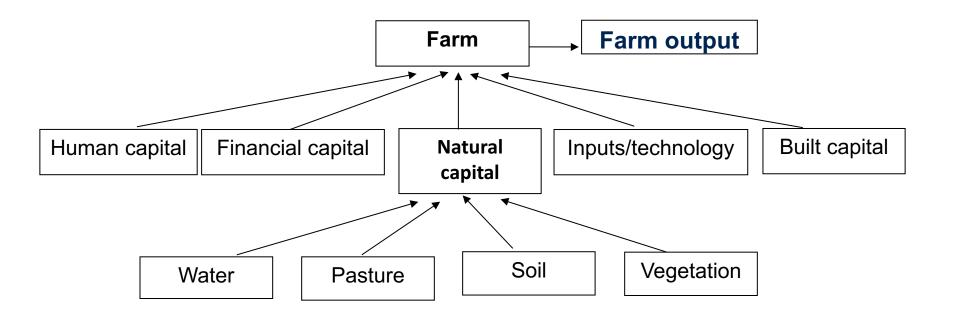

Accounting for Natural Capital in Agriculture

Presented by

Tiho Ancev School of Economics

Why account for natural capital?

- Global value of flow of services from natural capital: some 125-150 USD trillion per year in 2011 (Costanza et al. 2014).
- Implies a value of the stock of natural capital of some 3,000 (@ 5% discount) to 15,000 (@ 1% discount) USD trillion.
- Easily the most valuable asset on the planet!


Current state of affairs around NCA

- The System of Environmental Economic Accounting (SEEA) is gaining international acceptance.
- No substantial efforts have so far specifically focused on micro or local level.

However...

- The local level is where management of natural capital stock matters the most, especially in agriculture.
- Value of services from natural capital in agriculture: some 6000 USD/ha/year (Costanza et al. 2014) => value of the natural capital stock 120-600k USD/ha

NCA Model for a Farm – an example

A Question: How to evaluate the dynamics of natural capital on farms?

Answer:

- By evaluating an observable function of the change in attributes of particular natural capital type (e.g. soil).
- Agricultural productivity is such an observable function.
- Natural capital as a factor of production.

- Propose a method for evaluation of the dynamics of soil natural capital on farm.
 - An appropriate conceptual framework and practical techniques for assessing the dynamics of on-farm natural capital do not currently exist.
- Test the proposed method by empirically quantifying the change in soil natural capital over time.
 - Using environmentally adjusted productivity and efficiency measurement approaches.
- Propose a protocol for ongoing data collection from farmers.
 - Data are not available. However, the advent of IT technology (e.g. sensing, widespread use of mobile devices) could help in gathering data ('big data' in agriculture).

Empirical study: Cattle farms in Tasmania; Data

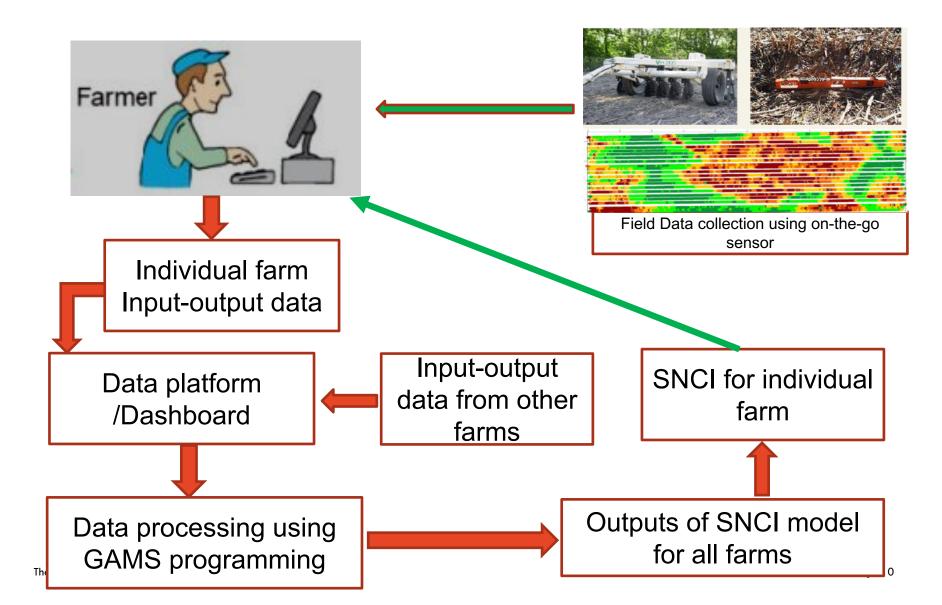
Inputs	Output	Natural capital characteristics (e.g. soil attributes)
Total grazing area	Number of cattle sold	Soil pH
	(Total live-weight of cattle)	Organic carbon
Area under fodder crops	-	Phosphorus (Oslen)
Labour	_	Phosphorus (Colwell)
Fertiliser		
Other inputs		Potassium
Number of cattle		Sulphur
purchased/stock		Calcium
(total live-weight of cattle)		Magnesium
		Sodium
		Aluminium
		And others

- Data collected through a questionnaire plus historical soil test reports at a field level
- Repeated observations on 19 fields on 5 farms, over various years.

Estimation of Directional Distance Functions

- Use of Data Envelopment Analysis (DEA) or Activity Analysis Model to construct a production frontier.
- For each field, estimate the value of Directional Distance Functions that are the components of the Soil Natural Capital Indicator (SNCI).

 $SQ^{t}(s^{t}, s^{t+1}, x_{0}^{t}, y_{0}^{t}; g_{s}) = \vec{D}_{s}^{t}(x_{0}^{t}, s^{t+1}, y_{0}^{t}; g_{s}) - \vec{D}_{s}^{t}(x_{0}^{t}, s^{t}, y_{0}^{t}; g_{s});$


 $SQ^{t+1}(s^{t}, s^{t+1}, x_{0}^{t+1}, y_{0}^{t+1}; g_{s}) = \vec{D}_{s}^{t+1}(x_{0}^{t+1}, s^{t+1}, y_{0}^{t+1}; g_{s}) - \vec{D}_{s}^{t+1}(x_{0}^{t+1}, s^{t}, y_{0}^{t+1}; g_{s});$ $SNCI(s^{t}, x_{0}^{t}, y_{0}^{t}, s^{t+1}, x_{0}^{t+1}, y_{0}^{t+1}; g_{s}) = \frac{1}{2}[SQ^{t}(s^{t}, s^{t+1}, x_{0}^{t}, y_{0}^{t}; g_{s}) + SQ^{t+1}(s^{t}, s^{t+1}, x_{0}^{t+1}, y_{0}^{t+1}; g_{s})]$

- Use the estimated DDFs to compute the SNCI score for each field
- SNCI reflects the changes in the capacity of nature to contribute to agricultural production

Estimated values of SNCI Indicators across groups of fields, various years

Farmer ID	Observations	Group1 (2000-2011)	Group2 (2002-2007)	Group3 (2009-2012)	Group4 (2010-2015)
1	Field1			0.503	
1	Field2			0.044	
1	Field3	0.425			
1	Field4			-0.075	
1	Field5	0.781			
2	Field6	0.312			
2	Field7	0.199			
2	Field8	0.331			
2	Field9		0.558		
2	Field10		0.022		
3	Field11				-0.001
4	Field12				0.007
4	Field13				-0.001
4	Field14				0.033
4	Field15				0.028
4	Field16				0.003
4	Field17				0.019
5	Field18			-0.730	
5 The University	Field 19		-0.250		rage y

Interface for on-going data collection

Conclusions

- The role of natural capital is increasingly recognised, and NCA at an aggregate level is already being applied.
- Assessing the dynamics of natural capital at a local level (e.g. farms) is a challenging task, but it is required for adequate management of NC.
- The dynamics of natural capital on farms can be assessed in several ways.
- One approach is through estimating the relationship between NC attributes and agricultural productivity.
- The developed SNCI can serve the purpose of tracking NC on farm over time.
- 'Big data' in agriculture can help with necessary data gathering.

Thank you!

For more info please email tiho.ancev@sydney.edu.au

