

Rust resistance genotypes and expected rust responses of Australian cereal varieties

Cereal Rust Report 2023, Volume 20 Issue 3

15 September 2023

Professor Robert Park, Dr Mumta Chhetri, Dr Davinder Singh

The University of Sydney, Faculty of Science, School of Environmental Sciences, Sydney Institute of Agriculture, Plant Breeding Institute

Email: robert.park@sydney.edu.au

Ph: 02 9351 8806, 0414 430 341

The rust responses for Australian cereal varieties provide growers and technical advisors with updated information to make informed rust control decisions. The varietal responses for wheat (common and durum), triticale, barley and oat presented in this report are the consensus opinion of Australian cereal pathologists and breeders and are based on the most recent field trial reports as well as previous data sets. They are developed in the context of the prevailing rust pathotypes recorded in 2022 by surveys undertaken by staff at the University of Sydney's Plant Breeding Institute. Gene postulations based on multi-pathotype tests (up to 12 pathotypes of each rust pathogen) and pathogen survey results help to explain regional rust response variation, and predict varietal vulnerability to rust. For each variety showing resistance, the nature of the resistance (ASR or APR) is indicated based on current understanding as determined by the resistance carried by a variety, its field response, and occurrence (presence/absence, frequency) and distribution of pathogen virulence. As our knowledge of APR genes in Australian cereal varieties improves, it will be possible to provide more detailed information regarding the genetic basis of APR in varieties and the level of protection the genes confer.

All Stage Resistance (ASR) versus Adult Plant Resistance (APR)

Resistance to rust pathogens in cereals can be expressed at all growth stages from primary leaf emergence onwards (<u>All Stage Resistance</u> (ASR), aka seedling resistance, major gene resistance), or at post seedling growth stages only (<u>Adult Plant Resistance</u> (APR), aka minor gene resistance). Genes conferring both types of resistance occur in Australian cereal varieties- some varieties carry ASR or APR, others carry both. The identities and effectiveness of most ASR genes present in Australian cereal varieties are well understood. Research on the genetic basis of rust resistance in especially wheat and barley over the past 25 years has greatly improved our understanding of the genes that confer APR; these studies have also shown that there are other genes conferring APR that while still uncharacterized are important in protecting against rust infection and hence yield loss. Research by the Australian Cereal Rust Control Program has permitted accurate determination of the presence/ absence of four APR genes in Australian wheat varieties (*Lr34/Yr18/Sr57, Lr46/Yr29/Sr58, Lr67/Yr46/Sr55, Sr2*) and three genes conferring APR to leaf rust in barley (*Rph20, Rph23, Rph24*). Two of the APR genes in wheat are known to be due to a single gene that confers resistance against all three rust pathogens (*Lr34/Yr18/Sr57* and *Lr67/Yr46/Sr55*), and the resistance *Lr46/Yr29/Sr58* is similarly thought to be due to a single gene. The multiple ASR resistances *Lr37/Yr17/Sr38* and *Lr24/Sr24* each likely comprise separate genes that are inherited as a linkage block due their presence on chromosomal segments that were introgressed into wheat from alien grass species.

Disease response categories are summarized in **Table 1**. The colour coding in this table has been used in all tables to assist in highlighting strengths and potential weaknesses in varieties with respect to the rust diseases.

Wheat and triticale

Wheat (both common and durum) and triticale are affected by stem rust, leaf rust and stripe rust, caused by *Puccinia graminis* f. sp. *tritici, P. triticina*, and *P. striiformis* f. sp. *tritici,* respectively. In Australia, epidemics of all three rusts have occurred in common wheat, of stripe rust in durum wheat, and of stem rust and stripe rust in triticale.

The rust responses of current Australian common wheat, durum wheat, and triticale are provided in **Tables 2**, **3** and **4**, respectively.

Long-term nation-wide annual surveys of the virulence of the cereal attacking rust pathogens have been critical in understanding and predicting the responses of cereal varieties to rust diseases and providing direction for resistance breeding. The separation of the eastern and western Australian cereal belts, the common movement of rusts from west to east, and the less common movement of rusts from east to west, have resulted in some pathotypes (and hence virulences) occurring only in eastern Australia. This has important implications for the rust responses of varieties carrying resistance genes that are overcome by such pathotypes, if grown in the east and the west.

At present, there is little difference across Australia in the pathotypes of the pathogens that cause wheat stem rust and wheat leaf rust, and for this reason a single national response rating is provided for all varieties for each disease.

With stripe rust, virulences for the resistance genes Yr1, Yr17, Yr27, Yr56 (in durum wheats), and for YrJ, YrT and YrB (in triticale only) occur only in eastern Australia. For this reason, separate ratings are provided where available for each variety for eastern and Western Australia. Virulences for two further resistance genes, Yr4 and Yr33, were detected in eastern Australia in 2018 and 2017 in the pathotypes 198 E16 A+ J+ T+ 17+ ("198") and 239 E237 A- 17+ 33+ ("239"), respectively. Both pathotypes 239 and 198 were widespread and reached damaging levels in some wheat crops in eastern Australia in 2020, 2021 and 2022. The biggest and most confusing aspect for some wheat growers over 2020-2022 has been changes in the responses of certain varieties as the frequencies of these pathotypes and the newer "238" (pt. 238 E191 A+ 17+ 33+) pathotype have changed. Because some varieties are resistant to 198 but susceptible to 239, the increased frequency of the 239 pathotype in 2021 meant that while such varieties displayed resistance in 2020, they were more susceptible in 2021 and 2022. Examples of this are Catapult, Coolah, LRPB Flanker, Rockstar, and Vixen, which carry resistance genes Yr25, Yr33 or another uncharacterised resistance gene ("Yr1A", see below), all of which protect against pathotype 198 but not pathotype 239.

Adding to the confusion is that some varieties are more vulnerable to 198 than they are to 239- for example DS Bennett, Borlaug 100, EGA Wedgetail, Illabo, LRPB Kittyhawk, and LRPB Trojan. Pathotype 198 is also a greater threat to several varieties of durum wheat due to virulence for gene *Yr56 (eg DBA Artemis, DBA Bindaroi, DBA Lillaroi, DBA Spes, DBA Vittaroi and EGA Bellaroi; Table 3)* and triticale due to virulence on gene *YrB* (Astute, Berkshire, Bison and Joey; **Table 4**).

The most significant changes in rust response ratings between eastern and Western Australia in recent years has been due to a series of changes in the pathotypes of wheat leaf rust in Australia and the movement of three leaf rust pathotypes from the eastern grains belt to WA (in 2013 [pathotype 76-1,3,5,7,9,10,12 +Lr37]; in 2015 [pathotype 104-1,3,4,6,7,8,10,12 +Lr37]; in 2017 [104-1,3,4,5,7,9,10,12 +Lr37]), which led to virulences for Lr13 and Lr27+31 in WA for the first time. These pathotypes shifted the leaf rust response of many varieties in WA towards increased susceptibility, varieties affected include Corack, Emu Rock, and Wyalkatchem. Pathotype 104-1,3,4,6,7,8,10,12 +Lr37 combines virulence for Lr13, Lr27+31 and Lr37, and has rendered varieties carrying one or more of these resistances more susceptible in both eastern Australia and WA.

The complementary ASR leaf rust resistance genes Lr27+31 have been used in Australian wheat breeding since Gatcher was released in 1969 (Park & McIntosh 1994). In addition to conferring resistance to leaf rust, gene Lr27 is associated with the durable APR stem rust resistance gene Sr2 and Lr31 with the non-durable APR leaf rust resistance gene Lr12 (Singh et al. 1999). Virulence for Lr27+31 was first detected in the early

1970s and then became very common, and but was displaced after 1990 by the buildup of an exotic leaf rust pathotype avirulent for this resistance that was first detected in 1984 (Park et al. 1995). We showed that virulence for Lr27+31 was completely associated with virulence for the APR gene Lr12, and that the ASR gene Lr31 and APR gene Lr12 are likely one and the same (Singh et al. 1999). Virulence for Lr27+31 was not detected again until 2014, with the appearance of pathotype 104-1,3,5,6,7,10,12 +Lr37, and is now once again common not only in eastern Australia but also WA.

Virulence for resistance gene *Lr24* was first detected in eastern Australia in 2000 (Park et al. 2002). It has been detected in all but four years since then. The frequency of virulence for *Lr24* in eastern Australia has remained low since 2015, and was present in about 4% of isolates from eastern Australia in 2022. A single national rating for leaf rust response that does not take into consideration virulence for *Lr24* was assigned by the 2022 NVT panel. Eastern Australian Growers of all varieties carrying *Lr24* are advised nonetheless to monitor crops for leaf rust closely.

Three "new" ASR rust resistance genes in Australian wheat cultivars

The ability to recognize the presence of an ASR resistance gene in a variety depends on the presence of a rust pathotype carrying avirulence that matches the resistance gene. Three rust pathotypes of exotic origins detected in recent years carry avirulence for resistance genes that were previously unknown because all existing or older pathotypes were virulent on the genes. Although it sounds counter-intuitive, some varieties that were uniformly susceptible to all pathotypes of a particular rust are now resistant to some pathotypes because of the presence of these genes.

Yr25: This gene was first identified by European researchers in the 1990s. Up until the detection of pathotype 198 in 2018, all Australian pathotypes of the wheat stripe rust pathogen were virulent on this resistance gene so it was not possible to determine its possible presence in Australian wheat varieties. Pathotype 198 was the first detection of avirulence for *Yr25* in Australia, and it has allowed us to identify this gene in at least seven varieties (**Table 2**) and explain why the resistance of these varieties performed better when pathotype 198 was dominant in 2020.

Yr1A: This is an undesignated ASR gene on chromosome 1A that pathotype 198 is avirulent for but for which all other pathotypes are virulent. We were able to detect the

presence of in at least 15 varieties, some of which are currently grown (**Table 2**). Once again, varieties carrying this gene performed better in 2020 than they did in 2021 and 2022, because of the dominance of 198 in 2020.

Lr82: This gene was recently mapped and designated by Bariana et al. (2022). It provides protection against pathotypes in the "76" lineage, as well as pathotypes 104-1,3,4,6,7,8,10,12 +Lr37 and 104-1,3,4,5,7,9,10,12 +Lr37. Our rust tests have shown that this gene is present in Correll, EG Titanium, Espada, Orion, Tungsten and Zircon (**Table 2**).

Barley

To date, there are 23 designated seedling resistance genes (*Rph1-19, Rph21-22, Rph25-27*; note that our recent research has demonstrated that the resistance conferred by *Rph15* and *Rph16* are mediated by the same gene) and three APR genes (*Rph20, Rph23* and *Rph24*) to *P. hordei*. Of these genes, Australian barleys primarily carry *Rph2, Rph3, Rph4, Rph7, Rph9.am* (allele of *Rph12*), *Rph12, Rph19 and Rph25*, and APR genes *Rph20, Rph23* and *Rph24*.

Annual surveys of pathogenic variability in P. hordei at the Plant Breeding Institute from 1992 to 2022 revealed significant shifts in the composition of populations across Australia over that time. Virulence for the resistance gene Rph12, first detected in a single pathotype in Tasmania in 1991 (viz. 4610 P+), was subsequently detected in 1993 in South Australia, Victoria and southern New South Wales (NSW). By the end of 2001, eight pathotypes with virulence for Rph12 had been isolated and virulence for this gene was present in all Australian barley growing regions. Virulence for Rph3 was first detected in pathotype 5457 P+ in northern NSW in 2008, and later detected independently in pathotype 5656 P+ in South Australia in 2011 and pathotype 5457 P- in Western Australia in 2013. Surveys since 1989 have demonstrated widespread virulence for Rph1, Rph2, Rph3, Rph4, Rph6, Rph8, Rph9.am, Rph10, Rph12, Rph19 and Rph25, and rarer virulence for Rph5, Rph7, Rph11, Rph13 and Rph14. Virulence has not been detected in Australia for the H. vulgare ssp. spontaneum derived gene Rph15 or the H. bulbosum derived Rph18, Rph22 and Rph26. These genes have not been utilized by Australian breeding programs and therefore unlikely to be present in Australian barleys. More detailed information on pathotype occurrence and distribution can be found in our Cereal Rust Update series.

Molecular markers linked very closely to the APR barley leaf rust resistance genes *Rph20*, *Rph23* and *Rph24* were developed under the GRDC funded project US00074. We applied these markers (bPb0837 and sun690-1 (Dracatos et al. 2021) linked to *Rph20*, EbMac0603 (Singh et al. 2015) linked to *Rph23* and sun43-4 (Dracatos et al. 2021) linked to *Rph24* and predicted the presence of genes *Rph20*, *Rph23* and *Rph24* in the Australian barley varieties reported here **(Table 5)**.

A "Nil" *Rph* gene postulation means that line does not carry any seedling resistance gene effective against any of the test pathotypes we used. Certain postulations marked as "?" indicate that such postulations are inconclusive, and these specific cultivars may require further testing.

Oat

When catalogued, genes conferring resistance to oat crown rust pathogen *Puccinia coronata* f. sp. *avenae* are given the designation "*Pc*", and those to the stem rust pathogen *P. graminis* f. sp. *avenae* "*Pg*".

At this time, 92 loci conferring resistance to *Pca* in *Avena* have been designated and accepted (*Pc1-Pc85*, *Pc91-Pc96*, *Pc98*). Unlike the catalogued rust resistance genes in wheat and barley, the allelic relationships and chromosomal locations of many of the catalogued *Pc* genes are unknown. Six loci are reported as conferring APR (*Pc27*, *Pc28*, *Pc69*, *Pc72*, *Pc73*, *Pc74*) and the remaining 86 conferring ASR. Multiple alleles at five loci have been reported: *Pc2* (*Pc2*, *Pc2b*), *Pc3* (*Pc3*, *Pc3c*), *Pc4* (*Pc4*, *Pc4c*), *Pc6* (*Pc6*, *Pc6c*, *Pc6d*) and *Pc9* (*Pc9* and *Pc9c*). Four pairs of complementary genes have been designated (*Pc3+Pc4*, *Pc3c+Pc4c*, *Pc7+Pc8*, *Pc24+Pc25*).

The crown rust and stem rust responses and genotypes of current Australian oat varieties are shown in **Table 6.** Postulating the resistance genes present in oat is more difficult than it is in wheat and barley, and this has been made more difficult by the heterogeneity of especially crown rust responses of more than 50% of the varieties tested (**Table 6**). Although heterogeneity in rust response is seen in wheat and barley, it is quite rare (*eg* only three of the 99 wheat varieties listed in **Table 2** are heterogeneous for rust resistance). None of the ASR stem rust resistance genes listed in **Table 6** are effective in Australia as pathotypes with matching virulence have been detected from both eastern Australia and WA in our long running national pathogenicity surveys.

Virulence for all of the oat crown rust resistance genes listed in **Table 6** has also been documented in our national pathogenicity surveys. The frequency of virulence for some of these genes is however much more common in eastern Australia than it is in WA, and this likely accounts for the resistance of some varieties in WA. This includes *Pc38* (Yallara, MR), *Pc39/Pc55/Pc71* (Brusher, MR), *Pc48* (Williams, MR), Mulgara (*Pc58*, MR), and Tungoo (*Pc61*).

The genes *Pc39/Pc55/Pc71* have shown identical responses in our tests of over 1,400 isolates of *Pca* collected between 2000 and 2020, and 152 historical isolates dating back to the 1950s (Park et al. 2022). This and results from North America suggest that these genes are either identical or allelic. This resistance was postulated in the varieties Bannister, Durak, Mitika, and Koala, although the first three varieties are heterogeneous for it (**Table 6**).

Several oat varieties appear to carry moderate to low levels of APR to crown rust (eg Mulgara, Tungoo, Williams; **Table 6**). Our research over the past 25 years has identified many sources of APR to crown rust in oat in germplasm sourced from overseas, some of which provides high levels of resistance and holds great promise for future efforts to control this damaging rust disease.

Grazing oat varieties

Not included in **Table 6** are grazing oat varieties. Grown principally in NSW and Queensland, many of these were resistant to crown rust when released only to be rendered susceptible soon after because of the emergence of a new pathotype with virulence. These varieties include: Aladdin (*Pc91*), Comet (*Pc15/16/or 17, Pc91*), Drover (*Pc91*), Genie (*Pc48, Pc56*), Moola (*Pc68*), Nile (*Pc1, Pc58*), Saia (*Pc15, Pc16, Pc17*), Taipan (*Pc48+*), Volta (*Pc50, Pc68*), and Wizard (*Pc50, Pc61*). Virulence emerged for all of the ASR genes in these varieties very soon after their release.

Acknowledgements

The national wheat rust disease assessments were conducted by cereal plant pathologists and their teams across Australia. These teams were led by Drs Lisle Snyman, Brad Baxter/Andrew Milgate, Steven Simpfendorfer, Hari Dadu/Grant Hollaway, Tara Garrard/ Hugh Wallwork, and Manisha Shankar. Input from wheat breeders is also acknowledged, with special thanks going to AGT, LongReach Plant Breeders, and Intergrain. NVT data were compiled by staff at the National Variety Trials.

References/ Further reading

Bariana, H.S., Babu, P., Forrest, K.L., Park, R.F., Bansal, U.K. (2022). Discovery of the new leaf rust resistance gene *Lr82* in wheat: molecular mapping and marker development. *Genes* 13: 964.

Dracatos, P.M., Park, R.F., Singh, D. (2021). Validating molecular markers for barley leaf rust resistance genes *Rph20* and *Rph24*. *Plant Disease* 105: 743-747.

McIntosh, R.A., Wellings, C.R. and Park, R.F. (1995). Wheat Rusts. An Atlas of Resistance Genes. 200pp. Melbourne: CSIRO.

Park, R.F., Rees, R.G. and Platz, G.J. (1988). Some effects of stripe rust infection in wheats with adult plant resistance. *Australian Journal of Agricultural Research* 39: 555-562.

Park, R.F. and McIntosh, R A. (1994). Adult plant resistances to *Puccinia recondita* f. sp. *tritici* in wheat. *New Zealand Journal of Crop and Horticultural Science* 22: 151-158.

Park, R.F., Burdon, J.J, and McIntosh, R.A. (1995). Studies on the origin, spread, and evolution of an important group of *Puccinia recondita* f. sp. *tritici* pathotypes in Australasia. *European Journal of Plant Pathology* 101: 613-622.

Park, R.F., Bariana, H.S., Wellings, C.R. and Wallwork, H. (2002). Detection and occurrence of a new pathotype of *Puccinia triticina* with virulence for *Lr24* in Australia. *Australian Journal of Agricultural Research* 53: 1-8.

Park, R.F. (2015). Long term surveys of pathogen populations underpin sustained control of the rust diseases of wheat in Australia. *Journal of the Royal Society of New South Wales* 148: 15-27.

Park, R.F., Boshoff, W.H.P., Cabral, A.L., Chong J., Martinelli, J.A., McMullen, M.S., Mitchell Fetch, J. W., Paczos-Grzeda E., Prats E, Roake J., Sowa S, Ziems, L, Singh, D. (2022). Breeding oat for resistance to the crown rust pathogen *Puccinia coronata* f. sp. *avenae*: achievements and prospects. *Theoretical and Applied Genetics* 135: 3709-3734.

Singh, D., Park, R.F. and McIntosh, R. A. (1999). Genetic relationship between the adult plant resistance gene *Lr12* and the complementary gene *Lr31* for seedling resistance to leaf rust in common wheat. *Plant Pathology* 48: 567-573.

Singh, D., Dracatos, P., Derevnina, L., Zhou, M., and Park, R.F. (2015). *Rph23*: A new additive adult plant resistance gene to leaf rust in barley on chromosome 7H. *Plant Breeding* 134: 62-69.

General Enquiries

Dr Mumta Chhetri Mr Matthew Williams

Plant Breeding Institute Private Bag 4011 Narellan NSW 2567

T 02 9351 8808 F 02 9351 8875

Rusted Plant Samples

Can be mailed in paper envelopes; do not use plastic wrapping or plastic lined packages. If possible, include the latitude and longitude of the sample location, date of collection, cultivar, and your full contact details.

Direct rust samples to:

University of Sydney Australian Rust Survey Reply Paid 88076 Narellan NSW 2567 The Australian Cereal Rust Control Program is supported by growers through the Grains Research & Development Cooperation.

Table 1 Response descriptors for the rust diseases

Response	Description
R	highly resistant: occasional symptoms of infection including necrotic flecks; no sporulation
RMR	resistant: symptoms evident and usually with necrosis and chlorosis, limited sporulation, and affected leaf area up to 15%
MR	moderately resistant: evidence of sporulating areas on the leaf surface with some chlorosis and necrosis, and affected leaf area up to 30%
MRMS	intermediate: restricted sporulating areas with some chlorosis, and affected leaf area up to 50%
MS	moderately susceptible: freely sporulating lesions and affected leaf area up to 70%
MSS	moderately susceptible to susceptible: freely sporulating lesions with leaf area affected up to 90%
S	susceptible: abundant sporulation across the whole leaf surface; leaf area affected up to 100%; some chlorosis and necrosis evident
SVS	susceptible to very susceptible: abundant sporulation across the leaf surface; leaf area affected up to 100%; limited chlorosis
VS	highly susceptible: abundant sporulation across the whole leaf area with no evidence of chlorosis or necrosis; 100% leaf area affected

Table 2: Leaf rust, stem rust and stripe rust response and disease resistance genotypes of Australian common wheat varieties

		Leaf r	ust			Stem r	ust			Str	ipe rust		
			NVT National				NVT National				NVT Consens	us rating	
		APR* Lr genes**	Consensus rating				Consensus rating				2022 Eastern		EA Resistance
Variety	ASR* Lr genes**	genes	consensus ruting	Resistance due to:~	ASR* Sr genes**	APR* Sr genes**	conscisus ruting	Resistance due to:~	ASR* Yr genes**	APR* Yr genes**	States	2021 WA	due to:~
Anapurna	Lr1, Lr3a, Lr17a, Lr37	Lr46	MS	APR	Sr38	Sr58	MSS	APR	Yr4, Yr17, Yr27	Yr29	RMR	RMR	APR
Ascot	Lr1, Lr3a, Lr37	Lr46	RMR	APR	Sr38	Sr2, Sr58	MRMS	APR	Yr6, Yr17	Yr29	MSS	R	APR
Ballista	Lr3a, Lr13, Lr37	Lr46	S	APR	Sr38	Sr58	MR	APR	Yr17, Yr27	Yr29	MSS	RMR	APR
Beckom	Lr3a, Lr37	Lr34, Lr46	MSS	APR	Sr9b, Sr38	Sr57, Sr58	MRMS	APR	Yr7?, Yr17	Yr18, Yr29	MRMS	MR	APR
BigRed	Lr3a, Lr13	Lr46	MRMS	APR	Nil	Sr58	S	APR	Yr1	Yr29	RMR	No rating	APR
Boree	Lr3a, Lr13, Lr37	Lr46	S	APR	Sr8a or Sr9b, Sr38	Sr58	MR	APR	Yr17+	Yr29	SVS	MR	None
Borlaug 100	Lr27+31, Lr37	Lr46	MR	APR	Sr8a or Sr9b, Sr38	Sr2	MR	APR	Yr17, Yr27	Yr29	SVS	R	APR
Brumby	Lr3a, Lr13, Lr20, Lr37	Lr46	SVS	None	Sr38	Sr58	MR	APR	Yr17, Yr33	Yr29	MS	No rating	APR
Calibre	Lr3a, Lr13, Lr37	Lr46	S	APR	Sr38	Sr58	MR	APR	Yr17	Yr29	S	RMR	APR
Catapult	Lr3a, Lr13	Lr46	S	APR	Sr8a, Sr30	Sr58	MR	ASR (Sr30)	Yr25 (Het.)	Yr29	S	RMR	APR
Chief CL Plus	Lr20, Lr24	Lr46	MR	APR	Sr15, Sr24	Sr58	MR	ASR (Sr24)	Nil	Yr29	SVS	S	None
Condo	Lr3a	Lr34	S	APR	Sr9g	Sr57	MR	APR	Yr7, Yr25 (Het.), Yr27	Yr18	MS	MR	APR
Coolah	Lr3a, Lr23	Lr34, Lr46	RMR	ASR (<i>Lr23</i>)	Sr8a, Sr30	Sr57, Sr58	MR	ASR (Sr30)	Yr3, Yr25, Yr33	Yr18, Yr29	MSS	RMR	APR
Coota	Lr1, Lr13, Lr27+31, Lr37	Lr46	MR	APR	Sr12, Sr38	Sr2, Sr58	RMR	ASR +APR	Yr6, Yr17	Yr29	S	MR	APR
Corack	<i>Lr3a, Lr13, Lr20</i> (Het.)	Lr46	SVS	None	Sr8a, Sr30	Sr58	MR	ASR (Sr30)	Nil	Yr29	MSS	MS	APR
Cosmick	Lr13, Lr37, Lr73	?	SVS	None	Sr8a, Sr30	?	MS	ASR (Sr30)	Yr3, Yr25	?	MSS	No rating	APR
Cutlass	Lr3a, Lr24 , Lr37	Lr34, Lr46	RMR	ASR (<i>Lr24</i>)*	Sr24, Sr38	Sr57, Sr58	R	ASR (Sr24)	Yr17	Yr29	MSS	RMR	APR
Denison	Lr3a	Lr46	S	None	Sr12, Sr38	Sr2, Sr58	MS	ASR +APR	Yr?, Yr17	Yr29	S	MR	APR
Devil	Lr3a, Lr13 or 37?	Lr46	svs	None	Sr8a, Sr9b, Sr30	Sr58	S	ASR (Sr30)	Nil	Yr29	svs	MR	APR
DS Bennett	Lr13	Lr46	SVS	None	Sr17, Sr30	Sr58	MS	ASR (Sr30)	Nil	Yr29	s	R	None
DS Faraday	Lr3a, Lr27+31	Lr34	R#	APR	Sr12, Sr26	Sr57	RMR	ASR (Sr12+ Sr26)	Yr3, Yr6, YrA, Yr1A	Yr18	MS	MR	APR
		Lr46	MS	APR	Sr5, Sr30	Sr58	MSS	ASR (Sr12+ Sr20)	Yr3, Yr6, Yr25, YrA	Yr29	MRMS	RMR	APR
DS Pascal DS Tull	Lr13, Lr27+31 Lr1	Lr34	MSS	APR	Sr9g, Sr30	Sr57	MR	ASR (Sr30)	Yr7+	Yr18	MRMS	RMR	APR
EG Jet	Lr3a, Lr13, Lr37	Lr46	S	None	Sr38	Sr58	S	None	Yr17	Yr29	MRMS	RMR	APR
EG Titanium	Lr27+31, or Lr82	Lr46	MSS	APR	Sr30+?	Sr58	MS	ASR	2	Yr29	MR	RMR	APR
		Lr34				Sr57	MR			Yr18			
EGA Gregory	Lr3a, Lr23	Lr34, Lr46	RMR#	ASR (<i>Lr</i> 23)	Sr8a, Sr12, Sr30	Sr57, Sr58		ASR (Sr12+ Sr30)	Yr33, Yr1A	Yr18, Yr29	MS	MR	APR
EGA Wedgetail	Lr13	Lr46	MSS	APR	Sr9g, Sr30	Sr58	MRMS	ASR (Sr30)	Yr3, Yr7	Yr29	MS	MS	APR
Einstein	Fungicide treated seed		S	APR?	Fungicide treated seed	Sr57	S	APR	Fungicide treated seed		RMR		
Elmore CL Plus	Lr24+	Lr34	RMR	ASR (<i>Lr24</i>)*	Sr24+		MR	ASR (Sr24)	Yr3, Yr7, Yr1A	Yr18	MS	MRMS	APR
Emu Rock	Lr13, Lr27+31, Lr73	Lr46	SVS	None	Sr8a, Sr9g, Sr30	Sr2, Sr58	MS	ASR (Sr30)	Yr4, Yr7	Yr29	SVS	MRMS	APR
Grenade CL Plus	Lr1, Lr37	Lr46	SVS	None	Sr5, Sr8a, Sr12 , Sr38	Sr58	MR	ASR (Sr12)	Yr4, Yr17	Yr29	MRMS	RMR	APR
Hammer CL Plus	Lr3a, Lr13, Lr37	Lr46	S	None	Sr38	Sr2, Sr58	MR	APR	Yr17	Yr29	MS	RMR	APR
Illabo	Lr27+31, Lr37	Lr46	S	None	Sr9b, Sr38	Sr58	MRMS	APR	Yr17+	Yr29	MRMS	RMR	APR
Jillaroo	Lr3a, Lr13, Lr37	Lr46 Lr46	S	APR	Sr30	Sr2 Sr58	MS	ASR (Sr30)	Yr6, Yr33, Yr1A	Yr29 Yr29	MSS	No rating	APR
Kinsei	Lr3a, Lr37+		MSS	ASR (?)	Sr6, Sr8a+		MSS	APR	Yr3, Yr17		MSS	MRMS	APR
LG Gold	Lr1, Lr3a, +?	Lr46	S	None	Nil	Sr58	MSS	APR	Yr3	Yr29	SVS	RMR	None
Longsword	Lr3a, Lr13, Lr37	Lr46	MR#	APR	Sr30 , Sr38	Sr58	MR	ASR (Sr30)	Yr17, Yr27	Yr29	R/S	RMR	APR
LRPB Avenger	Lr3a, Lr13, Lr37	Lr46	S	APR	Sr8a or 9b, Sr38	Sr58	MS	APR	Yr4, Yr25	Yr29	S	No rating	
LRPB Bale	Lr1, Lr13, Lr37	Lr46	MSS	APR	Sr8a or 9b, Sr38	Sr58	MRMS	APR	Yr17	Yr29	MRMS	No rating	APR
LRPB Beaufort	Lr13, Lr37	Lr46	S	APR	Sr6, Sr11, Sr38	Sr58	SVS	None	Yr1, Yr17	Yr29	RMR	RMR	APR
LRPB Cobra	Lr1, Lr3a, Lr13, Lr27+31	Lr46	MR#	APR	Sr8a, Sr9g, Sr30+	Sr2, Sr58	MR	ASR (Sr30)	Yr7	Yr29	S	MSS	APR
LRPB Dual	Lr27+31, Lr37	Lr46	MSS	APR	Sr8a or 9b, Sr38	Sr58	MRMS	APR	Yr17	Yr29	MS	No rating	APR
LRPB Flanker	Lr3a, Lr23	Lr34	RMR#	ASR (<i>Lr23</i>)	Sr8a, Sr9g, Sr30 +	Sr57	RMR	ASR (Sr30)	Yr7, Yr1A	Yr18	MRMS	RMR	APR
LRPB Havoc	Lr27+31, Lr37	Lr46	S	APR	Sr9g, Sr38	Sr58	S	None	Yr7, Yr17+	Yr29	MSS	MR	APR
LRPB Hellfire	Lr1	Lr46	MSS	APR	Sr9g, Sr26	Sr58	MR	ASR (Sr26)	Yr7	Yr29	MRMS	RMR	APR

LRPB Kittyhawk LRPB Lancer	Lr13, Lr37 Lr24	Lr34 Lr34	MR RMR#	APR ASR (<i>Lr24</i>)*	Sr38 Sr24, Sr36	Sr57 Sr57	MRMS(S) R	APR ASR (Sr24+ Sr36)	Yr3, Yr7, Yr17 Yr6, Yr1A (Het.)	Yr18 Yr18	MR RMR	RMR RMR	APR APR
LRPB Mustang	Lr37	Lr34	MSS	APR	Sr5, Sr9g, Sr30	Sr57	MRMS	ASR (Sr30)	Yr7, Yr1A	Yr18	RMR	RMR	APR
LRPB Nighthawk	Lr1	Lr34	MSS	APR	Sr5, Sr30	Sr57	RMR	ASR (Sr30)	Yr4	Yr18	MRMS	RMR	APR
LRPB Nyala	Lr3a (Het.)	Lr34	S	None	Sr5, Sr38+	Sr57	SVS	None	Yr17+	Yr18	MS	RMR	APR
LRPB Orion	Lr3a (1181.) Lr1, Lr13, Lr24 , Lr37	Lr46	R	ASR (Lr24)*	Sr24 , Sr38	Sr58	MR	ASR (Sr24)	Yr17	Yr29	MS	MR	APR
LRPB Oryx	Lr24	Lr34	RMR#	ASR (<i>Lr24</i>)*	Sr24, Sr36	Sr57	MR	ASR (Sr24+ Sr36)	Not tested	Yr18	MS	RMR	74.74
LRPB Parakeet	Lr1, Lr24 , Lr37	Lr34	R	ASR (<i>Lr24</i>)*	Sr24, Sr36, Sr38	Sr57	MR	ASR (Sr24+ Sr36)	Yr4, Yr17+	Yr18	MR	RMR	APR
LRPB Raider	Lr13, Lr27+31	Lr34	R#	APR	Sr38	Sr57	RMR		Yr17	Yr18	MR	RMR	
LRPB Reliant	Lr3a, Lr23	Lr34	RMR	ASR (Lr23)	Sr36+	Sr57	R	ASR (Sr36)	Yr33	Yr18	MR	RMR	APR
LRPB Scout	Lr1, Lr37	Lr46	MS	APR	Sr8a or 9b, Sr38	Sr58	MRMS	APR	Yr17+	Yr29	MS	No rating	APR
LRPB Spitfire	Lr1	Lr46	S	APR	Sr26	Sr2, Sr58	MR	ASR (Sr26)	Yr7	Yr29	MR(S)	MR	APR
LRPB Stealth	Lr24	Lr34, Lr46	RMR#	ASR (<i>Lr24</i>)*	Sr24	Sr2, Sr57, Sr58	R	ASR (Sr24)	2	Yr18, Yr29	RMR	RMR	APR
LRPB Trojan	Lr23	Lr46	MR#	ASR (<i>Lr</i> 23)	Sr6, Sr30	Sr2, Sr58	MRMS	ASR (Sr30)	Nil	Yr29	S	MR	APR
Mace	Lr3a, Lr13, Lr20, Lr37	Lr46	S	APR	Sr8a, Sr30 , Sr38	Sr2	MRMS	ASR (Sr30)	Yr17	Yr29	SVS	No rating	None
Magenta	Lr1, Lr24	Lr46	RMR	ASR (<i>Lr24</i>)*	Sr24	Sr58	MR	ASR (Sr24)	Yr6 and/or Yr7	Yr29	s	No rating	APR
Magenta	Lr23, Lr26, Lr37	?	MSS	ASR (<i>Lr23</i>)	Sr31 , Sr38	?	MR	ASR (Sr31)	Yr9, Yr17, Yr1A	?	RMR	RMR	APR
Mitch	Lr13, Lr27+31	Lr46	MSS	APR	Sr9q, Sr30	Sr2, Sr58	MRMS	ASR (Sr30)	Nil	Yr29	MRMS	MR	APR
Naparoo	Lr24, Lr37	?	MS	APR	Sr24 , Sr38	?	MRMS	ASR (Sr24)	Yr17+	?	MR	No rating	APR
Ninja	Lr3a, Lr13	Lr46	S	APR	Sr9b	Sr58	S	APR	Yr7	Yr29	MSS	No rating	APR
Razor CL Plus	Lr3a, Lr37	Lr46	s	None	Sr8a or 9b, Sr38	Sr58	MR	APR	Yr17	Yr29	MS	RMR	APR
Rebel 65	Lr1, Lr13, Lr27+31	Lr46	MSp	APR	Sr17, Sr38	Sr2, Sr58	MSSp	APR	Yr17	Yr29	MSSp	No rating	APR
Rebel Rat	Lr23, Lr37	Lr46	MSS	APR	Sr17, Sr38	Sr58	MRMS	APR	Yr4, Yr17, Yr73+74	Yr29	MSp	No rating	APR
RGT Accroc	Lr13	Lr46	SVS	None	Sr8a, Sr9g	Sr58	MS	APR	Yr7+	Yr29	RMR	R	APR
RGT Calabro	Lr37	Lr46	MSS	APR	Sr8a or 9b, Sr38	Sr58	MS	APR	Yr7, Yr17	Yr29	RMR	RMR	APR
RGT Cesario	Lr13, Lr24 , Lr37?	Lr46	RMR	ASR (<i>Lr24</i>)*	Sr24	Sr58	R	ASR (Sr24)	Yr7+	Yr29	RMR	R	APR
RGT lvory	Lr28	Lr46	MR#	ASR (<i>Lr28</i>)*	Nil	Sr58	SVS	None	Yr8??	Yr29	MR	MR	APR
RGT Zanzibar	Lr37	Lr46	SVS	None	Sr38	Sr58	VS	None	Yr17+	Yr29	MRMS	R	APR
RockStar	Lr3a, Lr20	Lr46	S	None	Sr9g, Sr15, Sr30	Sr58	MR	ASR (Sr30)	Yr7, Yr17, Yr25	Yr29	S	RMR	APR
Scepter	Lr3a, Lr27+31, Lr37+	Lr46	MSS	APR	Sr8a, Sr9g, Sr38	Sr2, Sr58	MRMS	APR	Yr17, Yr25	Yr29	MSS	MR	APR
SEA Condamine	Lr27+31	Lr46	RMR#	APR	Sr26	Sr58	MRMS	ASR (Sr26)	Nil	Yr29	MS	MR	APR
Severn	Lr13, Lr37	Lr46	MRMS	APR	Sr38+?	Sr58 Sr58	MS	APR	Yr17	Yr29	RMR	RMR	APR
Sheriff CL Plus	Lr3a, Lr13, Lr20	Lr46 Lr46	SVS	None	Sr8a, Sr15+	Sr58	MS	APR or seedling?	Nil	Yr29 Yr29	S	MS	APR
SQP Revenue	Lr20, Lr27+31, Lr37		VS	None	Sr15, Sr38 Sr38	Sr58	RMR MRMS	APR APR	Yr17+ Yr17		RMR	R	APR
Sting	Lr3a, Lr13, Lr37	Lr46	SVS	None APR	Sr5, Sr38	Sr2		APR	Yr17 Yr17	Yr29	S	MR	None
Sunblade CL Plus	Lr1, Lr3a, Lr27+31, Lr37	-	MSS	APR			MS		1117	- Yr29	MRMS	MR	APR APR
Suncentral	Lr1, Lr3a, Lr13, Lr27+31	Lr46 Lr34	RMR		Sr30 Sr24	Sr2, Sr58 Sr57	MRMS	ASR (Sr30) + APR	2	Yr29 Yr18	MSS RMR	MR	APR
Sunchaser	Lr24, Lr23 Lr3a, Lr27+31, Lr37	Lr46	R RMR/S	ASR (<i>Lr24</i>)* ASR	Sr38	Sr2, Sr58	MR MR	ASR (Sr24 + Sr26) APR	? Yr17, Yr27?	Yr29	MRMS	RMR RMR	APR
Sunflex Sunlamb	Lr3a, Lr27+31, Lr37 Lr37	Lr46	MRMS	APR	Sr38+	Sr2, Sr58	RMR	APR ASR (Sr26)	Yr17, Yr27? Yr3, Yr17, Yr27	Yr29	MRMS	MR	APR
		2	RMR#	APR	Sr38+	2	MS	ASR (Sr26)	Yr3, Yr17, Yr27 Yr17	?	MR		APR
Sunmaster	Lr3a, Lr27+31, Lr37	? Lr46	MR	APR	Sr38 Sr30, Sr38	? Sr2, Sr58	MRMS		Yr17 Yr17, Yr27	Yr29	MRMS	MR R	APR
Sunmate	Lr3a, Lr27+31, Lr37 Lr1, Lr20, Lr27+31, Lr37	Lr46		APR	Sr30, Sr38 Sr8a or Sr9b, Sr38	Sr2, Sr58	MRMS	ASR (Sr30) APR	Yr17, Yr27 Yr15, Yr17+	Yr29		RMR	APR
Sunmax	Lr1, Lr20, Lr27+31, Lr37 Lr13, Lr23	Lr34, Lr46	MS MR#	APR ASR (<i>Lr</i> 23)	Sr8a or Sr9b, Sr38 Sr8a, Sr9g, Sr30	Sr57, Sr58	MRMS	APR ASR (Sr30)	Yr15, Yr17+ Yr7, Yr1A	Yr18, Yr29	RMR	RMR	ASR
Sunprime Suntime	Lr13, Lr23 Lr1, Lr27+31, Lr37	Lr46	MR# MS	ASR (<i>Lr23</i>) APR	Sr8a, Sr9g, Sr30 Sr8a, Sr30, Sr38	Sr2, Sr58	MRMS	ASR (Sr30) ASR (Sr30)	Yr17 Yr17	Yr29	MS MR	RMR	APR
Suntop	Lr3a, Lr27+31, Lr37	?	MR	APR	Sr30, Sr38	Sr2	MRMS	ASR (Sr30)	Yr31	?	MRMS	MR	APR
Supreme	Lr24, Lr37	Lr46	RMR	ASR (<i>Lr24</i>)*	Sr24 , Sr38	Sr58	MRMS	ASR (Sr24)	Yr17, Yr25	Yr29	MS	No rating	APR
Tungsten	Lr27+31, Lr82	?	MS#	ASR (<i>Lr82</i>)*	Sr30	?	MRMS	ASR (Sr30)	Yr33	Yr18	MS	RMR	APR
	Lr3a, Lr37	Lr46	S	None	Sr38+?	Sr58	MR	ASR	Yr3, Yr17	Yr29	MSS	RMR	APR
Valiant CL Plus		-		- · ·	1			-					
Valiant CL Plus Vixen	Lr3a, Lr20, Lr37	Lr46	SVS	None	Sr8a, Sr9g, Sr30 , Sr38	Sr58	MRMS	ASR (Sr30)	Yr7, Yr17+	Yr29	SVS	MRMS	APR

Yitpi	Lr13	Lr46	S	None	Sr30	Sr58	S	ASR (Sr30)	Yr4+	Yr29	MS	MRMS	APR
Zen	Lr13, Lr20	Lr46	S	APR	Sr8a, Sr15	Sr58	S	APR	Nil	Yr29	S	No rating	APR

* ASR= All Stage Resistance, APR= Adult Plant Resistance

** Genes in **bold** face are still effective against all current pathotypes in Australia

Indicates what the major component of the resistance of a cultivar is due to. NB in most cases where effective ASR and APR occur together, both resistances will contribute to the cultivar response.

/ Indicates alternate responses to different pathotypes. Mostly used when a cultivar may be more susceptible to a rare pathotype

+ or ? Indicate the presence of an uncharacterised resistance gene

Het Indicates a mixed (heterogeneous) response to the disease or for the presence of a resistance gene

p Indicates a provisional rating that requires further testing to validate

Used as a warning, used when the response to a new or rare pathotype is unknown

Table 3: Leaf rust, stem rust and stripe rust response and disease resistance genotypes of Australian durum wheat varieties

		Leaf rust			Stem rust			Stripe rust	
		2021 NVT consensus	Resistance		2021 NVT consensus	Resistance		2021 NVT c	consensus
Variety	ASR* Lr genes**	National	due to~:	ASR* Sr genes**	National	due to:~	ASR* Yr genes**	Eastern states	WA
Bitalli	?	MR	ASR	Sr9e+	RMR	ASR	Yr4, Yr6, Yr56	MRMS	MR
Caparoi	?	RMR	ASR	?	MR	ASR	Yr56	MS	MR
DBA Artemis	?	RMR	ASR	?	MR	ASR	Yr7, Yr56	MR	RMR
DBA Bindaroi	?	MR	ASR	?	MRMS	ASR	Yr4, Yr56	MS	RMR
DBA Lillaroi	?	RMR	ASR	?	RMR	ASR	Yr4, Yr56	MS	RMR
DBA Mataroi	?	MR	ASR	?	MR	ASR	?	MR	RMR
DBA Spes	?	R	ASR	?	R	ASR	Yr7, Yr56	MS	RMR
DBA Vittaroi	?	RMR	ASR	Sr9g+	MR	ASR	Yr4, Yr56	MS	MR
DBA Aurora	?	R	ASR	Sr9e+	RMR	ASR	Yr7, Yr56	MRMS	RMR
EGA Bellaroi	?	RMR	ASR	Sr9g+	MR	ASR	Yr4, Yr56	MS	RMR
Jandaroi	?	MRMS	ASR	?	R/MSS	ASR	Yr4, Yr7+	MR	MR
Westcourt	?	RMR	ASR	?	RMR	ASR	?	MR	RMR

* ASR= All Stage Resistance, APR= Adult Plant Resistance

** Genes in **bold** face are still effective against all current pathotypes in Australia

Indicates what the major component of the resistance of a cultivar is due to. NB in most cases where effective ASR and APR occur together, both resistances will contribute to the cultivar response.

/ Indicates alternate responses to different pathotypes. Mostly used when a cultivar may be more susceptible to a rare pathotype

+ or ? Indicate the presence of an uncharacterised resistance gene

Het Indicates a mixed (heterogeneous) response to the disease or for the presence of a resistance gene

p Indicates a provisional rating that requires further testing to validate

Used as a warning, used when the response to a new or rare pathotype is unknown

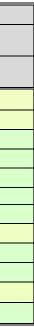


Table 4: Leaf rust, stem rust and stripe rust response and disease resistance genotypes of Australian triticale varieties

		Leaf rust			Stem rust			Stripe rust				
		2021 NVT consensus	Resistance		2021 NVT consensus	Resistance		2021 NVT o	consensus	Resistance		
Variety	ASR* Lr genes**	National	due to:~	ASR* Sr genes**	National	due to:~	ASR* Yr genes**	Eastern states	WA	due to:~		
Astute	?	RMR	ASR	? (+Sr9g?)	RMR	ASR	YrJ &/or YrT, YrB	MSS	RMR	APR (ES) or ASR (WA)		
Cartwheel	?	R	ASR	SrSatu+	R	ASR	?	RMR	R	ASR		
Fusion	?	R	ASR	SrSatu+	R	ASR	Yr4, YrJ &/or YrT	S	RMR	ASR (WA)		
Goanna	?	RMR	ASR	SrNin, SrSatu (+Sr9g?)	R	ASR	YrJ &/or YrT	SVS	RMR	ASR (WA)		
Joey	?	RMR	ASR	SrNin (+Sr9g?)	S	ASR	Yr4, YrJ &/or YrT, YrB	MSS	MR	APR (ES) or ASR (WA)		
KM10	?	MR/Sp		?	R		?	S	MR	ASR (WA)		
Kokoda	?	RMR	ASR	SrSatu+	R	ASR	?	RMR#	R	ASR		
Normandy	?	RMR	ASR	SrNin+	R	ASR	?	RMR	R	ASR		
Wonambi	?	R	ASR	SrNin + (+Sr9g?)	R	ASR	YrJ &/or YrT	S	MR	ASR (WA)		

* ASR= All Stage Resistance, APR= Adult Plant Resistance

** Genes in **bold** face are still effective against all current pathotypes in Australia

Indicates what the major component of the resistance of a cultivar is due to. NB in most cases where effective ASR and APR occur together, both resistances will contribute to the cultivar response.

/ Indicates alternate responses to different pathotypes. Mostly used when a cultivar may be more susceptible to a rare pathotype

+ or ? Indicate the presence of an uncharacterised resistance gene

Het Indicates a mixed (heterogeneous) response to the disease or for the presence of a resistance gene

p Indicates a provisional rating that requires further testing to validate

Used as a warning, used when the response to a new or rare pathotype is unknown

Table 5: Leaf rust response and disease resistance genotypes of Australian barley varieties

Variety	NVT 2022 Co rating	nsensus	Seedling	Adult Pla	ant Resista	ince Gene	Resistance due to:**
-	Low	High	Resistance Gene	Rph20	Rph23	Rph24	
Alestar	MS	MRMS	Rph3	+	-	?	APR
Banks	S	S	Rph3	-	-	-	N/A
Bass	SVS	VS	Rph3	-	-	-	N/A
Baudin	SVS	VS	Rph12	-	-	+	N/A
Beast	MS	SVS	Nil	-	-	?	APR
Bottler	MR	MS	Rph3	+	-	+	APR
Buff	S	SVS	Nil	-	-	?	N/A
Combat	MS	S	Rph9.am	+	-	+	APR
Commander	MSS	SVS	Rph19+Rph3*	-	-	-	APR
Commodus CL	MS	S	Rph3	-	-	-	APR
Compass	S	VS	Rph3	-	-	-	N/A
Cyclops	S	VS	Nil	-	-	-	N/A
Fairview	MS	SVS	Rph3	-	-	-	APR
Fandaga	MR	MSS	Nil	+	-	+	APR
Fathom	MRMS	MS	Rph+?	+	-	-	Seedling + APR
Flinders	MS	S	Rph12+	+	-	+	Seedling + APR
Gairdner	MSS	S	Rph12	-	-	-	APR
Grout	S	VS	Rph2	-	-	-	N/A
Hindmarsh	MRMS	S	Rph9.am+	-	-	-	Seedling + APR
Keel	SVS	VS	Rph19?	-	-	-	N/A
Kiwi	MRMS	MS	Rph3	+	-	-	APR
La Trobe	MS	S	Rph9.am	-	-	-	APR
Laperouse	MSS	SVS	Rph3*	-	-	+	APR
Leabrook	MSS	SVS	Rph3	-	-	NT	APR
Litmus	S	SVS	Nil	-	-	-	APR
Maritime	MR-S	S	Rph12	-	-	+	N/A
Maximus CL	MSS	S	Nil	-	-	-	APR
Minotaur	S	SVS	Nil	-	-	-	N/A
Mundah	S	SVS	Rph2	-	-	+	N/A
Navigator	S	VS	Nil	-	+	-	N/A
Oxford	S	VS	Rph3	+	-	+	APR
RGT Planet	MR	MS	Rph3	+	-	+	APR
Rosalind	MR	MRMS	Nil	+	-	+	APR
SakuraStar	MSS	S	Nil	-	-	-	APR
Schooner	S	SVS	Rph19	-	-	-	N/A
Scope CL	MSS	SVS	Nil	-	-	-	N/A
Shepherd	S	SVS	Nil	+	-	+	APR

Spartacus CL	MR	S	Rph9.am	-	-	-	APR
Titan AK	S	SVS	Not tested	-	-	NT	N/A
Topstart	MRMS	MS	Rph3	+	-	+	APR
Urambie	MSS	S	Nil or Rph?	-	-	+	APR
Westminster	MR	MRMS	Rph3	+	-	+	APR
Yagan	MSS	S	Rph25	NT	NT	NT	APR
Yeti	MSS	SVS	Rph3	-	-	+	APR
Zena CL	MS	S	Rph3	+	-	NT	APR

Nil postulation means that line does not carry any seedling resistance gene to any of the test pathotypes. Rph+ = uncharacterized resistance Rph? = doubtful postulation + = presence of marker and - = absence of marker * = heterogeneous

** = In some cases, the resistance present will be inadequate to prevent yield loss

Table 6: Leaf rust response and disease resistance genotypes of Australian oat varieties

		Crown rus	t		Stem rust				
		Crown	rust consensus	rating		Stem rust consensus rating			
Variety	ASR OCR gene(s)	WA	EA South	EA North	ASR OSR gene(s)	WA	EA		
Archer	Pc48	*			Pg1, Pg2	*	MS		
Bannister#	Pc39, Pc55 or Pc71	MRMS	MSS	SVS	Pg2	MS	S		
Bilby#	Pc48	MRMS	MS	S	Pg1	SVS	S		
Brusher#	Pc39	MRp	MSp	Sp	Pg2	S	SVS		
Carrolup	Nil	VS	MS	MSS	Pg4	S	S		
Durack#	Pc39, Pc55, or Pc71	MRMS	MSS	S	Pg3*, Pg4	SVS	S		
Echidna	?	SVS	SVS	S	Pg4	S	MS		
Koala	Pc39, Pc55, or Pc71	MR	MSS	S	Pg2	MRMS	MSS		
Kojonup#	Pc1	SVS	S	S	Pg2	MSS	MSS		
Koorabup	Not tested	MRMS	MSS	S	Not tested	MSS	S		
Kowari#	Pc48	MRMS	S	SVS	Pga*	S	S		
Mitika#	Pc39, Pc55 or Pc71	MRMS	MSS	SVS	Pga*	S	S		
Mulgara	Pc58	MR	MR	MRMS	Pga	MR	MRMS		
Possum	Not tested	MRMS	MSS	S	Not tested	S	SVS		
Tungoo#	Pc61	RMR	MR	MSS	Pg2, Pg13	MS	MS		
Wandering#	Pc1	VS	SVS	SVS	Pg2	SVS	SVS		
Williams#	Pc48	MR	MRMS	MSS	Pg4	MSS	S		
Wintaroo	Nil	S	MSS	MSS	Pg4*	MS	MSS		
Yallara#	Pc38+?	MR	S	SVS	Pga	MSS	MSS		

signifies heterogeneity within the variety seed source used for multi-pathotype testing

^p Indicates a provisional rating that requires further testing to validate