When will computational epidemiologists be
replaced by Al?
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HIV-1 Dynamics in Vivo: Virion Clearance
Rate, Infected Cell Life-Span, and
Viral Generation Time

Alan S. Perelson, Avidan U. Neumann, Martin Markowitz,
John M. Leonard, David D. Ho*

A new mathematical model was used to analyze a detailed set of human immunodefi-
ciency virus-type 1 (HIV-1) viral load data collected from five infected individuals after the
administration of a potent inhibitor of HIV-1 protease. Productively infected cells were
estimated to have, on average, a life-span of 2.2 days (half-life t, ,, = 1.6 days), and plasma
virions were estimated to have a mean life-span of 0.3 days (t,,, = 0.24 days). The




Natural History of HIV Infection
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Try math epidemiology!

Barrier to entry low (no PhD, unlike econ)
Potential for major impact

Reusable physics skills!






From enthusiasm to emergency
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The re-emergence of the viral acticlogical agent of SARS
in China ar the end of 2003 (Paterson 2004), following
the epademic earlier in the vear affecting many countnes,
rang alarm bells in the WHO and elsewhere. Thankfully,

ORIGINAL ARTICLE

Ebola Virus Disease in West Africa —
The First 9 Months of the Epidemic
and Forward Projections

ABSTRACT

BACKGROUND

On March 23, 2014, the World Health Organization (WHO) was notified of an out
break of Ebola virus disease (EVD) in Guinea. On August 8, the WHO declared ths
epidemic to be a “public health emergency of international concern.”

METHODS

By September 14, 2014, a total of 4507 probable and confirmed cases, including
2296 deaths from EVD (Zaire species) had been reported from five countries i
West Africa — Guinea, Liberia, Nigeria, Senegal, and Sierra Leone. We analyzed
detailed subset of data on 3343 confirmed and 667 probable Ebola cases collecte
in Guinea, Liberia, Nigeria, and Sierra Leone as of September 14.
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The simple SIR epidemic model
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The simple SIR epidemic model
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A = force of infection
d = duration of infectiousness
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Influenza (Flu)

Avian influenza

Bird Flu Basics * Asian Lineage Avian Influenza A (H7N9) Virus

Current Stuation n Larsguage

Specihe Avian Flu

. Background Asian H7N9 Outbreak

Asian Avian fluenza Characterization
AHSNL) Human irdecHiorm with an Asian lineage s ofluenza A(HIND) vinus
CASan HTND) were st reported in Ching in March 2013 Annual epidemics
Asian Lincage
Avian Influenza A of sporadic human infections with Asian H/NT vinases in Ching have been

(H7N?) Virus reported snce that time. China s currently experiencing s Sth epdemsc of

Asians HTNY buman infections, This is the Larpest arvwal epidemic to date

Addtional
ormation
HINY? Images
aking the larpest epidemic 10 date. This rings the total cumulative number

Publications & of human infections with Asian kneage HINY reported by WHO to 1562
Resources

Additional infections have been reported, but not yet publically announced by Aslan HMIN9D virus infections in
North American WHO. During epidemics one through four, about 40 percent of peopie

Lineage Al Viruses pouttry in China

Corfirmed with Asian HINY virus infection died : R
Sporadic infections in people; most

Past Outbreaks with Hry exposure
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Middle East Respiratory Syndrome (MERS)

Middle East Respiratory Syndrome (MERS) s viral respiratory iliness that was
recently recognized in bumans. It was first reported in Saudi Arabia in 2012 and has
since spread to several other countries, Incdluding the United States. Most people
ientified 25 Infected with MERS-CoV developed severe acute respiratory liness
including fever, cough, and shortness of breath. Many of them have ded.

ABOUT MERS Countries with Lab-

Information about MERS inchuding symptoms and compications, how It spreads, prevention and Confirmed MERS Cases
treatment...
Countries in or near the

Arabian Peninsula with
PEOPLE WHO MAY BE AT INCREASED RISK FOR MERS MERS cases: Bahrain, Iran
Information for travelers from the Arabian Peniedula, contacts of ill travelers from this arca, comtacts of a Jordan, Kuwait, Lebanon, Oman

Qatar, Sauch Arabia, United Arab

CXPOsSLr e 1o cameks Emirates (UAE), and Yemen




SUPPLEMENT ARTICLE

[nfectious Disease Modeling Methods as Tools
for Informing Response to Novel Influenza
Viruses of Unknown Pandemic Potential

Maaoj Gambhir,''** Catheries Bario,"* Justin J. OWagea'"* Anvrs Uricanin,' Lacinds £ Johenos,' Matthew Biggerstatt'
and Devid L Sweetlow’
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The rising importance of infections disease modeling makes this an appropriate time for a guide for public
bealth practitioners tasked with peeparing for, and responding to, an influenza paademic. We list several ques
tions that public health practitioners commonly ask about paademic influenza and match these with analytical
methods, giving detalls on when during 2 pandemic the methods can be used, how long it might take to kmple
ment them, and whar date are required. Although software to perform these tasks is avalladle, care neods to be
taken to understand: (1) the type of data needed, (2) the implementation of the methods, and (3) the interpre
tation of results in terms of moded uncertainty and sensitivity, Public health leaders can wse this article to eval
vate the modeling litersture, determine which methods can provide appropriate evidence for decision making,
and to help them request modeling work from in-house teams or academic groupa

['he 2009 infloenza A (HIN]) pandemic was one of the Durieg an outbeeak of infuenza with pandemic po
most closaly tracked and studied CPRSemICs In Distory sential, pubii health adors asx a Rt of questions i
Iraditional epidemiological methods, such as outbreak ndorm situational awareness, help assess severity
mvestigations and laboratory-based survellance, were and gukde decisions that alm to controd the spread and
rapidly used to inform polky Gecisions |1-4). These mpact of disease. Critkcal guestions iaciude

methods were enhanced by newer competational tech
\ y
o  What Is the case-fatality ratio!
piques such as bloaformatics and dgital survelllance win sk« al _—
\ B » » s M - - . »
setods | 5], Simutansously, substantial contribations «  What is the case-hospitalization ratio



Table 1. Key Questiorm Relsted %0 Pasdersic Preparedsess and Resposae That lalectoss Duaesse Modehng Methods Adéress
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Table 2 Deacrigtion of the Medeling Metheds Listed in Table 1
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Following the detoction of an infoctious disease outbeeak, rapid epidemdological
assessment is critical for guiding an  effective public health nesponse.
To understand the transmission dynamics and potential impact of an outbreak,
several types of data ase necessary. Here we build on experience gained in the
West African Bbola epidemic and prior emerging infectious discase outbreaks
to set out a checklist of data needed toc (1) quantify severity and transenissibility;
(2) characterize heterogeneities in transmission and thelr determénangs; and (3)




Schematic illustrating the data needed to answer questions at different stages of the epidemic to
inform the response.
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Whan is the likely public health impact of the outhreak”

How feasible is comtrolling the outhreak and what interventions would be
appropriate”?

Are current iterventions effective and could they be improved?
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© 2017 The Authors. Anne Cori et al. Phil. Trans. R. Soc. B 2017;372:20160371



ectious disease modelling using data from \’!‘)(\,

Presanis?, Paul J. Birrell*, Gianpaolo Scalia Tomba*,

ealth, Robinson Way, Cambridge CB2 0OSR, UK
W9 5HT, UK

rgata, Rome, Italy

., Coventry CV4 7AL, UK

ABSTRACT

Public health-related decision-making on policies aimed at controlling epidemics is increasingly
evidence-based, exploiting multiple sources of data. Policy makers rely on complex models that are
required to be robust, realistically approximating epidemics and consistent with all relevant data. Meet-
ing these requirements in a statistically rigorous and defendable manner poses a number of challenging
problems. How to weight evidence from different datasets and handle dependence between them, effi-
ciently estimate and critically assess complex models are key challenges that we expound in this paper,
using examples from influenza modelling.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(hrin/ereativecommaons are/license</hv/3 0/)

Daniela De Angelis et al. Epidemics 2015;10: PP83-87, Four key
challenges in infectious disease modelling using data from multiple
sources
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information. These models can darify how
the disease is spreading and provide timely
guidance to policymakers. However, the use
of models in public health often meets
resistance (1), from doubts in peer review
about the utility of such analyses to public
skepticism that models can contribute when
the means to control an epidemic are already
known (2). Even when they are discussed in
a positive light, models are often portrayed
as arcane and largely inaccessible thought
experiments (3). However, the role of models
is crucial: they can be used to quantify the
effect of mitigation efforts. provide suidance

Eric Lofgren et al. PNAS 2014;v111: 51, Mathematical models: A key

tool for outbreak response
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However, this isn’t working

At least not on a reasonable timescale

Math epi has been around for 5 decades but it’s
barely used in public health agencies, unless...




The sky is falling down

Ebola
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Ebola Virus Disease
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CDC leaders integral to the Ebola response, including epidemiologists, laboratorians, logistics, and more, assemble in agency’s
command center to discuss next steps in directing the response at CDC Emergency Operations Center in Atlanta, August 8.
Spencer Lowell for TIME magazine



Questions from leadership
How many cases might there be?
When will the epidemic end?

What will it take to end the epidemic?



Centers for Dvsease Control and Prevention

Estimating the Future Number of Cases
in the Ebola Epidemic —
Liberia and Sierra Leone, 2014-2015
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So, why is it so hard to get traction?

Policymakers don’t trust the model(s), they trust the
person presenting the model

They don’t trust single models, they need ensembles

They’re comfortable with statistics but not
mechanistic modelling



Multi-model ensembles
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Neglected Tropical Disease  NEEDIFN

Modelling Consortium MODELLING -

= 9 universities: Warwick, Yale, Erasmus, Notre
Dame, Imperial College London, Case Western
Reserve, Monash, London and Liverpool Schools
of Hygiene

= 9 diseases incl: schistosomiasis, lymphatic
filariasis, trachoma, soil transmitted helminths



2 questions from BMGF

Are we on target for the 2020 goals with
current strategies?

If not, what other strategies will be
required, and where?
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Probabilistic forecasts of trachoma transmission at the district level: A \!J
statistical model comparison

Amy Pinsent**, Fengchen Liu”, Michael Deiner™*, Paul Emerson*“, Ana Bhaktiari‘,
Travis C. Porco ™", Thomas Lietman™“"* Manoj Gambhir

' Departmeat of Ndic Health and Mrevestotiwe Medicine, Moscah Univeraily, Meboarne, Asstralic
*FL Procror Foumdonion, University of Coliornia San Prancisos. San Frasction, CA LSA
Istrrnatione! Trachama enatiee, Atlasta, GA LSA
SChooy of P Health, Emery Ussversty, Allosie CA LSA
* Deportment of Opbchsimalogy, University of California San Prencicn, San Frascico, CA, USA
Department of Epddemsiiogy and Bostotitics, University of Calfornia San Pranctica, Sas Frasciico, CA LSA
E Clabel Necith Scamnors, Uistweraaty of Colforeias Son Froncisco, Sen Prenciacs, CA, L5A

ARTICLI INTF O ABSTRACT

Article Matory e World Health Organization and fis parnners are aiming 1o eliminace trachoma as 2 public heaich
Received 17 December 2016 problems by 2020, ka this study, we compare forecasts of TF prevalence in 2011 for 7 different statistical and
Received in revised form 20 Jaauary 2017 mechanistic models across 9 de-identified trachoma endemic districts, representing 4 unique trachoma
Accegied 31 Janmary 2N¥ endem countries. We forecast TF prevalence between 1-6 years ahead = tene and commpure the 7
different models to the observed 2011 data using a log-likelihood score. An SIS model, imcCloding a destrxt
specific randomn effect for the district-specific transmission coefMicient, had the highest log-Breldood
soore 21088 all 9 distrcts and was therefore the best performeng model Whilke overall the determmistx

Keywordy
Trachoma
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COORDINATING RESEARCH

ACTIVITIES IN
MATHEMATICAL MODELLING

HIV Modelling Consortium

The HIV Modeling Consortium aims 1o help improve sclentific support for decision making
by co.coordinating a wide range of research activities in mathematically modelling the HIV

epidemic.

Publications & Reports
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Improved training to data
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Epidemiology, transmission dynamics and control
of SARS: the 2002-2003 epidemic

Roy M. Anderson'’, Christophe Fraser', Azra C. Ghani', Christl A. Donnelly’,
Steven Riley’, Neil M. Ferguson', Gabriel M. Leung”, T. H. Lam*
and Anthony J. Hedley”

'Deparrment of Infectious Disease Epidemsology, Faculty of Medicine, Imperial College London, St Mary’s Campus,
Norfolk Place, London W2 1PG, UK
221 Sassoom Road, Faculty of Medicine Building, University of Homg Kong, Pokfidam, Homg Kong, China

80

60

daily incidence

40

20

0 40

26 Mar -

o
o

Figure 12. The SARS epidemic in Hong Kong and the fit of
a multi-compartment meta-population stochastic model
(from Riley et al. 2003). The dots are reported SARS cases
and the solid line is the best fit model. The vertical grey bars
denote 95% prediction intervals.




Ebola Virus Disease in West Africa —
The First 9 Months of the Epidemic
and Forward Projections

ABSTRAC

On March 23, 2014, the World Health Organization (WHO) was notified of an out
break of Ebola virus disease (EVD) in Guinea. On August 8, the WHO declared the
epidemic to be a “public health emergency of international concern.”

METHODS

By September 14, 2014, a total of 4507 probable and confirmed cases, including
2296 deaths from EVD (Zaire species) had been reported from five countries in
West Africa — Guinea, Liberia, Nigeria, Senegal, and Sierra Leone. We analyzed a
detailed subset of data on 3343 confirmed and 667 probable Ebola cases collected

in Guinea, Liberia, Nigeria, and Sierra Leone as of September 14.
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Epidemic Prediction Initiative [Z57Y

Moving forecasting from research to decisions.

EPI aims to improve the science and usability of epidemic forecasts by facilitating open
forecasting projects with specific public health objectives. Links to current and past

projects can be found below. Learn more about EPI here

CURRENT PROJECTS

State FluSught 2017-18

o

Seasonal Influenza Forecastr t the US State Leve

FluSight 2017-18

o

-_",_4..,:{,5"(1 In e rnza Fore pCastr

Influenza Hospitalizations 2017-18

Frracaatinn labhoratnry ennt 1wt i e ra hornita atvina
orecasting laboratory confirmed nfluanza hospitaliza 3




CDC FluSight Network

Prof Nicholas Reich: http://flusightnetwork.io




Automation



So, what does a mathematical
epidemiologist do?

v'Devises (and performs) data collection
v'Cleans the data

v'Selects appropriate mathematical models
v'Trains those models on the data
v'Forecasts/Nowcasts/Scenario Analyses
v'Communicates results to leadership



Which of these can be automated?

v'Devises (and performs) data collection
v'Cleans the data

v'Selects appropriate mathematical models
v'Trains those models on the data

v'Forecasts/Nowcasts/Scenario Analyses

v'Communicates results to leadership




However, things are changing

v'New data types

v'"New mathematical models
v'New training methods

v'New visualisation of data/results

So, the Al epidemiologist would need to be upgraded
frequently



In addition...

Open sourcing code and data (when possible):
reproducibility

Breakthrough in model training needed

ML methods are flexible to adding in new data
types
ML models can be reusable: ‘transfer learning’












Thank you
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Cases of whooping cough in
United States highest since 1959
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How worried should we be about the
whooping cough epidemic?
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Questions from leadership

s the effectiveness and duration of protection of the
new vaccine different to the old?
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Table 1. Descriptions of the nested models that were fitted to the NNDSS incidence data.

Descrigtion

Gambhir M, Clark TA, Cauchemez S, Tartof SY, Swerdlow DL, et al. (2015) A Change in Vaccine Efficacy and Duration of Protection
Explains Recent Rises in Pertussis Incidence in the United States. PLoS Comput Biol 11(4): e1004138.
doi:10.1371/journal.pcbi.1004138

http://journals.plos.org/ploscompbiol/article ?id=info:doi/10.1371/journal.pcbi. 1004138 e .=
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Total incidence since vaccination began: model vs.
data
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Projecting forward in time
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VE*coverage=10%
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A Change in Vaccine Efficacy and Duration of
Protection Explains Recent Rises in Pertussis
Incidence in the United States

Mano] Gambhie* 27+ Thomas A. Clark’, Simon Cauchemez**, Sara Y. Tano!”, David
L. Swerdiow” " Neil M. Ferguson’
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Gambhir M, Clark TA, Cauchemez S, Tartof SY, Swerdlow DL, et al. (2015) A Change in Vaccine Efficacy and Duration of Protection
Explains Recent Rises in Pertussis Incidence in the United States. PLoS Comput Biol 11(4): e1004138.
doi:10.1371/journal.pcbi.1004138

http://journals.plos.org/ploscompbiol/article ?id=info:doi/10.1371/journal.
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Projects throughout CDC

Ebola 2014-2015 West African
epidemic




Lessons



Modelling’s major contribution comes very early

(when sit. awareness is poor)

Embed within a public health agency

Academic publication often isn’t useful during an
emergency (but is afterward)



Thank you for your time!

Special thanks to:

David Swerdlow
Lyn Finelli
Carrie Reed
Matt Biggerstaff
Cristina Carias
Martin Meltzer
Rebekah Borse
Isaac Fung

Neil Ferguson
Simon Cauchemez
Christl Donnelly
Tom Clark

Ben Lopman
Amy Pinsent

+ many others



Figure: Temporal trends on Twitter and Google about Thola and influenza (fiv) before, during, and after
Ebola cases inthe USA, Septembert 20 November, 2014
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Paramater description

Vaccing effcacies & waning
wWhaole-ced

Epidemiciogical Paramelers

S L vd

Gambhir M, Clark TA, Cauchemez S, Tartof SY, Swerdlow DL, et al. (2015) A Change in Vaccine Efficacy and Duration of Protection
Explains Recent Rises in Pertussis Incidence in the United States. PLoS Comput Biol 11(4): e1004138.
doi:10.1371/journal.pcbi.1004138

http://journals.plos.org/ploscompbiol/article ?id=info:doi/10.1371/journal.pcbi. 1004138 e .=

@-PLOS | 5315e oM



http://journals.plos.org/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1004138

Gambhir M, Clark TA, Cauchemez S, Tartof SY, Swerdlow DL, et al. (2015) A Change in Vaccine Efficacy and Duration of Protection
Explains Recent Rises in Pertussis Incidence in the United States. PLoS Comput Biol 11(4): e1004138.
doi:10.1371/journal.pcbi.1004138
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Health Nation  Nation & World

CDC’s overblown estimate of Ebola outbreak draws
criticism

Thanks for the feedback! |

Disease modelers use math to try to provide a more precise picture of a certain situation or to predict
how the situation will change, and have become critical in the world of infectious diseases. But the
accuracy - or inaccuracy — of such models is increasingly a talking point.







Model equations

dsS .
— Susceptible
dt

ﬂ Infected
dt

dR Recovered

dt



Inflow & outflow

—BS.I

Iy

d

Susceptible

Infected

Recovered



.

)
o @,
o.? |
e

L

As infecteds increase, rate increases



O PLOS | SU58ens,

Home Aims & Scope  ReviewBoard  Authors | Resources About

Assessing the International Spreading Risk
Associated with the 2014 West African Ebola
Outbreak
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CENTERS FOR DISEASE CONTROL & PREVENTION
(CDC)

Sierra Leone EbolaResponse (ER)
Modeling the spread of disease impact & intervention
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Questions from leadership

What’s a viable vaccine trial design during the outbreak?



Stepped wedge study design - 18 week phase-in of vaccination
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Specific questions

Will an e.g. Cox Proportional Hazards approach be able to
account for:

-Declining background disease risk
-Clustering of disease risk

-Healthy vaccinee effect



Example simulation
(single model run):

Nelson-Aalen cumulative hazard estimates

Unvaccinated: 43 cases
0.81 cases/person-month

vaccinated: 27 cases
0.51 cases/person-month

10
SEAY woeek

N I o e : Hazard ratio:
0 cases included until first Longer lag 1o accrue 0.55 (0.32 — 0.96)
v mneer h nd of Vacc: '
accinee reaches end o accinated cases Vaccine Efficacy:
seroconversion penod 450/ (49 KR
4J70 (970 00 70)




No bias: Predicted VE
1000 runs at each VE input (range 50% to 90%)

“$ 37

70
Unbiased VE



Articles

Statistical power and validity of Ebola vaccine trials in
Sierra Leone: a simulation study of trial design and analysis

summary

Background Safe and effective vaccines could help 1o end the ongoing Ebola sirus disease epidemic In parts of west
Africa, and matigate future ostheeaks of the virus. We assess the statistical validiny and power of randomised controlled
triad (RCT) and steppedmedge cluster trial (SWCT) designs in Sierra Leone, where the incidence of Ebola virus
disease is spatiotempoeally heserogeneous, and is decreasing rapidiy

Methods We projecied districtdeved Ebola virus disease Incidence for the next 6 months, using a ssochastic moded
btted 10 data from Sierra Leone. We then simublised RCT and SWOT designs in teial populations comprising
geographically distinct clusters at high risk, taking lnto account realistic logistical constraines, and both individual
bvel and duster-bvel variations in risk. We assessod false-posithve rases and power For paransetric and nos-parametric
analyses of simulated trial data, across 2 ramge of vaccine efhicackes and trial start dates

Findings For an SWCT, regional vagiation in Ebola virus disease incidence trends produced incevased false-positive gases
{up 10 015 at a=0.05) under standard statistical modeds, but not when analysed by a permutation sest, whereas amalyses
of RCTs remaimed statistically valid under all models. With the assumption of a 6-month rial staning on Feb 18, 2015
we estinmate the power to detect 2 90% effective vaccine to be between 49% and S9% for an RCT, and between 6% and
26% for an SWCT, depending on the Ebola virus discase Incidence wishin the riad population. We estinune thar a
Fmonth delay im triad initiation will reduce the power of the RCT by 209 and that of the SWCT by 49%

Ieterpretation Spatiotem pogal variation in infection risk undermines the statistical power of the SWCT, This variation
also undercuts the SWCT s expected ethical advantages over the RCT. because an RCT, but not an SWCT, can prioritise
vaccination of high-risk clusters
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Questions from leadership
Where should ETUs be constructed next?

Which neighboring countries are at the highest risk?
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Can we learn from the business/start-
up world too?

Research: do it once
Development: can it be done many times?

Product/Service: do it many, many times
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