Low-frequency photonics-based broadband radar imaging & sensing
IP Ref 2020-004

Defence, Security & Safety

Opportunity
Radar systems have demands for accurate ranging & high spatial resolution which requires radars to be operated at high frequencies & with broad bandwidth. Conventional electronic-based systems & newer photonics-based systems can do this, but with increasing cost & complexity.

Technology
This technology is a photonics-based radar system which can achieve high performance using low, megahertz frequency optical electronics.

A frequency-shifting fibre optic loop and a continuous wave laser beam are used to generate stepped frequency waveforms over a broad range of frequencies. Transmitting signal is be sent into the electro-optic modulator, modulated by the received signal & filtered by an optical bandpass filter. The filtered signal is converted into electrical signal by the optoelectric converter, sampled by the analogue-to-digital converter and processed by the digital signal processing unit.

This technology adds low cost & simple architecture to the existing advantages of photonics-based radar. The system could be used for existing radar applications, such as synthetic aperture radar (SAR) imaging, ground penetrating radar, or multiple-input & multiple-output (MIMO) radar. Alternatively, the system’s millimetre-range precision & penetration ability permits monitoring of a living target’s respiration rate, heart rate, and blood pressure.

The system has been tested in real-time, range-Doppler imaging, where it demonstrated a tuneable bandwidth exceeding 20 GHz and <1 cm range resolution.

Intellectual Property Status
Publication number: WO/2021/217216

Inventors
Dr Yang Liu, Mr Ziqian Zhang, Professor Benjamin Eggleton

Scientific Data

TRL 1-3 TRL 4-6 TRL 7-9

Contact us
Dr Stephen Lam
Commercial Theme Leader
Email: stephen.lam@sydney.edu.au
Phone: +61 2 8627 5983

Commercial Development & Industry Partnerships
The University of Sydney
T: +61 2 9351 4000
sydney.edu.au/cdip