps” within [0, 1]

•  Often there is a cost to any engineer constructing a CTMC to 
implement π, which increases with the number of hidden timesteps

HIDDEN TIMESTEPS

    There is a natural way to view any CTMC as dividing 
t ∈ [0, 1] into a countable number of contiguous intervals



•  Example: To implement a bit flip requires at least three hidden 
timesteps

•  Bit flip example:
-  X = {0, 1}, Z = {2}
-  Start in either state 0 or 1

HIDDEN STATES

1 →  0   0
              1
              2

0 →  1   0
                   1

              2



•  Consider a system governed by a CTMC that implements a 
conditional distribution π(x1 | x0) over a visible state space X

•  In general, for any π(x1 | x0), the more hidden states a CTMC can 
use, the fewer hidden timesteps it needs to implement π.

•  I.e., a tradeoff between number of hidden states and minimal number 
of hidden timesteps needed to implement π with a CTMC 

•  This tradeoff depends on the details of π

HIDDEN TIMESTEPS

    There is a natural way to view any CTMC as dividing
t ∈ [0, 1] into a countable number of contiguous intervals
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PAST WORK ON EMBEDDING

•  Given any π(x1 | x0), the embedding problem is to determine if there 
is a CTMC with rate matrix Rx,xʹ(t) such that OE(R)[1] = π(x1 | x0)

•  First studied by Kingman (1962) who derived necessary and 
sufficient conditions for any π(x1 | x0) to be embeddable for binary X,

     by a time-homogeneous CTMC

•  We still do not know necessary and sufficient conditions for larger X, 
even for time-homogeneous CTMCs



PAST WORK ON EMBEDDING

•  Given any π(x1 | x0), the embedding problem is to determine if there 
is a CTMC with rate matrix Rx,xʹ(t) such that OE(R)[1] = π(x1 | x0)

•  Goodman (1970) derived necessary conditions for π to be 
embeddable by a (time-inhomogeneous) CTMC for arbitrary finite X

•  In particular, 

•  Intuition: For any time-varying Rx,xʹ(t), 

•  Lencastre et al. (2016) is a nice review.

If det π  ≤  0, π cannot be embedded by any CTMC

det ⇡ = e
R 1
0 dt TrR(t) > 0



CONTINUALLY-EMBEDDABLE  π 

•  But ... bit erasure is the stochastic matrix

•  This has determinant 0, and yet many physical systems erase bits. 

???

•   Intuitive Solution: A “quasi-static” CTMC, that is arbitrarily close to 
bit erasure. 

    (So the determinant of the matrix π that it implements is 
     infinitesimal - but positive)

If det π  ≤  0, π cannot be embedded by any CTMC

0 0
1 1

⎛

⎝
⎜

⎞

⎠
⎟



CONTINUALLY-EMBEDDABLE  π 

•  Intuitive Solution: A “quasi-static” CTMC, that is arbitrarily close to 
bit erasure (so determinant is infinitesimal – but positive)

•  Formally: π is continually-embeddable if ∃ sequence of CTMCs with 
transition matrices {T(n)(t, tʹ) : n = 1,2,...} such that 

1) T(t, tʹ) is continuous in t and tʹ  for all t, tʹ ∈ [0, 1] : t < tʹ  
2) π = T(0, 1) 

where for all t, tʹ ∈  [0, 1], T(t, tʹ) = limn→∞ T(n)(t, tʹ)

If det π  ≤  0, π cannot be embedded by any CTMC
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HIDDEN STATES

•  So bit-flip is not continually-embeddable

- Intuition: bit-flip is the matrix               with determinant -1.

- This is not infinitesimally close to a positive determinant

•  But many physical systems flip bits (not to mention perform more 
complicated invertible maps)

???

Theorem: Any noninvertible function (like bit erasure) is 
continually embeddable

Theorem: No invertible function (except the identity) is 
continually-embeddable

0 1
1 0

⎛

⎝
⎜

⎞

⎠
⎟



•  Illustration of flipping a bit:
-  Visible states X = {0, 1}, hidden states Z = {2}
-  Start in either (visible) state 0 or 1

•  Each step is noninvertible, and so continually-embeddable - but
    over  X ∪ Z. 

•  Not continually-embeddable over X

HIDDEN STATES

1 →  0   0
              1
              2

0 →  1   0
                   1

              2
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•  Example of flipping a bit:

HIDDEN TIMESTEPS

1 →  0   0
              1
              2

0 →  1   0
                   1

              2

If construct a CTMC with transition matrix T(t, tʹ) to do this, you 
find that at transitions from column 1 to 2 and from column 2 to 3, 

a term in T(t, tʹ) changes from 0 to nonzero or vice-versa 



•  Example of flipping a bit:

HIDDEN TIMESTEPS

1 →  0   0
              1
              2

0 →  1   0
                   1

              2

In conventional single heat-bath stochastic thermodynamics, such 
changes typically correspond to changing energy gaps from 

being infinite to being finite or vice-versa



•  Example of flipping a bit:

HIDDEN TIMESTEPS

1 →  0   0
              1
              2

0 →  1   0
                   1

              2

Often difficult for an engineer to construct a system whose transition 
matrix has terms that change from zero to nonzero or vice-versa.

Treat number of such changes as a cost



•  Example of flipping a bit:
-  Visible states X = {0, 1}, hidden states Z = {2}
-  Start in either (visible) state 0 or 1

•  3 successive idempotent functions
-  Is that fewest possible? I.e., does timestep cost = 3?

HIDDEN STATES

1 →  0   0
              1
              2

0 →  1   0
                   1

              2
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TIMESTEP COST  

•  Analyzing a formally identical semigroup theory question, Saito 
(1989) showed that this cost is either 

 
 
 
 

 or 1 more than this, where: 
 

  - cycl(π) is number of (invertible) cyclic orbits of π
- fix(π) is number of fixed points of π
- img(π) is size of image of X under π

Theorem: Timestep cost of noninvertible π is minimal 
number of idempotent functions whose product is π



TRADEOFF OF  
HIDDEN STATES AND TIMESTEPS 

 
 
 
 
 
 
•   Simple extension of this result to allow k hidden states, and include 

invertible π : Timestep cost is either 

    or 1 more than this 

&
k + |X|+max

�
cycl(⇡)� k, 0

�
� fix(⇡)

k + |X|� |img(⇡)|

'

Theorem: Timestep cost of noninvertible π is minimal 
number of idempotent functions whose product is π



EXAMPLE: BIT FLIP 

 
•  Timestep cost of π with k hidden states: 

 
 
•  |X| = 2, cycl(π) = 1, fix(π) = 0, img(π) = 2, k = 1   
•  So timestep cost = 3 – three successive steps is smallest possible. 

&
k + |X|+max

�
cycl(⇡)� k, 0

�
� fix(⇡)

k + |X|� |img(⇡)|

'

1 →  0  0
             1
             2

0 →  1  0
                  1

             2



 
 
•  Space/time trade-off for two functions over X = {0, . . . , 15}: -     
       -  ‘Cycle’ is x → x + 1 mod 16.  
       -  ‘Complement’ represents each element of X as a four-bit  

        string and then applies bitwise NOT. 

EXAMPLE – Maps over 4 bits 



REALISTIC SETS OF 
IDEMPOTENT FUNCTIONS

•  Analysis so far assumes can use arbitrary idempotent functions

•  In real world, severe constraints on set of idempotent functions we 
can build into our devices

•  Ex: X is all bit strings of length 128
- Number of possible idempotent functions lower-bounded by 
  the number of partitions of X, i.e., the Bell number of 2128

- This is huge – so results above, which assume we can use all those 
   functions are not appropriate for such an X

How does analysis change with realistic constraints 
on set of idempotent functions we can use?



REALISTIC SETS OF 
IDEMPOTENT FUNCTIONS

Ex: X is all bit strings of length 128

Ø  Suppose only two types of idempotent function we can use: 
   -  Functions that work on one spin (bit) at a time
   -  Functions that work on two spins (bits) at a time

Ø The set of all such functions includes all logical ANDs, NOTs or 
ORs of individual bits

Ø So can implement any Boolean function of x by a sequence of 
such idempotent functions

Ø Calculating timestep cost with k hidden states similar to circuit 
complexity, but different



CONCLUSIONS 
•   Derived a novel “hidden” space/time trade-off applicable to all 

continuous-time Markov chains 
 

•   Physical meaningful as minimal “costs” of any stochastic 
thermodynamic process that implements a given function 
 

•   Unlike traditional costs in thermodynamics of computation, these 
new ones involve state-space resources and timestep resources 

•   Can extend to non-single-valued (“stochastic”) π (another talk). 

•   Space / time tradeoffs of a single gate within an overall circuit 
of many gates... that is itself subject to space / time tradeoffs... 

•   Lots of future work! 


