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* Visible states arrayed along black lines
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* Visible states arrayed along black lines
* Hidden states arrayed along dotted purple lines
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Visible states arrayed along black lines
Hidden states arrayed along dotted purple lines
Each “column” of arrows = one timestep
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More hidden states allows fewer timesteps



ROADMAP

Overview

How to erase a bit: continually-embeddable matrices

‘ How to flip a bit - hidden states \

How to flip a bit - hidden timesteps

Tradeoff of numbers of hidden states and timesteps



PHYSICALLY IMPLEMENTING
CONDITIONAL DISTRIBUTIONS

Consider a physical system implementing a conditional distribution
n(x, | x,) over “‘visible” state space X (X finite, time units arbitrary)

- t observed to govern some naturally occurring system
- ;t constructed by human engineers

Example: Update function of a (re-usable) gate in a digital
circuit (a single-valued conditional distribution)

Example: Update function of an entire (re-usable) digital
computer

Will mostly focus here on st that are functions (like gates)




PHYSICALLY IMPLEMENTING
CONDITIONAL DISTRIBUTIONS

Consider a physical system implementing a conditional distribution
m(x, | x,) over a visible state space X

“Implement” here means the dynamics for € [0, 1] 1s described by a
(time-inhomogeneous) continuous-time Markov chain (CTMC)

- This encompasses stochastic thermodynamics
- However our results are even more general

Example: Stochastic thermodynamic analysis of flipping a bit
stored as state of a quantum dot.



HIDDEN STATES

* Consider a system governed by a CTMC that implements a
conditional distribution m(x, | x,) over a “visible” state space X

We prove that for many &’s, the CTMC must actually
evolve over a space including “hidden” states Z.,
in addition to the visible states X

* More precisely:
- For many n(x, | X)), any CTMC implementing s over X
must actually evolve across some space X U Z

- 7(X, | X,) 18 the restriction to X of the CTMC over X U Z



HIDDEN STATES

For many #’s, the CTMC must actually evolve over a
space including hidden states Z,
in addition to the visible states X

* Bit flip example:
X={0,1}
t in either state O or 1




HIDDEN STATES

For many #’s, the CTMC must actually evolve over a
space including hidden states Z,
in addition to the visible states X

* Bit flip example:
- X=A{0,1}
in either state O or 1




HIDDEN STATES

For many 7&r’s, the CTMC must actually evolve over a
space including hidden states Z,
in addition to the visible states X

* Bit flip example:
- X={0,1},Z={2}
- Start in either state O or 1
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HIDDEN STATES

For many 7&r’s, the CTMC must actually evolve over a
space including hidden states Z,
in addition to the visible states X

* Bit flip example:
- X={0,1},Z={2}
- Start in either state O or 1

/

B S
=




HIDDEN TIMESTEPS

* Consider a system governed by a CTMC that implements a
conditional distribution m(x, | X,) over a visible state space X

There 1s a natural way to view any CTMC as dividing
t € [0, 1] into a countable number of contiguous intervals

* l.e.,any CTMC taking X, to mt(X, | X,) runs through a sequence of
“hidden timesteps” within [0, 1]

* Often there 1s a cost to any engineer constructing a CTMC to
implement sz, which increases with the number of hidden timesteps



HIDDEN STATES

* Example: To implement a bit flip requires at least three hidden
timesteps

* Bit flip example:
- X={0,1},Z={2}
- Start in either state O or 1
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HIDDEN TIMESTEPS

Consider a system governed by a CTMC that implements a
conditional distribution m(x, | X,) over a visible state space X

There 1s a natural way to view any CTMC as dividing
t € [0, 1] into a countable number of contiguous intervals

In general, for any n(x, | X,), the more hidden states a CTMC can
use, the fewer hidden timesteps it needs to implement 7.

I.e., a tradeoff between number of hidden states and minimal number
of hidden timesteps needed to implement ;t with a CTMC

This tradeoff depends on the details of 7t
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PAST WORK ON EMBEDDING

* Given any n(x, | X,), the embedding problem is to determine if there
1s a CTMC with rate matrix R, (t) such that OE(R)[1] = mu(x, | x,)

* First studied by Kingman (1962) who derived necessary and
sufficient conditions for any w(x, | X,) to be embeddable for binary X,
by a time-homogeneous CTMC

* We still do not know necessary and sufficient conditions for larger X,
even for time-homogeneous CTMCs



PAST WORK ON EMBEDDING

Given any (X, | X,), the embedding problem is to determine if there
1s a CTMC with rate matrix R, (t) such that OE(R)[1] = mu(x, | x,)

Goodman (1970) derived necessary conditions for 7 to be
embeddable by a (time-inhomogeneous) CTMC for arbitrary finite X

In particular,

If det ® < O, w cannot be embedded by any CTMC

Intuition: For any time-varying R, (t),

det 7 = efo dt TrR() > 0

Lencastre et al. (2016) 1s a nice review.



CONTINUALLY-EMBEDDABLE rn

If det ® < 0, mw cannot be embedded by any CTMC

e But ... bit erasure 1s the stochastic matrix ( 0 0 )
I 1

* This has determinant O, and yet many physical systems erase bits.

LN

* Intuitive Solution: A “quasi-static” CTMC, that is arbitrarily close to
bit erasure.
(So the determinant of the matrix st that it implements 1s
infinitesimal - but positive)



CONTINUALLY-EMBEDDABLE rn

If det ® < 0, mw cannot be embedded by any CTMC

* Intuitive Solution: A “quasi-static” CTMC, that is arbitrarily close to
bit erasure (so determinant is infinitesimal — but positive)

* Formally: m is continually-embeddable if 3 sequence of CTMCs with
transition matrices {T™(¢,¢) : n=1,2,...} such that

1) T(z, t’) is continuous in t and ¢” forall¢,t" € [0, 1] : t < ¢’
2) Tt =T(, 1)

where for all ¢, ¢’ [0, 1], T(¢,t) =lim__,,, T™(¢,¢)
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HIDDEN STATES

Theorem: Any noninvertible function (like bit erasure) is
continually embeddable

Theorem: No invertible function (except the identity) 1s
continually-embeddable

* So bit-flip is not continually-embeddable

_ Intuition: bit-flip is the matrix( 0 1 )with determinant -1.
1 O

- This 1s not infinitesimally close to a positive determinant

* But many physical systems flip bits (not to mention perform more
complicated invertible maps)

L2



HIDDEN STATES

* Illustration of flipping a bit:
- Visible states X = {0, 1}, hidden states Z = {2}
- Start in either (visible) state O or 1
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* Each step is noninvertible, and so continually-embeddable - but
over X U Z.
* Not continually-embeddable over X
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HIDDEN TIMESTEPS

* Example of flipping a bit:

e 2
=

0— 1 08—
1 :.

If construct a CTMC with transition matrix T(z, ¢*) to do this, you
find that at transitions from column 1 to 2 and from column 2 to 3,
atermin T(t,t') changes from 0 to nonzero or vice-versa




HIDDEN TIMESTEPS

* Example of flipping a bit:

e 2
=

0— 1 08—
1 :.

In conventional single heat-bath stochastic thermodynamics, such
changes typically correspond to changing energy gaps from
being infinite to being finite or vice-versa




HIDDEN TIMESTEPS

* Example of flipping a bit:

e 2
=

0— 1 0 B —> 3
1 :.
2 A__,

Often difficult for an engineer to construct a system whose transition
matrix has terms that change from zero to nonzero or vice-versa.
Treat number of such changes as a cost




HIDDEN STATES

 Example of flipping a bit:
- Visible states X = {0, 1}, hidden states Z = {2}
- Start in either (visible) state O or 1

11— 0 (1).—> :
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* 3 successive idempotent functions
- Is that fewest possible? L.e., does timestep cost = 3?
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TIMESTEP COST

Theorem: Timestep cost of noninvertible 5 1s minimal
number of idempotent functions whose product 1s 7

Analyzing a formally identical semigroup theory question, Saito
(1989) showed that this cost 1s either

| X | +cyel m—fix
[ X| — |img 7|

or 1 more than this, where:

- cycl(mr) 1s number of (invertible) cyclic orbits of
- fix(7r) 1s number of fixed points of &t
- img(m) 1s size of image of X under m



TRADEOFF OF
HIDDEN STATES AND TIMESTEPS

Theorem: Timestep cost of noninvertible s 1s minimal
number of idempotent functions whose product is 5

* Simple extension of this result to allow k hidden states, and include
invertible 7t : Timestep cost 1s either

k + | X| 4+ max (cycl(m) — k,0) — fix(m)
k4| X| = [img ()]

or 1 more than this



EXAMPLE: BIT FLIP

* Timestep cost of m with k hidden states:

k + | X| + max (cycl(r) — k,0) — fix(m)
k4| X| = [img ()]

z.lng—»-; -
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e |X|=2,cycl(mm) =1, fix(w) =0, img(w) =2, k=1
* So timestep cost = 3 — three successive steps 1s smallest possible.



EXAMPLE — Maps over 4 bits

Space/time trade-off for two functions over X = {0, ..., 15}: -
- ‘Cycle’1s x — x + 1 mod 16.
- ‘Complement’ represents each element of X as a four-bit
string and then applies bitwise NOT.
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REALISTIC SETS OF
IDEMPOTENT FUNCTIONS

Analysis so far assumes can use arbitrary idempotent functions

In real world, severe constraints on set of idempotent functions we
can build into our devices

Ex: X is all bit strings of length 128
- Number of possible idempotent functions lower-bounded by
the number of partitions of X, i.e., the Bell number of 2128

- This is huge — so results above, which assume we can use all those
functions are not appropriate for such an X

How does analysis change with realistic constraints
on set of idempotent functions we can use?




REALISTIC SETS OF
IDEMPOTENT FUNCTIONS

Ex: X 1s all bit strings of length 128

» Suppose only two types of idempotent function we can use:
- Functions that work on one spin (bit) at a time
- Functions that work on two spins (bits) at a time

» The set of all such functions includes all logical ANDs, NOTs or
ORs of individual bits

» So can implement any Boolean function of x by a sequence of
such idempotent functions

» Calculating timestep cost with k hidden states similar to circuit
complexity, but different



CONCLUSIONS

Derived a novel “hidden” space/time trade-off applicable to all
continuous-time Markov chains

Physical meaningful as minimal “costs” of any stochastic
thermodynamic process that implements a given function

Unlike traditional costs in thermodynamics of computation, these
new ones involve state-space resources and timestep resources

Can extend to non-single-valued (“stochastic’’) m (another talk).

Space / time tradeoffs of a single gate within an overall circuit
of many gates... that 1s itself subject to space / time tradeoffs...

Lots of future work!



