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Ouvutline

* lon Coulomb crystals as models of collective
phenomenon

* Collective Phenomenon 1 — formation of topological
defects

* Kibble-Zurek mechanism

* Collective Phenomenon 2 - pinned to sliding transition
between atomic contacts

* Aubry phase transition



Coulomb crystals

* Paul or Penning traps + Laser Cooling = ion Coulomb crystals
* Few control parameters but complex structures

* Crystals of electrons is known as Wigner crystal




Paul Trap and Penning Trap
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Equations of motion

The potential energy of N ions in a Paul or Penning trap using the
pondermotive approximation is
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Under the influence of laser cooling, equations of motion are
approximately
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lon Coulomb crystals in Penning Traps

Phase Il 2 planes
staggered square

Phase I 1 plane
single plane hexagonal

Phase IV 3 planes
staggered rhombic
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Fig. 3 (left). Interlayer structure (plane axial positions and displacement
vectors) of the central region as a function of normakzed central areal
charge dersity. The lines show predictions from theory, and symbols
show experimental measurements. The symbols indicate whether the
lattices had an interlattice displacement vector ¢, that was characteristic
of the hexagonal phases (circles) or the square and rhombic phases
(squares). Lengths have been normalized by 8., = (3e*/4meymu)'?

Science, 282, 1290, (1998)



lon Coulomb crystals in Paul Traps

Trap Potential
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How does the trap typically look like?

Miniturized Paul trap | Credit: PTB /Karsten Pyka lon trap experimental setup | Credit: NQIT/Stuart Bebb

Applications
* Spectroscopy, metrology
* Quantum computing, complexity and self-organization



Collective phenomenon 1 — Formation of
topological defects



Thermodynamic Phase Transitions

— Correspond to abrupt changes in thermodynamic quantities
— Can be first or second order

— Qualitative behavior near critical points is does not depend on
microscopic details of the system



Thermodynamic Phase Transitions

Liquid




Critical exponents

— The vicinity of the critical point of 2" order phase transition is
characterized by divergences in thermodynamic quantities, e.g.

heat capacity, susceptibility, correlation length, relaxation time
etc.

— Divergence of correlation length and relaxation time
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— Exponents v and u are universal



Non-equilibrium Phase Transitions
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Non-equilibrium Thermodynamic Phase
Transitions

Formation of defecis

EAREEEE
1 Rapid quench through critical point.
Non-equilibrium phase transition
ERRUEREIL
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Domain wall




Defects in various systems
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Defects in various systems

Bose-Einstein condensates
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B. P. Anderson, Nature, 455,948 (2008)




Defects in various systems

Ferroelectric domains of YMnO,

4N/ rﬁ?“‘é

RT3

|% .{’\-
h‘

: = =
» lo‘..'\ "

.
- - ’

"™
s
. .
” ’
o,
. g
9 4
.
’ 1
L
e
~
e
ad
-

N. A. Spaldin et al, Phys. Rev. X 2, 041022 (2012)



Defects in various systems

Ferroelectric domains of YMnO,

Question: how does the probability of
creating a defect depends on the rate of
change of the control parameter?




Kibble-Zurek mechanism

How does the number of defects depends on the quench rate?

Cosmological experiments in
superfluid helium?

W. H. Zurek

Theoretical Astrophysics, Los Alamos National Laboratory,
Los Alamos, New Mexico 87545, USA

Symmetry breaking phase transitions occurring in the early Uni-
verse are expected to leave behind long-lived topologically stable
structures such as monopoles, strings or domain walls'®, Here I
discuss the analogy between cosmological strings and vortex lines
in the superfluid, and suggest a cryogenic experiment which tests
key elements of the cosmological scenario for string formation.
In a superfluid obtained through a rapid pressure quench, the
phase of the Bose condensate wavefunction—the *He analogue of
the broken symmetry of the fleld-theoretic vacuum—will be chosen
randomly in domains of some characteristic size d. When the
quench is performed in an annulus of circumference C the typical
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Nature 317, 505-508
(1985)



Formation of domains during phase transitions
- Time Dependent Ginzburg Landau simulation
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Kibble-Zurek mechanism

*Divergence of correlation length and relaxation time
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*Use the condition, T(f) = ]ﬂ . to signal the breakdown of adiabaticity




Kibble-Zurek mechanism

*Divergence of correlation length and relaxation time
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Kibble-Zurek mechanism

*Use the condition, 7-(1?) — |£| to signal the breakdown of adiabaticity

non-adiabatic

*Leads to maximum correlation length

v/(1+p)
A T
§ ~ & (—Q>

70




Experimental tests of Kibble-Zurek scaling law

Challenges

- precise variation of the control parameter over several orders
of magnitude

- Inhomogeneities and impurities in the system
- Finite size of the system

- Equilibrium critical exponents may be unknown

Examples of the systems where KZ mechanism has been observed

Bose-Einstein condensates

Ferroelectrics

lon crystals



Linear to zigzag phase transition in Coulomb
crystals

G.Birkl/MPQ

* Weakening of the confining potential induces PT

* Second order phase transition [Phys. Rev. B, 77, 064111
(2008)]

* Described by Ginzburg-Landau theory

* Both the static and dynamic critical exponents are known



Linear to zigzag transition
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* Structure interpolates between two ground states
* Resistant to perturbations



Typical experimental runs

Nature Communications, 4, 2291, (201 3)




Resulis

* KZ mechanism and scaling
(] [ ] 0
observed in ion crystals >
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Nature Communications, 4, 2291, (2013)



Further work

- Accounting for inhomogeneities and finite size effects
- Stochastic thermodynamics — entropy production
- Quantum regime

- First order phase transitions?

- Other geometries



Further work

- Accounting for inhomogeneities and finite size effects
- Stochastic thermodynamics — entropy production
- Quantum regime

- First order phase transitions?

- Other geometries

Phys. Rev. B, B 93, 014106 (2016)
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Further work

- Accounting for inhomg
- Stochastic thermodyn
- Quantum regime

- First order phase trar

- Other geometries
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Phys. Rev. B, B 93, 014106 (2016)




Collective phenomenon 2 — Aubry phase
transition



Aubry phase transition

Consider a chain of coupled particles moving in a periodic

potential. 3

—l

—
A

This is a good model of nanofriction

For incommensurate ratio a/A there exist a transition
from pinned to freely sliding chain.
This is the Aubry transition.



Frenkel-Kontorova model

A simple mathematical model for this system is the Frenkel-
Kontorova model

A
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The eqU|I|br|um configurations are found by solving a system of
equations
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Frenkel-Kontorova model

The iterative map

—Ujy1 — Uj—1 + 2uj + (A7/2a)sin(muj/a) =0

Can be written as

pi+v1 = pi + (A1/2a) sin(76; /a)
0;r1 = pi +0; + (A1/2a) sin(7b; /a)mod 2a

where P; = U; —U;—1 and 6; = u;mod2a



Frenkel-Kontorova model

Pi+1 = pi + (A7/2a) sin(76; /a)

O;r1 = pi +0; + (A\r/2a) sin(76; /a)mod 2a

This is Chirikov’s standard map!




Standard Map

pPiv1 = p;i + (Am/2a)sin(76; /a)

0iv1 = pi + 0; + (A7/2a) sin(7; /a)mod 2a

order . ' chaos
Increasing 1



Frenkel-Kontorova model

Ordered phase is frictionless

In the chaotic phase the particles are pinned. There are
exponentially many degenerate states in the vicinity of the
ground state — glassy phase.
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J. Phys. C: Solid State Phys.
16, 1593 (1983)



Aubry transition in ion traps with an additional
optical lattice

Theoretical proposals:

* Garcia-Mata et al, Eur. Phys. J. D. 41, 325 (2007)
* Benassi et al, Nature Communications, 2 236 (2011)

1D ion chain

Experiments

* Science 348 (6239),1115-1118 (2015)
* Nature Physics 11, 915-919 (2015)

* Nature Materials 15, 717-721 (2016)

trapping
potential
isosurface



Ovur idea — use a zigzag crystal without an
optical lattice

* Two row ion crystal can be used to study friction

* Shear force is introduced either by application of electric field or radiation
pressure

* The distance between rows is controlled by varying the trapping potential




Resulis

The experiments were conducted in the National Metrology Laboratory in

Braunschweig, Germany.

Shear mode, excited by intensity modulation of cooling beam
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ratio of axial to radial confining frequency Kiethe et al., Nature Communications 8 15364 (2017)



Conclusions and Future work

We have

Introduced a novel model system for investigating friction in
molecular fibres (e.g. proteins, DNA and other deformable
nanocontacts.)

Investigated the pinned to sliding phase transition in the self-
organized ion Coulomb crystal

Future work

Understand Aubry transition in the presence of backaction
Understand the effect of inhomogeneities and of finite size
Time dependent driving — kinetic friction

More complex crystal geometries

Quantum regime
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