Skip to main content
### Details

#####
Courses that offer this unit

Non-award/non-degree study If you wish to undertake one or more units of study (subjects) for your own interest but not towards a degree, you may enrol in single units as a non-award student. Cross-institutional study If you are from another Australian tertiary institution you may be permitted to undertake cross-institutional study in one or more units of study at the University of Sydney.
To help you understand common terms that we use at the University, we offer an online glossary.
## Media

## Student links

Year - 2020

The electromagnetic force is the only one of the four fundamental forces of nature that is compatible with the four realms of mechanics (classical, quantum, relativistic and relativistic quantum mechanics) and therefore, the study of electrodynamics is fundamental to understanding how the laws of physics may be unified, but also to identify gaps in our knowledge. Drawing upon the foundations of classical electromagnetism and optics laid in the undergraduate physics major, this unit provides an advanced-level treatment of topics in electrodynamics and photonics underlying cutting-edge modern research. Starting with the mathematically elegant covariant formalism of the Maxwell equations, from which special relativity derives, the unit covers topics such as the origin of radiation from relativistic particles and from atoms, which are important in astrophysics and particle physics as well as optical and quantum physics. This then introduces the theme of light-matter interactions, which reveals how light can be manipulated and controlled, leading to fascinating phenomena such as optical tweezers, topological insulators and metamaterials. The unique properties and applications of confined electromagnetic waves and their nonlinear interactions are studied in depth, followed by the physics of laser light. The unit is completed with the contemporary research topic of quantum optics. In studying these topics, you will learn advanced theoretical concepts and associated mathematical methods in physics, including tensor calculus, Greens function method, multipole expansion in field theory, and coupled mode theory. By doing this unit, you will be able to synthesise your knowledge of physics and gain new insights into how to identify and apply relevant aspects of physics-based concepts and techniques to solve modern research problems.

Classes

lectorial (integrated lecture and tutorial)3 hr/week for 12 weeks

Assessment

4 x quizzes (10%), 3 x written assignments (30%), final exam (60%)

Assumed knowledge

A major in physics including third-year electromagnetism and third-year optics

An average of at least 65 in 144 cp of units including (PHYS3x35 or PHYS3x40 or PHYS3941)

Faculty: Science

Semester 1

24 Feb 2020

Department/School: Physics Academic Operations

Study Mode: Normal (lecture/lab/tutorial) day

Census Date: 31 Mar 2020

Unit of study level: Honours

Credit points: 6.0

EFTSL: 0.125

Available for study abroad and exchange: Yes

Faculty/department permission required? No

Location

Camperdown

More details

Unit of Study coordinator: Bruce Yabsley

HECS Band: 2

Leadership for good starts here

ABN: 15 211 513 464

CRICOS Number: 00026A

TEQSA: PRV12057