FACULTY OF AGRICULTURE AND ENVIRONMENT



### PLANT BREEDING INSTITUTE

# Cereal Rust Report

2013

VOLUME 11 ISSUE 6 22<sup>nd</sup> October 2013

# First detection of wheat leaf rust pathotype 76-1,3,5,7,9,10,12 +Lr37 in Western Australia

## PROFESSOR ROBERT F. PARK & ASSOCIATE PROFESSOR HARBANS BARIANA

The University of Sydney, Plant Breeding Institute, Cobbitty Email: <u>robert.park@sydney.edu.au</u> Phone: (02) 9351 8806, 0414 430 341

A pathotype of the wheat leaf rust pathogen, *Puccinia triticina*, first detected in eastern Australia in 2011, has been detected in samples of leaf rust infected wheat collected in late Sept/ Oct 2013 from 4 widely separated locations in Western Australia (Borden, Esperance, Gibson, Northampton). While not new to Australia, this is the first detection of this pathotype in WA and it represents the first occurrence of virulence for the resistance genes *Lr13*, *Lr17a*, *Lr17b*, and *Lr26* in WA. The movement of cereal rust inoculum from WA to eastern Australia has been documented many times over the past 90+ years, and is presumed to occur on prevailing winds. Movement from east to west is much less frequent. While 6 such examples of west-to-east movement of cereal rusts have been documented since 1990, the current detection is only the second example of east to west movement during that time.

To date, a total of 21 samples of leaf rusted wheat have been received by the Rust Biology Laboratory at the University of Sydney's Plant Breeding Institute during the 2013-14 annual pathogenicity survey (Table 1). Of these, 6 samples failed to yield a viable isolate, and 6 are yet to be processed.

Of significance is the detection of pathotype 76-1,3,5,7,9,10,12 +Lr37 in 5 samples collected from Borden, Esperance, Gibson and Northampton. This is the first detection of this pathotype in WA, and it is the first time virulences for the resistance genes *Lr13*, *Lr17a*, *Lr17b* and *Lr26* have been detected in that state (Table 2).

Pathotype 76-1,3,5,7,9,10,12 +Lr37 was first detected in eastern Australia in early October 2011 in samples collected from Victoria and South Australia, and it was detected again in samples collected from southern NSW in 2012. This pathotype is considered to have originated via two independent single- step mutational events: firstly the acquisition of virulence for the resistance gene *Lr20* in an existing pathotype in 2008 and secondly, acquisition of virulence for *Lr17b* in 2011. The founding ("parent") pathotype in this lineage, pt. 76-3,5,7,9,10 +Lr37, is regarded as an exotic introduction, being first detected in Australia at Inverleigh (Vic) in late July 2006. The "parent" and 2 mutant pathotypes have become common in eastern Australia over the past 7 years, and quite recently, a third mutational derivative, virulent for *Lr24*, was detected in northern NSW (pathotype 76-1,3,5,7,9,10,12,13 +Lr24; see Cereal Rust Update Volume 11 #4 revised).

#### Conclusion

It is likely that the leaf rust response of several wheat cultivars in WA will shift towards higher susceptibility due to this pathotype. Predicted changes in the responses of a selection of cultivars are provided in Table 3, based on tests at the Plant Breeding Institute with pathotypes within the "76" lineage. It is likely that we will not know the full impact of this new pathotype until we have undertaken more exhaustive greenhouse seedling tests, and adult plant field tests. It is important to establish a more accurate picture of the distribution of this pathotype in WA, and so growers in WA are urged to monitor all wheat crops closely for the presence of leaf rust, and to forward samples of any leaf rust detected to the Plant pathotype Breeding Institute analysis. for

| Accession # | Sender       | Date       | Location             | Longitude   | Latitude    | Variety     | Pathotype 1                  | Pathotype 2              |
|-------------|--------------|------------|----------------------|-------------|-------------|-------------|------------------------------|--------------------------|
| 130021      | Shankar, M.  | 21/08/2013 | CARNARVON WA 6701    | 113.6570204 | -24.8826946 | Trident     | 104-1,(2),3,(6),(7),11 +Lr37 |                          |
| 130022      | Shankar, M.  | 21/08/2013 | CARNARVON WA 6701    | 113.6570204 | -24.8826946 | Ajana       | 104-1,(2),3,(6),(7),11 +Lr37 |                          |
| 130032      | Thomas, G.   | 04/09/2013 | KONDININ WA 6367     | 118.2665213 | -32.4942958 | Stiletto    | Failed                       |                          |
| 130033      | Thomas, G.   | 04/09/2013 | KALGARIN WA          | 118.7150767 | -32.4953289 | Stiletto    | Failed                       |                          |
| 130034      | Thomas, G.   | 04/09/2013 | HYDEN WA 6359        | 118.865654  | -32.4490543 | Yitpi       | Failed                       |                          |
| 130045      | Bradley, J.  | 18/09/2013 | MERREDIN WA 6415     | 118.2812988 | -31.4823417 | Arrino      | Failed                       |                          |
| 130046      | Bradley, J.  | 18/09/2013 | MERREDIN WA 6415     | 118.2812988 | -31.4823417 | Wheat       | Failed                       |                          |
| 130056      | Jayasena, K. | 19/09/2013 | ALBANY WA 6330       | 117.8780275 | -34.9754734 | Mace        | Not yet processed            |                          |
| 130066      | Bradley, J.  | 30/09/2013 | ESPERANCE WA 6450    | 121.8932484 | -33.8594128 | Corack      | 76-1,3,5,7,9,10,12 +Lr37     | 104-1,(2),3,(6),(7),11 + |
| 130069      | Smyth, P.    | 02/10/2013 | CASCADE WA 6450      | 121.0755041 | -33.4695297 | Corack      | Not yet processed            |                          |
| 130070      | Beard, C.    | 03/10/2013 | NORTHAMPTON WA 6535  | 114.6314871 | -28.3497733 | Wyalkatchem | 76-1,3,5,7,9,10,12 +Lr37     |                          |
| 130071      | Beard, C.    | 03/10/2013 | NORTHAMPTON WA 6535  | 114.6314871 | -28.3497733 | Cobra       | 104-1,(2),3,(6),(7),11       |                          |
| 130072      | Beard, C.    | 03/10/2013 | NORTHAMPTON WA 6535  | 114.6314871 | -28.3497733 | Wyalkatchem | 76-1,3,5,7,9,10,12 +Lr37     |                          |
| 130078      | Jayasena, K. | 08/10/2013 | EAST BORDEN WA 6535  | 114.7500153 | -28.3325363 | Calingiri   | 76-1,3,5,7,9,10,12 +Lr37     |                          |
| 130086      | Bartlett, P. | 14/10/2013 | GIBSON WA 6448       | 121.8127168 | -33.6506426 | Westonia    | Not yet processed            |                          |
| 130087      | Bartlett, P. | 14/10/2013 | GIBSON WA 6448       | 121.8127168 | -33.6506426 | Cobra       | 104-1,(2),3,(6),(7),11 +Lr37 |                          |
| 130088      | Bartlett, P. | 14/10/2013 | GIBSON WA 6448       | 121.8127168 | -33.6506426 | Wyalkatchem | Failed                       |                          |
| 130089      | Bartlett, P. | 14/10/2013 | GIBSON WA 6448       | 121.8127168 | -33.6506426 | Wheat       | 76-1,3,5,7,9,10,12 +Lr37     |                          |
| 130093      | Thomas, G.   | 17/10/2013 | MOORINE ROCK WA 6425 | 119.1276906 | -31.3118564 | Cobra       | Not yet processed            |                          |
| 130094      | Thomas, G.   | 17/10/2013 | MERREDIN WA 6415     | 118.2812988 | -31.4823417 | Stiletto    | Not yet processed            |                          |
| 130096      | Mudie, N.    | 18/10/2013 | RAVENSTHORPE WA 6346 | 120.0481056 | -33.581611  | Mace        | Not yet processed            |                          |

Table 1. Samples of wheat leaf rust received from Western Australia by the University of Sydney Plant Breeding Institute, from 1<sup>st</sup> April through October 22<sup>nd</sup> 2013

Table 2. Comparison of pathogenicity of the 3 pathotypes of Puccinia triticina detected in Western Australia since 1990 on leaf rust resistance genes common in current Australian wheat cultivars

|           |                  | Standard race/ pathotype        |                               |                                      |                         |  |  |  |
|-----------|------------------|---------------------------------|-------------------------------|--------------------------------------|-------------------------|--|--|--|
|           |                  | 104-                            | 104-                          | 104-                                 | 76-                     |  |  |  |
| Lr gene   | Gene action      | 1,(2),3,(6),(7),11 <sup>a</sup> | 1,2,3,(6),(7),11 <sup>b</sup> | 1,(2),3,(6),(7),11+Lr37 <sup>c</sup> | 1,3,5,7,9,10,12+Lr37    |  |  |  |
| Lr1       | All stage        | Virulent                        | Virulent                      | Virulent                             | Avirulent               |  |  |  |
| Lr3a      | All stage        | Virulent                        | Virulent                      | Virulent                             | Virulent                |  |  |  |
| Lr13      | All stage        | Avirulent                       | Avirulent                     | Avirulent                            | Virulent                |  |  |  |
| Lr17a     | All stage        | Avirulent                       | Avirulent                     | Avirulent                            | Virulent                |  |  |  |
| Lr17b     | All stage        | Avirulent                       | Avirulent                     | Avirulent                            | Virulent                |  |  |  |
| Lr20      | All stage        | Virulent                        | Virulent                      | Virulent                             | Virulent                |  |  |  |
| Lr23      | All stage        | Avirulent                       | Virulent                      | Avirulent                            | Avirulent               |  |  |  |
| Lr24      | All stage        | Avirulent                       | Avirulent                     | Avirulent                            | Avirulent               |  |  |  |
| Lr26      | All stage        | Avirulent                       | Avirulent                     | Avirulent                            | Virulent                |  |  |  |
| Lr27+Lr31 | All stage        | Avirulent                       | Avirulent                     | Avirulent                            | Avirulent? <sup>d</sup> |  |  |  |
| Lr34      | APR <sup>e</sup> | Avirulent                       | Avirulent                     | Avirulent                            | Avirulent               |  |  |  |
| Lr37      | All stage        | Avirulent                       | Avirulent                     | Virulent                             | Virulent                |  |  |  |
| Lr46      | APR              | Avirulent                       | Avirulent                     | Avirulent                            | Avirulent               |  |  |  |

<sup>a</sup> formerly 104-1,2,3,(6),(7),11 <sup>b</sup> formerly 104-1,2,3,(6),(7),11 +Gaza High <sup>c</sup> formerly 104-1,2,3,(6),(7),11 +Lr37 <sup>d</sup> further tests are needed to establish whether or not this pathotype is virulent on the complementary genes Lr27+Lr31

<sup>e</sup> Adult Plant Resistance

**Table 3.** Expected response of selected wheat cultivars to pathotype 76-1,3,5,7,9,10,12 +Lr37, along with previous ratings for Western Australia (adapted from Cereal Rust Update 10 #1 revised)

|                       | Leaf rust response in<br>WA |         |                                       |  |  |
|-----------------------|-----------------------------|---------|---------------------------------------|--|--|
| Cultivar <sup>a</sup> | 2012                        | Revised | Postulated leaf rust resistance genes |  |  |
| Chara                 | R                           | MS      | Lr13, Lr34                            |  |  |
| Corack                | RMR                         | MS      | Lr3a, Lr13                            |  |  |
| Emu Rock              | R                           | MSS     | Lr13                                  |  |  |
| Fortune               | MR                          | MRMS    | Lr17a                                 |  |  |
| King Rock             | R                           | MRMS    | Lr13, Lr37                            |  |  |
| Mackellar             | R                           | S       | Lr13, Lr17b                           |  |  |
| Mansfield             | RMR                         | MS      | ?                                     |  |  |
| Peake                 | R                           | MR      | Lr13, Lr34, Lr37                      |  |  |
| Tennant               | R                           | MSS     | Lr26                                  |  |  |
| Wallup                | R                           | MRMS    | Lr13, Lr20, Lr27+Lr31?                |  |  |
| Wyalkatchem           | RMR                         | MS      | Lr13, Lr20, Lr46mix                   |  |  |
| Zippy                 | MR                          | MRMS    | Lr3a, Lr13, Lr27+Lr31                 |  |  |

<sup>a</sup> Cultivars Carnamah (*Lr*27+*Lr*31) and Cobra (*Lr*3a, *Lr*27+*Lr*31) may be more vulnerable to pathotype 76-1,3,5,7,9,10,12 +Lr37. Further tests are needed to establish their responses more accurately.

#### **GENERAL ENQUIRIES**

Plant Breeding Institute Private Bag 4011, Narellan NSW 2567

107 Cobbitty Road Cobbitty NSW 2570 T 02-9351 8800 (Reception) F 02-9351 8875

#### **RUSTED PLANT SAMPLES**

can be mailed in paper envelopes; do not use plastic wrapping or plastic lined packages. Direct samples to:

Australian Cereal Rust Survey Plant Breeding Institute Private Bag 4011, Narellan NSW 2567 The Australian Cereal Rust Control Program is supported by growers through the Grains Research & Development Corporation.





Grains Research & Development Corporation