Master of Architectural Science (Sustainable Design)

Unit outlines will be available through Find a unit outline two weeks before the first day of teaching for 1000-level and 5000-level units, or one week before the first day of teaching for all other units.
 

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Sustainable Design Stream

Master of Architectural Science (Sustainable Design)

To qualify for a single stream, students must complete:
(a) 72 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 36 credit points Core Advanced units
(iii) maximum of 24 credit points elective units
(iv) minimum 6 credit points Capstone units
(b) Core units completed in excess of the minimum requirements may count as elective units.
To qualify for a double stream, students must complete:
(a) complete 96 credit points in two streams
(i) nominate which of the streams is primary, and meet the foundation core, advanced core and capstone requirements for that stream
(b) nominate which of the streams is secondary, and complete 24 credit points of core advanced units for that stream.
(iii) a unit that is common to the requirements of both specialisations may count towards the requirements for both streams, but may only count once in the total credit points for the degree.

Graduate Diploma in Architectural Science (Sustainable Design)

Students must complete 48 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 30 credit points Core Advanced units
(iii) maximum of 12 credit points elective units.
(b) Core units completed in excess of the minimum requirements may count as elective units of study.

Graduate Certificate in Architectural Science (Sustainable Design)

Students must complete 24 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 12 credit points Core Advanced units
(iii) maximum of 6 credit points elective units

Core Foundational units

DESC9200
Introduction to Architectural Science
6      Semester 1

Core Advanced units

DESC9014
Sustainable Construction Technology
6   
Note: Department permission required for enrolment

Semester 1
DESC9015
Building Energy Analysis
6    N DESC9152

Note: Department permission required for enrolment

Semester 1
DESC9147
Sustainable Building Design Principles
6    A Fundamental knowledge of building design
Semester 1
DESC9169
Daylight in Buildings
6    N DESC9106
Semester 2
DESC9201
Indoor Environmental Quality (IEQ)
6      Semester 2
DESC9202
Water Sensitive Design
6      Semester 2

Capstone (Master of Architectural Science only)

DESC9148
Sustainable Building Design Practice
6    A Fundamental knowledge of sustainable design
P DESC9201
Semester 1
DESC9197
Energy Management and Code Compliance
6    A DESC9015

Note: Department permission required for enrolment

Semester 2

Electives

Electives may be chosen from the list below, or from any postgraduate units in the School of Architecture, Design and Planning, or, with the permission of the Associate Dean, from any other postgraduate course in the University subject to availability and permission from the relevant Unit of Study Coordinator.
Architecture Electives
MARC4002
Sustainable Architecture Research Studio

This unit of study is not available in 2021

12   

This studio cannot be taken in the same semester with MARC4001 or MARC4003. Students may incur materials costs in this unit.
Semester 1
Semester 2
DESC9674
Building Information Management
6    P DESC9200 and DESC9014
Semester 1
DESC9675
High Performance Facades
6      Semester 1
Architectural Science Electives
DESC9067
Mechanical Services
6      Semester 2
DESC9138
Architectural and Audio Acoustics
6      Semester 1
DESC9164
Lighting Technologies
6    N DESC9063
Semester 2
DESC9195
Building Economics
6      Semester 2
DESC9153
Graduate Internship
6   
Note: Department permission required for enrolment
Masters students only. Graduate Diploma students with permission of the Program Coordinator. Advanced Standing will not be granted for this unit of study.
Intensive December
Intensive February
Intensive January
Intensive July
Intensive November
Semester 1
Semester 2
Sustainability Electives
SUST5001
Introduction to Sustainability
6   

Note: Students in the Graduate Certificate in Sustainability, Graduate Diploma in Sustainability or Master of Sustainability must take this unit in their first semester of study. This unit of study involves essay-writing. Academic writing skills equivalent to HSC Advanced English or significant consultation via the Writing Hub is assumed.
Semester 1
Semester 2
SUST5003
Energy and Resources
6   

This unit of study involves essay-writing. Academic writing skills equivalent to HSC Advanced English or significant consultation via the Writing Hub is assumed.
Semester 1
PHYS5034
Life Cycle Analysis
6   

Minimum class size of 5 students.
Semester 2
PHYS5033
Environmental Footprints and IO Analysis
6   

Minimum class size of 5 students.
Semester 1
Semester 2
Urbanism Electives
ARCH9080
Urban Ecology, Design and Planning
6    N PLAN9048
Semester 2
PLAN9068
History and Theory of Planning and Design
6    N PLAN9031 or ARCH9062 or ARCH9031 or MARC4201
Semester 1
PLAN9064
Land Use and Infrastructure Planning
6    A ARCH9100
Semester 2

Research

DESC9300 in combination with either a Report or Dissertation may replace the capstone with the permission of the Program Director.
DESC9300
Research in Arch. and Design Science
6    N ARCF9001

Note: Department permission required for enrolment

Semester 1
Semester 2
ARCH9031
Research Report
12   
Note: Department permission required for enrolment
Available to Masters students only.
Semester 1
Semester 2
ARCH9045
Dissertation 1
12    P 48 credit points and a WAM of at least 75
C ARCH9046
N ARCH9031 or PLAN9018 or ARCH9060 or PLAN9010 or PLAN9011

Note: Department permission required for enrolment

Semester 1
Semester 2
ARCH9046
Dissertation 2
12    C ARCH9045
Semester 1
Semester 2

Sustainable Design Stream

Master of Architectural Science (Sustainable Design)

To qualify for a single stream, students must complete:
(a) 72 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 36 credit points Core Advanced units
(iii) maximum of 24 credit points elective units
(iv) minimum 6 credit points Capstone units
(b) Core units completed in excess of the minimum requirements may count as elective units.
To qualify for a double stream, students must complete:
(a) complete 96 credit points in two streams
(i) nominate which of the streams is primary, and meet the foundation core, advanced core and capstone requirements for that stream
(b) nominate which of the streams is secondary, and complete 24 credit points of core advanced units for that stream.
(iii) a unit that is common to the requirements of both specialisations may count towards the requirements for both streams, but may only count once in the total credit points for the degree.

Graduate Diploma in Architectural Science (Sustainable Design)

Students must complete 48 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 30 credit points Core Advanced units
(iii) maximum of 12 credit points elective units.
(b) Core units completed in excess of the minimum requirements may count as elective units of study.

Graduate Certificate in Architectural Science (Sustainable Design)

Students must complete 24 credit points in a single stream, including:
(i) minimum of 6 credit points Core Foundational units
(ii) minimum of 12 credit points Core Advanced units
(iii) maximum of 6 credit points elective units

Core Foundational units

DESC9200 Introduction to Architectural Science

Credit points: 6 Teacher/Coordinator: Dr Jungsoo Kim Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
This unit aims to explore the scientific concepts of heat, light and sound, and from this develops foundational principles and methods applicable to buildings. It is divided into five topics: climate, thermal environment, mechanical services, lighting, and acoustics. Students will gain an understanding of the terminology, physical values and metrics in each of these topics, and how they apply to the design and function of buildings. Theoretical models to predict key physical values in buildings are presented and used in assessments. Learning is supported by measurement exercises. This unit has a focused pedagogy intended for all graduate students in Architectural Science. It is a common core unit for all of the programs (Audio and Acoustics, High Performance Buildings, Illumination Design and Sustainable Design). Students within these programs should undertake this unit in their first semester of study if possible.

Core Advanced units

DESC9014 Sustainable Construction Technology

Credit points: 6 Teacher/Coordinator: Ozgur Gocer Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Note: Department permission required for enrolment
This unit covers three related areas of investigation: basic building construction practices, advanced sustainable construction practices and environmental rating of building construction. It begins by introducing a number of recurrent themes in construction in Australia at the present time including the idea of building culture, the various modes of delivery and variety of classifications of buildings and building elements and rational construction. There follows a review of sustainable construction techniques of domestic scaled buildings using, where appropriate, examples of well documented and/or accessible exemplars. The second part of the unit reviews current approaches to sustainable building technologies employed in more complex public and commercial scaled buildings, particularly with regard to processes of structural system selection, facade systems design and construction and material performance. Aspects of the National Construction Code and integration of services into the building fabric relevant to building services engineers will also be reviewed. Finally the unit will review current issues related to environmental rating of building materials.
DESC9015 Building Energy Analysis

Credit points: 6 Teacher/Coordinator: Ozgur Gocer Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: DESC9152 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Note: Department permission required for enrolment
The aim of the unit is to acquaint students with the range of analytical and design tools available for low energy building design; to provide the opportunity for students to become proficient at using some of these tools. Among the techniques and tools explored are: climate data analysis; graphical and model techniques for solar studies; steady state and dynamic heat flow analysis; simplified methods for sizing passive solar elements; computer models of thermal performance; modelling ventilation; estimating energy consumption. Emphasis is given to tools which assist the design of the building fabric rather than building systems. At the end of the unit it is expected that students will: be aware of the importance of quantitative analysis in the design of low energy buildings; have an understanding of the theoretical basis of a range of analytical techniques; be familiar with the range of techniques available for building energy analysis; be able to apply many of these to design analysis; be familiar with the range of thermal analysis computer software available; and be able to use a software package to analyse the thermal performance of a typical small scale building. All of the assignments are designed to provide students with hands-on experience of each of the analysis tools.
DESC9147 Sustainable Building Design Principles

Credit points: 6 Teacher/Coordinator: Daniel Ryan Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Fundamental knowledge of building design Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Many buildings claim to be sustainable, but what are the design principles that allow them to achieve this? This unit aims to develop a critical understanding in students of building design principles that reduce the impact of the built environment on energy and other resource flows. Students will gain an overview of technical strategies that reduce the environmental impact of buildings and develop an awareness of the benchmarks and metrics used to judge the implementation of environmental design principles. The unit pays particular attention to design principles that relate to the environmental performance of the building fabric and the thermal systems of buildings.
DESC9169 Daylight in Buildings

Credit points: 6 Teacher/Coordinator: Dr Ozgur Gocer Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: DESC9106 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Daylight can be used in buildings to reduce the energy spent on electric lighting and create aesthetically appealing interiors. Design decisions that affect the success of daylighting in a building span every phase of the design process, from site selection to the application of interior finishes. This unit discusses the role of daylight in indoor illuminated environments. Calculations to predict the quantity and distribution of daylight in spaces and predict the effects of shading devices are covered. Students learn about the local and global variables that influence daylight availability, recognize the challenges and opportunities with daylight in interior spaces, and the appropriate use of daylighting technologies. Modelling tools (Radiance based) will be used in order to assess the efficacy of selected daylight strategies.
DESC9201 Indoor Environmental Quality (IEQ)

Credit points: 6 Teacher/Coordinator: Prof Richard De Dear Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Humans' thermal, visual, auditory and olfactory senses determine the perceived quality of a built environment. This unit analyses built environments in context of these human factors. This unit relates human experience of buildings to the main dimensions of Indoor Environmental Quality (IEQ): thermal, acoustic, lighting and indoor pollution. This understanding of human comfort perceptions is contextualised by an understanding of the various approaches to the evaluation of built environmental performance. You will study post-occupancy evaluation tools and workplace productivity metrics. Regulations from Australia and abroad will be explored to understand their impact on acoustics, thermal comfort, lighting, indoor air quality and ventilation. The unit also pays particular attention to sustainability rating tools from around the world, including GreenStar, NABERS, LEED and BREEAM. This unit gives students extensive hands-on experience in laboratory- and field-based methods of IEQ research and building diagnostics. A recurring theme will be instrumental measurements of indoor environments, and how they can be analysed in relation to perceptual and behavioural data collected from occupants of those environments.
DESC9202 Water Sensitive Design

Credit points: 6 Teacher/Coordinator: Daniel Ryan Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
As cities expand and weather becomes more unstable, the need to design buildings and neighbourhoods that use less water has become ever more important. This unit examines the emerging problems with water usage in the built environment and how design can tackle them. It takes an interdisciplinary approach to water sensitive design, drawing on insights from landscape urbanism, climate science, building services and sustainable architecture. The unit explores the changing valuation of water in the built environment and methods to improve ecological amenity and minimise net water use in buildings. By examining water sensitive strategies and technologies, students will be challenged to think beyond current approaches and apply their learning from this unit to demonstrate the way that design innovation can effectively address the challenge of water in the built environment.

Capstone (Master of Architectural Science only)

DESC9148 Sustainable Building Design Practice

Credit points: 6 Teacher/Coordinator: Dr Daniel Ryan Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: DESC9201 Assumed knowledge: Fundamental knowledge of sustainable design Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Assessing building performance and integrating environmental building systems and construction forms the core of sustainable building design practice. This advanced unit explores the methods, workflows and regulatory frameworks to design best-practice sustainable buildings. It develops your ability to work as a sustainable building consultant. You will learn how to evaluate and critique the environmental performance of real-world projects and set targets and apply strategies to improve designs. The unit also reviews working methods for integrated design and will develop your ability to communicate environmental performance to other design team members.
DESC9197 Energy Management and Code Compliance

Credit points: 6 Teacher/Coordinator: Dr Jungsoo Kim Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: DESC9015 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Note: Department permission required for enrolment
Objectives of this unit are to give students an understanding of energy consumption issues in buildings against the backdrop of escalating energy and carbon emission reduction targets for the built environment. Objectives of this unit are to give students an understanding of energy consumption issues in buildings against the backdrop of escalating energy and carbon emission reduction targets for the built environment. In order to meet these targets, new design and operational management techniques are needed, including energy auditing, retrofitting and energy efficiency optimisation techniques. This unit is primarily concerned with energy management in buildings and Code compliance in Australia. The unit will expose students to the processes and considerations involved in undertaking an energy audit in buildings. Active energy systems and their fundamentals may be reviewed. Finally, methods of assessing energy performance will be covered, with emphasis on energy simulation. Understanding and application of Australian standards and rating schemes will also be explored.

Electives

Electives may be chosen from the list below, or from any postgraduate units in the School of Architecture, Design and Planning, or, with the permission of the Associate Dean, from any other postgraduate course in the University subject to availability and permission from the relevant Unit of Study Coordinator.
Architecture Electives
MARC4002 Sustainable Architecture Research Studio

This unit of study is not available in 2021

Credit points: 12 Teacher/Coordinator: Dr Arianna Brambilla (Semester 1), Dr Daniel Ryan (Semester 2) Session: Semester 1,Semester 2 Classes: Lecture and studio contact (technical consultants and demonstrations as required), plus self-directed preparation and assignments, for a minimum total student commitment averaging 18 hours per week. Assessment: Preliminary research, design development, interim reviews (40%); Final project and portfolio review (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: This studio cannot be taken in the same semester with MARC4001 or MARC4003. Students may incur materials costs in this unit.
The Sustainable Architecture Research Studio will focus on the theories, technologies and techniques that promote the creation of a sustainable built environment. The studio projects will explore the interdependent issues of environmental, social and economic sustainability. The studio will prompt students to develop critical positions in response to a studio brief selected from one or more options that probe sustainability and extend and explore those positions through a research-based architectural design process.
MARC4001 Urban Architecture Research Studio, MARC4002 Sustainable Architecture Research Studio and MARC4003 Digital Architecture Research Studio are all available in both Semesters 1 and 2. Students may enrol or pre-enrol freely, but some will be asked to swap to create equal groups. After three semesters each student will have done each of the studios. The studios examine the relationships between architecture and urbanism; architecture and sustainability; and architecture and digital design. Each is based around one or more design projects which address a specialised area of study, supported by lectures and seminars which introduce the relevant theory, knowledge and design precedents. Studios require the investigation of key technical issues and systems, and their innovative integration in the design, with the preparation of appropriate documentation. On the successful completion of these units, students will have demonstrated: an ability to formulate, interpret and communicate appropriate concepts derived from the study of brief and site; an ability to extend those starting points into a working design proposal; an ability to develop the design proposal in response to critique, and produce a building design which demonstrably embodies understanding of the principles associated with the specialised study area; an ability to communicate the design ideas effectively through appropriate graphic and three-dimensional means using architectural conventions; and an ability to cohesively design and execute a comprehensive presentation of the project. These units are core to the Master of Architecture.
DESC9674 Building Information Management

Credit points: 6 Teacher/Coordinator: Jungsoo Kim Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: DESC9200 and DESC9014 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
This unit will introduce students to the theory and practice of building information management and modelling. The unit starts with building management, which brings knowledge and skill on how to operate buildings to optimise performance. It also introduces Building Information Modelling (BIM), which is a digital representation of physical and functional characteristics of a facility. Building information models are shared knowledge resources about a facility, forming a reliable basis for decisions during its life-cycle from earliest conception to demolition. The unit explores the wider use of building information models not only in design but also in construction management, facility management, post construction evaluation, and retrofitting. By bringing together the building management and the information modelling, the unit responds to emergent requirements within the building sector for new tools and practices to offset the growing complexity in the design and construction of high performance buildings.
DESC9675 High Performance Facades

Credit points: 6 Teacher/Coordinator: Jungsoo Kim Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
This unit explores advanced building facades and their role in reducing environmental impacts while simultaneously enhancing indoor environment quality for building occupants. Advanced facades are those that are designed, analysed, procured and operated as a system. Optimisation of the often conflicting performance criteria of cooling load, lighting and daylighting, sound isolation, occupant comfort, costs and aesthetics requires an integrated approach from the whole team including architects, project managers, suppliers and engineers, from the earliest stages of the advanced facade design process. Specific topics to be covered in this unit include the integrated design approach to facades, the fundamental building physics determiningfacadeperformance, structural facade typologies, solar control facades, daylighting facades, double-skin facades, ventilated facades and dynamicfacadesystems. Variousanalyticalprocedures and simulation tools for the evaluation of high performancefacadedesigns will also be examined.Costs and benefits of various design approaches will also be assessed from both owner and occupant perspectives.
Architectural Science Electives
DESC9067 Mechanical Services

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
This unit reviews the need for and application of Mechanical services in the built environment - in particular commercial buildings. Mechanical services are responsible for significant portion of energy and water consumption in buildings. Thus they have become important components of most modern building complexes, with a strong influence on other services and the architecture. This unit provides an introduction to these services by experienced presenters, including from the industry, for recent graduates or diplomats in mechanical engineering and an understanding of fundamental principles and practice for people from backgrounds other than mechanical engineering. Students will acquire skills in appreciation of impact of mechanical services on the environment, including recent mandatory regulations, together with estimating ventilation, cooling and heating requirements, design of simple ventilation, air conditioning and smoke hazard management systems, combined with an overview of water, refrigerant, ducted systems, with applicable equipment, energy, noise, human comfort, air quality criteria. Principles of heat transfer and fluid flow are applied to applications of mechanical ventilation, air conditioning and smoke hazard magagement, to satisfy regulations and standards, occupant and community expectations. The practical basis of the programme leads to a design assignment involving selecting equipment and systems to provide mechanical services in a building.
DESC9138 Architectural and Audio Acoustics

Credit points: 6 Teacher/Coordinator: Densil Cabrera Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
This unit introduces the fundamental concepts and issues of audio and architectural acoustics, with an emphasis on theory. The unit introduces topics such as: basic acoustical concepts, quantities and units; principles of sound radiation and propagation; sound absorption and room acoustics; psychological acoustics; noise measurement and specification; speech intelligibility; and principles and specification of airborne sound insulation. Acoustics theory involves mathematics, and this unit aims to provide knowledge and skills so that such theory can be applied, with the help of spreadsheets and computer programs. Teaching is supported by demonstrations and tutorials. By completing this unit students will be able to understand acoustical terminology, and perform calculations and analysis applicable to sound in the environment, in buildings, and in audio contexts. They will have the ability to critically assess claims of acoustical performance. This unit provides the theoretical foundation for advanced units in audio and acoustics.
DESC9164 Lighting Technologies

Credit points: 6 Teacher/Coordinator: Dr Wenye Hu Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: DESC9063 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
This unit covers the technologies employed in generating, distributing, and controlling light in illuminated environments. Students learn the advantages and disadvantages of different hardware options for various lighting applications. A brief history of lighting technologies and the physical processes involved with electrically generating light are included in this unit. Practical characteristics of currently popular lamp types, as well as emerging lighting technologies, are presented. The effects of integral luminaires and other light fittings on the resulting illumination are covered, as are the electrical requirements of different lighting technologies. This unit also includes calculation techniques for predicting the illumination in spaces from lighting products. The selection, operation, and implications of lighting control options are discussed. The underlying principles and practical consequences of the different characteristics of various lighting technologies are emphasised to enable students to independently evaluate future innovations in lighting technologies.
DESC9195 Building Economics

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Investors associated with the property industry require at the outset Return On Investment (ROI) evaluations before committing capital. This unit of study examines the economic principles as they apply to buildings, from capital growth and life cycle management perspectives. The focus is on economic and financial practices required for high performing building assets, contract procurement strategies, cash flow analysis, return on investment for retro-fitting, and economic appraisals of existing or new building assets. This unit will develop an understanding of carbon accounting in relation to building management and its importance to sustainable built asset portfolios. The unit, taught by case studies, will equip students with an understanding of economic principles and professional tools necessary for the procurement and management of real estate property, facilities and buildings at optimum economic and environmental performance.
DESC9153 Graduate Internship

Credit points: 6 Teacher/Coordinator: Adrienne Keane Session: Intensive December,Intensive February,Intensive January,Intensive July,Intensive November,Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: Masters students only. Graduate Diploma students with permission of the Program Coordinator. Advanced Standing will not be granted for this unit of study.
The aims of the internship are to provide a direct link between the academic core of the course and the disciplines and methods of practice; to enable candidates to experience aspects of practice and provide the opportunity for them to work in areas of the field outside their specific expertise; to enable candidates to observe, analyse and comment on the interaction between theoretical and practical issues of their Program as it is practiced, and to establish connections between practice and the development of relevant research programs. The internship is intended to provide the opportunity for students to work in various situations in their Program's area. A secondary intention is that students use the opportunities of placement to broaden their own experience beyond the limitations of their chosen discipline. Candidates must find a suitable professional placement. Permission to enrol is given after the proposed placement has been approved by the Program Director. The host organisation will nominate a supervisor for the student for the internship. The student must complete at least 120 hours of full or part-time experience, supervised by a practicing designer (or other professional depending upon the field). A log-book of each day's work, signed by the supervisor must be submitted on completion. A 2000-word report on the benefits of the internship must also be produced. At the end of the internship the student will: demonstrate that they have completed a program of work (through a log-book); present a report; analyse their experiences and compare these to the theoretical content of the units they have completed, and suggest appropriate research directions so as to improve the complementarity of theory to practice.
Sustainability Electives
SUST5001 Introduction to Sustainability

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) evening
Note: Note: Students in the Graduate Certificate in Sustainability, Graduate Diploma in Sustainability or Master of Sustainability must take this unit in their first semester of study. This unit of study involves essay-writing. Academic writing skills equivalent to HSC Advanced English or significant consultation via the Writing Hub is assumed.
This unit of study will introduce students to the concepts and multidisciplinary nature of sustainability, starting with the physical basis of climate change and its impact on the environment and human development. This will be followed by several case studies covering Energy, Health, Development and Environment. The case studies will be presented by industry professionals and will illustrate sustainability issues currently before Australia- their origins, impacts and industry responses. The unit of study will provide students with a holistic systems lens through which to view their learning throughout the Masters program. This will underpin understanding of the integrated nature of sustainability and facilitate the challenging of silo-based assumptions- their own and those of others. The intention is to ground understanding of complex systems in the real world through the use of case studies that will demonstrate organisational change and problem solving in a world with competing values and conflicting views of what it means to live sustainably. Students completing the unit of study will have a "sustainability tool kit" to apply to sustainability issues in their professional and community activities.
SUST5003 Energy and Resources

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) evening
Note: This unit of study involves essay-writing. Academic writing skills equivalent to HSC Advanced English or significant consultation via the Writing Hub is assumed.
This unit will examine the critical roles that energy and resource usage play in global, national and local sustainability. The need for developed economies to decarbonise their energy supply and for developing countries to have access to clean energy and sustainable resources will require major changes in technology, policy and business systems. This unit of study will cover the fundamentals of energy and resource supply; sustainable supply and use of energy for industry, business and consumers; life cycle analysis; energy security and alternative energy systems. Students will gain an understanding of: different sources of energy and their uses; the economic, environmental and societal contexts of energy and resource use; the need and scope for a transition from conventional energy sources; sound principles for analysing different resource and energy supply options; the role of international agreements and federal policy in influencing resource and energy use.
PHYS5034 Life Cycle Analysis

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Minimum class size of 5 students.
This unit of study covers philosophy, techniques, applications and standards of Life-Cycle Assessment (LCA). It introduces methods from engineering (Process Analysis) and economics (Input-Output Analysis), and discusses current popular LCA tools. The unit places importance on practical relevance by including real-world case studies and business applications as well as global standards such as the GHG Protocol for accounting for scopes -1, -2 and -3 emissions and ISO standards. The unit of study will culminate with practical exercises using software tools to provide students with hands-on experience of preparing a comprehensive Life-Cycle Assessment of an application of their choice. Students will also benefit from enrolling in PHYS5033 for a sound understanding of input-output analysis as the basis of hybrid LCA methods.
PHYS5033 Environmental Footprints and IO Analysis

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Minimum class size of 5 students.
This unit of study will provide students with practical skills for carrying out environmental footprinting calculations: for individuals, companies, organisations or nations. In particular, this unit will provide a comprehensive introduction to input-output analysis for identifying impacts embodied in regional, national and global supply chains. This unit focuses on contemporary environmental applications such as emissions, energy-use, water, land, loss of animal and plant species; and also social applications such as employment, poverty and child labour. The unit first explores national and global economic and environmental accounting systems and their relationships to organisational accounting. Second, it presents cutting-edge techniques enabling the global analysis of environmental and social impacts of international trade. Third, it offers hands-on practical activities for mastering the input-output techniques conceived by Nobel Prize Laureate Wassily Leontief, and provides a step-by-step recipe for undertaking boundary-free environmental and social footprinting for sectors and organisations. Students will walk away from this unit equipped with useful skills needed to calculate footprints, and prepare sustainability reports for any organisation, city, region, or nation, using organisational data, economic input-output tables and environmental accounts. Students will also benefit from enrolling in PHYS5034 for a sound understanding of the role of input-output analysis within the field of Life-Cycle Assessment.
Urbanism Electives
ARCH9080 Urban Ecology, Design and Planning

Credit points: 6 Teacher/Coordinator: Dr Adrienne Keane Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: PLAN9048 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will introduce the conceptual bases for sustainable development and explore how principles of sustainability can be introduced into land use planning and urban design, including environmental management and multi-criteria evaluation methodologies in three modules. The unit will examine the evolution of urban areas in relation to their biophysical setting. This will lead to an understanding and appreciation of the urban ecology of a city in terms of the flows of materials, resources and energy, and the challenges presented by climate change and peak oil. The principles of sustainability and the history and development of concepts of urban sustainability will be demonstrated through case studies. Assessments will explore a student's learning of the methods and frameworks for evaluating and measuring sustainability that are introduced in this unit.
PLAN9068 History and Theory of Planning and Design

Credit points: 6 Teacher/Coordinator: Prof Donald McNeill Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: PLAN9031 or ARCH9062 or ARCH9031 or MARC4201 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
The aim of this unit is to provide students with a range of concepts and methods which can be used to interpret the urban form and structure of cities. Organised thematically, and using a wide range of empirical examples from both Australia and internationally, students will encounter a range of theories and concepts that explain urban change and how it has impacted on theories of urban planning and design. Themes may vary slightly from year to year, but are likely to include the study of tall buildings, technology and cities, sustainability, mobilities, water infrastructure and urban design practice. The urban history and theory of Aboriginal urban planning, policy and design issues is a key element of the course. Students will be able to: critically review and interpret key planning and urban design texts/papers; construct and present basic arguments orally and in conjunction with graphics/images in illustrated documents; access and engage with key literature and other sources of knowledge; and use basic conceptual frameworks about planning arguments and stories for both the overlapping fields of urban planning and urban design. Interpreting the built form around you from an historical lens is an important learning outcome.
PLAN9064 Land Use and Infrastructure Planning

Credit points: 6 Teacher/Coordinator: Assoc Prof Nancy Marshall Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: ARCH9100 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is concerned with land use and infrastructure and where that intersection occurs and how it influences the shifting urban form through planning processes. The unit emphasises conceptual knowledge, with examples and case studies to demonstrate the application of land use concepts and infrastructure planning in best practice. Students are encouraged to think independently, creatively and critically in developing an understanding of, and practical knowledge about all different types of infrastructure operating at different scales: national / state / metropolitan / district / local / site.

Research

DESC9300 in combination with either a Report or Dissertation may replace the capstone with the permission of the Program Director.
DESC9300 Research in Arch. and Design Science

Credit points: 6 Teacher/Coordinator: Densil Cabrera. Jungsoo Kim Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: ARCF9001 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode
Note: Department permission required for enrolment
TThis unit aims to prepare students for undertaking a research project in the various sub-disciplines of Architectural Science. It begins with the workshop-based presentation of foundations of experimental science relevant to research projects within these sub-disciplines. It highlights principles of experimental design and methods of data collection and analysis. Examples of previous projects undertaken by graduate students in Design Science will be presented, as appropriate, in any of the following areas: Audio and Acoustics, High Performance Buildings, Illumination Design and Sustainable Design. Although this unit has a focused pedagogy intended for all graduate students in Architectural Science, enrolment may be expected by other coursework students within the School of Architecture, Design and Planning.
ARCH9031 Research Report

Credit points: 12 Teacher/Coordinator: Adrienne Keane Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Note: Available to Masters students only.
The report is a substantial piece of research conducted over one semester. It takes the form of a report (between 10,000 and 15,000 words) on an approved subject of your choice. The report is an opportunity to advance your knowledge and skills in a particular area. The objective of the report is to allow you to develop research and analytic skills by undertaking an in-depth study of your own selection. The expected learning outcomes of the report include the ability to think critically about a problem and develop an appropriate research methodology or analytical approach to address it; identify and access appropriate sources of information, research and literature relevant to the issues; undertake relevant primary and secondary research; and present your findings in a way that demonstrates academic and professional competence. A report generally includes a literature review to delineate a problem; a statement of research aims or objectives, as well as research questions; an explanation of research methods; presentation and analysis of data; and discussion of conclusions. Permission to continue the Report may be subject to a satisfactory research proposal being approved by your supervisor by week 3 of semester. Reports are due at the end of the first week of exams for the semester in which you are enrolled. The assessment is based solely on the submission of your report. The report is generally marked by two examiners, neither of whom is your supervisor.
ARCH9045 Dissertation 1

Credit points: 12 Teacher/Coordinator: Adrienne Keane Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prerequisites: 48 credit points and a WAM of at least 75 Corequisites: ARCH9046 Prohibitions: ARCH9031 or PLAN9018 or ARCH9060 or PLAN9010 or PLAN9011 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
ARCH9045 and ARCH9046 Dissertation 1 and 2 are only available to candidates with permission from an appropriate supervisor. Planning students should take PLAN9010 and PLAN9011 Planning Dissertations 1 and 2. Students enrol either full time over one semester (ARCH9045 and ARCH9046) or part time over two semesters (ARCH9045 then ARCH9046). The units are not assessed separately - a single dissertation is required. The appointment of a supervisor will depend on the topic chosen for the dissertation by the student. Students and their supervisors should complete an Independent Study Approval form and return it to the Student Administration Centre to effect enrolment. The aim of the dissertation is to train the student in how to undertake advanced study. The student should learn how to examine published and unpublished data, survey and experimental results, set objectives, organise a program of work, analyse information, evaluate this in relation to existing knowledge and document the work; and to allow the student to pursue an area of interest in greater depth than is possible in coursework or to investigate an area of interest which is not covered in coursework. The dissertation will normally involve a critical review of published material in a specified subject area, but it may also be an experimental or theoretical investigation, a feasibility study, a case study, a computer program, or other work demonstrating the student's analytical ability. The dissertation should be 15,000 to 25,000 words in length. The dissertation should contain a literature review, a research methodology, analysis of data, a discussion of results and conclusions. The dissertation will be judged on the extent and quality of the student's work, and in particular on how critical, perceptive and constructive the student has been in assessing his or her own work and that of others. Three typed A4 sized copies of the dissertation are required to be presented for examination. These may be in either temporary or permanent binding. If in temporary binding they must be able to withstand ordinary handling and postage. The preferred method is "perfect binding"; spring back, ring back or spiral binding is not permitted. Students are required to submit one copy in permanent binding on acid free paper for the library, including any emendations recommended by the examiners. For more details see the requirements for the PhD thesis in the Postgraduate Research Studies Handbook. Dissertations are due at the end of the first week of exams for the semester in which you are enrolled for Dissertation 2. The assessment is based solely on the submission of your dissertation. The dissertation is generally marked by two examiners.
ARCH9046 Dissertation 2

Credit points: 12 Teacher/Coordinator: An academic supervisor is required. Discuss with your program coordinator. Session: Semester 1,Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Corequisites: ARCH9045 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day
ARCH9045 and ARCH9046 Dissertation 1 and 2 are only available to candidates with permission from an appropriate supervisor. Planning students should take PLAN9010 and PLAN9011 Planning Dissertations 1 and 2. Students enrol either full time over one semester (ARCH9045 and ARCH9046) or part time over two semesters (ARCH9045 then ARCH9046). The units are not assessed separately - a single dissertation is required. The appointment of a supervisor will depend on the topic chosen for the dissertation by the student. Students and their supervisors should complete an Independent Study Approval form and return it to the Student Administration Centre to effect enrolment. The aim of the dissertation is to train the student in how to undertake advanced study. The student should learn how to examine published and unpublished data, survey and experimental results, set objectives, organise a program of work, analyse information, evaluate this in relation to existing knowledge and document the work; and to allow the student to pursue an area of interest in greater depth than is possible in coursework or to investigate an area of interest which is not covered in coursework. The dissertation will normally involve a critical review of published material in a specified subject area, but it may also be an experimental or theoretical investigation, a feasibility study, a case study, a computer program, or other work demonstrating the student's analytical ability. The dissertation should be 15,000 to 25,000 words in length. The dissertation should contain a literature review, a research methodology, analysis of data, a discussion of results and conclusions. The dissertation will be judged on the extent and quality of the student's work, and in particular on how critical, perceptive and constructive the student has been in assessing his or her own work and that of others. Three typed A4 sized copies of the dissertation are required to be presented for examination. These may be in either temporary or permanent binding. If in temporary binding they must be able to withstand ordinary handling and postage. The preferred method is "perfect binding"; spring back, ring back or spiral binding is not permitted. Students are required to submit one copy in permanent binding on acid free paper for the library, including any emendations recommended by the examiners. For more details see the requirements for the PhD thesis in the Postgraduate Research Studies Handbook. Dissertations are due at the end of the first week of exams for the semester in which you are enrolled for Dissertation 2. The assessment is based solely on the submission of your dissertation. The dissertation is generally marked by two examiners.