University of Sydney Handbooks - 2013 Archive

Download full 2013 archive Page archived at: Mon, 20 May 2013 12:11:36 +1000

Bachelor of Horticultural Science

The last intake of students for this degree occurred in 2009. No new students will be permitted to commence this degree.

Units of study

Year 4*

Year 4 will have the following structure: a core (42 credit points) of:
AFNR4101 Research Project A

Credit points: 12 Teacher/Coordinator: A/Prof Stephen Cattle Session: Semester 1 Classes: No formal classes, approx 18h per week Prerequisites: 144 credit points of level 1000-3000 units of study Assessment: Research proposal, literature review. Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit aims to develop a student's ability to undertake a major research project in an area of specialization. The unit builds on theoretical and applied knowledge gained across most of the units of study undertaken throughout their degree program. This unit is a corequisite with AFNR4102 and each student will work with an academic supervisor in an area of specialization and develop a well defined research project to be executed. The research project is undertaken to advance the students ability to build well-developed research skills, a strong analytical capacity, and the ability to provide high quality research results demonstrating a sound grasp of the research question. Working with an academic supervisor students will develop their ability to define a research project including the producing of testable hypotheses, identifying existing knowledge from reviewing the literature and the design and execution of a research strategy towards solving the research question. Students will build on their previous research and inquiry skills through sourcing a wide range of knowledge to solve the research problem and enhance their intellectual and personal autonomy by means of the development of experimental programs. Students will improve their written and planning skills by composing a research project proposal and the writing of a comprehensive literature review.
AFNR4001 Professional Development

Credit points: 6 Teacher/Coordinator: Ms Lynn Henry, Dr Damien Field Session: Semester 2 Classes: Workshops over four years Prohibitions: AGRF4000 Assessment: 1x blog posting (10%), 1x on-line (multi-media) (30%) and 1x portfolio (60%) Practical field work: 40 days of professional experience, 1 week long excursion Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Department permission required for enrolment
This unit of study is designed to allow students to critically reflect on the relationship between the rural enterprise and environment and how they can contribute to the future decisions and management affecting the rural community. It is a core unit of study in 4th year for the BAgrEc, BScAgr, BLWSc, BResEc, BHortSc which requires students to complete 40 days of professional experience with the expectation that students will examine the nature of facts from their degree in this environment. A minimum of 15 days must be completed on-farm/field. The remaining days may be at the student's discretion. The unit will be counted towards 4th year, but professional experience placements will normally be undertaken throughout the degree. In the early stages of the Professional Development program students participate in Faculty excursions that have been developed so they can experience a range of activities, such as research, extension, on-farm and industry both in the rural and urban environment to complement their learning within their individual degree programs. Building on this various workshops have been developed to assist students to identify a rural environment theme or issue of their interest with the specific emphasis being placed on them reflecting on how their new understandings of their theme of interest affects their personal and professional development. To complete this unit students will present a portfolio of their theme including critical reflection on the pivotal relationships between the academic degree, rural environment, professional experience, and beliefs and values if the rural community. Through developing these pivotal relationships, students will be able to use their new understandings to support and guide the future developments in the rural enterprise and environment. By developing and presenting the portfolio and engaging in other online activities the students will enhance their skills in inquiry, information literacy and communication. In particular the autonomous development of case studies reflecting the contemporary issues in agriculture and their professional placements the students will have to consider their understandings of ethical, social and professional issues and further develop the personal and intellectual autonomy.
Note: Department permission required for enrolment
AFNR4102 Research Project B

Credit points: 12 Teacher/Coordinator: A/Prof Stephen Cattle Session: Semester 2 Classes: No formal classes, approx 18h per week Prerequisites: AFNR4101 Assessment: Oral presentation, research paper, poster. Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit is a continuation of the major research project initiated in AFNR4101 and continues to build on theoretical and applied knowledge gained across most of the units of study undertaken throughout their degree program. Working with their academic supervisor in the area of specialization the student will continue to pursue the defined research project towards presenting final results and conclusions. The research results are presented in a format of a research paper as submitted to a research journal. The research paper and corrected literature review is combined and presented together as a thesis. Students will continue to build their research skills, develop strong analytical capacity, demonstrate a sound grasp of the topic, and an ability to interpret results in a broad framework. Working with an academic supervisor students will develop their ability to produce results of high quality, draw reliable conclusions and identify future areas avenues of research. Students will build on their previous research and inquiry skills through sourcing a wide range of knowledge to solve the research problem and enhance their intellectual and personal autonomy by means of the managing the research program. Students will improve their communication skills through oral presentation of their research findings, the production of a poster detailing their research findings and the writing of a research paper.
And one elective from Table A.
* A student may apply to the degree coordinator for permission to enrol in up to one (6 cp) elective University of Sydney unit of study in year 3 and up to one (6 cp) University of Sydney unit of study in year 4 which is not listed in Table A. The application must (1) be made prior to enrolment in the unit (2) be submitted with a written academic justification for enrolment by the student and (3) be submitted with written approval of the relevant unit of study coordinator.

Table A

Agribusiness
AGEC2102 Agribusiness Marketing

Credit points: 6 Teacher/Coordinator: Mrs Elizabeth Nolan Session: Semester 1 Classes: 2x1-hr lectures/week, 1x1-hr tutorial/wk in weeks 6-10 Prerequisites: AGEC1006 or AGEC1102 or RSEC1031 Assessment: Group presentation (15%), 1x2000wd case study (25%), and 1x2hr exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study is designed to provide an introductory understanding of agribusiness marketing in a modern context. The unit will provide students in the Sciences degrees with an understanding of how the economic theory taught in first year in AGEC1006 can be treated in an applied context. For BAgrEc students, it is an intermediate level unit in the Agribusiness major.
Students will study the theory relating to the firm-level marketing mix and marketing strategy. The emphasis will be on the organisation and trends of agribusiness marketing including value-adding and market power in the supply chain, market efficiency and international marketing by agribusiness firms.
The unit content is analytical, and draws on applied microeconomics to demonstrate how marketing decisions are made along the marketing chain. At the end of this unit students will be able to use marketing theory to analyse the steps in the marketing chain and be aware of the forces for change within that chain.
By completing this unit, students should have improved their ability to master key theories, identify and frame problems, organise knowledge, carry out individual and group research, and synthesise information. They should also have improved their information literacy skills, and communication skills through group presentations and individual research.
AGEC3101 Agribusiness Management

Credit points: 6 Teacher/Coordinator: Ms Lynn Henry Session: Semester 2 Classes: 2x1-hr lectures/week, 1x2-hr tutorial/week commencing week 2 Prerequisites: AGEC2103 or AGEC2003 or AGEC1006 Prohibitions: AGEC3103, AGEC3001 Assessment: 1x2hr exam (50%) and 1x50 min mid-semester exam (15%) and 1 assignment (25%) and workshop reports (10%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study is designed to introduce decision making problems encountered by firms and agribusiness firms and general methods of solving microeconomic decision making problems. It is unit of study that builds on knowledge gained in junior units of study in particular AGEC1006, AGEC2103 and AGEC2102. Students will review production economics and activity analysis and show how budgeting methods can be used to relate them. They will extend these budgeting techniques to problems of time and risk, using capital and parametric budgeting. Students will also be introduced to linear programming and show how this tool is a practical method of solving decision making problems. Students will learn to consider methods for solving decision making problems where the outcomes are not known with certainty. The students will gain skills through workshop based tasks, an assignment, information literacy and communication skills through the presentation of the workshop reports and discussion throughout the workshop.
Food Science
AGCH3025 Chemistry and Biochemistry of Foods

Credit points: 6 Teacher/Coordinator: Dr Thomas Roberts Prof Les Copeland, Session: Semester 1 Classes: 3x1-hr lectures/week, 1x4-hr practical fortnightly Prerequisites: AGCH2004 or BCHM2071 or BCHM2971 or BCHM2072 or BCHM2972 or PLNT2001 or PLNT2901 or 6 credit points of Intermediate units in Chemistry Assessment: 1x2hr exam (50%) and lab reports (50%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study aims to give students an understanding of the properties of food constituents, and the interactions between these constituents during food processing, storage and digestion. The unit will develop an understanding of the relationship between form and functionality of constituents and the concept of fitness-for-purpose (ie, quality) in converting agricultural products into foods. Students will gain an appreciation of the relationship between chemical composition and properties of macroconstituents (carbohydrates, proteins, lipids) and microconstituents (vitamins, minerals, antioxidants, flavour and anti-nutritional chemicals) and their functions in plant and animal based foods. The material presented in lectures and practical classes will enable students to develop research and inquiry skills and an analytical approach in understanding the biochemistry of foods, food processing and storage. On completing this unit, students will be able to describe the chemical and biochemical properties of major food constituents, and demonstrate an understanding of the functionality of these constituents in food processing and nutrition. Students will have gained experience in laboratory techniques used in industry for the analysis of some food products, and information literacy and communication skills from the preparation of practical reports.
Textbooks
Laboratory notes will be available for purchase from the Copy Centre in the first week of semester and lecture notes and readings will be made available through WebCT. There is no recommended textbook.
AGCH3026 Food Biotechnology

Credit points: 6 Teacher/Coordinator: Prof Les Copeland, Dr Thomas Roberts Session: Semester 1 Classes: 3x1-hr lectures/week, 1x4-hr practical fortnightly Prerequisites: AGCH2004 or BCHM2071 or BCHM2971 or BCHM2072 or BCHM2972 or PLNT2001 or PLNT2901 or 6 credit points of Intermediate units in Chemistry Assessment: Each module has a range of tasks that may include report writing, opinion writing, quizzes or exams. All four modules are worth 25% of the final assessment mark. (4x25%) Mode of delivery: Normal (lecture/lab/tutorial) Day
The use of biotechnology in food has its basis in the establishment of agriculture and food production. The growth and selection of superior crops and the production of fermented foods and beverages such as leavened bread, cheese and beer are all traditional examples of food biotechnology. More recently, food biotechnology has come to represent the use of molecular technology, including genetically modified organisms (GMO), in the production, processing and analysis of our food. At the completion of this unit students will be able to describe the role of both traditional and modern biotechnology in food science from examples presented in class and through their own research, as well as describing the science underpinning this aspect of food production.
This unit is divided into four discrete modules that address specific examples of food biotechnology used today. These modules cover enzyme technology, postharvest technologies for fruits and vegetables, GM foods, and processing of cereal grains (milling, baking and malting). Each of these modules will be assessed individually using a range of tasks that may include an end-of-module exam (covering lectures and practicals), opinion writing, report writing and poster presentations. These tasks are designed to develop graduate attributes such as research and inquiry; information literacy; personal and intellectual autonomy; ethical, social and professional understanding and communication. Each module will consist of lectures and a laboratory class that will illustrate practical aspects of food biotechnology. This unit is particularly valuable when taken in combination with AGCH3025 Chemistry and Biochemistry of Foods.
The structure and content of the modules is such that students will be at a considerable disadvantage if they do not attend the lectures, particularly the guest lectures. Students must complete all of the laboratory classes. Each module has an equal assessment weighting of 25% of the final mark. To complete the unit successfully, students must achieve at least a Pass grade in each module.
At the completion of this unit students will be able to describe the key theories and techniques used in food biotechnology using the examples discussed in lectures and laboratory classes; demonstrate an ability to correctly use key information sources about food biotechnology; propose well-researched and creative solutions to food biotechnology problems; construct their own views and opinions on the science of food biotechnology and, communicate aspects of food biotechnology to both the scientific and broader community.
Textbooks
Laboratory notes will be available for purchase from the Copy Centre in the first week of semester and lecture notes and readings will be made available through WebCT. There is no recommended textbook.
Agronomy
AGRO3004 Managing Agro-Ecosystems

Credit points: 6 Teacher/Coordinator: Prof Jeff Amthor (coordinator), Dr Lindsay Campbell, Dr Lachlan Ingram, Dr Daniel Tan, Dr Brett Whelan. Session: Semester 2 Classes: 1x 2hr lecture/wk; 1x 3hr tutorial/practical each week. Full-day practical at Camden campus during week 3 (no lecture or tutorial that week). Week 7 trip to national crops competition (optional). Prerequisites: AFNR1001, AFNR1002, PLNT2003, SOIL2003 and (BIOM2001 or ENVX2001) Assessment: 5x quizzes (30%), in-class crops competition test (20%), 1x 2hr exam (50%). Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study is designed to provide a solid introductory understanding of the biology and management of cropping systems, with a focus on major Australian broad acre crops. The course examines a typical crop cycle, with an emphasis on cereals, especially wheat. An overview of the main crops grown in Australia is presented. The relationship between crop growth and soil and aerial environments is discussed, and the importance of water and water-use efficiency is highlighted. The physiology of crops--including germination, photosynthesis, vegetative and reproductive growth and development, transpiration, photosynthate partitioning, and mineral nutrient acquisition and use--is studied as the basis of crop yield and production. Biological processes associated with seed (grain) development are described. Weed management, pasture management, and precision agriculture are discussed in theoretical and practical terms, and an introduction to crop adaptation and breeding is presented. Successful students will attain the ability to appreciate and analyze some of the most important limitations to crop yield and production in Australia and how those limitations can be minimized or overcome through science-based planning and management practices.
Textbooks
Recommended Reading; Connor DJ, Loomis RS, Cassman KG (2011) Crop Ecology: Productivity and Management in Agricultural Systems, 2nd Ed. Cambridge Univ Press, Cambridge.
Entomology
ENTO4003 Integrated Pest Management

Credit points: 6 Teacher/Coordinator: Dr Sarah Mansfield Session: Semester 2 Classes: 1x2hr lecture, 1x3hr practical/week, commencing week 1. Prerequisites: ENTO2001 or ENTO2002 or BIOL2017 or BIOL2917 (Note: BIOL2017/BIOL2917 are only for BSc students who elect to take this UoS) Assessment: 1x2hr exam (40%), 1xcase study (20%), 1xgroup assignment (20%), 1xinsect collection (20%). Mode of delivery: Normal (lecture/lab/tutorial) Day
The focus of this unit is the development and adoption of integrated pest management (IPM) within Australian agriculture. It builds on the knowledge gained in second year entomology (BScAgr and BHortSc) and is a core unit for the entomology specialty (BScAgr). Applied entomology deals with the control of insect pests and the use of beneficial insects. The biology of major pest (herbivores and disease vectors) and beneficial (predators, parasitoids, pollinators) insect groups is covered in depth. Students will compare the advantages and disadvantages of different pest control strategies and evaluate the importance of insect ecology, control methods and socio-economic factors to successful adoption of integrated pest management. Field trips will demonstrate the practical application of IPM concepts presented in lectures. Research, inquiry and information literacy skills will be improved through critical review of current literature and compilation of a case study. Students will practice their communication skills and develop personal and intellectual autonomy through a group project, in-class discussion and a self-directed insect collection.
Textbooks
Required: Bailey, PT (Ed.) 2007. Pests of field crops and pastures. CSIRO Publishing, Collingwood, Vic. 520 pp.
ENTO4004 Insect Taxonomy and Systematics

Credit points: 6 Teacher/Coordinator: Dr Sarah Mansfield Session: Semester 1 Classes: (1 x 2hr lecture, 1 x 3hr practical)/week, commencing week 1. Prerequisites: ENTO2001 or ENTO2002 or BIOL2017 or BIOL2917 (Note: BIOL2017/BIOL2917 are only for the BSc students who elect to take this unit of study) Assessment: 1 x 2hr exam (40%), 1x museum project (25%), 1 x insect collection (25%), 1 x class participation (10%). Mode of delivery: Normal (lecture/lab/tutorial) Day
Knowledge of the evolutionary relationships between insect groups contributes to our understanding of insect biology and correct taxonomic identification of insects is essential for all areas of entomological research, including pest management. This unit builds on the knowledge gained in second year entomology (BScAgr and BHortSc) and is a core unit for the entomology specialty (BScAgr). Key concepts that underpin the study of insect systematics, biogeography and phylogeny are described using examples from the evolutionary development of insects. The role of morphological, genetic and molecular studies in the classification of insects is examined. Students will demonstrate their knowledge of insect taxonomy through individual projects and assess the impact of evolutionary relationships among insect groups on modern agriculture. Research, inquiry and information literacy skills will be improved through a museum project and a self-directed insect collection. Students will practice their communication skills and develop personal and intellectual autonomy through in-class discussion of current literature.
Textbooks
Upton MS and Mantle BL, 2010. Methods for collecting, preserving and studying insects and other terrestrial arthropods, 5th edition. The Australian Entomological Society, Miscellaneous Publication No. 3.
Environmetrics
ENVX3002 Statistics in the Natural Sciences

Credit points: 6 Teacher/Coordinator: Dr Thomas Bishop, Dr Floris Van Ogtrop Session: Semester 1 Classes: 1×2 hr workshop/wk, 1×3 hr computer practical/wk Prerequisites: ENVX2001 or STAT2012 or STAT2912 or BIOL2022 or BIOL2922 Assessment: 3 assessment tasks (3x15%), practical exam (55%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study is designed to introduce students to the analysis of data they may face in their future careers, in particular data that are not well behaved, they may be non-normal, there may be missing observations or they may be correlated in space and time. In the first part, students will learn how to analyse and design experiments based on the general linear model. In the second part, they will learn about the generalisation of the general linear model to accommodate non-normal data with a particular emphasis on the binomial and poisson distributions. In the third part linear mixed models will be introduced which provide the means to analyse datasets that do not meet the assumptions of independent and equal errors. At the end of this unit, students will have learnt a range of advanced statistical methods and be equipped to apply this knowledge to analyse data that they may encounter in their future studies and careers. The students will gain research and inquiry skills through completion of assessment tasks. Information literacy and communication skills will be developed through weekly computer work.
Textbooks
No textbooks are recommended but useful reference books are:
Plant Pathology
BIOL3017 Fungi in the Environment

Credit points: 6 Teacher/Coordinator: A/Prof P McGee Session: Int February Classes: 40 hours of practicals in a two week intensive program held immediately prior to semester one (laboratory component each morning from 18 February to 1 March 2013), plus the equivalent of 30 hours self-guided study during the semester. Prerequisites: 12 credit points of Intermediate Biology or Plant Science, or 6 credit points of Intermediate Biology, or Plant Science, and 6 Intermediate credit points of either Microbiology or Geography. Prohibitions: BIOL3917 Assessment: Selected from 1x2 hr take home exam, laboratory component and written assignments (100%) Mode of delivery: Block Mode
Note: Dates: Monday 18th February to Friday 1st of March 2013.The completion of 6 credit points of MBLG units is highly recommended.Please note that this unit will not be available after 2013.
The unit is designed to develop understanding of fungal ecology in relation to environmental and rehabilitation biology, biological control of pests and pathogens, and soil microbiology. Emphasis will be placed on the function of fungi, and the benefit provided by fungi in symbiotic interactions with plants, including mycorrhizal fungi and endophytes. Physiological and ecological implications of the interactions will also be considered. Each student will design and implement a research project. Analytical thinking and research-led activity will be encouraged. Using broad scientific approaches, each student will gain the capacity to work cooperatively to find and analyse information from primary sources, develop approaches to test their understanding, and to present their work in a scientifically acceptable manner. Students will develop a deeper understanding of one area of fungal biology through independent study. Part of the learning material will be available on the internet
or
BIOL3917 Fungi in the Environment (Advanced)

Credit points: 6 Teacher/Coordinator: A/Prof P McGee Session: Int February Classes: 40 hours of practicals in a two week intensive program held immediately prior to semester one (laboratory component each morning from 18 February to 1 March 2013), plus the equivalent of 30 hours self-guided study during the semester. Prerequisites: Distinction average in 12 credit points of Intermediate Biology and Plant Science, or 6 credit points of Intermediate Biology, or Plant Science, and 6 Intermediate credit points of either Microbiology or Geography. Prohibitions: BIOL3017 Assessment: Selected from 1x2 hr take home exam, laboratory and written assignments (100%) Mode of delivery: Block Mode
Note: The completion of 6 credit points of MBLG units is highly recommended.Please note that this unit will not be available after 2013.
Qualified students will be encouraged to develop a research project under supervision. The content and nature of the research will be agreed on with the executive officer.
PPAT4004 Advanced Mycology and Plant Pathology

Credit points: 6 Teacher/Coordinator: Prof David Guest Session: Semester 1 Classes: (2 tut, 3 hrs prac)/wk Prerequisites: PPAT3003 Assessment: Two hour end of semester exam (70%), 1500-word review paper (30%). Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit investigates evolution, systematics, taxonomy and biology of fungi and their role as plant pathogens; plant disease epidemiology and understanding fungal populations; infection processes and plant defence. The unit is an elective for BScAgr, BHortSc and BSc students. It builds on the material introduced in PPAT3003 and BIOL3017. Undertaking this unit will develop skills in isolating and identifying plant pathogenic fungi, diagnosing plant diseases, designing, conducting and analysing experiments. At the completion of this unit, students will be able to exercise problem-solving skills (developed through practical experiments, projects and tutorial discussions), think critically, and organise knowledge (from consideration of the lecture material and preparation of project reports), and expand from theoretical principles to practical explanations (through observing and reporting on project work). Students will consolidate their teamworking skills, develop self-directed study skills and plan effective work schedules, use statistical analysis in research, keep appropriate records of laboratory research, work safely in a research laboratory and operate a range of scientific equipment. Students will gain research and inquiry skills through individual and group research projects, information literacy and communication skills through assessment tasks and personal and intellectual autonomy through working in groups.
Textbooks
Agrios GN. 2005. Plant Pathology 5th ed. Academic Press
PPAT4005 Soil Biology

Credit points: 6 Teacher/Coordinator: Prof David Guest Session: Semester 1 Classes: (2 tut, 3 hrs prac)/wk Prerequisites: MICR2024 or 6cp intermediate microbiology Assessment: Tutorial papers (30%), project proposal (10%), project report (50%), peer review (10%). Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit investigates the diversity of organisms living in the soil, their biology, interactions and ecology, and their roles in maintaining and improving soil function. The unit is an elective for BScAgr, BHortSc and BSc students. It builds on the material introduced in MICR2024, PPAT3003 and BIOL3017. Undertaking this unit will develop skills in monitoring soil microbes, designing, conducting and analysing experiments. At the completion of this unit, students will be able to exercise problem-solving skills (developed through practical experiments, projects and tutorial discussions), think critically, and organise knowledge (from consideration of the lecture material and preparation of project reports), and expand from theoretical principles to practical explanations (through observing and reporting on project work). Students will consolidate their teamworking skills, develop self-directed study skills and plan effective work schedules, use statistical analysis in research, keep appropriate records of laboratory research, work safely in a research laboratory and operate a range of scientific equipment. Students will gain research and inquiry skills through group research projects, information literacy and communication skills through assessment tasks and personal and intellectual autonomy through working in groups.
Textbooks
Sylvia et al. 2005. Principles and Applications of Soil Microbiology 2nd ed. Pearson.
Plant Sciences
PLNT3003 Systematics and Evolution of Plants

Credit points: 6 Teacher/Coordinator: A/Prof Murray Henwood Session: Semester 1 Classes: 2x1hr lectures/week, 1x3 hr practical/week, 2-day field-trip during semester. Prerequisites: 6 credit points of any Intermediate unit of study from BIOL, PLNT, LWSC, HORT, GEOS, GEOG, ENVI, SOIL. Prohibitions: PLNT3903 Assessment: 1x2 hr take-home exam (45%), oral presentation (5%), nomenclature exercise (15%), research project (35%). Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study introduces students to the practical aspects of Plant Systematics and Evolution. Students will gain a working knowledge of the general techniques and approaches used in Plant Systematics (including an understanding of plant taxonomy, phylogenetics and evolutionary processes). A range of data sources (nucleotide sequences and morphology) will be used to address questions concerning the evolution, classification and historical biogeography of various plant groups. A two-day field trip will provide tuition in plant identification and an opportunity to acquire skills in field-botany . This unit of study is recommended for students with an interest in the areas of: botany, plant science, horticulture, fungal biology (including plant pathology), environmental science, bioinformatics and ecology. It is often combined with units of study offered through the School of Biological Sciences and the Faculty of Agriculture, Food and Natural Resources.
Textbooks
Jud, WS, Campbell, CS, Kellog, EA, Stevens, PF and Donohuge, MJ. 2002. Plant Systematics: A Phylogenetic Approach.
or
PLNT3903 Systematics and Evolution of Plants Adv

Credit points: 6 Teacher/Coordinator: A/Prof Murray Henwood Session: Semester 1 Classes: 2x1hr lectures/week, 1x3 hr practical/week, 2-day field-trip during semester. Prerequisites: Distinction average in 6 credit points of any Intermediate unit of study from BIOL, PLNT, LWSC, HORT, GEOS, GEOG, ENVI, SOIL. These requirements may be varied and students with lower averages should consult the Unit Executive Officer. Prohibitions: PLNT3003 Assessment: 1x2 hr take-home exam (45%), oral presentation (5%), nomenclature exercise (15%), research project (35%). Mode of delivery: Normal (lecture/lab/tutorial) Day
Qualified students will participate in alternative components of PLNT3003 Systematics and Evolution of Plants. The content and nature of these components may vary from year to year.
Textbooks
Jud, WS, Campbell, CS, Kellog, EA, Stevens, PF and Donohuge, MJ. 2002. Plant Systematics: A Phylogenetic Approach.
Soil Science
SOIL2004 The Soil Resource

Credit points: 6 Teacher/Coordinator: A/Prof Stephen Cattle (Coordinator), Prof Alex McBratney, A/Prof Balwant Singh Session: Semester 2 Classes: (2x1 hr lec, 1x2hr pracs)/wk, 24 hr (5 days) field work out of semester time Assessment: Fieldtrip participation (5%), soil survey mapping report (30%), laboratory report and poster presentation (25%), three group tutorials (20%), viva voce exam (20%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit will familiarize students with the description and mapping of soil types in the Australian landscape, with common analytical methods for soil and with the various forms of degradation that may alter the quality and function of soil. It is an applied soil science unit which builds on the fundamental soil science concepts learned in the SOIL2003 unit. The first practical component of the unit, a five-day soil survey, will give students experience in soil description and classification in the field, and soil samples collected during this survey will be subsequently analysed for a variety of attributes by the students in laboratory practicals. In the lecture series, topics including soil type distribution, soil quality, soil function, soil fertility and soil degradation will be discussed and linked to practical sessions. By the end of this unit, students will be able to construct maps of soil properties and soil type distribution, describe primary soil functions, soil attributes and types of soil degradation in an agricultural context, and be able to recognize and communicate the ability of a soil profile to sustain plant growth. Students will gain research and inquiry skills by collecting, analyzing and interpreting soil survey data, and will gain communication skills by having to prepare and present a poster.
Textbooks
Brady NC & Weil RR. (2002) The Nature and Properties of Soils. 13th ed. (or any later edition) Prentice Hall, New Jersey.
SOIL3009 Contemporary Field and Lab Soil Science

Credit points: 6 Teacher/Coordinator: Prof Alex McBratney (coordinator), A/Prof Balwant Singh, A/Prof. Stephen Cattle, A/Prof Budiman Minasny Session: Semester 1 Classes: (2 lec, 2 prac)/wk, 6-day field excursion Prerequisites: SOIL2003 Assessment: 1 x viva voce exam (40%), pedology written assessments (15%), soil physics written assessments (15%), soil chemistry written assessments (15%), 1 x group presentation (5%), 1 x synthesis paper (10%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This is a theoretical and empirical unit providing specialised training in three important areas of contemporary soil science, namely pedology, soil chemistry and soil physics. The key concepts of these sub-disciplines will be outlined and strengthened by hands-on training in essential field and laboratory techniques. All of this is synthesized by placing it in the context of soil distribution and use in North-Western New South Wales. The unit is motivated by the teaching team's research in this locale. It builds on students existing soil science knowledge gained in SOIL2003. After completion of the unit, students should be able to articulate the advantages and disadvantages of current field & laboratory techniques for gathering necessary soil information, and simultaneously recognise key concepts and principles that guide contemporary thought in soil science. Students will be able to synthesise soil information from a multiplicity of sources and have an appreciation of the cutting edge areas of soil research. By investigating the contemporary nature of key concepts, students will develop their skills in research and inquiry. Students will develop their communication skills through report writing and oral presentations and will also articulate an openness to new ways of thinking which augments intellectual autonomy. Teamwork and collaborative efforts are encouraged in this unit.
Textbooks
D. Hillel. 2004. Introduction to Environmental Soil Physics. Elsevier Science, San Diego, CA, USA
SOIL3010 The Soil at Work

Credit points: 6 Teacher/Coordinator: Prof Alex McBratney (coordinator) A/Prof Balwant Singh, A/Prof. Stephen Cattle (facilitators) plus research-only academics Session: Semester 2 Classes: Problem-based unit: each student completes 2 problems; 4 x 3 hr workshops per problem (each student attends 8 workshops in total) Prerequisites: SOIL2003 or SOIL2004 Assessment: For each of two scenarios: Statement of the problem report (2x12.5%) - shared info, but two team reports; How to tackle problem seminar (2x12.5%) - team seminars, before fieldwork, analyses done; Results seminar (2x12.5%) - team seminars; Final report (2x12.5%) - individual work. Mode of delivery: Normal (lecture/lab/tutorial) Day
This is a problem-based applied soil science unit. It is designed to allow students to identify soil-related problems in the real-world and by working in a group and with an end-user to suggest short and long-term solutions to such problems. This is a core unit for students majoring or specializing in soil science and an elective unit for those wishing to gain an understanding of environmental problem-solving. It utilises and reinforces soil-science knowledge gained in SOIL2003 and/or SOIL2004 and problem-solving skills gained during the degree program. This unit will address real-world scenarios which involve soil-related problems such as carbon management, structural decline, acidification, salinisation and contamination. Students will gain some understanding of the concept of sustainability, and will be able to identify the causes of problems by reference to the literature, discussion with landusers and by the design and execution of key experiments and surveys. They will gain a focused knowledge of the key soil drivers to environmental problems and will have some understanding on the constraints surrounding potential solutions. By designing and administering strategies to tackle real-world soil issues students will develop their research and inquiry skills and enhance their intellectual autonomy. By producing reports and seminars that enables understanding by an end-user students will improve the breadth of their communication skills.
Textbooks
I.W.Heathcote 1997. Environmental Problem Solving: A Case Study Approach. McGraw-Hill, New York, NY, USA.