Phase transitions under constraints: from confinement to complex networks

Kirill Glavatskiy

"Complexity, Criticality & Computation" (C3-2017)

THE UNIVERSITY OF

Sydney, 11-13 December 2017

https://www.theguardian.com/cities/2014/feb/18/slime-mould-rail-road-transport-routes

Porous rocks

Grain Pore

http://perminc.com

Membranes in biology

Membranes in chemistry

Gas separation and filtration

• Fuel cells

Scientific Reports 6, 20430 (2016)

https://physics.nist.gov/MajResFac/NIF/pemFuelCells.html

Phase transitions under constraints: from confinement to complex networks

Phase transitions of confined fluids

• Fluid transport in channels

Nucleation

Wikipedia: nucleation

Journal of Thermal Science (2012), 21

Modelling the interface

Current methodology

density profile is a result of free energy minimization, assuming smooth variables

> surface tension is derived from density variation

Challenge

apply methodology of planar interface to spherical interface

problem of singularity
varying surface area

Density profile

Phase transitions under constraints

Problem

small bubble is not stable?

Solution

small bubble is not stable!

- Closed system
 - fixed amount of molecules, which can be in either of two phases: gas or liquid
- Commpressible fluid
 - density may be adjusted

Capillary model

Thermodynamics: $T dS = dU + p dV - \mu dN$

Equilibrium:

$$\mu_{in}(p_{in}, T) = \mu_{out}(p_{out}, T)$$

$$p_{in} - p_{out} = \frac{2\sigma}{R}$$

Capillary model

Phase transitions under constraints

K. Glavatskiy

Phase diagram

resulting fluid density is lower than the coexistence one - «metastable» region

• Confinement:

- energy redistribution under constraints
- Altered phase diagram
 - closed system + compressible fluid
- Effect is larger for smaller system

- Apparent negative compressibility
- Restrictions on cluster size

Porous transport

Desalination 336, 97-109, (2014)

Carbon nanotube membrane

Membrane model

• Energy profile at CNT entrance

Viscosity

Gravelle et al, J Chem Phys (2014)

Walther et al, Nano Lett (2013)

Pore entry

$$\Delta_s P = Q C \eta \left(\frac{1}{r_a^3} - \frac{1}{r_b^3} \right)$$

Poiseuille

$$\frac{\Delta_P P}{L} = Q \frac{8\eta}{\pi r^4 + 4\pi r^3 s}$$

Bernoully

$$\Delta_B P = \frac{Q^2}{2\pi\rho_b} \left(\frac{1}{r_a^2} - \frac{1}{r_b^2}\right)$$

- ΔP pressure drop
 - Q flow rate
 - r pore radius
 - L pore length

Pore blockage

0

Particle 4

Coordinate

Fluid structure

density inside the pore

$$\rho(x) \Rightarrow \rho_a$$

density across the interface

$$\rho(x, z) \Rightarrow \rho(z)$$

Flow into CNT

Hydrodynamic resistance:

bending of the flow lamina at a geometrical obstacle

Thermodynamic resistance:

phase difference between inside and outside the membrane

Gibbs surface

• Excess resistance

$$R_{s} = \int_{z_{-}}^{z_{+}} r(z) dz - r_{-}(z_{s} - z_{-}) - r_{+}(z_{+} - z_{s})$$

Adsorption isotherms: temperature

Adsorption isotherms: temperature

Adsorption isotherm: pore size

Adsorption isotherm: pore size

Comparison with internal resistance

• 5 Å

• 13 Å

Length of the nanotube, which has the same internal resistance as the interfacial resistance

Resistance vs pore size

Resistance vs pressure

• Confinement:

- energy redistribution under constraints
- Altered phase diagram
 - closed system + compressible fluid
- Effect is larger for smaller system

- Phase transition leads to extra resistance
- Interactions with network are relevant

Acknowledgments

★ Thanks to

- David Reguera
- Dick Bedeaux
- Suresh Bhatia
- Peter Daivis

- ♦ J. Chemical Physics 138, 204708 (2013)
- ◆ Langmuir 32, 3400 (2016)
- ◆ J. Membrane Science 524, 738-745 (2017)