A complex-systems view on language (text analysis)

Eduardo G. Altmann

School of Mathematics and Statistics
The University of Sydney
Australia

The faculty of Language: What Is It, Who Has It, and How Did It Evolve
Hauser, Chomsky, Fitch (Science 2002)

The Evolution of Universal Grammar
Nowak, Komarova, Niyogi (Science 2001)
$\dot{x}_{i}=\sum_{j=1}^{n} x_{j} f_{j} Q_{j i}-\phi x_{i} \quad i=1, \ldots, n$

The Mystery of Language Evolution, Hauser et al. (Frontiers in Psychology 2014)
"We argue instead that the richness of ideas is accompanied by a poverty of evidence..."

Cook's Diary

Sunday 6th May 1770
"In the evening the yawl return'd from fishing having caught two Sting rays weighing near 600 pounds. The great quantity of New Plants \& Ca Mr Banks \& Dr Solander collected in this place occasioned my giveing it the name of Botany Bay. It is situated in the Latitude of $34^{\circ} . .0^{\prime}$ So Longitude 208°.. 37^{\prime} West it $;$ sit is Capacious safe and commodious - it may be known by the land on the Sea-coast which is of a pretty even and moderate heightand rather higher than it is farther inland with steep rocky clifts next the Sea and looks like a long Island lying close under the Shore: the entrance of the harbour lies about the Middle of this land - in coming from the Southward it is discover'd before you are abreast of it which you cannot do in coming from the northward..."
http://southseas.nla.gov.au/journ als/cook/17700506.html

Utterance selection model of language change Baxter, Blythe, Croft, McKane (Phys Rev E 2006)

Quantifying the evolutionary dynamics of language Lieberman, Michel, Jackson, Tang, Nowak (Nature 2007)

Book

Universal statistical laws?
War and Peace, by Leo Tolstoy
Well, Prince, so Genoa and Lucca are now just family estates of the Buonapartes. But I warn you, if you don't tell me that this means war, if you still try to defend the infamies and horrors perpetrated by that Antichrist--I really believe he is Antichrist--

Human Behavior and the Principle of Least Effort, Zipf (1949)

r-th most frequent word

On the origin of long-range correlations in texts Altmann, Cristadoro, Degli Esposti (PNAS 2012)

M. Gerlach \& E. G. Altmann, "Stochastic model for the vocabulary growth in natural languages", Phys. Rev. X (2013) M. Gerlach \& E. G. Altmann, "Scaling laws and fluctuations in the statistics of word frequencies", New J. Phys. (2014) E. G. Altmann \& M. Gerlach "Statistical Laws in Linguistics", Chapter in Creativity and Universality in Language (2016)

Vocabulary growth?

Report on the state of the German language (March 2013) German Academy for Language and Literature Union of German Academies of Sciences and Humanities

Year	$1905-1914$	$1948-1957$	$1995-2004$
\# distinct words	$3,715,000$	$5,045,000$	$5,238,000$

Quantitative Analysis of Culture Using Millions of Digitized Books Michel et. al., Science (2011) [English]

Year	1900	1950	2000
\# distinct words	544,000	597,000	$1,022,000$

Problem: dependence of vocabulary on database size?

Vocabulary growth with database size

A
UNIVERSALIS
DE JURE
HOMINUM
DECLARATIO

B
Cum dignitatis
infixae
omnibus
humanae

Documents

Example of applications:

- invert indexing (document classification, text mining, etc.)
- vocabulary richness of texts / authors (different document lengths)

Vocabulary growth with database size

Limit vocabulary?

Vocabulary growth with database size

Simple model: usage of each word follows a Poisson process with fixed frequency

$$
\langle N(M)\rangle=\sum_{r} 1-e \frac{\sqrt{-F(r)} M}{\hat{\jmath}}
$$

where $\mathrm{F}(\mathrm{r})$ is the frequency of the r-th most frequent word ($r=$ rank).

Zipf's law?

rank (r-th most frequent word)

Zipf's law?

Vocabulary growth with database size

Simple mode: usage of each word follows a Poisson process with fixed frequency

$$
\langle N(M)\rangle=\sum_{r} 1-e \frac{-F(r}{\hat{\jmath}} M
$$

where $\mathrm{F}(\mathrm{r})$ is the frequency of the ${ }_{r}^{r}$-th most frequent word ($r=$ rank).

$$
F_{d p}(r ; \gamma, b)= \begin{cases}r^{-1}, & r \leq b, \\ r^{-\gamma} & r>b\end{cases}
$$

$$
N_{d p}\left(N_{c}\right)= \begin{cases}M, & M \ll M_{b}, \\ M^{1 / \gamma}, & M \gg M_{b}\end{cases}
$$

Extension of the Zipf-Heaps connection [<Mandelbrot 1950’s]!

Vocabulary growth with database size

F. Ghanbarnejad, M. Gerlach, J. M. Miotto, and E. G. Altmann, "Extracting information from S-curves of language change", J. Royal Soc. Interface (2014)
M. Gerlach, F. Font-Clos, E. G. Altmann, "On the similarity of symbol-frequency distributions with heavy tails", Phys. Rev. X (2016)
L. Dias, M. Gerlach, J. Scharloth, and E. G. Altmann, "Using text analaysis to quantify the similarity of scientific disciplines", [arXiv:1706.08671] .

What is changing?

Change in the core vocabulary

$f(t, \Delta t)$: fraction of core words at time t which remain core at time $t+\Delta t$

Change in the core vocabulary

Replacement in the core vocabulary:
Nc/k ≈ 30 words/year

Vocabulary Distance

Gensealizbdncenseinz Slgemme,Divergence

$$
H_{\alpha}\left(H(\boldsymbol{p})=-\sum_{i}^{1} p_{i} \log p_{i}-1\right)
$$

Havrda\&Chrvát, Kybernetika (1967)

$$
H_{\alpha=1}(\boldsymbol{p})=H(\boldsymbol{p})
$$

$$
\left.D_{6} D(\boldsymbol{p}, \boldsymbol{q})=H\left(\frac{\boldsymbol{p}+\boldsymbol{q}}{2}\right)-\frac{1}{2} H(\boldsymbol{p})-\frac{1}{2} H(\boldsymbol{q}) \boldsymbol{q}\right) \quad D_{\alpha=1}(\boldsymbol{p}, \boldsymbol{q})=D(\boldsymbol{p}, \boldsymbol{q})
$$

Burbea\&Rao, IEEE TIT (1982)
$\rightarrow \sqrt{D_{\alpha}}$ isq \downarrow Detramferri $\alpha \in[0,2]$

Briet et al., Phys Rev A (2009)

Slow convergence of statistical estimators due to Zipf's law: $F_{r} \sim r^{-\gamma}$

	H_{α}	$D_{\alpha}, \tilde{D}_{\alpha}(\boldsymbol{p} \neq \boldsymbol{q})$	$D_{\alpha}, \tilde{D}_{\alpha}(\boldsymbol{p}=\boldsymbol{q})$
Bias:	$V^{(\alpha)} / N$	$V^{(\alpha)} / N$	$V^{(\alpha)} / N$
Fluctuations:	$V^{(2 \alpha)} / N$	$V^{(2 \alpha)} / N$	$V^{(2 \alpha-1)} / N^{2}$

constant \& \alpha>1+1 / \gamma,\end{cases}\)

Change of English
 (Google n-gram database 1520-2010)

Change of English
(Google n-gram database 1520-2010)

Similarity of Scientific Disciplines (title and abstract of all Web of Science papers 1990-2014)

Similarity of Scientific Disciplines

Adoption of new words

"The progress of language change through a community follows a lawful course, an S-curve from minority to majority to totality."

Weinreich, Labov, Herzog, (1968) Empirical foundations for a theory of language change

What is the empirical support?
"...up to a dozen points for a single change"
R. A. Blythe and W. Croft, Language 88, 269 (2012)

- Are all changes following S-curves? No!
- Are all S-curves the same? No!
- Can we extract from S-curves information about the process of change?Yes!

Adoption of new words
Ortography reform (1996): $\Omega \longrightarrow$ SS
2,000 different words (e.g., Kongreß \longrightarrow Kongress)

Adoption of new words

$$
\frac{d \rho(t)}{d t}=(a+b \rho(t))(1-\rho(t))\left\{\begin{array}{l}
b=0 \Rightarrow \rho(t)=\text { exponential } \\
a=0 \Rightarrow \rho(t)=\text { symmetric S-curve }
\end{array}\right.
$$

M. Gerlach, T. Peixoto, E. G. Altmann, "A network approach to topic models", [arXiv:1708.01677] .

Text mining

| A |
| :---: | :---: | :---: |
| UNIVERSALIS
 DE JURE
 HOMINUM
 DECLARATIO |\quad| B |
| :---: |
| Cum dignitatis
 infixae
 omnibus
 humanae |
| Cum dignitatis |
| infixae |
| omnibus |
| humanae |$.$| D |
| :---: |
| familiae |
| partibus et |
| eorum jurum |
| aequalium, |

	Documents				
	A	B	C	D	...
the	156	85	111	35	56
of	59	65	75	33	40
Words
science	0	5	2	0	0
sport	4	0	0	0	0
networks	2	0	0	0	0
physics	0	0	1	0	0
biology	0	0	0	5	0

Topic Models

		Doc	men													
	A	B	C	D	...		1	2	3	K				um		
the	156	85	111	35	56	the	2\%	3\%	2\%	2						
of	59	65	75	33	40	Words of	1\%	0.2\%		0.4\%	Topics	A	B	C	D	
Words	ords	1		50	$\begin{aligned} & 90 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 0 \end{aligned}$	
science	0	5	2	0	0	science	0.05\%	0	0.04\%	0	- 2	80				
sport	4	0	0	0	0	sport	0	0.1\%	0	0	2	\%				
networks	2	0	0	0	0	networks	0.05\%	0	0	0	3	$\begin{aligned} & 10 \\ & \% \end{aligned}$	$\begin{aligned} & 50 \\ & \% \end{aligned}$		80 $\%$	
physics	0	0	1	0	0	physics	0.1\%	0	0.005\%	0	K	10		10		
biology	0	0	0	5	0	biology	0.001\%	0	0.1\%	0						
					θ_{d}	
				A_{ω}						φ_{j}						

Latent Dirichlet Allocation (LDA)

Blei, Ng, Jordan (Journal of Machine Learning 2003), >20k citations Implementation: McCallum's MALLET (http://mallet.cs.umass.edu)

- Fixed number of topics K
- Dirichlet Priors
- Inference problem:

$$
P(\text { Model } \mid \text { Data })=P(\text { Data } \mid \text { Model }) \frac{P(\text { Model })}{P(\text { Data })}
$$

$$
\begin{aligned}
\text { Data } & =A_{\omega, d} \\
\text { Model } & =\left\{\varphi_{j, w}, \theta_{d, j}\right\}
\end{aligned} \quad P(\text { Model })=\text { Prior }=\left\{\begin{aligned}
\varphi_{j, w} & \sim \operatorname{Dir}(\beta) \\
\theta_{d, j} & \sim \operatorname{Dir}(\alpha)
\end{aligned}\right.
$$

Communities in Networks

Connections to topic models: Ball, Karrer, Newman (2011), Lancichinetti et al (PRX 2014)

Stochastic Block Models (SBM)
 Holland, Laskey, Leinhardt (Social Networks 1983)

- Probability of connection between nodes depends on the blocks they belong
- Number of Blocks << Number of nodes (links)

Generative model: non-parametric hierarchical SBM Peixoto (PRX 2014, PRX 2015, http://graph-tool.skewed.de)

- number of blocks (topics) not fixed
- prior at one level is set by the upper hierarchy level
- each link (word token in a document) is assigned to a pair of blocks

Topic models

Community detection

Model Comparison (between LDA and SBM)

Which model compacts better the data in terms of coding or description length (DL)?
Grünwald (The Minimum Description Length Principle,2007)

$$
\Sigma=D L(\text { data } \mid \text { model })+D L(\text { model })
$$

Minimum description length (MDL) for probabilistic models:

- D= data

$$
\hat{\Sigma}=-\log P(D \mid \hat{\theta})-\log P(\hat{\theta})
$$

- $\theta=$ discrete parameters of the model

$$
\hat{\theta}=\underset{\theta}{\arg \max } P(D \mid \theta) P(\theta)
$$

Corpus				$\Sigma_{\text {LDA }}$ (hyperfit)				$\Sigma_{\text {hSBM }}$	hSBM groups	
	Docs.	Words	Word Tokens	10	50	100	500		Doc.	Words
Twitter	10,000	12,258	196,625	1,140,357	1,110,186	1,091,998	1,056,321	963,260	365	359
Reuters	1,000	8,692	117,661	879,684	876,656	881,107	879,321	341,199	54	55
Web of Science	1,000	11,198	126,313	1,035,555	1,057,491	1,065,584	1,075,433	426,529	16	18
New York Times	1,000	32,415	335,749	2,701,001	2,699,711	2,695,955	2,693,749	1,448,631	124	125
PlosONE	1,000	68,188	5,172,908	9,782,605	49,497,904	49,326,867	48,741,824	8,475,866	897	972

LDA generated documents:

10 topics, 1M documents, following Heaps' and Zipf's laws

Wikipedia Data

partner partners relational repair forgiveness deception transgression infidelity jealousy

women children culture person cultural psychology men music core mental

Words

Documents

Assibilation
Structural_linguistics
Suffix
Text_simplification
Proprietor
Young's_Analytical_
_Concordance_to_the_Bible Loculus_(architecture) Inverse_copular_constructions Affection_(linguistics)
International_Nonproprietary_ _Name

Duality_(electricity_and... Couple_(mechanics)
Invariant_mass
Lorentz_force
4 Polhode
Bertrand's_theorem
Versorium
Movement_parameter
Angular_velocity Gravitation

Applications (e.g., data mining)

Thank you for your attention!

E. G. Altmann, G. Cristadoro, and M. Degli Esposti, "On the origin of long-range correlations in texts", PNAS (2012) F. Ghanbarnejad, M. Gerlach, J. M. Miotto, and E. G. Altmann, "Extracting information from S-curves of language change", J. Royal Soc. Interface (2014)
M. Gerlach \& E. G. Altmann, "Scaling laws and fluctuations in the statistics of word frequencies", New J. Phys. (2014) M. Gerlach \& E. G. Altmann, "Stochastic model for the vocabulary growth in natural languages", Phys. Rev. X (2013) E. G. Altmann \& M. Gerlach "Statistical Laws in Linguistics", Chap. in Creativity and Universality in Language (2016) M. Gerlach, F. Font-Clos, E. G. Altmann, "On the similarity of symbol-frequency distributions with heavy tails", Phys. Rev. X (2016)
L. Dias, M. Gerlach, J. Scharloth, and E. G. Altmann, "Using text analaysis to quantify the similarity of scientific disciplines", [arXiv:1706.08671] .
M. Gerlach, T. Peixoto, E. G. Altmann, "A network approach to topic models", [arXiv:1708.01677] .

