Skip to main content
Unit of study_

Electrodynamics and Optics (Advanced) - PHYS3935

Year - 2020

The development of electrodynamic field theory laid the foundation on which all of modern physics is built, from relativity to quantum field theory. Its application to electromagnetic waves and optics underpins all of modern telecommunications, but also some of the most delicate physics experiments, from gravitational wave detection to quantum computing. This is a core unit in the physics major, which has three components: electrodynamics lectures, optics lectures, and experimental lab. The advanced unit covers the same concepts as PHYS3035 but with a greater level of challenge and academic rigour, largely in separate lectures. You will apply Mawell's equations to derive properties of electromagnetic waves, the interaction of waves with matter, waveguides, radiation and Gauge transformations. This will lead to optics lectures in which you will investigate aspects of modern optics, using the laser to illustrate the topics covered, in combination with a discussion of the basic optical properties of materials, including the Lorentz model. You will investigate spontaneous and stimulated emission of light, laser rate equations, diffraction, Gaussian beam propagation, anisotropic media and nonlinear optics. You will design your own in-depth experimental investigations into key aspects of electrodynamics, optics, as well as other topics in physics, with expert tutoring.

Lecture 3h/week, tutorial 1h/week, experimental lab 18h/semester

quiz x 4 (15%), 2x topical assignments (10%), 1x overarching problem assignment (10%), experimental physics logbook (15%), experimental physics oral presentation (10%), final exam (40%)

Assumed knowledge
(MATH2021 OR MATH2921 OR MATH2061 OR MATH2961 OR MATH2067)


Average of 70 or above in [(PHYS2011 OR PHYS2911 OR PHYS2921) AND (PHYS2012 OR PHYS2912 OR PHYS2922)]


PHYS3035 or PHYS3040 or PHYS3940 or PHYS3941 or PHYS3068 or PHYS3968 or PHYS3069 or PHYS3969 or PHYS3080 or PHYS3980


Faculty: Science

Semester 2

24 Aug 2020

Department/School: Physics Academic Operations
Study Mode: Normal (lecture/lab/tutorial) day
Census Date: 28 Sep 2020
Unit of study level: Senior
Credit points: 6.0
EFTSL: 0.125
Available for study abroad and exchange: Yes
Faculty/department permission required? No
More details
Unit of Study coordinator: A/Prof Boris Kuhlmey
HECS Band: 2
Courses that offer this unit

Non-award/non-degree study If you wish to undertake one or more units of study (subjects) for your own interest but not towards a degree, you may enrol in single units as a non-award student. Cross-institutional study If you are from another Australian tertiary institution you may be permitted to undertake cross-institutional study in one or more units of study at the University of Sydney.

To help you understand common terms that we use at the University, we offer an online glossary.