
Introducing the AceMod Simulator

Australian Census-based Epidemic Modelling

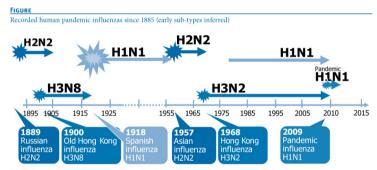
**Oliver Cliff** 

December 13, 2017





Why simulate flu pandemics?


3000 Fatalities

18,000 Hospitalisations

310,000 Consultations

85,000,000 AUD

## Why simulate flu pandemics?



Source: European Centre for Disease Prevention and Control (ECDC) 2009

Reproduced and adapted (2009) with permission of Dr Masato Tashiro, Director, Center for Influenza Virus Research, National Institute of Infectious Diseases (NIID), Japan.

1

 ${}^{1}\text{Lifted from http://www.eurosurveillance.org/content/10.2807/ese.15.01.19458-en}$ 

# H1N1 (1918-19) – Spanish Flu

#### Globally

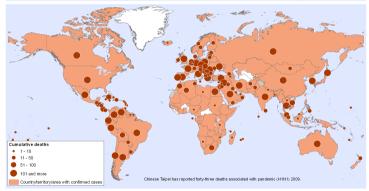
- 20-40M suspected deaths;
- Approximately 500M ill (over 30% of the population).

#### Australia

- ▶ 15,000 deaths in Australia
- Approximately 4M ill (40% of the population).



# H1N1 (2009) - Swine Flu




 250-500K fatalities

#### Australia

- 77-191 fatalities
- 40K confirmed cases

Pandemic (H1N1) 2009 Status as of 27 June 2010 Countries, territories and areas with lab confirmed cases and number of deaths as reported to WHO



The boundaries and names shown and the designations used on this map do not may be expression of any spinise what sever on the part of the Vork Hank? Organization scienceing the fixed status of any county, lemitery, etc. are set of its automilies, or concerning the delemitation of the fordners or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet the full agreement.

Data Source: World Health Organization Map Production: Public Health Information and Geographic Information Systems (GIS) World Health Organization World Health Organization

@ WHO 2010. All rights reserved

Map produced: 01 July 2010, 08:15 GMT

## **Compartmental model**

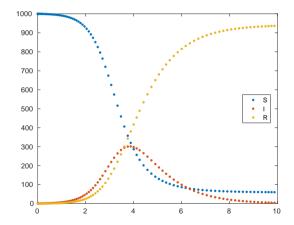


- **S**usceptible to getting infected;
- Infectious to other individuals;
- **R**ecovered and immune.

## **Compartmental model**



- **S**usceptible to getting infected;
- Infectious to other individuals;
- **R**ecovered and immune.


- Incidence of new infecteds;
- **Prevalence** of the disease;
- Attack rate of the season;

### **Deterministic differential equations**

$$\frac{\mathrm{d}\boldsymbol{S}}{\mathrm{d}t} = -\frac{\beta \boldsymbol{I}\boldsymbol{S}}{N}$$
$$\frac{\mathrm{d}\boldsymbol{I}}{\mathrm{d}t} = \frac{\beta \boldsymbol{I}\boldsymbol{S}}{N} - \gamma \boldsymbol{I}$$
$$\frac{\mathrm{d}\boldsymbol{R}}{\mathrm{d}t} = \gamma \boldsymbol{I},$$

where

$$N=$$
 population size  $R_0=rac{eta}{\gamma}.$ 



# **Agent-based models**

#### Three layer model:

- Population data from the census.
- Mobility data through commuting patterns;
- Epidemic model from disease dynamics (empirical or simulated);

### Used extensively:

- Elveback et al. (1976);
- Longini et al. (2004,2005);
- ▶ GLEAM: Balcan et al. (2010);
- ► FluTe: Chao et al. (2010)

# **Agent-based models**

#### Three layer model:

- Population data from the census.
- Mobility data through commuting patterns;
- Epidemic model from disease dynamics (empirical or simulated);

#### Used extensively:

- Elveback et al. (1976);
- Longini et al. (2004,2005);
- ▶ GLEAM: Balcan et al. (2010);
- ► FluTe: Chao et al. (2010)

Emphasis on demographics.

## AceMod

- 2006 Australian census data;
- 19.8 million individuals in 1,422 statistical local areas (SLAs).
- Cycles of two 12-hour periods ("day" and "night");
  - Daytime mixing groups: work, school, grade, class
  - Nighttime mixing groups: household, household cluster, community (CD), neighbourhood (SLA)



## Agents

#### Attributes

- Sex: Male or Female
  - ► For generation only.
- ► Age:
  - ▶ 0-4: N/A
  - ▶ 5–18: School
  - ▶ 19–34: Work
  - ▶ 35–64: Work
  - ▶ 65+: Work

## Agents

#### Attributes

- Sex: Male or Female
  - For generation only.
- ► Age:
  - ▶ 0-4: N/A
  - ▶ 5–18: School
  - ▶ 19–34: Work
  - ▶ 35–64: Work
  - ▶ 65+: Work

### Generation

- 1. Create household (size) based on CD-level housing statistics;
- 2. Draw family composition (conditional on size);
  - Lone;
  - Family (SPF, CWOC, CWC);
  - Share house;
- 3. Draw sex (if needed).
- 4. Draw age.

# Nighttime mixing groups

The larger the group, the lower the transmission probability.





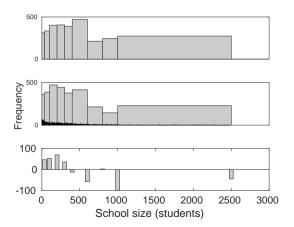
(b) Cluster



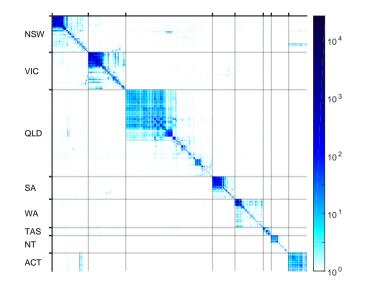
(c) Community (CD)



(d) Neighbourhood (SLA)

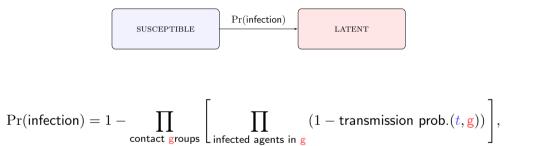

# Work mixing groups

- Number of agents travelling from home community (CD) to working community (DZN) is known.
- Randomly select agents to move from CD to DZN
- Group workers into working groups of approximately 20 people.


# **Populating Schools**

Australian Bureau of Infrastructure, Transport and Regional Economics (BITRE)

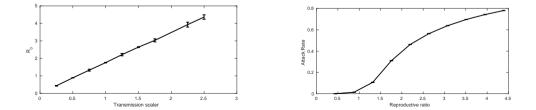
- 1. Generate schools
  - 1.1 Uniformly distribute schools for each range
  - 1.2 Allocate school in SLA with enough students
  - 1.3 Randomly assign students to school
- $\ \ 2. \ \ Assign \ teachers \ based \ on \ \ DZN$




## Demographics

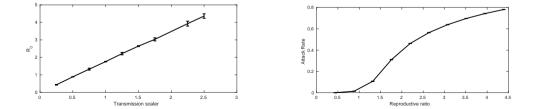


# Demographics



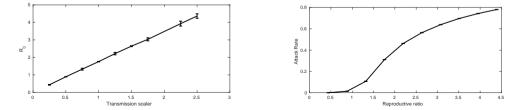



transmission prob.(t, g) = scaling coefficient × factor(t) × base prob.(g).

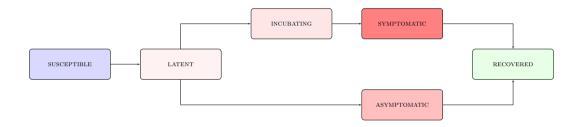

transmission prob.(t, g) = transmission scaler  $\times$  infectivity(t)  $\times$  base prob.(g).

**Fransmission scaler** modifies severity of the pathogen




transmission prob.(t, g) = transmission scaler  $\times$  infectivity $(t) \times$  base prob.(g).

- Transmission scaler modifies severity of the pathogen
- Infectivity models transmissibility over time



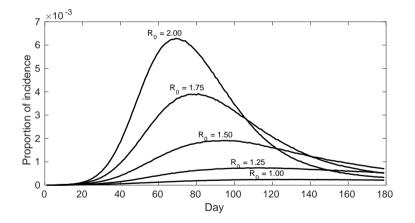

transmission prob.(t, g) = transmission scaler  $\times$  infectivity(t)  $\times$  base prob.(g).

- Transmission scaler modifies severity of the pathogen
- Infectivity models transmissibility over time
- **Base probability** for the disease at incubation:
  - > Function of transmission rate for: household, school, grade, and class
  - Function of contact probability for: cluster, community, neighbourhood, working group



# Natural history of influenza




- Latent period: 1.2 days;
- Incubating period: 1.9 days;
- ▶ Infectious period: 4.1 days.

- ► 75% Symptomatic;
- Asymptomatic agents are half as infectious.

### **Prevalence heatmaps**

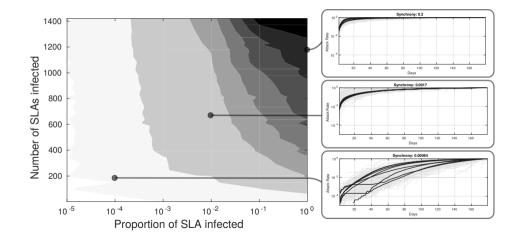
Movies.

### **Epidemic Curves**



### **Incidence by Age Groups**

|                                                       | Age Group | $R_0 = 1.0$ | $R_0 = 1.25$ | $R_0 = 1.5$ | $R_0 = 1.75$ | $R_0 = 2.0$ |
|-------------------------------------------------------|-----------|-------------|--------------|-------------|--------------|-------------|
| Cumulative number of community<br>infections per 10K* | 0-4       | 24.5        | 93.3         | 276         | 555          | 832         |
|                                                       | 5-18      | 498         | 1287         | 2520        | 3700         | 4570        |
|                                                       | 19-34     | 103.9       | 441          | 1361        | 2580         | 3600        |
|                                                       | 35-64     | 104.5       | 456          | 1376        | 2620         | 3650        |
|                                                       | 65+       | 143.4       | 609          | 1774        | 3280         | 4535        |
|                                                       | Overall   | 175.9       | 599          | 1561        | 2770         | 3740        |
| Cumulative number of national<br>infections per 10K*  | 0-4       | 43.2        | 142.5        | 357         | 646          | 929         |
|                                                       | 5-18      | 796         | 1818         | 3140        | 4310         | 5140        |
|                                                       | 19-34     | 168.7       | 624          | 1637        | 2850         | 3830        |
|                                                       | 35-64     | 165.6       | 623          | 1637        | 2870         | 3860        |
|                                                       | 65+       | 208         | 779          | 2030        | 3520         | 4700        |
|                                                       | Overall   | 284         | 841          | 1896        | 3090         | 4030        |


\*Compared to the number of agents in that age group (e.g., per 10K 19-34 year olds).

### **Incidence by Age Groups**

|                                                       | Age Group | $R_0 = 1.0$ | $R_0 = 1.25$ | $R_0 = 1.5$ | $R_0 = 1.75$ | $R_0 = 2.0$ |
|-------------------------------------------------------|-----------|-------------|--------------|-------------|--------------|-------------|
| Cumulative number of community<br>infections per 10K* | 0-4       | 24.5        | 93.3         | 276         | 555          | 832         |
|                                                       | 5-18      | 498         | 1287         | 2520        | 3700         | 4570        |
|                                                       | 19-34     | 103.9       | 441          | 1361        | 2580         | 3600        |
|                                                       | 35-64     | 104.5       | 456          | 1376        | 2620         | 3650        |
|                                                       | 65+       | 143.4       | 609          | 1774        | 3280         | 4535        |
|                                                       | Overall   | 175.9       | 599          | 1561        | 2770         | 3740        |
| Cumulative number of national<br>infections per 10K*  | 0-4       | 43.2        | 142.5        | 357         | 646          | 929         |
|                                                       | 5-18      | 796         | 1818         | 3140        | 4310         | 5140        |
|                                                       | 19-34     | 168.7       | 624          | 1637        | 2850         | 3830        |
|                                                       | 35-64     | 165.6       | 623          | 1637        | 2870         | 3860        |
|                                                       | 65+       | 208         | 779          | 2030        | 3520         | 4700        |
|                                                       | Overall   | 284         | 841          | 1896        | 3090         | 4030        |

\*Compared to the number of agents in that age group (e.g., per 10K 19-34 year olds).

# Synchrony



## **Future directions**

#### Analysis

- How has the contact network evolved from 2006 to 2011 and 2016?
- Where does Australia sit in terms of synchrony and  $R_0$ ?

### Prediction

- Local information dynamics
- Themodynamic interpretation of epidemics

### Mitigation strategies

- Who to vaccinate? (Game theory)
- Where/when to vaccinate? (Percolation centrality)