Biodiversity Management Plan
2021-2025
Contents

Introduction ... 2

What is biodiversity? ... 2

Our vision for biodiversity .. 5

Summary of principles and targets ... 10

Using this document ... 6

 Procedures .. 7

 The Sustainable Development Goals & biodiversity .. 8

Acknowledgements ... 9

Principle 1 - Recognise Indigenous places, involve diverse peoples & cultures 10

Principle 2 - Conserve & protect established habitat (terrestrial & aquatic) 14

Principle 3 - Prioritise & enhance habitat & connectivity .. 16

Principle 4 - Despite change, ensure no net loss ... 18

Principle 5 - Limit threats to biodiversity ... 20

Principle 6 - Engage, educate, & activate staff, students, and our community 22

Principle 7 - Set and monitor short-term actions and long-term targets 24

Glossary ... 26

Front cover photo: A hoverfly (*Melangyna viridiceps*) on a *callistemon* sp. at Camperdown/Darlington Campus. Photo by Dr L. Taylor.
Introduction

What is biodiversity?

Biodiversity, a portmanteau of ‘biological’ and ‘diversity’, represents the variation that underpins all life, including:

- The genetic biodiversity of animals, plants and micro-organisms,
- The species diversity, or various species that live in different habitats (such as coral reefs, rainforests, or deserts),
- And ecosystem diversity, or the community of organisms that interact in a physical environment (such as a forest, or a garden pond).

Different ways of knowing describe biodiversity and ecosystems in different ways, but all note its importance. For example, Indigenous Australian peoples acknowledge identity as part of Country:

“For Aboriginal peoples, country is much more than a place. Rock, tree, river, hill, animal, human – all were formed of the same substance by the Ancestors who continue to live in land, water, sky. Country is filled with relations speaking language and following Law, no matter whether the shape of that relation is human, rock, crow, wattle. Country is loved, needed, and cared for, and country loves, needs, and cares for her peoples in turn. Country is family, culture, identity. Country is self.”
- Ambelin Kwaymullina

Biodiversity is critical to the ecosystem functioning that supports all life on earth, such as air and water quality, nutrient cycling, pollination, and food and fibre production. Biodiverse natural environments influence our wellbeing and enable recreation activities. Without biodiversity and the functioning of ecosystems, societies cannot exist. Conserving biodiversity is the foundation for sustainable future for us all.

“Without biological diversity, there is no other life on Earth, including our own. Even though we are often oblivious to it, this diversity of life is what provides clean water, oxygen, and all other things that end up being part of our diet, as well as clothing and shelter. It provides a lot of psychological benefits too…”
- Thomas Lovejoy, “Godfather of Biodiversity”

Figure 1. A wedge-tailed eagle (Aquila audax), a protected species in Australia, at Llara Farm, Narrabri. Photo by Associate Professor Guy Roth.
Why should the University care about biodiversity?

Biodiversity:
• creates resilient and healthy environments,
• supports ecosystem services that underpin all aspects of life, and
• provides benefits that enhance human wellbeing.

The University is responsible for more than 12,000ha of land in New South Wales. Our sites are located on the ancestral lands of at least 13 Indigenous peoples across 2 states, 4 bioregions, and in 9 different local government areas (LGAs). We have an opportunity to contribute to a range of local communities by responsibly managing that land, showcasing the best research and education on our sites, and by supporting the biodiversity on which we all depend.

This Biodiversity Management Plan arises from the Sustainability Strategy 2020⁴ (strategy 9) and sets the principles for how we manage and monitor our environment and encourages us to think about the positive and negative impacts that our actions and development have on the land and life around us. This will benefit from consideration about how the built environment can contribute to resources (such as, water) and ensure harmony between the built and natural environments as guided by the design principles. This plan aligns with and builds from other internal and emerging documents, such as the One Sydney, Many People strategy (especially, but not exclusively, the Environment pillar):

⁴ Sustainability strategy 2020

<table>
<thead>
<tr>
<th>Foundation: Caring for Country</th>
<th>Pillar 1</th>
<th>Enriching lives through research and education</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pillar 2</td>
<td>Enabling resilient places and a responsible footprint</td>
</tr>
<tr>
<td></td>
<td>Pillar 3</td>
<td>Empowering good governance and coordination</td>
</tr>
</tbody>
</table>

Strategy 9: Sustainably develop and manage the built and natural environment on our campuses to support people, plants, animals and the planet

- Establish a Biodiversity Management Plan and baselines to set biodiversity targets and approved indicators for all campuses and farms by 2025
- Enable 30% canopy cover by 2030

Global context

The United Nations designated 2020 as the ‘super year’ for biodiversity, with a range of key international meetings designed to align how member nations protect and support biodiversity in the forthcoming decades. The COVID-19 pandemic has prompted the postponement of many of those meetings to 2021 or beyond. This delay is significant given that scientists are describing the current decline of biodiversity as ‘the sixth mass extinction’. In May 2019, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) released a report noting the accelerating rates of species loss and highlighting the insufficient international response to a biodiversity crisis. A recent World Economic Forum report notes that more than half of the world’s gross domestic product is at risk due to the degradation and loss of nature, with biodiversity loss being a key risk in the next decade with have severe ramifications for business.

Like other coronaviruses, the virus that caused the COVID-19 global pandemic derived from zoonotic pathogens – or infectious diseases that pass between non-human animals and humans. The destruction of habitat, loss of biodiversity, and the close proximity to unmanaged wildlife increases the likelihood of zoonotic disease emergence.

The risks associated with the decline of biodiversity have never been more at the forefront of global attention than in 2020.

5 United Nations (2020) 2020 a year for nature and biodiversity
9 Tollefson, J. (2020) Why deforestation and extinctions make pandemics more likely
Our vision for biodiversity

The University of Sydney will continue to know and grow floral and faunal biodiversity across all its campuses, fostering the wellbeing of the community for a more sustainable future.

Figure 4. A white-bellied sea-eagle (*Haliaeetus leucogaster*) at the One Tree Island Field Research Station. Photo by Henrik Mouritsen.
Using this document

There are clear, evidence-based principles that guide biodiversity conservation\(^{10}\), and this document outlines the principles and targets guiding the University's approach.

University sites are variously managed by Central Operations Services (COS), the Faculty of Science, University Infrastructure (UI), and our key partners. Key partners of the University include:

1. Sydney Uni Sport & Fitness (SUSF)
2. Residential colleges
3. The University of Sydney Union (USU)

Biodiversity does not recognise landscape and governance boundaries. This document encourages site managers to work with our key partners, neighbours, governmental bodies and the University community to create a holistic and ecosystem approach to biodiversity conservation.

We categorise our sites into four broad types that exist within many Indigenous nations:

1. **Urban/highly modified sites**: The urban or highly modified campuses are predominantly open space, built infrastructure and facilities, though some have playing fields, urban forest, and landscaping for recreation.

2. **Farms**: Farm sites are a combination of agricultural systems, remnant vegetation, and built infrastructure.

3. **Field research stations**: Field stations are located for their proximity to natural areas, with minimal built infrastructure.

4. **Limited land/leased spaces**: Spaces that are leased, short-term, and/or where the University has little control over grounds management.

The first principle outlined in the Biodiversity Management Plan highlights a commitment to connect cultural values and perspectives regarding how we nurture biodiversity at each site with the traditional custodians. All principles apply to all University of Sydney campuses, farms, and research stations, as well as the activities of all students, staff, and visiting communities. The targets outlined in this document apply to the first three site types, as outlined in Table 1, because sites with limited land or that are leased typically have less landscape or less scope to manage.

<table>
<thead>
<tr>
<th>Site type</th>
<th>Site name</th>
<th>Indigenous nation¹¹</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Urban/highly modified sites</td>
<td>Camperdown/Darlington, Mallett Street, Molonglo Synthesis Observatory Telescope, Lidcombe</td>
<td>Gadigal, Ngambri, Wangal</td>
<td>Principles & Targets</td>
</tr>
<tr>
<td>2. Farms</td>
<td>Arthursleigh Farm, Camden Farms, Bringelly Complex, Narrabri (Liara & IA Watson), Nowley Farm</td>
<td>Gundungurra, Ngunawal, Dharug, Gamilaraay, Wee Waa</td>
<td>Principles & Targets</td>
</tr>
<tr>
<td>3. Field Research Stations</td>
<td>Crommelin Field Station, One Tree Island</td>
<td>Darkinyung, Gureng Gureng (closest)</td>
<td>Principles & Targets</td>
</tr>
</tbody>
</table>

\(^{10}\) United Nations Convention of Biological Diversity (2007) [Principles](#)

\(^{11}\) Based on work by Professor Jakelin Troy
To complement this document, supplementary resources to support site managers and staff to achieve the targets outlined are provided. Those supplementary documents include:

1. A template of headings for biodiversity information that site managers may choose to copy/paste into their existing site management plans and complete, or to complete as a separate document.
2. A species list of recent sightings from the Atlas of Living Australia for site types 1-3.
3. Pesticides of environmental concern, a resource developed by Dr Francisco Sanchez-Bayo, Honorary Associate in the School of Life and Environmental Sciences (SOLES).
4. A guide for students or staff on using iNaturalist to record biodiversity sightings on our sites.
5. Calendar of events for biodiversity-related engagement activities

Procedures

Each site will continue to be managed by the appropriate site manager in COS, the Faculty of Science, and UI. Site managers should continue to work closely with key partners, such as SUSF, to ensure successful biodiversity outcomes. Site managers will be encouraged to work together with academics and students to establish our sites as sustainability living labs (Sustainability strategy 1) by enabling the use of our sites and their biodiversity for education and research.

The Biodiversity Management Plan requires that from 2021, existing site managers will include site-relevant biodiversity information in their site, farm or field research station management plans or, if they do not currently have such a document, they will create one. A template that includes the requested biodiversity information for site management plans is included as a supplement to this Biodiversity Management Plan.

Copies of site management plans are to be stored centrally, for example, on the sustainability intranet, from 2021 to facilitate sustainability reporting and living lab activities.
The Sustainable Development Goals & biodiversity

The 2030 Agenda for Sustainable Development sets out a framework comprising 17 sustainable development goals (SDGs) that aim to address global challenges in the 15 years leading up to 2030. While none of the SDG titles name ‘biodiversity, every one of the SDGs links to biodiversity and the ecosystem functioning it supports (Table 2).

Table 2. Links between biodiversity and the SDGs.

<table>
<thead>
<tr>
<th>SDG</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Resources and income are derived from biodiversity and ecosystem services, particularly in rural areas.</td>
</tr>
<tr>
<td>2</td>
<td>Biodiversity is the foundation of food production, food security and nutrition.</td>
</tr>
<tr>
<td>3</td>
<td>Biodiverse environments promote human wellbeing, especially healthy environments (e.g., without pollution).</td>
</tr>
<tr>
<td>4</td>
<td>Biodiversity education and Indigenous ways of knowing are critical to a sustainable future.</td>
</tr>
<tr>
<td>5</td>
<td>Biodiversity loss perpetuates gender inequalities; e.g., women are often responsible for food and water acquisition.</td>
</tr>
<tr>
<td>6</td>
<td>Biodiversity and ecosystems are critical to water supply and quality; e.g., wetlands are important for water purification.</td>
</tr>
<tr>
<td>7</td>
<td>Clean energy reduces fossil-fuel pressures on ecosystems, & ecosystem-driven energy (e.g., hydropower) offers energy alternatives.</td>
</tr>
<tr>
<td>8</td>
<td>Economic activities are underpinned by a range of ecosystems and their biodiversity; e.g., forestry, agriculture and fisheries.</td>
</tr>
<tr>
<td>9</td>
<td>Green infrastructure, such as wetlands, provides services such as storm surge regulation and climate change mitigation.</td>
</tr>
<tr>
<td>10</td>
<td>Inequality is associated with biodiversity loss; e.g., Indigenous people & women, often custodians of biodiversity, are often marginalised.</td>
</tr>
<tr>
<td>11</td>
<td>Biodiversity and ecosystems provide nature-based solutions for urban living; e.g., cooling and disaster risk mitigation (e.g., flood).</td>
</tr>
<tr>
<td>12</td>
<td>Unsustainable production undermines biodiversity, whereas resource-efficient production minimises waste and benefits consumers & biodiversity.</td>
</tr>
<tr>
<td>13</td>
<td>Biodiversity supports ecosystems, which in turn support ecosystem function; e.g., soil carbon sequestration.</td>
</tr>
<tr>
<td>14</td>
<td>Marine biodiversity conservation is key to marine resources, such as fishing and aquaculture.</td>
</tr>
<tr>
<td>15</td>
<td>Protecting terrestrial ecosystems requires biodiversity conservation, and biodiversity supports all life on land.</td>
</tr>
<tr>
<td>16</td>
<td>Peaceful and just societies have no need for conflict over natural resources or contamination.</td>
</tr>
<tr>
<td>17</td>
<td>A global effort to ensure sustainable development includes shared environmental solutions and innovation.</td>
</tr>
</tbody>
</table>

12 Convention on Biological Diversity (2019), Gender and Biodiversity.
Acknowledgements

We acknowledge the tradition of custodianship and law of the Country on which the University of Sydney campuses stand. We pay our respects to those who have cared and continue to care for Country.

The authors of this document are:

- Dr Lucy Taylor, Advisor, Vice-Principal (Strategy)
- Professor Melissa Haswell, Professor of Practice in Environmental Wellbeing, DVC (Indigenous Strategy and Services)
- Professor Dieter Hochuli, Integrative Ecology Lab, School of Life and Environmental Sciences, Faculty of Science
- Nicole Marchhart, Energy & Waste Manager, University Infrastructure (UI)
- Mark Moeller, Landscape and Grounds Manager, Central Operations Services (COS)
- Zoe Morrison, Strategy Advisor, Vice-Principal (Strategy)
- Dr Caragh Threlfall, DECRA Fellow, School of Life and Environmental Sciences, Faculty of Science

We thank the students, staff and partners who provided input into this plan, photos, and the species lists. In alphabetical order by surname, contributors include:

- Rohan Ackermann (3rd year advanced ecology student)
- Martin Ayres (Central Operations Services)
- Professor Peter Banks (SOLES)
- James Bell (Science)
- Malan Botha (3rd year advanced ecology student)
- Dr Emma Bowen (Science)
- Steve Burgun (University Infrastructure)
- Associate Professor Stephen Cattle (SOLES)
- Juliette Churchill (University Infrastructure), Associate Professor Mat Crowther (SOLES)
- Daryl Davidson (Sydney Uni Sport & Fitness)
- Isobel Deane (Sydney Ideas)
- Robin M. Eames (PhD student, FASS)
- Associate Professor Will Figueira (SOLES)
- Dr Dianne Fisher (Science)
- Michael Gibson (Strategy Portfolio)
- Darrin Giusti (Central Operations Services)
- Dr Aaron Greenville (SOLES)
- Sophie Golding (City of Sydney)
- Fiona Hastings (Sancta Sophia College)
- Dr Lisa Heinze (Sydney Environment Institute)
- Ruby Holmes (SOLES)
- Sue Hopkins (University of Melbourne)
- Dr James Hull (Faculty of Science)
- Professor Adrienne Keane (Architecture, Design and Planning)
- Ian Kelly (University Infrastructure)
- Professor Ivan Kennedy (SOLES)
- Professor Mark Krockenberger (SSVS)
- Olivier Lapiere (Central Operations Services)
- David Laughlin (Royal Botanic Gardens & Centennial Parklands)
- Stephen Lynch (Central Operations Services)
- Professor Alex McBratney (Sydney Institute of Agriculture)
- Tim McCarron (Medicine and Health)
- Rachael Miller (University of Melbourne)
- Dr Angela Pattison (SOLES)
- Diana Perugia Baiadori (3rd year advanced ecology student)
- Associate Professor Rosanne Quinell (SOLES)
- Associate Professor Guy Roth (Science)
- Patrick Skagerfalt (Sancta Sophia College)
- Dr Francisco (Paco) Sanchez-Bayo (SOLES)
- Ed Smith (Sydney Uni Sport & Fitness)
- Simone Smith (Business School)
- Cheryl Swales (Central Operations Services)
- Professor Glenda Wardle (SOLES)
- Christian David Watts (University Infrastructure)
- Ellen Wong (3rd year advanced ecology student)
Summary of principles and targets

<table>
<thead>
<tr>
<th>Principles and targets</th>
<th>Date</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle 1 - Recognise Indigenous places, involve diverse peoples & cultures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Respectful processes are in place to formally engage Aboriginal peoples in a mutually beneficial sharing of stories, perspectives, values, and aspirations for biodiversity on their traditional lands.</td>
<td>Evidence of consultation by end 2021</td>
<td>COS, Faculties, UI with DVC(ISS) support</td>
</tr>
<tr>
<td>1.2 Formalised processes exist for embedding Aboriginal participation and decisions to activate all biodiversity management principles in line with the University’s aim to increase First Nations’ participation at all levels, for example through Aboriginal cultural/ecological advisor/s, Aboriginal trainees, and/or contractual agreements.</td>
<td>In line with One Sydney, Many People goals</td>
<td>COS, Faculties, UI with DVC(ISS) support</td>
</tr>
<tr>
<td>1.3 The cultural diversity of the University is reflected through engagement activities that raise awareness of the variety of plantings around our sites.</td>
<td>Ongoing</td>
<td>Office of Sustainability</td>
</tr>
</tbody>
</table>

Principle 2 - Conserve & protect established habitat (terrestrial & aquatic)		
2.1 Priority floral and faunal species or communities for conservation or re-introduction are identified.	Site management plans, 2021 ongoing	COS, Faculty of Science, UI
2.2 Areas for conservation are identified and designated.	Site management plans, 2021 ongoing	COS, Faculty of Science, UI
2.3 Evidence that conservation areas are protected (e.g., by marking them on maps, physically protecting them with fencing, and/or highlighting conservation areas with signage).	By 2023	COS, Faculty of Science, UI

Principle 3 - Prioritise & enhance habitat & connectivity		
3.1 Site management plans consider connectivity between local sites and spaces.	Site management plans, 2021 ongoing	COS, Faculty of Science, UI
3.2 Identified opportunities to increase habitat diversity (e.g., plant species) and structural complexity (e.g., via planting understory) on sites.	Site management plans, 2021 ongoing	COS, Faculty of Science, UI
3.3 Evidence of priority faunal species persisting or returning to sites.	By 2024	COS, Faculty of Science, UI

<p>| Principle 4 - Despite change, ensure no net loss | | |
| 4.1 Staff involved in managing grounds and new development have undergone biodiversity induction prior to undertaking work on campuses. | By 2024 | COS, Faculty of Science, UI |
| 4.2 New buildings or refurbishments requiring a D.A. from 2021 ensure identification on the proposed site of significant habitat, threatened species and/or communities and protect and minimise any adverse impact. If any building works are found to have damaged the significant habitat or threatened species and/or communities, the contractor is be obliged to remediate or pay for restoration. | 2021 ongoing | Procurement, COS, UI |
| 4.3 Evidence that habitat is not altered without actions to ensure ‘no let loss’ and, where possible, evidence of biodiversity enhancement. | 2021 ongoing | COS, Faculty of Science, UI |
| 4.4 Identified opportunities to increase greenspace, decrease hard space. | Site management plans, 2021 ongoing | COS, Faculty of Science, UI |</p>
<table>
<thead>
<tr>
<th>Principles and targets</th>
<th>Date</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle 5 - Limit threats to biodiversity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1 Pesticides are used responsibly in all circumstances, for example, by requiring appropriate training, adherence to the principles of integrated pest management, and avoiding pesticides that pose high risks to the aquatic environment and other species (e.g., birds, pollinators), excluding approved use for research or education.</td>
<td>Site management plans, 2021 ongoing</td>
<td>COS, Faculty of Science, UI</td>
</tr>
<tr>
<td>5.2 A project is resourced and completed by 2024 that applies expert pest management and biodiversity-relevant advice to all University sites, resulting in recommendations about pesticide use.</td>
<td>By 2024</td>
<td>COS, Faculty of Science, UI</td>
</tr>
<tr>
<td>5.3 After events, activities and changes to the physical environment, rubbish is removed from sites and any degradation to natural areas resulting from the events, activities and changes is promptly remediated.</td>
<td>BAU</td>
<td>COS, Faculties, Central Service areas, UI</td>
</tr>
<tr>
<td>5.4 Site management plans identify the key pest & weeds species at that site and outline control measures and required consultation in line with EPA requirements and the University’s Pesticides Use Notification Plan.</td>
<td>Site management plans, 2021 ongoing</td>
<td>COS, Faculty of Science, UI</td>
</tr>
<tr>
<td>Principle 6 - Engage, educate, & activate staff, students, and our community</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1 A range of artefacts share information and stories about biodiversity on sites (e.g., via Campus Flora, websites, signage, QR codes).</td>
<td>2021 ongoing</td>
<td>COS, Faculties, UI, Office of Sustainability</td>
</tr>
<tr>
<td>6.2 Student engagement on campuses and on residential college grounds is promoted in growing opportunities for working together to promote biodiversity.</td>
<td>2021 ongoing</td>
<td>COS, Faculties, UI, Office of Sustainability</td>
</tr>
<tr>
<td>6.3 Expertise from within the University community facilitates and supports the use of campuses and their flora and fauna for research and education as a living lab.</td>
<td>In line with Sustainability Strategy, Strategy 1</td>
<td>COS, Faculties, UI, Office of Sustainability</td>
</tr>
<tr>
<td>Principle 7 - Set and monitor short-term actions and long-term targets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1 A role or function to existing role is introduced to manage biodiversity monitoring/reporting across all campuses.</td>
<td>By 2022</td>
<td>COS, Office of Sustainability</td>
</tr>
<tr>
<td>7.2 Regular site-based monitoring and reporting occurs at least once every 3 years.</td>
<td>University-wide plan commenced by 2022</td>
<td>COS, Office of Sustainability</td>
</tr>
<tr>
<td>7.3 University-wide process for data collection (e.g., iNaturalist) and storage (e.g., Atlas of Living Australia) are in place.</td>
<td>University-wide plan commenced by 2022</td>
<td>COS, Office of Sustainability</td>
</tr>
<tr>
<td>7.4 Reporting is aligned with University-wide sustainability reporting requirements.</td>
<td>2022 ongoing</td>
<td>COS, Office of Sustainability</td>
</tr>
</tbody>
</table>
Principle 1 - Recognise Indigenous places, involve diverse peoples & cultures

Indigenous peoples are recognised as key stakeholders in the University of Sydney’s choices about how both cultural and biological diversity is managed through multiple strategies. The University is also a diverse community, where staff and students share knowledge and interests from around the world.

Targets

1.1 Respectful processes that are informed by existing key resources (see opposite page) are in place to formally engage Aboriginal peoples in a mutually beneficial sharing of stories, perspectives, values, and aspirations for biodiversity on their traditional lands.

1.2 Formalised processes exist for embedding Aboriginal participation and decisions to activate all biodiversity management principles in line with the University’s aim to increase First Nations’ participation at all levels, for example through Aboriginal cultural/ecological advisor/s, Aboriginal trainees, and/or contractual agreements.

1.3 The cultural diversity of the University is reflected through engagement activities that raise awareness of the variety of plantings around our sites.

Example 1.1 Example of respectfully engaging local Aboriginal peoples in research

Dr Angela Pattison has been working with Wee Waa and Narrabri communities on Gomeroi country as the lead of the Indigenous Grasslands for Grain project. The project brings together cultural and scientific knowledge about native grasses and the economic feasibility of their production using sustainable and regenerative agricultural practices. At a recent Sydney Ideas talk, Dr Pattison described the engagement process:

“I humbled myself and, with the university's blessing, I went out and talked to the community members in Narrabri and Wee Waa. I said if we were going to do something about the foods that come from grasslands on Gomeroi country, what should we do? Who should we speak to, and what would be of the most benefit in the long term? That started off this amazing project, which brought together traditional knowledge and more modern knowledges & technologies to tell us... how can we bring this sustainable system into a modern food production chain, into modern markets - and [do] this on Gomeroi country.”

References:

13 2020 Unfinished Business Action Plan
14 Australian Geographic (2019) Wildlife on campus: University of Sydney
Example 1.2 There are grant schemes to support traineeships for young Indigenous people

As part of the *Indigenous Grasslands for Grain* project, Callum Craigie, a young Gomeroi person, was brought on as a Field trainee. The experience was beneficial for the project and for Callum, who described his experience as a trainee:

“It helps young people like me learn about the grasses my people used. What they were using and what they were eating, and how it collaborates with agriculture.”

Another example is the AFL SportsReady program, which is supporting a trainee at Camden campus. The trainee, Kayla Muir, will be working with Associate Professor Cameron Clark and colleagues on animal production and wellbeing.

Example 1.3 The Campus Flora app trails

The Campus Flora app, an initiative led by Associate Professor Rosanne Quinnell, provides a range of curated trails around University campuses, enabling members of the public to take a self-guided walk to learn about the diverse flora on our sites.

Resources

- Community guide to the UN Declaration on the Rights of Indigenous Peoples
- The Office of the High Commissioner for Human Rights Guidelines on integrating Indigenous peoples’ issues in operational processes
- CSIRO guidelines on empowering Indigenous peoples to lead “Our Knowledge Our Way” in land and sea management
- CSIRO guidelines on co-management of lands and seas with Traditional Owners
- Indigenous engagement: an Indigi Lab Review report on actions for biodiversity, CAUL 2019
Principle 2 - Conserve & protect established habitat (terrestrial & aquatic)

Natural ecosystems take hundreds of years to develop and no amount of restoration in a short-term management timeline will return what is lost\(^{15}\). The main drivers of species extinction are land-clearing, degradation, and habitat loss\(^{16}\). Offset schemes typically undervalue biodiversity and distort market forces and species-level extinction is irreversible\(^{17}\).

A key principle of conserving biodiversity is to designate intact ecosystems, mature habitat, and faunal populations for conservation and protection. This principle recognises the unique evolutionary and regional aspects of endemic biota.

Targets

2.1 Priority floral and faunal species or communities for conservation or re-introduction are identified.
2.2 Areas for conservation are identified and designated.
2.3 Evidence that conservation areas are protected (e.g., by marking them on maps, physically protecting them with fencing, and/or highlighting conservation areas with signage).

Example 2.1 Examples of potential priority species on our sites

A threatened species even before the recent bushfires, a recent NSW Government report found that the 2019-2020 bushfires accelerated the decline in koala numbers (*Phascolarctos cinereus*), suggesting koalas could be extinct in NSW by 2050. We have an opportunity to contribute to the future of this iconic species as koalas have been seen in the remnant areas of some of our rural properties, like at Nowley Farm and Arthursleigh Farm.

Resources:
- NSW report: Koala populations and habitat
- NSW Koala Country
- The University’s Koala Health Hub uses research and education to secure a future for koalas
- NSW DPIE Koala strategy

The pink-tailed worm lizard (*Aprasia parapulchella*) is a small, legless lizard that spends most of its time underground and eats ant eggs and larvae. In NSW, it is considered ‘vulnerable’ due to habitat loss and degradation. It has been found near some University sites, such as Molonglo and Arthursleigh Farm. Actions to support this species include keeping cats indoors, feral animal control, leaving bushrock in place for it to use as habitat, or providing rock piles where there is no habitat on site.

Resources:
- NSW OEH information
- Threatened Species Recovery Hub brief
- Molonglo conservation

\(^{17}\) Ceballos, Ehrlich, Raven (2020) *Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction*.
Nowley Farm, also known as the EJ Holtsbaum Agricultural Research Institute, is used for agricultural education and research in cropping and cattle grazing. The part of the farm on this hill is unsuitable for these activities but could contribute to native habitat in the area.

Example 2.3. The entrance to Crommelin Field Research Station

Figure 12. A sign at the entrance of Crommelin Field Research Station communicating the wildlife-friendly status of that land.

Resources

- NSW Department of Planning, Industry and Environment (DPIE) Species Listing
- NSW DPIE Threatened Species
- International Union for Conservation of Nature and Natural Resources (IUCN) Red List of Threatened Species
- NSW DPIE Urban ecology renewal investigation project
- Blueprint for living cities: Policy to practice
Principle 3 - Prioritise & enhance habitat & connectivity

The structural complexity and connectivity of ecosystems increase their viability as habitat for wildlife. Collaborating with partners to manage biodiversity recognises that our campuses are not isolated and, for wildlife, connectivity of habitat ensures safe access to resources for food and shelter. To be viable for habitat, terrestrial and aquatic environments should have structural complexity that can be achieved via a range of means, e.g., planting, ecological recycling of logs and rocks, and artificial habitat.

Principle 3 targets

1.1 Site management plans consider connectivity between local sites and spaces.
1.2 Identified opportunities to increase habitat diversity (e.g., plant species) and structural complexity (e.g., via planting understory) on sites.
1.3 Evidence of priority faunal species persisting or returning to sites.

Example 3.1 Biodiversity can thrive when governance bodies consider connectivity

![Figure 13. An example of the general areas managed by key groups around Camperdown/Darlington campus.](image)

At least 5 different groups manage the grounds around Camperdown/Darlington campus, including COS, SUSF, residential colleges, Royal Prince Alfred Hospital (RPAH), and the City of Sydney, which manages Victoria Park. Wildlife does not understand governance boundaries, and management activities by one group may impact the flora and fauna being managed by a neighbouring group. Considering the connectivity between areas and the impacts your actions may have on the surrounds is important for biodiversity conservation.

Resources:
- [Improving connectivity for biodiversity](#)
Example 3.3 Aiming to see a priority faunal species return to Camperdown/Darlington campus

Figure 14. A prior habitat area for superb blue fairy-wrens (*Malurus cyaneus*) at Camperdown campus. The picture inset is a pair of superb blue fairy-wrens with the male in its blue breeding plumage (Photo from Lyn Richards). Long-time staff and students may recall seeing small wrens hopping around the tennis courts between the Manning and Physics building on Camperdown campus. Superb blue fairy-wrens (*Malurus cyaneus*) could once be seen in this area but have not been found for years. Threats to these iconic birds include cats, dogs, foxes, and pesticides, which kill the insects that they eat. To attract these iconic birds back to campus, they need thickets of prickly shrubs for protection, and areas of lawn and leaf litter where garden insects, like grasshoppers, can breed, and an absence of pesticides. Central Operations Services (COS) are investigating re-planting across campus in a bid to attract superb blue fairy-wrens back to Camperdown/Darlington campus. Resources:

Diverse habitat
Wildlife uses a range of habitat types, including trees, grasses, shrubs and wetlands. To provide for diverse fauna, we provide diverse habitat. Resources:
- ABC Backyard Biodiversity

Flowers of all shapes and sizes
Birds, insects and mammals are all shapes and sizes, and the flowers they feed from and pollinate reflects that variety. Increasing diversity of food resources is likely to increase the wildlife can benefit from it. Resources:
- Australian Museum Pollination

Hollows – natural or artificial
Tree hollows provide homes for a range of birds, mammals, and insects. Artificial homes can sometimes be an alternative. Resources:
- NSW DPIE Hollows as homes

Ecological recycling
Retaining deadwood or lopped branches on site is a great way to ‘recycle’ critical habitats, even if in a new location. Resources:
- NSW DPIE Removal of dead wood and dead trees
Principle 4 - Despite change, ensure no net loss

Outside of designated conservation areas, new buildings and changes in how developed areas are managed are inevitable. For example, actions in response to climate change could aim to increase canopy cover and mitigate heating. The cumulative effect of small losses of habitat can be great, so there is an underlying principle of ensuring no net loss to the quantity and quality of existing biodiversity and, ideally, improving biodiversity. In addition, commitment to these values is captured by the University’s design principles and emerging strategies.

Principle 4 targets

4.1 Staff involved in managing grounds and new development have undergone biodiversity induction prior to undertaking work on campuses.
4.2 New building contracts from 2021 ensure identification on the proposed site of significant habitat, threatened species and/or communities and protect and minimise any adverse impact. If any building works are found to have damaged the significant habitat or threatened species and/or communities, the contractor is be obliged to remediate or pay for restoration.
4.3 Evidence that habitat is not altered without actions to ensure ‘no let loss’ and, where possible, evidence of biodiversity enhancement.
4.4 Identified opportunities to increase greenspace, decrease hard space.

Example 4.1 Recent staff training modules

To support the University’s aim of supporting and improving biodiversity on all sites, it is important for staff who carry out actions and make decisions about our lands understand what biodiversity is, why biodiversity is important, and what the principles outlined in this plan are.

Recent online training modules demonstrate how well this training can be conducted.

A module sharing information about the key principles of biodiversity and site-relevant tips on how to conserve and enhance biodiversity will support staff in their site management.

Example 4.2 Recent developments on campus have used contractual arrangements to protect some of the University’s most valuable assets, its old trees.

Contractual arrangements have acted as a guarantee to protect trees and our campuses’ natural heritage. There are a number of recent examples of protecting valuable trees at Camperdown/Darlington campus during building works, such as the trees surrounding the Chau Chak Wing Museum, and the row of Moreton Bay Fig trees (Ficus macrophylla) along City Road in front of the Life, Earth, and Environmental Sciences (LEES) building.

Figure 19. Screenshot of a recent online training module for staff

Figure 20. A row of Moreton Bay Fig trees (Ficus macrophylla) lining City Road were unharmed during the development of the LEES building. Photo provided by Mark Moeller.
Example 4.4a Summer cover crops at Llara Farm, Narrabri

![Summer cover crops at Llara Farm](image1)

Figure 22. Summer cover crops at Llara Farm that improve carbon sequestration, provide habitat for pollinators, increase soil microbial biodiversity, and reduce erosion. Photo provided by Associate Professor Guy Roth.

In line with regenerative farming techniques, crops are rotated in different paddocks between seasons and reducing tilling. Rather than leave the empty paddocks bare, researchers at Narrabri are trialling planting cover crops. The example pictured above includes four seasonal species: cow pea (a legume), sunflower (a broad leaf species), radish (a brassica), and millet (a grass), and the paddock was rotated to wheat for the winter season. Having the cover crop in place provides a range of benefits, including improved carbon sequestration, habitat for pollinators, increased soil microbial biodiversity, and reduced erosion.

Example 4.4b Planting 20,000 trees at Arthursleigh Farm

![Planting 20,000 trees at Arthursleigh Farm](image2)

Figure 21. A partnership with Greening Australia has seen previously-cleared land planted out with habitat trees to support ecosystem services, including carbon sequestration. Photo provided by Christian Watts.

Following on from previous planting initiatives with them, UI entered an agreement in 2020 with Greening Australia (funded by Triple J and pharmaceutical organisation AstraZeneca) to plant 20,000+ trees on previously-cleared land at the University’s Arthursleigh Farm in the NSW Southern Highlands. The project will offset emissions and support ecosystem services, such as carbon sequestration and air cycling. The Greening Australia program aims to create and conserve habitat for wildlife, such as the koala, the glossy black cockatoo, and Regent honeyeater.

Resources

- [Greening Australia](#) has a range of programs and initiatives that supports habitat creation and conservation. [Read more](#) about the planting at Arthursleigh Farm.
- [City of Sydney Greening Sydney Plan](#)
- [NSW DPIE Greening Our City](#)
- [Biodiversity offsets could be locking in species decline](#)
Principle 5 - Limit threats to biodiversity

Invasive animals and plants, or pest species, and the use of poisons can apply pressure and ultimately reduce biodiversity. The careful application of herbicides and pesticides, as well as their safe storage and removal, should avoid damage to non-target species. For example, rodent bait can indirectly cause the death of owls and other predatory birds. In addition to the serious threat of habitat loss (see targets 2.3, 4.3, 4.4), actions that pollute waterways, soils, or landscapes should either be avoided or planned in consultation with local governing bodies and communities to reduce their impact.

Principle 5 targets

5.1 Pesticides are used responsibly in all circumstances, for example, by requiring appropriate training, adherence to the principles of integrated pest management, and avoiding pesticides that pose high risks to the aquatic environment and other species (e.g., birds, pollinators), excluding approved use for research or education.

5.2 A project is resourced and completed by 2024 that applies expert pest management and biodiversity-relevant advice to all University sites, resulting in recommendations about pesticide use.

5.3 After events, activities and changes to the physical environment, rubbish is removed from sites and any degradation to natural areas resulting from the events, activities and changes is promptly remediated.

5.4 Site management plans identify the key pest & weeds species at that site and outline control measures and required consultation in line with EPA requirements and the University’s Pesticides Use Notification Plan.

Example 5.1 There are a range of alternatives to harmful pesticide use

Figure 23. Ivy \((Hedera \text{ sp.}) \) around the base of the clocktower in the Main Quadrangle, Camperdown/Darlington campus

Grounds staff at Camperdown campus use a beneficial bacteria found in soil and on plants to target the unwanted leaf-eating insects that eat the ivy in the Main Quadrangle. The bacillus does not harm other insects, such as bees and lady beetles.

This is a form of integrated pest management (IPM). Dr Francisco (Paco) Sánchez-Bayo describes as aiming “to use all available means for controlling pests and weeds without using pesticides; in fact, pesticides are only allowed as the last resort.” There are a range of options for removing pest species and weeds that comply with IPM principles, including biological pesticides (like the bascillus described above), preventative pesticides that aim to supress certain organisms from emerging (such as powdery mildew in the greenhouses at Camden Farms), and curative pesticides (which involve treating the area after the pest species have occurred).
Example 5.4a Weed species can have a big impact on the land

![Tussock grass at Arthursleigh Farm](image)

Figure 25. Tussock grass (Poa labillardierei) at Arthursleigh Farm. Photo supplied by Christian Watts.

Weeds can have a big impact on lands that are both natural and agricultural. Dr Angela Pattison shares her reflections on the part that weeds play in degraded landscapes:

“Imagine walking through a paddock without shoes. The paddock has thousands of grasses, bugs and marsupials. I have been told that it used to be possible to walk barefoot through the country. I couldn’t imagine doing that now. Weeds and bare stony ground would turn me back within a few metres.” (From: Dhuwarr: bread)

At Arthursleigh Farm, serrated tussock (Nassella trichotoma) has over-run the previously-cleared areas. Site managers have found that revegetating more diverse species, such as trees, provides competition for serrated tussock and breaks its dominance over the landscape.

Example 5.4b Introduced rats are faunal pests

![Kookaburra with a rat](image)

Figure 24 A kookaburra (Dacelo novaeguineae) with a rat in the Anderson Stuart courtyard. Photo by Olivier Lapierre.

At urban sites, like Camperdown campus, rats (e.g., Rattus rattus) would usually be considered pest animals. Rodenticide often does not kill the rodents immediately. Poisoned rats present potentially mortal risks to predators, such as a domestic dogs or cats, and wild birds, such as an owls, raptors, or kookaburras, including endangered and vulnerable species, such as the powerful owl (Ninox strenua) in NSW.

Resources
- [The University of Sydney Pesticides Use Notification Plan](#)
- [WaterNSW: Finding pollution sources](#)
- [Integrated pest management guidelines for grains cropping systems](#)
- [CropLife Australia’s guide](#) for plant science and protecting the environment
- [NSW WeedWise](#)
Principle 6 - Engage, educate, & activate staff, students, and our community

Human-nature relationships can provide wide ranging reciprocal benefits including prosocial behaviours and deeper sense of wellbeing, belonging and connection to place and each other. The links between people and their environment are founded on the campus experience but can be augmented by education and awareness-raising activities, such as signs, tours, structured class activities and research. University campuses have the capacity to be living labs that contribute to our core business of education and research.

Principle 6 targets
6.1 A range of artefacts share information and stories about biodiversity on sites (e.g., via Campus Flora, websites, signage, QR codes).
6.2 Student engagement on campuses and on residential college grounds is promoted in growing opportunities for working together to promote biodiversity.
6.3 Expertise from within the University community facilitates and supports the use of campuses and their flora and fauna for research and education as a living lab.18

Example 6.1a Information about the natural heritage is also relevant to share

Figure 27. Camperdown campus has a scar tree, a tree that has had bark removed for various purposes, such as to create containers, shelters and boats by Aboriginal peoples. Sharing information about Aboriginal artefacts on our sites acknowledges the site’s heritage and Indigenous sovereignty. Photo by Abril Felman.

Example 6.1b Signage is one way to share current information about our sites

Figure 26. Signage that labels plants with both their scientific and Aboriginal language names, such as some of the new vegetation planted around the Chau Chak Wing Museum are are also labelled with their name in the Sydney language, for example, grass trees (Xanthorrhoea resinosa), or Gulgadya in the Sydney language. Photo by Professor Dieter Hochuli.

Example 6.2 Engagement activities can have beneficial conservation impacts

Associate Professor Rosanne Quinell coordinates University of Sydney teams in the annual Questagame University BioQuest event twice a year (April and August) (see mapped results of some of 2020’s results, left). Students and staff can join the team.

The University's student-led Landcare group has been planting on our farms for decades, see Arthursleigh Farm (pictured below right).

Figure 28. Maps of the Questagame University BioQuest results by species richness in April 2020, mapped by Dr Aaron Greenville’s GIS class.

Figure 29. The student-led Landcare group planting trees at Arthursleigh Farm. Photo: Landcare Australia article.

18 Foley, D. in Cleverley, J. & Mooney, J (2010) Taking Our Place: Aboriginal Education and the Story of the Koori Centre at the University of Sydney, Sydney University Press.
Example 6.3a Examples of units of study that can facilitate the use of campus grounds

One of the projects available in FASS3500 Service Learning in Indigenous Communities during 2020 involves students working on biodiversity conservation with Elders from the local Aboriginal communities. There is scope to do projects like this in future on University sites in partnership with local communities. Other education that occurs on our sites occurs at our farms, veterinary teaching hospitals, & remote sites.

Example 6.3b There are many ways that staff and students can use and showcase our sites in their research and education

Resources

- **Campus Flora** is available as a [website](#) and a app for [Apple](#) and [Android](#)
- **Birdlife Australia** runs a range of programs to engage the public in bird conservation
- Collect floral and faunal sightings and add to the national CSIRO Atlas of Living Australia database by using [iNaturalist](#) or [Questagame](#)
- The **Urban Field Naturalist** project brings together scientists, philosophers and designers to share stories of biodiversity
- **The University of Sydney Landcare Society Inc** has been planting trees since 1997.
Principle 7 - Set and monitor short-term actions and long-term targets

Ecological outcomes unfold over many years, as sites progress and mature. The telling and witnessing of this growth creates an opportunity for the university community to engage and feel a part of the place where they receive and provide education. Site-specific targets should focus on noticing short term changes as well as achieving long term outcomes. Multiple and consistent monitoring, actions and reporting including to the public will enhance appreciation as well as measurement of spatial and temporal trends in campus biodiversity.

Principle 7 targets

7.1 A role or function to existing role is introduced to manage biodiversity monitoring/reporting across all campuses.
7.2 Regular site-based monitoring and reporting occurs at least once every 3 years.
7.3 University-wide process for data collection (e.g., iNaturalist) and storage (e.g., Atlas of Living Australia) are in place.
7.4 Reporting is aligned with University-wide sustainability reporting requirements.

Example 7.2 Regular site-based monitoring is important to measure progress in biodiversity conservation and improvement.

Site-based biodiversity monitoring can be formal, can involve community science, or can be a combination of both methods.

For example:

- External ecological consultancies could do a combination of field- and desk-based data collection and provide a report.
- Academic research, such as the work produced by Dr Aaron Greenville and Professor Glenda Wardle (Fig. 29) can achieve similar results if the data collection addresses the research questions.
- Students and members of the community can use publicly-available tools, such as iNaturalist, to record sightings.
Example 7.3 Biodiversity information comprises a range of methods and data types.

Resources:
- The Atlas of Living Australia collates biodiversity data from a range of sources and makes it available in various ways
- Remap is an online platform that enables ecosystem mapping
- International Union for Conservation of Nature’s Red List of Threatened Species (IUCN Redlist) lists the global conservation status of flora and fauna
- The NSW Department of Planning, Industry & Environment’s Species listing categories details the conservation status of species in NSW

Biodiversity indicators, such as species richness, are measured in order to reveal the progress of biodiversity conservation initiatives. This information can be collected via a range of ways (such as field surveys, sampling, lab, or desk work) and analysed spatially, statistically and/or descriptively. Storing these data is important for reporting and to measure future progress. It is also useful to submit these data to national databases, like the CSIRO Atlas of Living Australia for nation-wide reporting.

Example 7.4 Sustainability Tracking, Assessment & Rating System (STARS) Reporting

The University submits reports to the STARS global reporting framework for colleges and universities, and one of the categories is to report on landscape management and biodiversity. The aim of the category is “to recognize institutions that plan and maintain their grounds with sustainability in mind. Beautiful and welcoming campus grounds can be planned, planted, and maintained in any region while minimizing the use of toxic chemicals, protecting wildlife habitat, and conserving resources.”

Resources:
- STARS Technical Manual
Glossary

ALA: Atlas of Living Australia

Biodiversity: a contraction of ‘biological diversity’.

Biological Diversity: defined in the 1992 Convention for Biological Diversity as “the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part: this includes diversity within species, between species and of ecosystems.”

Blue space: areas that are whole or predominantly water, such as wetlands, canals, ponds, lakes, streams, rivers, bays, and oceans.

CAUL: Clean air and urban landscapes hub, part of the National Environment Science Program.

COS: Central Operating Services

Convention on Biological Diversity (CBD): Signed by 150 government leaders during the 1992 Rio Earth Summit, the CBD promotes sustainable development, ensuring a) the conservation of biological diversity, b) sustainable use of biodiversity, and c) fair and equitable sharing of the benefits arising from genetic resources.

CSIRO: Commonwealth Scientific and Industrial Research Organisation

Degradation: When speaking about the environment, degradation refers to the thinning, fragmentation, or destruction of natural habitat that reduces or eliminates resources for biodiversity and depletes soil, water, and air.

Ecosystem: A biological system composed of all the organisms found in a particular physical environment, interacting with it and with each other.

Environmental wellbeing: the promotion of the collective capacity of individuals, organisations and communities and societies to understand and meet their physical, mental, social, emotional and spiritual needs and aspirations in a way that heals and protects the Australian environment. Our working definition is inspired by Aboriginal perspectives of health and refers to the extent to which physical, mental, social, emotional and spiritual needs and aspirations are met in harmony with people and the environment.

Green infrastructure: The components of multifunctional urban ecosystems that comprise artificial and natural elements across multiple spatial scales.

Greenspace: Greenspace refers to areas of natural vegetation (such as grass, plants or trees) that can be managed or wild, private or publicly accessible, and may include blue spaces.

Health: An overall state of health, including social, mental and physical factors; more than a lack of disease.

Integrated pest management (IPM): IPM strives to use all available means to control pests and weeds without using pesticides, which are only used as a last resort.

Landscape: land with its distinguishing characteristics and features, especially considered as a product of modifying or shaping processes and agents (usually natural). Taking a landscape approach refers to the integration of large-scale processes, including natural resource management, environmental, and livelihood considerations, factoring in human activities and their institutions as part of the system.

Life cycle management: minimising the environmental and socio-economic burdens associated with products throughout its entire life cycle and value chain.

19 Convention on Biological Diversity (1992)

20 Tzoulas et al. (2007) Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review

LGA: Local government area

Multifunctional landscape: Landscapes that are designed or modified to provide benefits to ecosystems, biodiversity, and human societies.

Nature: Non-human features and processes including vegetation and animals, water, air, geological processes and landscapes; includes green and blue spaces and other natural elements.

Nature-based solutions: actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously providing human wellbeing and biodiversity benefits\(^\text{22}\).

NSW DPIE: New South Wales Department of Planning, Industry and Environment

NSW EPA: New South Wales Environment Protection Authority

NSW OEH: The former New South Wales Office of Environment and Heritage, replaced by the NSW DPIE.

Open space: Land that lacks built structures (e.g., buildings, bridges, or other structures), either publicly accessible or private, and may have varying development. Open spaces include green space, public plazas, and vacant lots.

Public space: Land designated for public access. Public space might be open space, green open space, or may include structures.

STARS: Sustainability Tracking, Assessment & Rating System

SUSF: Sydney Uni Sport & Fitness

Sustainable development: addressing the needs of the current population while ensuring a viable world for future generations.

SDGs: Sustainable development goals

SOLES: School of Life and Environmental Sciences

Sustainability: may refer to the degree to which a process or enterprise is able to be maintained or continued while avoiding the long-term depletion of natural resources\(^\text{23}\) or the ‘triple bottom line’ of supporting people, planet and profit (rather than economic profit over all else)\(^\text{24}\).

SSVS: Sydney School of Veterinary Sciences

UI: University Infrastructure

UNEP: United Nations Environment Program

Urban: Areas of dense human populations where economic outputs are focused on industry, service and technology (instead of farming).

USU: University of Sydney Union

Wellbeing: How humans evaluate and experience their lives overall.

\(^{22}\) IUCN Nature-based solutions

\(^{23}\) Oxford English Dictionary

\(^{24}\) Elkington (1994) *Towards the Sustainable Corporation: Win-Win-Win Business Strategies for Sustainable Development*
Contact

Vice-Principal (Operations)
The University of Sydney 2006 NSW Australia
university.sustainability@sydney.edu.au
sydney.edu.au
CRICOS 00026A