A complex-systems view on language (text analysis)

Eduardo G. Altmann

School of Mathematics and Statistics
The University of Sydney
Australia

CRISIS:

Modelling social risks and extreme events

Humans 100 000 years

The faculty of Language: What Is It, Who Has It, and How Did It Evolve Hauser, Chomsky, Fitch (Science 2002)

The Evolution of Universal Grammar Nowak, Komarova, Niyogi (Science 2001)

$$\dot{x}_i = \sum_{j=1}^n x_j f_j Q_{ji} - \phi x_i \qquad i = 1, \dots, n$$
 $\dot{x}_i = \sum_{j=1}^n x_j f_j Q_{ji} - \phi x_i \qquad i = 1, \dots, n$
 $\dot{x}_i = \sum_{j=1}^n x_j f_j Q_{ji} - \phi x_i \qquad i = 1, \dots, n$
 $\dot{x}_i = \sum_{j=1}^n x_j f_j Q_{ji} - \phi x_i \qquad i = 1, \dots, n$
 $\dot{x}_i = \sum_{j=1}^n x_j f_j Q_{ji} - \phi x_i \qquad i = 1, \dots, n$
 $\dot{x}_i = \sum_{j=1}^n x_j f_j Q_{ji} - \phi x_i \qquad i = 1, \dots, n$
 $\dot{x}_i = \sum_{j=1}^n x_j f_j Q_{ji} - \phi x_i \qquad i = 1, \dots, n$
 $\dot{x}_i = \sum_{j=1}^n x_j f_j Q_{ji} - \phi x_i \qquad i = 1, \dots, n$

The Mystery of Language Evolution, Hauser et al. (Frontiers in Psychology 2014)

"We argue instead that the richness of ideas is accompanied by a poverty of evidence..."

Human language as a culturally transmitted replicator Pagel (Nature Rev. Genetics 2009) Modelling the dynamics of language death Abrams and Strogatz (Nature, 2006)

$$\frac{dx}{dt} = yP_{yx}(x,s) - xP_{xy}(x,s)$$

$$P_{yx}(x,s) = cx^{a}s \text{ and } P_{xy}(x,s) = c(1-x)^{a}(1-s)$$

The origin and evolution of word order Gell-Mann and Ruhlen (PNAS 2011)

nς

Cook's Diary

Sunday 6th May 1770

"In the evening the yawl return'd from fishing having caught two Sting rays weighing near 600 pounds. The great quantity of New Plants & Ca Mr Banks & Dr Solander collected in this 10 place occasioned my giveing it the name of Botany Bay. It is 2016situated in the Latitude of 34°..0' So Longitude 20 8°..37' West it 5 Sit Capacious safe and commodious - it may be known by the land on the Sea-coast ich which is of a pretty even and moderate heightand rather higher than it is farther inland with steep rocky clifts next the Sea and looks like a long Island lying close under the Shore: the entrance of the harbour lies of itabout the Middle of this land - in coming from the Southward it is discover'd before you are abreast of it which you cannot do in coming from the northward..."

inl

clo

http://southseas.nla.gov.au/journ als/cook/17700506.html

Utterance selection model of language change Baxter, Blythe, Croft, McKane (Phys Rev E 2006)

Quantifying the evolutionary dynamics of language Lieberman, Michel, Jackson, Tang, Nowak (Nature 2007)

s land - in coming from the S in co 5.html 0.2

0.5

Universal statistical laws?

War and Peace, by Leo Tolstoy

Well, Prince, so Genoa and
Lucca are now just family
estates of the Buonapartes. But
I warn you, if you don't tell me
that this means war, if you still
try to defend the infamies and
horrors perpetrated by that
Antichrist--I really believe he is
Antichrist--

. . .

Human Behavior and the Principle of Least Effort, Zipf (1949)

r-th most frequent word

On the origin of long-range correlations in texts Altmann, Cristadoro, Degli Esposti (PNAS 2012)

M. Gerlach & E. G. Altmann, "Stochastic model for the vocabulary growth in natural languages", Phys. Rev. X (2013) M. Gerlach & E. G. Altmann, "Scaling laws and fluctuations in the statistics of word frequencies", New J. Phys. (2014) E. G. Altmann & M. Gerlach "Statistical Laws in Linguistics", Chapter in Creativity and Universality in Language (2016)

Vocabulary growth?

Report on the state of the German language (March 2013)

German Academy for Language and Literature Union of German Academies of Sciences and Humanities

Year	1905-1914	1948-1957	1995-2004	
# distinct words	3,715,000	5,045,000	5,238,000	

Quantitative Analysis of Culture Using Millions of Digitized Books Michel et. al., Science (2011) [English]

Year	1900	1950	2000	
# distinct words	544,000	597,000	1,022,000	

Problem: dependence of vocabulary on database size?

Vocabulary growth with database size

Documents

В D 85 the 156 111 35 56 Vocabulary size 65 75 33 Words science 5 0 0 memory allocation 0 sport 0 networks 0 0 0 physics biology 0

Example of applications:

- invert indexing (document classification, text mining, etc.)
- vocabulary richness of texts / authors (different document lengths)

Vocabulary growth with database size

Simple model: usage of each word follows a Poisson process with fixed frequency

$$\langle N(M) \rangle = \sum_{\mathbf{r}} 1 - e^{-F(r)M}$$

where F(r) is the frequency of the r-th most frequent word (r = rank).

Zipf's law?

rank (r-th most frequent word)

Zipf's law?

Vocabulary growth with database size

<u>Simple mode</u>: usage of each word follows a Poisson process with fixed frequency

$$\langle N(M) \rangle = \sum 1 - e^{-F(r)M}$$

where F(r) is the frequency of the r-th most frequent word (r = rank).

$$F_{dp}(r;\gamma,b) = \begin{cases} r^{-1}, & r \leq b, \\ r^{-\gamma}, & r > b \end{cases}$$

$$N_{dp}(N_c) = \begin{cases} M, & M \ll M_b, \\ M^{1/\gamma}, & M \gg M_b \end{cases}$$

Extension of the Zipf-Heaps connection [<Mandelbrot 1950's]!

Vocabulary growth with database size

- F. Ghanbarnejad, M. Gerlach, J. M. Miotto, and E. G. Altmann, "Extracting information from S-curves of language change", J. Royal Soc. Interface (2014)
- M. Gerlach, F. Font-Clos, E. G. Altmann, "On the similarity of symbol-frequency distributions with heavy tails", Phys. Rev. X (2016)
- L. Dias, M. Gerlach, J. Scharloth, and E. G. Altmann, "Using text analaysis to quantify the similarity of scientific disciplines", [arXiv:1706.08671].

What is changing?

Change in the core vocabulary

Change in the core vocabulary

Replacement in the core vocabulary: Nc/k≈30 words/year

1900

majesty, doubtless, furnished, monsieur, Napoleon, hitherto Most frequent replaced words

2000

cultural,context, technology, programs, environmental, computer

Vocabulary Distance

Gensealizhdnem son Silgemore, Divergence

$$H_{\alpha}(H(\boldsymbol{p}) = -\sum_{i}^{1} p_{i} \log p_{i} \cdot 1)$$

Havrda&Chrvát, Kybernetika (1967)

$$D_{\alpha}D(\mathbf{p},\mathbf{q}) = H\left(\frac{\mathbf{p}+\mathbf{q}}{2}\right) - \frac{1}{2}H(\mathbf{p}) - \frac{1}{2}H(\mathbf{q})\mathbf{q}$$
 $D_{\alpha=1}(\mathbf{p},\mathbf{q}) = D(\mathbf{p},\mathbf{q})$

 $H_{\alpha=1}\left(\boldsymbol{p}\right)=H\left(\boldsymbol{p}\right)$

Burbea&Rao, IEEE TIT (1982)

$$ightarrow\sqrt{D_{lpha}}$$
 is value in the distribution of the dist

Briet et al., Phys Rev A (2009)

Slow convergence of statistical estimators due to Zipf's law: $F_r \sim r^{-\gamma}$

$$\frac{H_{\alpha}}{\text{Bias:}} \quad \frac{D_{\alpha}, \tilde{D}_{\alpha}(\pmb{p} \neq \pmb{q})}{V^{(\alpha)}/N} \quad \frac{D_{\alpha}, \tilde{D}_{\alpha}(\pmb{p} = \pmb{q})}{V^{(\alpha)}/N} \quad V^{(\alpha)}/N} \quad V^{(\alpha)}/N \quad V^{(\alpha)}/N \quad V^{(\alpha)}/N} \quad V^{(\alpha)}/N \quad V^{(\alpha)}/N^2} \quad V^{(\alpha)} \propto \begin{cases} N^{-\alpha+1+1/\gamma} & \alpha < 1+1/\gamma \\ \text{constant} & \alpha > 1+1/\gamma, \end{cases}$$

Change of English (Google n-gram database 1520-2010)

Change of English (Google n-gram database 1520-2010)

Similarity of Scientific Disciplines (title and abstract of all Web of Science papers 1990-2014)

Similarity of Scientific Disciplines

Adoption of new words

"The progress of language change through a community follows a lawful course, an <u>S-curve</u> from minority to majority to totality."

Weinreich, Labov, Herzog, (1968) Empirical foundations for a theory of language change

What is the empirical support?

"...up to a dozen points for a single change"

R. A. Blythe and W. Croft, Language 88, 269 (2012)

- Are all changes following S-curves? No!
- Are all S-curves the same? No!
- Can we extract from S-curves information about the process of change? Yes!

Adoption of new words

2,000 different words (e.g., Kongreß → Kongress)

Adoption of new words

$$\frac{d\rho(t)}{dt} = (a+b\;\rho(t))\,(1-\rho(t)) \begin{cases} b=0 \Rightarrow \rho(t) = \text{ exponential} \\ a=0 \Rightarrow \rho(t) = \text{ symmetric S-curve} \end{cases}$$

Text mining

Α

UNIVERSALIS DE JURE HOMINUM DECLARATIO В

Cum dignitatis infixae omnibus humanae С

Cum dignitatis infixae omnibus humanae D

familiae partibus et eorum jurum aequalium,

• • •

Documents

A P C D

		А	В		ט	•
	the	156	85	111	35	5
Monda	of	59	65	75	33	4
<u>Words</u>	•••	•••				
	science	0	5	2	0	0
	sport	4	0	0	0	0
n	etworks	2	0	0	0	0
	physics	0	0	1	0	0
	biology	0	0	0	5	0

... ...

Topic Models

Documents

		Α	В	С	D	•••
	the	156	85	111	35	56
T.7]	of	59	65	75	33	40
<u>Words</u>	•••					•••
:	science	0	5	2	0	0
:	sport	4	0	0	0	0
ne	tworks	2	0	0	0	0
I	physics	0	0	1	0	0
Ŀ	oiology	0	0	0	5	0
	35					

Topics

Words

		1	2	3	K
	the	2%	3%	2%	2
<u>ls</u>	of	1%	0.2%		0.4%
	•••				
sci	ence	0.05%	0	0.04%	0
spo	ort	0	0.1%	0	0
netw	orks	0.05%	0	0	0
phy	sics	0.1%	0	0.005%	0
bio	logy	0.001%	0	0.1%	0

В D **Topics** 50 90 20 10 50 80 % %

10

Documents

10 %

 $\theta_{d,j}$

 $A_{\omega,d}$

 $\varphi_{j,w}$

Latent Dirichlet Allocation (LDA)

Blei, Ng, Jordan (Journal of Machine Learning 2003), >20k citations Implementation: McCallum's MALLET (http://mallet.cs.umass.edu)

- Fixed number of topics K
- Dirichlet Priors
- Inference problem:

$$P(Model|Data) = P(Data|Model) \frac{P(Model)}{P(Data)}$$

$$Data = A_{\omega,d}$$
$$Model = \{\varphi_{j,w}, \theta_{d,j}\}$$

$$P(Model) = Prior = \begin{cases} \varphi_{j,w} \sim Dir(\beta) \\ \theta_{d,j} \sim Dir(\alpha) \end{cases}$$

Communities in Networks

В the **Documents** 0 0 0 156 59 Α C Words В D the 0 0 85 65 В 156 85 111 35 56 the of 0 0 0 0 75 of 59 65 33 40 111 75 B science 0 0 0 35 33 science 0 5 0 0 sport 0 0 0 sport networks 156 85 111 35 networks 2 0 0 0 0 the physics 0 physics biology 59 75 0 65 33 of biology 0 5 0

Connections to topic models: Ball, Karrer, Newman (2011), Lancichinetti et al (PRX 2014)

Stochastic Block Models (SBM) Holland, Laskey, Leinhardt (Social Networks 1983)

- Probability of connection between nodes depends on the blocks they belong
- Number of Blocks << Number of nodes (links)

Generative model: non-parametric hierarchical SBM

Peixoto (PRX 2014, PRX 2015, http://graph-tool.skewed.de)

- number of blocks (topics) not fixed
- prior at one level is set by the upper hierarchy level
- each link (word token in a document) is assigned to a pair of blocks

Model Comparison (between LDA and SBM)

Which model compacts better the data in terms of coding or description length (DL)? Grünwald (*The Minimum Description Length Principle*,2007)

$$\Sigma = DL(\text{data}|\text{model}) + DL(\text{model})$$

Minimum description length (MDL) for probabilistic models:

$$\hat{\Sigma} = -\log P(D|\hat{\theta}) - \log P(\hat{\theta})$$

-
$$\theta$$
 = discrete parameters of the model

$$\hat{\theta} = \arg\max_{\theta} P(D|\theta) P(\theta)$$

Corpus			Σ_{LDA} (hyperfit)				$\Sigma_{\rm hSBM}$ hSBM groups			
	Docs.	Words	Word Tokens	10	50	100	500		Doc.	Words
Twitter	10,000	12,258	196,625	1,140,357	1,110,186	1,091,998	1,056,321	963,260	365	359
Reuters	1,000	8,692	$117,\!661$	879,684	876,656	881,107	879,321	341,199	54	55
Web of Science	1,000	11,198	126,313	1,035,555	1,057,491	1,065,584	1,075,433	426,529	16	18
New York Times	1,000	32,415	335,749	2,701,001	2,699,711	$2,\!695,\!955$	2,693,749	1,448,631	124	125
PlosONE	1,000	68,188	5,172,908	9,782,605	49,497,904	49,326,867	48,741,824	8,475,866	897	972

LDA generated documents: 10 topics, 1M documents, following Heaps' and Zipf's laws

Wikipedia Data

partner
partners
relational
repair
forgiveness
deception
transgression
infidelity
jealousy
transgressions

Assibilation
Structural_linguistics
Suffix
Text_simplification
Proprietor
Young's_Analytical_
__Concordance_to_the_Bible
Loculus_(architecture)
Inverse_copular_constructions
Affection_(linguistics)
International_Nonproprietary_
__Name

women
children
culture
person
cultural
psychology
men
music
core

mental

Words

Documents

Duality_(electricity_and...
Couple_(mechanics)
Invariant_mass
Lorentz_force
Polhode
Bertrand's_theorem
Versorium
Movement_parameter
Angular_velocity
Gravitation

Thank you for your attention!

- E. G. Altmann, G. Cristadoro, and M. Degli Esposti, "On the origin of long-range correlations in texts", PNAS (2012)
- F. Ghanbarnejad, M. Gerlach, J. M. Miotto, and E. G. Altmann, "Extracting information from S-curves of language change", J. Royal Soc. Interface (2014)
- M. Gerlach & E. G. Altmann, "Scaling laws and fluctuations in the statistics of word frequencies", New J. Phys. (2014)
- M. Gerlach & E. G. Altmann, "Stochastic model for the vocabulary growth in natural languages", Phys. Rev. X (2013)
- E. G. Altmann & M. Gerlach "Statistical Laws in Linguistics", Chap. in Creativity and Universality in Language (2016)
- M. Gerlach, F. Font-Clos, E. G. Altmann, "On the similarity of symbol-frequency distributions with heavy tails", Phys. Rev. X (2016)
- L. Dias, M. Gerlach, J. Scharloth, and E. G. Altmann, "Using text analaysis to quantify the similarity of scientific disciplines", [arXiv:1706.08671].
- M. Gerlach, T. Peixoto, E. G. Altmann, "A network approach to topic models", [arXiv:1708.01677].