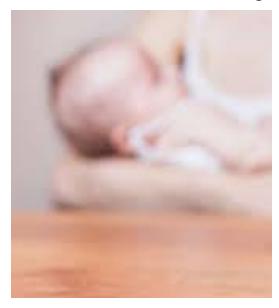
Making donated milk more accessible through improved processing techniques

Presented by Katherine Blackshaw

Professor Fariba Dehghani, A/Professor Aaron Schindeler, Dr Peter Valtchev and Professor Richard Banati


School of Chemical and Biomolecular Engineering

Current infant feeding modes (regulated)

Breastfeeding

Exclusive feeding rate is 40%

Donated milk

Contamination risk, but is antimicrobial Premature hospitalised infants

Infant formula

Accessible
Lacks protective components
Direct contamination risk

The University of Sydney Page 2

Risks of not receiving breastmilk in the first 6 months

	Low income countries	High income countries
Formula fed infants	6-10 times more likely to die from diarrhoeal or respiratory disease (WHO)	3 times more likely to be hospitalised for respiratory disease (UNICEF)

The University of Sydney

Current processing techniques of donated milk

Holder Pasteurisation

62.5 ° C for 30 minutes

Problems:

- uneven heat transfer
- Difficult to pasteurise large batches
- Degrades many immune components

Storage: Frozen

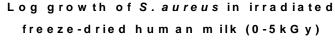
Problems

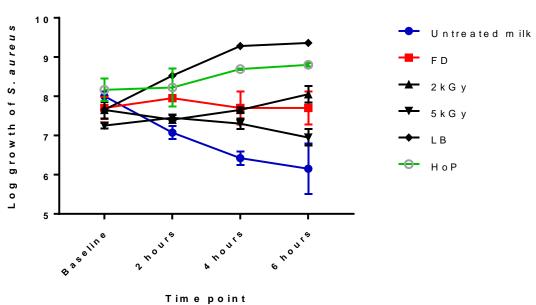
- Limits capacity
- Expensive
- Short-shelf life
- Limits ability to ship

The University of Sydney
Page 4

Aims

- 1. Establishment of reference data using a range of accepted analytical techniques to characterise human raw human milk.
- Physicochemical properties
- Functional properties


2. Study of the impact of treatment of different milk processing methods (freeze-drying and spray-drying, irradiation and heat)



The University of Sydney

Antimicrobial capacity Test pathogen: Staph aureus

Log growth of S. aureus after 6 hours 0.80 0.69 0.60 0.42 0.40 0.14 0.20 0.00 0.00 -0.20 -0.31-0.40 -0.60 -0.80 -0.81 -1.00 Untreated HoP FD 2kGy 5kGy 10kGy

Acknowledgements

Supervisors:

Professor Fariba Dehghani

Dr Peter Valtchev

A/Professor Aaron Schindeler

Professor Richard Banati

The University of Sydney