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Computation

Computer science view:

� Primary theoretical (abstract) model is a Turing Machine

� A deterministic state machine operating on an infinite tape

� Well-defined inputs, outputs, algorithm (update rules),
terminating condition

M. Sipser “Introduction to the Theory of Computation”, PWS Publishing Company, Boston, 1997
Image by Wdvorak (Own work) [CC BY-SA 4.0], via Wikimedia Commons; Turing image (public domain) via Wikimedia Commons
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Computation

Computer science view:

� Primary theoretical (abstract) model is a Turing Machine

� A deterministic state machine operating on an infinite tape

� Well-defined inputs, outputs, algorithm (update rules),
terminating condition

Mitchell: For complex systems, the “Language of dynamical
systems may be more useful than language of computation.”

M. Sipser “Introduction to the Theory of Computation”, PWS Publishing Company, Boston, 1997
Image by Wdvorak (Own work) [CC BY-SA 4.0], via Wikimedia Commons; Turing image (public domain) via Wikimedia Commons

M. Mitchell, “Introduction to Complexity”, Lecture 7
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Intrinsic computation

+ inputs
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Intrinsic computation

+ inputs

dynamical
process

+ outputs
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Intrinsic computation

+ inputs

dynamical
process

+ outputs

Intrinsic information processing occurs whenever a system
undergoes a dynamical process changing its initial state
(+inputs) into some later state (+outputs)
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Information dynamics and computation

Intrinsic computation

� Information processing in the brain
� Time evolution of cellular automata
� Gene regulatory networks computing cell behaviours
� Flocks computing their collective heading
� Ant colonies computing the most efficient routes to food
� The universe is computing its own future!
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Information dynamics and computation

We talk about computation as:

� Memory

� Signalling

� Processing

Intrinsic computation is any process involving these features:

� Information processing in the brain
� Time evolution of cellular automata
� Gene regulatory networks computing cell behaviours
� Flocks computing their collective heading
� Ant colonies computing the most efficient routes to food
� The universe is computing its own future!
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Information dynamics and computation

We talk about computation as:

� Memory

� Signalling

� Processing

Idea: quantify computation via:

� Information storage

� Information transfer

� Information modification

Intrinsic computation is any process involving these features:

� Information processing in the brain
� Time evolution of cellular automata
� Gene regulatory networks computing cell behaviours
� Flocks computing their collective heading
� Ant colonies computing the most efficient routes to food
� The universe is computing its own future!

General idea: by quantifying intrinsic computation in the language
it is normally described in, we can understand how nature
computes and why it is complex.
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Information dynamics
Measures of information dynamics

Application areas
Characterising different regimes of behaviour
Space-time characterisation of information processing
Relating complex network structure to function

Wrap-up
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Information dynamics

Key question: how is the next state of a variable in a complex
system computed?
It is the output of a local computation within the system.

Q: Where does the
information in xn+1 come
from (inputs), and how can
we measure it?

Q: How much was stored,
how much was transferred,
can we partition them or do
they overlap?

Complex system as a multivariate time-series
of states
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Information dynamics

Models computation of the next state of a target variable in terms
of information storage, transfer and modification: (Lizier et al.,

2008, 2010, 2012b)

The measures examine:

� State updates of a
target variable;

� Dynamics of the
measures in space
and time.
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Information-theoretic quantities

Shannon entropy

Conditional entropy

Mutual information (MI)

Conditional MI

H(X) = −
�

x

p(x) log2 p(x)

= �− log2 p(x)�
H(X|Y ) = −

�

x,y

p(x, y) log2 p(x|y)

I(X;Y ) = H(X) +H(Y )−H(X,Y )

=
�

x,y

p(x, y) log2
p(x|y)
p(x)

=

�
log2

p(x|y)
p(x)

�

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z)

=

�
log2

p(x|y, z)
p(x|z)

�
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Active information storage (Lizier et al.,
2012b)

How much information about the next observation Xn+1 of process

X can be found in its past state X
(k)
n = {Xn−k+1 . . . Xn−1, Xn}?

Active information storage:

AX = I(Xn+1;X
(k)
n )

=
�
log2

p(xn+1|x(k)
n )

p(xn+1)

�

Average information from past state that
is in use in predicting the next value.
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Active information storage (Lizier et al.,
2012b)

How much information about the next observation Xn+1 of process

X can be found in its past state X
(k)
n = {Xn−k+1 . . . Xn−1, Xn}?

Active information storage:

AX = I(Xn+1;X
(k)
n )

=
�
log2

p(xn+1|x(k)
n )

p(xn+1)

�

Average information from past state that
is in use in predicting the next value.

Local active information storage:

aX(n) = log2
p(xn+1|x(k)

n )
p(xn+1)

Information from a specific past state
that is in use in predicting the specific
next value.

AX = �aX(n)�
aX(n)

The University of Sydney Page 9



Interpreting local active information storage

Cellular automata example:

(a) Raw CA (b) LAIS

time

cells
Informative storage during
regular patterns (domains and
blinkers);
Misinformative storage at
gliders, with change in phase or
pattern of activity
(Lizier et al., 2007-2012)

JIDT Toolkit on github
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Information transfer

How much information about the state transition X
(k)
n → Xn+1 of

X can be found in the past state Y
(l)
n of a source process Y ?

Transfer entropy: (Schreiber, 2000)

TY→X = I(Y
(l)
n ;Xn+1 | X(k)

n )

=
�
log2

p(xn+1|x(k)
n ,y(l)

n ))

p(xn+1|x(k)
n ))

�

Average info from source that helps
predict next value in context of past.

Storage and transfer are complementary:
HX = AX + TY→X+ higher order terms
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Information transfer

How much information about the state transition X
(k)
n → Xn+1 of

X can be found in the past state Y
(l)
n of a source process Y ?

Transfer entropy: (Schreiber, 2000)

TY→X = I(Y
(l)
n ;Xn+1 | X(k)

n )

=
�
log2

p(xn+1|x(k)
n ,y(l)

n ))

p(xn+1|x(k)
n ))

�

Average info from source that helps
predict next value in context of past.

Local transfer entropy: (Lizier et al., 2008)

tY→X(n) = log2
p(xn+1|x(k)

n ,y(l)
n ))

p(xn+1|x(k)
n ))

Information from a specific observation about
the specific next value.
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Information dynamics in CAs

(a) Raw CA (b) LAIS

(c) LTE right (d) LTE left

time

cells

Gliders are the
dominant information
transfer entities.

Misinformative transfer
in opposite direction

Lizier et al. (2007-2012)
JIDT Toolkit
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Information dynamics

We talk about computation as:

� Memory

� Signalling

� Processing

Information dynamics

� Information storage

� Information transfer

� Information modification

Key properties of the information dynamics approach:

� A focus on individual operations of computation rather than
overall complexity;

� Alignment with descriptions of dynamics in specific domains;

� A focus on the local scale of info dynamics in space-time;
� Information-theoretic basis directly measures computational

quantities:
� Captures non-linearities;
� Is applicable to, and comparable between, any type of

time-series.
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Application areas of information dynamics

Key question: what can it tell us about neural information
processing?
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Application areas of information dynamics

Key question: what can it tell us about neural information
processing?

1. Characterising different regimes of behaviour;

2. Space-time characterisation of information processing;

3. Relating network structure to function;

4. ...
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1. Characterising different regimes of
behaviour

Idea:

� Characterise behaviour and responses in terms of information
processing;

� e.g. different neural conditions.

Lower AIS in hippocampus of Autism
Spectrum Disorder subjects (Gómez

et al., 2014)
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2. Space-time characterisation of info
processing

Idea:

� Highlight information processing hot-spots;

� Use information processing to explain dynamics.

Classic example: cellular automata
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2. Space-time characterisation of info
processing
Idea:

� Highlight information processing hot-spots locally;

� Use information processing to explain dynamics.

Local TE reveals coherent information cascades in flocking
dynamics (Wang et al., 2012).
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2. Space-time characterisation of info
processing

Idea:

� Highlight information processing hot-spots locally;

� Use information processing to explain dynamics.

Computational neuroscience examples:

� High local TE to motor control during button pushes
(Lizier et al., 2011a)
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2. Space-time characterisation of info
processing

Idea:

� Highlight information processing hot-spots locally;

� Use information processing to explain dynamics.

Computational neuroscience examples:

� High local TE to motor control during button pushes
(Lizier et al., 2011a)

� Local AIS reveals stimulus preferences and surprise on
stimulus change in visual cortex (Wibral et al., 2014):

40 ms-74.5 ms 126.5 ms 227 ms 327.5 ms 428.5 ms
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2. Space-time characterisation of info
processing

Idea:

� Validate conjectures on neural information processing.

Predictive coding suggests that in a Mooney face detection
experiment (Brodski-Guerniero et al., 2017):

Content-specific area 1

Content-specific area 2

TE ↑
TE ∝ α/β

AIS ↑
AIS ∝ α/β

AIS ∝ performance

Top

Bottom
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2. Space-time characterisation of info
processing

Idea:

� Validate conjectures on neural information processing.

Predictive coding suggests that in a Mooney face detection
experiment (Brodski-Guerniero et al., 2017):

Content-specific area 1

Content-specific area 2

TE ↑ , {aIT,PPC} → FFA

TE ∝ α/β

AIS ↑
AIS ∝ α/β

AIS ∝ performance

Top

Bottom
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2. Space-time characterisation of info
processing

Idea:
� Highlight information processing hot-spots locally;
� Use information processing to explain dynamics.

How to compute transfer entropy between spike trains (Spinney
et al., 2017):
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3. Relating network structure to function

Idea:

� Diversity of network processes is a road-block to a unified
view of the structure-function question;

� Information dynamics can address this and aligns with
description of dynamics on complex networks.

� Transfer entropy is an ideal tool for effective network inference
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3.a Theoretical results
In a small-world network transition: (Lizier et al., 2011b)
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3.a Theoretical results
In a small-world network transition: (Lizier et al., 2011b)
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Info storage is supported by clustered structure – contributions of
feedback and forward motifs identified (Lizier et al., 2012a).

1. Info storage
dominates dynamics
of regular networks
→

Random Boolean
dynamics, K̄ = 4, r
= 0.36, N = 264
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3.a Theoretical results
In a small-world network transition: (Lizier et al., 2011b)

������

������

������

������

������

������

������� ������ ����� ���� ��
��

�����

�����

�����

�����

�����

�����

�����

�����

In
fo

rm
a
ti

o
n

 (
b

it
s)

St
at
es

γ

HX(γ)
AX(γ)

HµX(γ)
σδ(γ)

Info storage is supported by clustered structure – contributions of
feedback and forward motifs identified (Lizier et al., 2012a).
Info transfer is promoted by long links as network is randomised.
In-degree and betweeness centrality correlated to higher transfer
capability (Ceguerra et al., 2011; Lizier et al., 2009).

1. Info storage
dominates dynamics
of regular networks
→

2. Info transfer
dominates dynamics
of random networks
←
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dynamics, K̄ = 4, r
= 0.36, N = 264
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3.a Theoretical results
In a small-world network transition: (Lizier et al., 2011b)
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Info storage is supported by clustered structure – contributions of
feedback and forward motifs identified (Lizier et al., 2012a).
Info transfer is promoted by long links as network is randomised.
In-degree and betweeness centrality correlated to higher transfer
capability (Ceguerra et al., 2011; Lizier et al., 2009).

1. Info storage
dominates dynamics
of regular networks
→

2. Info transfer
dominates dynamics
of random networks
←

Random Boolean
dynamics, K̄ = 4, r
= 0.36, N = 264

3. Balance near
small-world regime
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3.b Effective network analysis

Transfer entropy is ideally placed for the “inverse problem” – effective
connectivity analysis – inferring a “minimal neuronal circuit model”
that can explain the observed dynamics

(Lizier et al., 2011b)
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3.b Effective network analysis

Transfer entropy is ideally placed for the “inverse problem” – effective
connectivity analysis – inferring a “minimal neuronal circuit model”
that can explain the observed dynamics

(Lizier et al., 2011b)

� TRENTOOL etc. from Lindner et al. (2011);

Vicente et al. (2011); Wibral et al. (2011)

+

+ Multivariate, iterative extensions to
eliminate redundancies and incorporate
synergies in a computationally feasible
fashion (Lizier and Rubinov, 2012)

= New (python-based) IDTxl toolkit –
https://github.com/pwollstadt/IDTxl

� Can examine, e.g. differences in networks
between groups of subjects, or with
experimental conditions (Wibral et al., 2011).
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3.b Effective network analysis

IDTxl results:
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Summary

Information dynamics delivers measures for operations on
information, on a local scale in space and time, in complex systems.
→ We no longer have to rely on conjecture on computational
properties.

What can it do for us in a neuroscience setting?

� Characterising different regimes of behaviour;

� Space-time characterisation of information processing;

� Relating network structure to function;

� etc. . . .
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Freitag, S. Schlitt, S. Bölte, R. Hornero, and M. Wibral. Reduced predictable
information in brain signals in autism spectrum disorder. Frontiers in
Neuroinformatics, 8:9+, 2014. ISSN 1662-5196. doi: 10.3389/fninf.2014.00009.
URL http://dx.doi.org/10.3389/fninf.2014.00009.

M. Lindner, R. Vicente, V. Priesemann, and M. Wibral. TRENTOOL: A Matlab open
source toolbox to analyse information flow in time series data with transfer entropy.
BMC Neuroscience, 12(1):119+, Nov. 2011. ISSN 1471-2202. doi:
10.1186/1471-2202-12-119. URL
http://dx.doi.org/10.1186/1471-2202-12-119.

The University of Sydney Page 29



References II

J. Lizier, J. Heinzle, C. Soon, J. D. Haynes, and M. Prokopenko. Spatiotemporal
information transfer pattern differences in motor selection. BMC Neuroscience, 12
(Suppl 1):P261+, 2011a. ISSN 1471-2202. doi: 10.1186/1471-2202-12-s1-p261.
URL http://dx.doi.org/10.1186/1471-2202-12-s1-p261.

J. T. Lizier and M. Rubinov. Multivariate construction of effective computational
networks from observational data. Technical Report Preprint 25/2012, Max Planck
Institute for Mathematics in the Sciences, 2012.

J. T. Lizier, M. Prokopenko, and A. Y. Zomaya. Local information transfer as a
spatiotemporal filter for complex systems. Physical Review E, 77(2):026110+, Feb.
2008. doi: 10.1103/physreve.77.026110. URL
http://dx.doi.org/10.1103/physreve.77.026110.

J. T. Lizier, M. Prokopenko, and D. J. Cornforth. The information dynamics of
cascading failures in energy networks. In Proceedings of the European Conference
on Complex Systems (ECCS), Warwick, UK, page 54, 2009.

J. T. Lizier, M. Prokopenko, and A. Y. Zomaya. Information modification and particle
collisions in distributed computation. Chaos, 20(3):037109+, 2010. doi:
10.1063/1.3486801. URL http://dx.doi.org/10.1063/1.3486801.

J. T. Lizier, J. Heinzle, A. Horstmann, J.-D. Haynes, and M. Prokopenko. Multivariate
information-theoretic measures reveal directed information structure and task
relevant changes in fMRI connectivity. Journal of Computational Neuroscience, 30
(1):85–107, 2011b. doi: 10.1007/s10827-010-0271-2. URL
http://dx.doi.org/10.1007/s10827-010-0271-2.

The University of Sydney Page 30



References III

J. T. Lizier, F. M. Atay, and J. Jost. Information storage, loop motifs, and clustered
structure in complex networks. Physical Review E, 86(2):026110+, Aug. 2012a.
doi: 10.1103/physreve.86.026110. URL
http://dx.doi.org/10.1103/physreve.86.026110.

J. T. Lizier, M. Prokopenko, and A. Y. Zomaya. Local measures of information
storage in complex distributed computation. Information Sciences, 208:39–54, Nov.
2012b. ISSN 00200255. doi: 10.1016/j.ins.2012.04.016. URL
http://dx.doi.org/10.1016/j.ins.2012.04.016.

T. Schreiber. Measuring Information Transfer. Physical Review Letters, 85(2):
461–464, July 2000. doi: 10.1103/physrevlett.85.461. URL
http://dx.doi.org/10.1103/physrevlett.85.461.

R. E. Spinney, M. Prokopenko, and J. T. Lizier. Transfer entropy in continuous time,
with applications to jump and neural spiking processes. Physical Review E, 95(3),
2017. doi: 10.1103/physreve.95.032319. URL
http://dx.doi.org/10.1103/physreve.95.032319.

R. Vicente, M. Wibral, M. Lindner, and G. Pipa. Transfer entropy–a model-free
measure of effective connectivity for the neurosciences. Journal of Computational
Neuroscience, 30(1):45–67, Feb. 2011. ISSN 1573-6873. doi:
10.1007/s10827-010-0262-3. URL
http://dx.doi.org/10.1007/s10827-010-0262-3.

The University of Sydney Page 31



References IV

X. R. Wang, J. M. Miller, J. T. Lizier, M. Prokopenko, and L. F. Rossi. Quantifying
and Tracing Information Cascades in Swarms. PLoS ONE, 7(7):e40084+, July
2012. doi: 10.1371/journal.pone.0040084. URL
http://dx.doi.org/10.1371/journal.pone.0040084.

M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser. Transfer
entropy in magnetoencephalographic data: quantifying information flow in cortical
and cerebellar networks. Progress in Biophysics and Molecular Biology, 105(1-2):
80–97, Mar. 2011. ISSN 1873-1732. doi: 10.1016/j.pbiomolbio.2010.11.006. URL
http://dx.doi.org/10.1016/j.pbiomolbio.2010.11.006.
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