Screening in Mathematics: Building Effective Systems

Ben Clarke
University of Oregon

Successful Learning Conference Sydney, Australia June 28, 2016

Assisting Students Struggling with Mathematics: Response to Intervention (RtI) for Elementary and Middle Schools

Copies are available on the IES website:
http://ies.ed.gov/ncee
http://ies.ed.gov/ncee/wwc/publications/practiceguides/

Search for Coherence

Panel works to develop 5 to 10 assertions that are:

- · Forceful and useful
- · And COHERENT
- · Do not encompass all things for all people
- · Do not read like a book chapter or article

Challenges for the panel:

- · State of math research
- · Distinguishing between tiers of support

Jump start the process by using individuals with topical expertise and complementary views

Structure of the Practice Guide

- Recommendations
- Levels of evidence
- · How to carry out the recommendations
- Potential roadblocks & suggestions

Recommendation 1

Screen all students to identify those at risk for potential mathematics difficulties and provide interventions to students identified as at risk

- Level of Evidence: Moderate

Screening Assessment

- <u>Purpose</u>: To determine children who are likely to require additional instructional support (predictive validity)
- When: Early in the academic year or when new students enter school. May be repeated in the Winter and Spring
- Who: All students
- <u>Relation to instruction</u>: Most valuable when used to identify children who may need further assessment or additional instructional support

Technical Evidence

- Correlational design studies
 - Greater evidence in the earlier grades
 - Reliability typically included inter-tester, internal consistency, test-retest, and alternate form
 - ♦ Most fall between r=.8 to .9
 - Validity primarily focused on criterion related with an emphasis on predictive validity
 - ♦ Most fall between r=.5 to .7
 - Measures are beginning to report on sensitivity and specificity

Content (1)

- Content of Measures
 - Single aspect of number sense (e.g., strategic counting) most common in earlier grades
 - Or broad measures incorporating multiple aspects of number
 - Some measures are combination scores from multiple single aspect measures
 - Measures reflecting the computation and concepts, and applications objectives for a specific grade level – most common in later grades
 - ♦ Often referred to as CBM or General Outcome

Content (2)

- Promising measures include
 - Word problems
 - Pre-algebra and algebra skills
 - Based on state standards or NCTM/NMAP benchmarks

Features

- Short duration measures (1 minute fluency measures)
 - Note many measures that are short duration also used in progress monitoring
- Longer duration measures (untimed up to 20 minutes) often examine multiple aspects of number sense
 - Issue of purpose is critical to examine
- Most research examines predictive validity from Fall to Spring.

Examples: Single aspect number sense

- Example: Magnitude comparison

– Example: Strategic counting

13 14	6 _ 8	3 4
-------	-------	-----

Example – Single aspect of number sense

- Base 10 understanding addition and subtraction problems that require cross 10
 - 7 + 5
 - 15 9

Example: Multiple aspects number sense

- Number Knowledge Test
 - Level 1
 - If you had 4 chocolates and someone gave you 3 more, how many chocolates would you have?
 - ♦ Which is bigger: 5 or 4?
 - Level 3
 - ♦ What number comes 9 after 999?
 - ◆ Which difference is smaller: the difference between 48 and 36 or the difference between 84 and 73?

Examples: 2nd grade and above

- Number combinations
- · Word problems
- Grade-level computation objectives
- Grade-level concepts and applications
- Measures tied to CCSS; NMAP; Focal Points

General Outcome: Computation and Concepts, and Application Objectives

- For students in grades 1–6
- Student is presented with 25 computation or concepts and applications problems representing the year-long, grade-level math curriculum
- Student works for set amount of time (time limit varies for each grade)
- Teacher grades test after student finishes

15

est 1 Vame:				Com	putation 1		Date:		
A.	+ 3	В	- 7	c	<u>+ 7</u>	D	54 +33	E	7 + 3
	10 - 0	G	8 +1	н	2 +5	T.	- <u>3</u>	J	8 - 5
Ķ	11 -1	L	8 - 1	м	10 - 7	N	2 6 +1	٥	6 - 2
•	65 +23	Q	45	R	5 <u>+1</u>	s	8 1 +1	Т	7 - 5
J	B + 1	Y	99	W	10 - 3	х	7 +3	Y	9 +1

Fuchs MBSP

Example: Reflecting critical math content

- easy-CBM
- Items created according to NCTM Focal Points for grade level
- 48 items for screening (16 per focal point)
- Ongoing research (not reviewed in practice guide)

Middle School

- · Algebra measures
 - Designed by Foegen and colleagues assess pre-algebra and basic algebra skills. Administered and scored similar to Math-CBM
- Math CBM Computation and Concepts and Applications
 - Concepts and Applications showed greater validity in 6th, 7th, and 8th grade

Basic Skills (in Algebra)

- 60 items; 5 minutes
- Problems include:
 - Solving basic fact equations;
 - Applying the distributive property;
 - Working with integers;
 - Combining like terms;
 - Simplifying expressions;
 - Applying proportional reasoning
- Scoring: # of problems correct

Basic Pre-algebra Skills

Solve:	Solve:
9 + a = 15	$10 \infty 6 = g$
a =	g =
Evaluate:	Simplify:
$12 + (\infty 8) + 3$	$9 \times 4d + 2 + 7d$
Simplify:	Simplify:
2x + 4 + 3x + 5	5(b @3) @b
Solve:	Solve:
12	$a \cdot 5 = 30$
e =	q =
Simplify:	Evaluate:
4(3 + s) œ7	8 œ(œ6) œ4
Simplify:	Simplify:
b+b+2b	2 + w(w = 5)
Solve:	Solve:
$\frac{b}{6} = \frac{12}{18}$	1 foot =12 inches
6 18 b =	5 feet = inches
Simplify:	Simplify:
7 \(\alpha\)3(f \(\alpha\)2)	$4 \times 7b + 5(b \times 1)$
Evaluate:	Simplify:
$\infty 5 + (\infty 4) \infty 1$	s + 2s œ4s
Solve:	Solve:
$63 \div c = 9$	x + 4 = 7
c =	x =
Simplify:	Simplify:
$2(s \times 1) + 4 + 5s$	$\infty 5(q+3)+9$
Simplify:	Evaluate:
$8m \times 9(m + 2)$	9 + (@3) @8

Suggestions (1)

- Have a building-level team select measures based on critical criteria such as reliability, validity, and efficiency
 - Team should have measurement expertise (e.g., school psychologist) and mathematics (e.g., math specialist)
 - Set up a screening to occur twice a year (Fall and Winter)
 - Be aware of students who fall near the cut scores

Suggestions (2)

- Select screening measures based on the content they cover, with an emphasis on critical instructional objectives for each grade level
 - Lower elementary: Whole Number
 - Upper elementary: Rational Number
 - Across grades: Computational Fluency (hallmark of mathematics learning disabilities)

Suggestions (3)

- In grades 4-8, use screening measures in combination with state testing data
 - Use state testing data from the previous year as the first cut in a screening system
 - Can then use a screening measure with a reduced pool of students or a more diagnostic measure linked to the intervention program for a second cut

Suggestions (4)

- Use the same screening tool across a district to enable analyzing results across schools
 - Districts may use results to determine the effectiveness of district initiatives
 - May also be used to determine systematic areas of weakness and provide support in that area (e.g., fractions)

Roadblocks (1)

- Resistance may be encountered in allocating time and resources to the collection of screening data
- <u>Suggested Approach</u>: Use data collection teams to streamline the data collection and analysis process

Roadblocks (2)

- Questions may arise about testing students who are "doing fine"
- <u>Suggested Approach</u>: Screening all students allows the school or district to evaluate the impact of instructional approaches
 - Screening all students creates a distribution of performance allowing the identification of at-risk students

Roadblocks (3)

- Screening may identify students as at-risk who do not need services and miss students who do
- <u>Suggested Approach:</u> Schools should frequently examine the sensitivity and specificity of screening measures to ensure a proper balance and accurate decisions about student risk status.

Sensitivity and Specificity

		Students at-risk		
		YES	NO	
Students identified as atrisk	YES	True positive (A)	False positive (B)	
	NO	False negative (C)	True negative (D)	

Sensitivity: Number of students correctly identified as at-risk or A/(A+C)

Specificity: Number of students correctly identified as not at risk or D/(D+B)

Sensitivity and Specificity

- Cut score is set too high:
 - You have good sensitivity (all kids that need help are identified), but poor specificity (lots of kids who don't need help are identified)
- Cut score is set too low:
 - You have good specificity (most kids who don't need help will not be identified as at-risk), but poor sensitivity (you may miss many kids who do need help)

An example - easyCBM

- Sensitivity at least .90 Johnson, Jenkins, Petscher,
 & Catts (2009)
 - Favors higher cut scores
- Sensitivity and Specificity at least .70 Silberglitt & Hintze (2005)
 - Favors lower cut scores

Example cont.

- Winter 25th%ile criteria
- Johnson procedure = cut of 34
 - 70 students identified as at-risk
 - 22 truly at-risk
 - 48 false positives (provided non needed services)
 - 1 false negative (not provided needed services)

Example cont.

- Winter 25th%ile criteria
- Silberglitt procedure = cut score 30
 - 41 students identified at-risk
 - 18 truly at-risk
 - 23 false positives
 - 5 false negatives

Example cont.

- To identify 4 additional at-risk students; you over identify an additional 29 students
 - If small group instruction provided (3-5 students per group) an additional 6-10 groups are needed.
 - Impact on limited school resources
- Schools rarely discuss what "at-risk" means

Roadblocks (4)

- Screening may identify large numbers of students who need support beyond the current resources of the school or district
- Suggested Approach: Schools and districts should
 - Allocate resources to the students with the most risk and at critical grade levels; and
 - Implement school-wide interventions to all students in areas of school-wide low performance (e.g., fractions)

Activity

- Discuss with your team the screening process in your school including:
 - Measures utilized
 - Efficiency of measures
 - And Roadblocks encountered solutions enacted or possible

How to start and next steps

- Focus on one grade or grade band
- Because there is accumulating evidence that math trajectories are established early and difficult to alter, K/1 may be a smart and strategic option
 - Greater comfort with whole number content and instruction
 - Greater array of researched and research-based instructional programs