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lan Stewart’s 1976 general discussion of Catastrophes (Euler’s Arch)
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1. Catastrophe Theory
Stochastic Catastrophe Theory
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Stochastic Catastrophe Theory
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1. Catastrophe Theory

Stochastic Catastrophe Theory

STOCHASTIC CATASTROPHE MODELS AND MULTIMODAL
DISTRIBUTIONS'

by Loren Cobb

University of South Florida, Tampa

Nonlinear models such as have been appearing in the applied catastrophe theory
literature are almost universally deterministic, as opposed to stochastic (probabilistic).
The purpose of this article is to show how to convert a deterministic catastrophe model
into a stochastic model with the aid of several reasonable assumptions, and how to
calculate explicitly the resulting multimodal equilibrium probability density. Examples
of such models from epidemiology, psychology, sociology, and demography are pre-
sented. Lastly, a new statistical technique is presented, with which the parameters of
empirical multimodal frequency distributions may be estimated.

The University of Sydney Page 11



1. Catastrophe Theory

Stochastic Catastrophe Theory
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Transformation invariant stochastic catastrophe theory™

Eric-Jan Wagenmakers*, Peter C.M. Molenaar, Raoul P.P.P. Grasman,
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Department of Psychology, University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands
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Abstract

Catastrophe theory is 2 mathematical formalism for modeling nonlinear systems whose discontinuous behavior is determined
by smooth changes in a small number of driving parameters. Fitting a catastrophe model to noisy data constitutes a serious
challenge, however, because catastrophe theory was formulated specifically for deterministic sysiems. Loren Cobb addressed
this challenge by developing a stochastic counterpart of catastrophe theory (SCT) based on Itd stochastic differential equations.
In SCT, the stable and unstable equilibrium states of the system correspond to the modes and the antimodes of the empirical
probability density function, respectively, Unfortunately, SCT is not invariant under smooth and invertible transformations
of variables—this is an important limitation, since invariance to diffeomorphic transformations is essential in deterministic
catastrophe theory. From the It transformation rules we derive a generalized version of SCT that does remain invariant under
transformation and can include Cobb's SCT as a special case. We show that an invariant function is obtained by multiplying the
probability density function with the diffusion function of the stochastic process. This invariant function can be estimated by
a straightforward time series analysis based on level crossings. We illustrate the invariance problem and its solution with two
applications,
© 2005 Elsevier B.V. All rights reserved.

PACS: 0230.0z; 02.50.Ey; 05.45.—a; 05.70 Fh
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1. Catastrophe Theory

Stochastic Catastrophe Theory

This split between the original Thom formulation and the more generalized
Arnol'd formulation also shows up in regard to the question of whether or not the
systems must have a potential function, for which there is a necessary symmetry
condition that all cross-partial derivatives must be equal. Again, the broader
singularity theory does not require this, and forms that resemble the elementary
catastrophes can appear within this theory even while not fulfilling the stricter
assumption about the existence of a potential function. This would become a central
issue in the later controversy over catastrophe theory. '

In Sandholm [8], potential games are defined using standard concepts from multivanable
calculus. A population game F is called a potential game if there is a scalar-valued function f,
the potential function, whose gradient always equals the vector of payoffs; put differently, the
payoff to strategy i must always be given by the ith partial derivative of f. By standard results,
F is a potential game in this sense if and only if its denivative matrices DF(x) are symmetric, so
that corresponding cross partial derivatives of F are equal.

Quoted from: 1. [ B Rosser Jr. | Journal af Economic Dynamics & Control 31 72007 ) 3255-3280
The University of Sycney 2. W.H. Sandholm / Journal of Economic Theory 144 {2009) 1710-1725 Page 13



1. Catastrophe Theory

Stochastic Catastrophe Theory: Evolutionary Game Theory

I. Linear fitness. We wish to include interactions between the types. The simplest
possibility consists in considering replicator equations with linear fitness. With

an interaction matrix A = (a;; }I.jE s We consider the equation
) Z Z Z (650 Replicator equation:

i = Pi aijpj — k2 akipi |- - e .
P P'( - P - P - "P") p; = probability of state |
While a constant fitness function could always be represented as a gradient field,

in the linear case, by (2.38), we need the following condition:

aijj +ajx +ag = ajx +ag; +aj;. (6.85)

In particular, this is satisfied if the matrix A is symmetric, and a potential function
then is

|
Vv = — T .
(p) 3 E‘j Gi; PiPj

Quoted from: Nihat Ay et al Information Geometry (2017, pg. 331)
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Stochastic Catastrophe Theory: Evolutionary Game Theory
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2. Catastrophe Theory in Economics

ECONOMETRICA

VoLuMmE 22 July, 1954 NuMBER 3

e e

EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE
ECONOMY

By KEnnETH J. ARROW AND GERARD DEBREU!

The assumptions made below are, in several respects, weaker and closer to
economic reality than A. Wald’s [23]. Unlike his models, ours presents an in-
tegrated system of production and consumption which takes account of the
circular flow of income. The proof of existence is also simpler than his. Neither
the uniqueness nor the stability of the competitive solution is investigated in
this paper. The latter study would require specification of the dynamics of a
competitive market as well as the definition of equilibrium.

The University of Sydney
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2. Catastrophe Theory in Economics

Debreu and Singularity Theory: Econometrica article (1970)

Debreu stated: “A mathematical model which attempts to explain economic
equilibrium must have a nonempty set of solutions ...” eventually concluding:
“*Our main result asserts that, under assumptions we will shortly make explicit ...
every economy has a finite set of equilibria.”

Debreu knew of Thom'’s work, but argued that so called ‘critical economies’

occurred negligibly often, i.e. the subset of all economic states that are exactly
critical has measure zero.

While this is true, it misses the point of an economy transitioning through a
critical state.

The University of Sydney Page 19



2. Catastrophe Theory in Economics

Debreu and Singularity Theory: Nobel prize (1983)

ECONOMIC THEORY IN
THE MATHEMATICAL MODE

Nobel Memorial lecture, 8 December, 1983

by
GERARD DEBREU

“The explanation of equilibrium given by a model of the economy would be
complete if the equilibrium were unique, and the search for satisfactory
conditions guaranteeing uniqueness has been actively pursued ... However, the
strength of the conditions that were proposed made it clear by the late sixties
that global uniqueness was too demanding a requirement and that one would
have to be satisfied with local uniqueness. Actually, that property of an economy
could not be guaranteed even under strong assumptions about the
characteristics of the economic agents. But one can prove, as | did in 1970, that,
under suitable conditions, in the set of all economies, the set of economies
that do not have a set of locally unique equilibria is negligible.”

The University of Sydney Page 20
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Debreu and Singularity Theory: Nobel prize (1983)

ECONOMIC THEORY IN
THE MATHEMATICAL MODE

Nobel Memorial lecture, 8 December, 1983

by

GERARD DEBREU

The it consumer is characterized by his demand

function f, ... [T]he economy is described by the list

e =(ey ..., €,) of the m endowment-vectors
. [and] the price vector p

P

Fp,e) = X [fi (g9 e)=el :

For which equilibrium means the
“excess demand” is zero: F(p,e) =0

€ P

labor, the apples on the trees in her backyard and so on. Figure 5
J.D.Farmer: The Virtues and Vices of Equilibrium and the Future of Financial Economics (2008)

The endowment of an agent is the set of all goods she inherits: for example, her ability to
The University of Sydney
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Debreu and Singularity Theory: Nobel prize (1983)

ECONOMIC THEORY IN
THE MATHEMATICAL MODE
Nobel Memorial lecture, 8 December, 1983

by
GERARD DEBREU

“Now let T be the projection from M into P™ and define a critical economy e as an
economy such that it is the projection of a point (e,p) of M where the

Jacobian of T is singular, geometrically where the tangent linear manifold of
dimension | x m does not project onto P™. By Sard’s theorem the set of critical
economies is closed and of Lebesgue measure zero. A regular economy,
outside the negligible critical set, not only has a discrete set of equilibria; it also has
a neighborhood in which the set of equilibria varies continuously as a function of the
parameters defining the economy.”

The University of Sydney Page 22



2. Catastrophe Theory in Economics

Financial Markets: Zeeman (1974 and 1976)

To build up the qualitative picture of the flow,
we shall take as hypotheses a number of
observed qualitative features of
stock exchanges and currencies,
and translate each feature

into mathematics.

(C, Fl—plane

The University of Sydney \ Page 23



2. Catastrophe Theory in Economics

Financial Markets: Zeeman (1974 and 1976)

Two types of ‘agents’:
Fundamentalists
Chartists

Proportion of market that
are chartists: C

Fundamentalist excess
demand: F

Market index: J

(C, Fl—plane

B-(C-C)I-F=0

The University of Sydney \ Page 24



2. Catastrophe Theory in Economics

Financial Markets: Zeeman (1974 and 1976)

Hypothesis 3. If Cis large this introduces an instability
into the market. What does ‘instability’ mean
mathematically? ...we are postulating in
Hypothesis 3 that it is dynamically unstable for
the index to remain constant. Any
slight perturbation of the index up or

down (by external forces) will at
once be amplified by the chartists.

The critical consequence of
Hypothesis 3 is that for large C

and small F the function J(C, F) is
2-valuved, and so the attractor

(C, F)—-plane

surface S is 2-sheeted.

The University of Sydney \
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2. Catastrophe Theory in Economics

The rise and fall of catastrophe theory
applications in economics:
Was the baby thrown out with the bathwater?

J. Barkley Rosser Jr.

The most important criticisms of catastrophe theory applications in general were
by Zahler and Sussman (1977), Sussman and Zahler (1978a, b),” and Kolata (1977).
Responses appeared in Science and Nature in 1977, with a more vigorous and
extended set of defenses appearing in Behavioral Science (Oliva and Capdeville, 1980;
Guastello, 1981),'” with the first of these being the source of the line that ‘the baby
was thrown out with the bathwater” More balanced overviews came from
mathematicians (Guckenheimer, 1978; Arnol'd, 1992).

The University of Sydney Page 26
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The rise and fall of catastrophe theory
applications in economics:
Was the baby thrown out with the bathwater?

J. Barkley Rosser Jr.

The critics succeeded in pointing out some dirty bathwater.'' The most salient
points include: (1) excessive reliance on qualitative methods, (2) inappropriate
quantization in some applications, and (3) the use of excessively restrictive or narrow
mathematical assumptions. The third point in turn has at least three sub-points: (a)
the necessity for a potential function to exist for it to be properly used, (b) that the
necessary use of gradient dynamics does not allow the use of time as a control
variable as was often done in many applications, and (c) that the set of elementary
catastrophes is only a limited subset of the possible range of bifurcations and
catastrophes. These arguments relate to applications of catastrophe theory in general
rather than to economics specifically.

The University of Sydney Page 27



2. Catastrophe Theory in Economics

a

Financial Markets: Plerou et al. 2
a
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Plerou, Gopikrishnan, Stanley: “Two-phase behaviour of financial markets”, Nature (2003)
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2. Catastrophe Theory in Economics

Financial Markets: Data for the S&P500 (log-linear)
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Financial Markets: Data for the S&P500 (log-linear)
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2. Catastrophe Theory in Economics

Housing Markets: US Housing Market Collapse

USA House Price Index: Jan 1991 to Jan 2017
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Figure 2: The impact of the boom and bust in the US housing market was regionally heterogeneous,
seasonally adjusted monthly house price indices for the nine Census Bureau Divisions of the United
States, indices set to 100 on January 1* 1991.

The Uni ity of Syd
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Housing Markets: US Housing Market Collapse

The University of Sydney

Bolt, Wilko; Demertzis, Maria; Diks, Cees; Hommes, Cars; van der Leij, Marco

Working Paper
|dentifying Booms and Busts in House Prices under

Heterogeneous Expectations
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Figure 12: Pitchfork bifurcation w.or.t. the policy parameter K. Bold curves denote stable
steady states; dotted curves are unstable steady states. Left Panel: supercritical pitchfork
bifurcation with stable fundamental steady state for B > Ry and unstable fundamental
steady state surrounded by two stable non-fundamental steady states for R < H_,,. Right
Panel: subcritical pitchfork bifurcation with stable fundamental steady state surrounded by
a corridor of stability bounded by two unstable non-fundamental steady states for B > H..
and (globally) unstable fundamental steady state with exploding dynamics for B < R The
dots represent the estimated values B — K. for the eight countries.
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Housing Markets: US Housing Market Collapse

ELSEVIER

Can a stochastic cusp catastrophe model explain housing

market crashes?

Cees Diks, Juanxi Wang 213

The University of Sydney

Journal of Economic Dynamics and Control
Volume 69, August 2016, Pages 68-88
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Fig. 10. Bifurcarions showing the predicted equilibria as a function of the interest rate r for the different countries. Red scatter represents the stable
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3. The Quantal Response Equilibrium

0.5

Uooo

Figure 3: Plot 1.: The Cusp catastrophe with three contours shown for fixed wy but variable wu,
control parameters. A Pitchfork bifurcation is shown in red and two fold bifurcations are shown in
black and blue. Plot 2.: Two distinct regions A and B can be discerned in the projection of the

equilibrium surface onto the control plane {u1,u2}, region A has one equilibrium point and region
B has three equilibrium points.

The University of Sydney Page 34



3. The Quantal Response Equilibrium
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Fig. 1. Hysteresis and the eyclical collapse of a system that is
drifting across an equilibrivm surface. § can be thought of as

a behavioural outeome, dictated by the system structure and
its parameters.
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3. The Quantal Response Equilibrium

A game is a function
g5 x...x5—-FK,
where g(si, .. ..sn) =(g1(51, .. -s8n)s - - - gn

(51, .. .25,)), and g(s;, ...,s,) is player f's
payoff when strategies (s,, ...,s,) are played

The University of Sydney
Dasgupta and Maskin: Debreu’s social equilibrium existence theorem PNAS (2015)
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A game is a function

g5 x...x5—-FK,

where g(si, .. ..sn) =(g1(51, .. -s8n)s - - - gn
(51, .. .25,)), and g(s;, ...,s,) is player f's
payoff when strategies (s,, ...,s,) are played

player i's expected payoff =
Z o ZEI{SI: 1 :sn} Pl{slj - rPn{SH}

n ESL 3n ESH

=§,'(F|: ‘a .,Pn}=gr'(PhP-r'}'

The University of Sydney Page 37
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3. The Quantal Response Equilibrium

A game is a function

g5 x...x5—-FK,
where g(si, .. ..sn) =(g1(51, .. -s8n)s - - - gn

(51, .. .25,)), and g(s;, ...,s,) is player f's
payoff when strategies (s,, ...,s,) are played

player i's expected payoff =
Z o ZE-J'{SI: 1 :sn} Pl{slj - rPn{SH}

n ESL 3n ESH

=gj-[p|, ‘a .,pn}=£f(PhP-r'}'

Nash proved that there exists an n-tuple
(p1s - - .. p,) such that

g(pls . ...pn) Zg(pipl;) foralliand p;.

The University of Sydney Page 38
Dasgupta and Maskin: Debreu’s social equilibrium existence theorem PNAS (2015)



3. The Quantal Response Equilibrium

Nash Equilibrium:

i I b b
a | Y1112 » | Y11 U2
Uig = @ a y U = b b

Ug 1 Uz 2 Ug 1 Ug o

Flu®) = s o E ub — : -ulf .. P; in [0,1] and qj in [0,1]
(u) ;Pﬁ; %3 () ;quj b p,+p,=1,0,+0q,=1

p; = argmax, szq_, ¢V

i,
Nash Equilibrium in p and (: not unique

= argmax, Epiqj V7
ij
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3. The Quantal Response Equilibrium

Quantal Response Equilibrium:

p = max 5(p;) = max ( —~ Zm 111(1%-))

i
subject to the constraints:

pi > 0Vi, z;ﬂg = 1, z;c-gq:;uﬁj = E(u").
i ij

The University of Sydney Page 40
D. Wolpert M. Harre (2013)



3. The Quantal Response Equilibrium

Quantal Response Equilibrium:
p; = max S(p;) = ( Zpt m(pg)
subject to the constraints:

p; >0V, Zpg' =1, z;:gq:;uﬁj = E (u").
i i

L(g:) = S(p:) + Ba z;.ﬂiqju;{j + Bo z:ﬂi,
t,] i

L) _ _ (i) +ﬁaij ue; + fo— 1=

Ip;
= Z texp (ﬁﬂ quuij),
J

D. Wolpert M. Harre (2013)
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3. The Quantal Response Equilibrium

Qr — f(QmBr) -

Qc — g(Qrp Bc)

Q@r
Qe

G(Qc:Be: Br)

F(Qy.Br.Bc)

University of Sydney

tanh

tanh

ZEBrE{“rlfﬂpj
1- gBrE{“r|mP} +EBPE{ur|baﬂﬂm} Qr in[-1,1]
2 BeE(uc|lef1) and
_ - . Q. in[-1,1]
gﬂr]E{“rl'!E.ﬂ) + chE{”c|”§m)
(26. (£:(U2) + £er(U)Q0)]
tanhx

[28.(7.00) + £ (U)Q1)]

iy

Q{r — E{Qr: Bc‘]’

Q. —g(f(Qe:Br), Be) I
Qi‘ _f{gf':ﬁr}
O _f{g{Qr:« ﬁc]’rﬂr}
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3. The Quantal Response Equilibrium

df
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a0,
2B,

o0
9B,

00, 9df df dg 90,
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University of Sydney
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The
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3. The Quantal Response Equilibrium

Bifurcation set of ‘critical economies’

Equilibrium surface

o

i3 i4 i5 16

Curves are values of 3 for which: 1 = f,g,
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3. The Quantal Response Equilibrium

The bifurcation set in

Q, x Q. partitions
the possible states of

a market /economy.

The University of Sydney
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3. The Quantal Response Equilibrium
Q- = tanh [28,(£(U)) + fer(U)Q:)]
Qe = tanh [268.(f(US) + for(U)Qr) |

Figure 4. Perturbed QRE solutions for §, = 4, € {0.2,0, —0.2} from left to right with a 3
pair 3. = 3, = 2, the equilibrium strategy is where the black dot is, see Equations (38)—(39).
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3. The Quantal Response Equilibrium
Q- = tanh [28.(£:(Us) + fer(Ur) Q)]
Qe = tanh [268.(f(US) + for(U)Qr) |

Variations in B__ results in an induced bifurcation in Q

row

The University of Sydney

col
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4. A Modern Treatment
Q- = tanh |28, (£(Us) + fur (UDQ:)
Qe = tanh |28,(fe(Us) + for (U)Qr) b

'®

Modelling for “neighborhood effects” in
{JQ = tanh (&(ht -+ Z J?;J(ﬂ';)))

economic markets
JEV;

Brock and Durlauf

Heterogeneous Agent Models in Economics and Finance (2006)
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4. A Modern Treatment
Q- = tanh |28, (£(Ur) + £or(U1)Q0)|
Qe = tanh |28,(fe(Us) + for (U)Qr)

() = tanh (& (hi+ D Jig(05))
FEV;
Brock and Durlauf

Heterogeneous Agent Models in Economics and Finance (2006)

"endogenous effects, wherein the propensity of an individual to behave in some way varies

with the behaviour of the group ... exogenous (contextual) effects, wherein the propensity of

an individual to behave in some way varies with the exogenous characteristics of a group

... correlated effects, wherein individuals in the same group tend to behave similarly because they
have similar individual characteristics or face similar institutional environments”

Manski (1993, pg. 532)
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4. A Modern Treatment

Q, = tanh |28, (f-(U;) + fer(Ur)Qc)
Qc = tanh 2ﬁc(fc(Uc)+fc,r(Uc)Qr)

— &
{JI';) = tanh & (ht —+ E Jﬁj{ﬂ}))
JEV:
Brock and Durlauf
Heterogeneous Agent Models in Economics and Finance (2006)
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Abstract

The study of social interactions has enriched both the domain of
inquiry of economists and the way economists conceptualize indi-
vidual decision making. The review aims to introduce the classes of
models that accommodate estimation of social interactions and to
examine the key areas where significant advances have been made
in the identification of social effects. It surveys linear and nonlinear
models and their applications, including results regarding partial
identification. The review also examines conceptual and methodo-
logical links with the spatial econometrics and the social networks
literatures. It considers empirical applications in the context of our
methodological overview.
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