University of Sydney Handbooks - 2014 Archive

Download full 2014 archive Page archived at: Fri, 04 Apr 2014 13:43:56 +1100

Biochemistry

Biochemistry

BCHM2071 Protein Biochemistry

Credit points: 6 Teacher/Coordinator: Dr Sashi Kant Session: Semester 2 Classes: Two 1-hour lectures per week, one 1-hour tutorial and seven 3-4-hour practical session per semester Prerequisites: (MBLG1001 or MBLG1901) and 12 credit points of Junior Chemistry Prohibitions: BCHM2971 Assumed knowledge: CHEM1101 and CHEM1102 Assessment: One 2.5-hour theory and theory of practical exam (65%), two one hour in-semester quizzes(15%), practical assignments and laboratory book reports (20%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Recommended concurrent units of study: MBLG2071 and BCHM2072 for progression to Senior Biochemistry.
This unit of study introduces biochemistry by describing the physical and chemical activities of proteins and their functions in cells. The details of protein interactions with other cellular components are presented and the relationship of protein structure and function is discussed. Techniques in protein chemistry and analysis, including proteomics are introduced together with key experiments which reveal the physical basis of the functioning of proteins. This course builds on the protein science presented in MBLG1001 and is ideally suited to students studying intermediate Chemistry, Pharmacology, Cell Biology, Immunology or Physiology together with Biochemistry. The practical course will nurture technical skills in biochemistry and will include protein preparation, the analysis of protein structure and enzymatic assays.
Textbooks
Lehninger Principles of Biochemistry, 6th edition, by Nelson and Cox Resources Manual for Biochemistry 2 Practical Sessions, Sem 2.
BCHM2971 Protein Biochemistry (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Sashi Kant Session: Semester 2 Classes: Two 1-hour lectures per week, one 1-hour tutorial and seven 3- 4-hour practical per semester Prerequisites: (Distinction in (MBLG1001 or MBLG1901) and 12 credit points of Junior Chemistry Prohibitions: BCHM2071 Assessment: One 2.5-hour theory and theory of practical exam (65%), two one hour in-semester quizzes(15%), practical assignments and laboratory book reports (20%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Recommended concurrent units of study: (MBLG2071 or MBLG2971) and (BCHM2072 or BCHM2972) for progression to Senior Biochemistry.
This advanced unit of study introduces biochemistry by describing the physical and chemical activities of proteins and their functions in cells. The details of protein interactions with other cellular components are presented and the relationship of protein structure and function is discussed. Techniques in protein chemistry and analysis, including proteomics are discussed together with key experiments which reveal the physical basis of the functioning of proteins. This course builds on the protein science presented in MBLG1X01 and is ideally suited to students studying Intermediate Chemistry, Pharmacology, Cell Biology, Immunology or Physiology together with Biochemistry. The advanced practical course will nurture technical skills in protein biochemistry and will include protein preparation, the interpretation of protein structure, enzymatic assays and biochemical analysis.
Textbooks
Lehninger Principles of Biochemistry, 6th edition, by Nelson and Cox Resources Manual for Biochemistry 2 Practical Sessions, Sem 2
BCHM2072 Human Biochemistry

Credit points: 6 Teacher/Coordinator: A/Prof Gareth Denyer Session: Semester 1 Classes: Two lectures per week, one tutorial per fortnight, and 2-3 hours per week of practical Prerequisites: (MBLG1001 or MBLG1901) and 12 credit points of Junior Chemistry Prohibitions: BCHM2972. All intermediate BMED units. Assessment: One 3-hour exam (65%), practical work (25%), in semester assignments (10%). Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: This unit is not available to BMedSc students. Recommended concurrent units of study: (MBLG2071 or MBLG2971) and BCHM2071 for progression to Senior Biochemistry.
This unit of study aims to describe how cells work at the molecular level, with a special emphasis on human biochemistry. The chemical reactions that occur inside cells are described in the first series of lectures, Cellular Metabolism. Aspects of the molecular architecture of cells that enable them to transduce messages and communicate with each other are described in the second half of the unit of study, Signal Transduction. At every stage there is emphasis on the 'whole body' consequences of reactions, pathways and processes. Cellular Metabolism describes how cells extract energy from fuel molecules like fatty acids and carbohydrates, how the body controls the rate of fuel utilisation and how the mix of fuels is regulated (especially under different physiological circumstances such as starvation and exercise). The metabolic inter-relationships of the muscle, brain, adipose tissue and liver and the role of hormones in coordinating tissue metabolic relationships is discussed. The unit also discusses how the body lays down and stores vital fuel reserves such as fat and glycogen, how hormones modulate fuel partitioning between tissues and the strategies involved in digestion and absorption and transport of nutrients. Signal Transduction covers how communication across membranes occurs (i.e. via surface receptors and signaling cascades). This allows detailed molecular discussion of the mechanism of hormone action and intracellular process targeting. The practical component complements the lectures by exposing students to experiments that investigate the measurement of glucose utilisation using radioactive tracers and the design of biochemical assay systems. During the unit of study, generic skills are nurtured by frequent use of analytical and problem solving activities. Opportunities are provided to redesign and repeat experiments so as to provide a genuine research experience. Student exposure to generic skills will be extended by the introduction of exercises designed to teach oral communication, instruction writing and planning skills.
BCHM2972 Human Biochemistry (Advanced)

Credit points: 6 Teacher/Coordinator: A/Prof Gareth Denyer Session: Semester 1 Classes: Two lectures per week, one tutorial per fortnight, and 2-3 hours per week of practical. Prerequisites: (Distinction in (MBLG1001 or MBLG1901) and 12 credit points of Junior Chemistry Prohibitions: BCHM2072. All intermediate BMED units. Assessment: One 3-hour exam (65%), practical work (25%), in semester assignments (10%). Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: This unit is not available to BMedSc students. Recommended concurrent units of study: (MBLG2071 or MBLG2971) and (BCHM2071 or BCHM2971) for progression to Senior Biochemistry.
This advanced unit aims to describe how cells work at the molecular level, with a special emphasis on human biochemistry. The chemical reactions that occur inside cells are described in the first series of lectures, Cellular Metabolism. Aspects of the molecular architecture of cells that enable them to transduce messages and communicate with each other are described in the second half of the unit of study, Signal Transduction. At every stage there is emphasis on the 'whole body' consequences of reactions, pathways and processes. Cellular Metabolism describes how cells extract energy from fuel molecules like fatty acids and carbohydrates, how the body controls the rate of fuel utilization and how the mix of fuels is regulated (especially under different physiological circumstances such as starvation and exercise). The metabolic inter-relationships of the muscle, brain, adipose tissue and liver and the role of hormones in coordinating tissue metabolic relationships is discussed. The unit also discusses how the body lays down and stores vital fuel reserves such as fat and glycogen, how hormones modulate fuel partitioning between tissues and the strategies involved in digestion and absorption and transport of nutrients. Signal Transduction covers how communication across membranes occurs (i.e., via surface receptors and signaling cascades). This allows detailed molecular discussion of the mechanism of hormone action and intracellular process targeting. The practical component complements the lectures by exposing students to experiments that investigate the measurement of glucose utilisation using radioactive tracers and the design of biochemical assay systems. During the unit of study, generic skills are nurtured by frequent use of analytical and problem solving activities. Opportunities are provided to redesign and repeat experiments so as to provide a genuine research experience. Student exposure to generic skills will be extended by the introduction of exercise designed to teach oral communication, instruction writing and planning skills.
The differences between the advanced and regular versions of this Unit of Study is in the in-semester assignments and some of the practical sessions.
MBLG2071 Molecular Biology and Genomics

Credit points: 6 Teacher/Coordinator: Ms Vanessa Gysbers Session: Semester 1 Classes: Two 1-hour lectures per week, one 4-hour practical per fortnight and five 1-hour tutorials. Prerequisites: (MBLG1001 or MBLG1901) and 12 CP of Junior Chemistry Prohibitions: MBLG2971 Assessment: One 2.5-hour exam, practical work, laboratory reports (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Recommended concurrent units of study: (BCHM2071 or BCHM2971) and (BCHM2072 or BCHM2972) for progression to Senior Biochemistry.
This unit of study extends the basic concepts introduced in MBLG1001/1901 and provides a firm foundation for students wishing to continue in the molecular biosciences as well as for those students who intend to apply molecular techniques to other biological or medical questions. The unit explores the regulation of the flow of genetic information in both eukaryotes and prokaryotes. The central focus is on the control of replication, transcription and translation and how these processes can be studied and manipulated in the laboratory. The processes of DNA mutation and repair are also discussed. Experiments in model organisms are presented to illustrate current advancements in the field, together with discussion of work carried out in human systems and the relevance to human genetic diseases. Tools of molecular biology are taught within the context of recombinant DNA cloning - with an emphasis on essential knowledge required to use plasmid vectors. The methods of gene introduction (examples of transgenic animals) are also discussed along with recent developments in stem cell biology. Other techniques include the separation and analysis of macromolecules, like DNA, RNA and proteins, by gel electrophoresis and Southern, Northern & Western blotting. Analysis of gene expression by microarrays is also discussed. In the genomics section, topics include structure, packaging and complexity of the genome: assigning genes to specific chromosomes, physical mapping of genomes as well as DNA and genome sequencing methods and international projects in genome mapping. The practical course complements the theory and builds on the skills learnt in MBLG1001. Specifically students will: use spectrophotometry for the identification and quantification of nucleic acids, explore the lac operon system for the investigation of gene expression control, perform plasmid isolation, and complete a PCR analysis for detection of polymorphisms. As with MBLG1001, strong emphasis is placed on the acquisition of generic and fundamental technical skills.
Textbooks
Watson, J et al. Molecular Biology of the Gene. Pearson 7th edition, 2013.
MBLG2971 Molecular Biology and Genomics (Adv)

Credit points: 6 Teacher/Coordinator: Vanessa Gysbers Session: Semester 1 Classes: Two 1-hour lectures per week; one 4-hour practical per fortnight and five 1-hour tutorials. Prerequisites: (Distinction in either (MBLG1001 or MBLG901) and 12 credit points of Junior Chemistry Prohibitions: MBLG2071 Assessment: One 2.5-hour exam, practical work, laboratory reports (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
Extension of concepts presented in MBLG2071 which will be taught in the context of practical laboratory experiments.
Textbooks
Watson, J et al. Molecular Biology of the Gene. Pearson 7th edition, 2013.
MBLG2072 Genetics and Genomics

Credit points: 6 Teacher/Coordinator: Dr Penny Smith Session: Semester 2 Classes: Two 1-hour lectures per week, one 2-3 hour practical per week, one tutorial every second week. Prerequisites: 6cp of Junior Biology and (one of MBLG1001 and MBLG1901) and 6cp of Junior Chemistry Prohibitions: MBLG2972 Assumed knowledge: 12cp of Junior Chemistry Assessment: One 2 hour exam (50%), laboratory reports and quizzes (50%). Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: For students planning a Molecular Biology and Genetics major, 12cp of Junior Chemistry is required.
This unit of study brings together traditional genetic analysis and modern molecular biology to study genetics of all life forms from humans and other complex multicellular organisms through to single celled organisms such as bacteria. Students will be introduced to complex modes of Mendelian inheritance, including those involved in human diseases. The molecular basis for different patterns of inheritance will be discussed. The interaction of genes and gene products will be illustrated by the examination of the molecular genetics of development. The application of genomics to the study of genetic variation, molecular evolution and gene function in humans and model organisms will also be described. In the practical sessions students will investigate the genetics of a variety of prokaryotic and eukaryotic organisms in order to illustrate concepts covered in the lecture material. Students will develop familiarity and competence with equipment used in molecular genetic analysis, bioinformatics, microscopy and statistical tests. This unit of study provides a suitable foundation for senior biology units of study, which can lead to a major in Biology, and successful completion of this unit of study is required in order to progress in the Molecular Biology and Genetics major.
MBLG2972 Genetics and Genomics (Adv)

Credit points: 6 Teacher/Coordinator: Dr Penny Smith Session: Semester 2 Classes: Two 1-hour lectures per week, one 2-3 hour practical per week, one tutorial every second week. Prerequisites: Distinction average across 6cp of Junior Biology, 6cp of (MBLG1001 or MBLG1901) and 6cp of Junior Chemistry. Prohibitions: MBLG2072 Assumed knowledge: 12cp of Junior Chemistry Assessment: One 2-hour exam (50%), laboratory reports and quizzes (50%). Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: For students planning for a Molecular Biology and Genetics major, 12cp of Junior Chemistry is required.
The content of MBLG2972 will be based on MBLG2072 but qualified students will participate in alternative components at a more advanced level. The content and nature of these components may vary from year to year but includes a practical project in the laboratory to improve molecular biology skills
BCHM3071 Molecular Biology & Biochemistry- Genes

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, Prof Iain Campbell. Session: Semester 1 Classes: Two 1-hour lectures per week and one 6-hour practical per fortnight. Prerequisites: (MBLG 1001/1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972). For BMedSc: (18 credit points of BMED including BMED2401, BMED2405 and one of MBLG2071/2971 or BCHM2071/2971) or (BMED2801 and BMED2802 and BMED2804). Prohibitions: BCHM3971 Assessment: One 2.5-hour exam, practical work (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study is designed to provide a comprehensive coverage of the activity of genes in living organisms, with a focus on eukaryotic and particularly human systems. The lecture component covers the arrangement and structure of genes, how genes are expressed, promoter activity and enhancer action. This leads into discussions on the biochemical basis of differentiation of eukaryotic cells, the molecular basis of imprinting, epigenetics, and the role of RNA in gene expression. Additionally, the course discusses the effects of damage to the genome and mechanisms of DNA repair. The modern techniques for manipulating and analysing macromolecules such as DNA and proteins and their relevance to medical and biotechnological applications are discussed. Techniques such as the generation of gene knockout and transgenic mice are discussed as well as genomic methods of analysing gene expression patterns. Particular emphasis is placed on how modern molecular biology and biochemical methods have led to our current understanding of the structure and functions of genes within the human genome. The practical course is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in molecular biology laboratories.
Textbooks
Lewin, B. Genes X. 10th edition. Jones & Bartlett. 2011.
BCHM3971 Molecular Biology & Biochem- Genes (Adv)

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, Prof Iain Campbell. Session: Semester 1 Classes: Two 1-hour lectures per week and one 6-hour practical per fortnight. Prerequisites: (MBLG1001/1901) and Distinction in 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972). For BMedSc: (18 credit points of BMED including BMED2401 and Distinction in BMED2405 and one of MBLG2071/2971 or BCHM2071/2971) or (Distinction average in BMED2801 and BMED2802 and BMED2804) Prohibitions: BCHM3071 Assessment: One 2.5-hour exam, practical work (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study is designed to provide a comprehensive coverage of the activity of genes in living organisms, with a focus on eukaryotic and particularly human systems. The lecture component covers the arrangement and structure of genes, how genes are expressed, promoter activity and enhancer action. This leads into discussions on the biochemical basis of differentiation of eukaryotic cells, the molecular basis of imprinting, epigenetics, and the role of RNA in gene expression. Additionally, the course discusses the effects of damage to the genome and mechanisms of DNA repair. The modern techniques for manipulating and analysing macromolecules such as DNA and proteins and their relevance to medical and biotechnological applications are discussed. Techniques such as the generation of gene knockout and transgenic mice are discussed as well as genomic methods of analysing gene expression patterns. Particular emphasis is placed on how modern molecular biology and biochemical methods have led to our current understanding of the structure and functions of genes within the human genome. The practical course is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in molecular biology laboratories.
The lecture component of this unit of study is the same as BCHM3071. Qualified students will attend seminars/practical classes in which more sophisticated topics in gene expression and manipulation will be covered.
Textbooks
Lewin, B. Genes X. 10th edition. Jones & Bartlett. 2011.
BCHM3081 Mol Biology & Biochemistry- Proteins

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, Prof Joel Mackay Session: Semester 1 Classes: Two 2 hour lectures per week and one 6 hour practical per fortnight. Prerequisites: (MBLG1001/1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972). For BMedSc: (18 credit points of BMED including BMED2401 and BMED2405 and one of MBLG2071/2971 or BCHM2071/2971) or (BMED2801 and BMED2802 and BMED2804). Prohibitions: BCHM3981 Assessment: One 2.5 hour exam, practical work (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study is designed to provide a comprehensive coverage of the functions of proteins in living organisms, with a focus on eukaryotic and particularly human systems. Its lecture component deals with how proteins adopt their biologically active forms, including discussions of protein structure, protein folding and how recombinant DNA technology can be used to design novel proteins with potential medical or biotechnology applications. Particular emphasis is placed on how modern molecular biology and biochemical methods have led to our current understanding of the structure and functions of proteins. It also covers physiologically and medically important aspects of proteins in living systems, including the roles of chaperones in protein folding inside cells, the pathological consequences of misfolding of proteins, how proteins are sorted to different cellular compartments and how the biological activities of proteins can be controlled by regulated protein degradation. The practical course is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in molecular biology and protein biochemistry laboratories.
Textbooks
Williamson M. How Proteins Work. Garland. 2011.
BCHM3981 Mol Biology & Biochemistry- Proteins Adv

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, Prof Joel Mackay Session: Semester 1 Classes: Two 1-hour lectures per week and one 6-hour practical per fortnight. Prerequisites: (MBLG1001/1901) and Distinction in 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972). For BMedSc: (18 credit points of BMED including BMED2401 and Distinction in BMED2405 and one of MBLG2071/2971 or BCHM2071/2971) or (Distinction average in BMED2801 and BMED2802 and BMED2804). Prohibitions: BCHM3081 Assessment: One 2.5-hour exam, practical work (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study is designed to provide a comprehensive coverage of the functions of proteins in living organisms, with a focus on eukaryotic and particularly human systems. Its lecture component deals with how proteins adopt their biologically active forms, including discussions of protein structure, protein folding and how recombinant DNA technology can be used to design novel proteins with potential medical or biotechnology applications. Particular emphasis is placed on how modern molecular biology and biochemical methods have led to our current understanding of the structure and functions of proteins. It also covers physiologically and medically important aspects of proteins in living systems, including the roles of chaperones in protein folding inside cells, the pathological consequences of misfolding of proteins, how proteins are sorted to different cellular compartments and how the biological activities of proteins can be controlled by regulated protein degradation. The practical course is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in molecular biology and protein biochemistry laboratories.
The lecture component of this unit of study is the same as BCHM3081. Qualified students will attend seminars/practical classes in which more sophisticated topics in protein biochemistry will be covered.
Textbooks
Williamson M. How Proteins Work. Garland. 2011.
BCHM3072 Human Molecular Cell Biology

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, Prof Iain Campbell Session: Semester 2 Classes: Two 1-hour lectures per week and one 6-hour practical per fortnight. Prerequisites: (MBLG1001/1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972). For BMedSc: (18 credit points of BMED including BMED2401 and BMED2405 and one of MBLG2071/2971 or BCHM2071/2971) or (BMED2801 and BMED2802 and 2804) Prohibitions: BCHM3972 Assessment: One 2.5-hour exam, practical work (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study will explore the responses of cells to changes in their environment in both health and disease. The lecture course consists of four integrated modules. The first will provide an overview of the role of signalling mechanisms in the control of human cell biology and then focus on cell surface receptors and the downstream signal transduction events that they initiate. The second will examine how cells detect and respond to pathogenic molecular patterns displayed by infectious agents and injured cells by discussing the roles of relevant cell surface receptors, cytokines and signal transduction pathways. The third and fourth will focus on the life, death and differentiation of human cells in response to intra-cellular and extra-cellular signals by discussing the eukaryotic cell cycle under normal and pathological circumstances and programmed cell death in response to abnormal extra-cellular and intra-cellular signals. In all modules emphasis will be placed on the molecular processes involved in human cell biology, how modern molecular and cell biology methods have led to our current understanding of them and the implications of them for pathologies such as cancer. The practical component is designed to complement the lecture course, providing students with experience in a wide range of techniques used in modern molecular cell biology.
Textbooks
Alberts, B. et al. Molecular Biology of the Cell. 5th edition. Garland Science. 2008.
BCHM3972 Human Molecular Cell Biology (Advanced)

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, Prof Iain Campbell Session: Semester 2 Classes: Two 1-hour lectures per week and one 6-hour practical per fortnight. Prerequisites: (MBLG1001/1901) and Distinction in 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972). For BMedSc: (18 credit points of BMED including BMED2401 and Distinction in BMED2405 and one of MBLG2071/2971 or BCHM2071/2971) or (Distinction average in BMED2801 and BMED2802 and BMED2804). Prohibitions: BCHM3072 Assessment: One 2.5-hour exam, practical work (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study will explore the responses of cells to changes in their environment in both health and disease. The lecture course consists of four integrated modules. The first will provide an overview of the role of signalling mechanisms in the control of human cell biology and then focus on cell surface receptors and the downstream signal transduction events that they initiate. The second will examine how cells detect and respond to pathogenic molecular patterns displayed by infectious agents and injured cells by discussing the roles of relevant cell surface receptors, cytokines and signal transduction pathways. The third and fourth will focus on the life, death and differentiation of human cells in response to intra-cellular and extra-cellular signals by discussing the eukaryotic cell cycle under normal and pathological circumstances and programmed cell death in response to abnormal extra-cellular and intra-cellular signals. In all modules emphasis will be placed on the molecular processes involved in human cell biology, how modern molecular and cell biology methods have led to our current understanding of them and the implications of them for pathologies such as cancer. The practical component is designed to complement the lecture course, providing students with experience in a wide range of techniques used in modern molecular cell biology.
The lecture component of this unit of study is the same as BCHM3072. Qualified students will attend seminars/practical classes in which more sophisticated topics in modern molecular cell biology will be covered.
Textbooks
Alberts, B. et al. Molecular Biology of the Cell. 5th edition. Garland Science. 2008.
BCHM3082 Medical and Metabolic Biochemistry

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, A/Prof Gareth Denyer Session: Semester 2 Classes: Two 1-hour lectures per week and one 6-hour practical per fortnight. Prerequisites: (MBLG1001/1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972). For BMedSc: (18 credit points of BMED including BMED2401 and BMED2405 and one of MBLG2071/2971 or BCHM2071/2971) or (BMED2801 and BMED2802 and BMED2804). Prohibitions: BCHM3982 Assessment: One 2.5-hour exam, practical work (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study will explore the biochemical processes involved in the operation of cells and how they are integrated in tissues and in the whole human body in normal and diseased states. These concepts will be illustrated by considering whole-body aspects of energy utilisation, fat and glycogen storage and their regulation under normal conditions compared to obesity and diabetes. Key concepts that will be discussed include energy balance, regulation of metabolic rate, control of food intake, tissue interactions in fuel selection, the role of adipose tissue and transport of fuel molecules from storage organs and into cells. Particular emphasis will be placed on how the modern concepts of metabolomics, coupled with molecular biology methods and studies of the structure and function of enzymes, have led to our current understanding of how metabolic processes are normally integrated and how they become deranged in disease states. The practical component is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in modern medical and metabolic biochemistry.
Textbooks
Devlin T Textbook of Biochemistry With Clinical Correlations 7th edition. Wiley 2011.
BCHM3982 Medical and Metabolic Biochemistry (Adv)

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, A/Prof Gareth Denyer Session: Semester 2 Classes: Two 1-hour lectures per week and one 6-hour practical per fortnight. Prerequisites: (MBLG1001/1901) and Distinction in 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972). For BMedSc: (18 credit points of BMED including BMED2401 and Distinction in BMED2405 and one of MBLG2071/2971 or BCHM2071/2971) or (Distinction average in BMED2801 and BMED2802 and BMED2804) Prohibitions: BCHM3082 Assessment: One 2.5-hour exam, practical work (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study will explore the biochemical processes involved in the operation of cells and how they are integrated in tissues and in the whole human body in normal and diseased states. These concepts will be illustrated by considering whole-body aspects of energy utilisation, fat and glycogen storage and their regulation under normal conditions compared to obesity and diabetes. Key concepts that will be discussed include energy balance, regulation of metabolic rate, control of food intake, tissue interactions in fuel selection, the role of adipose tissue and transport of fuel molecules from storage organs and into cells. Particular emphasis will be placed on how the modern concepts of metabolomics, coupled with new methods, including magnetic resonance techniques and molecular biology methods, as well as studies of the structure and function of enzymes, have led to our current understanding of how metabolic processes are normally integrated and how they become deranged in disease states. The practical component is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in modern medical and metabolic biochemistry. Qualified students will attend some lectures/practical classes in common with BCHM3082 and some separate lectures/ practical classes in which more sophisticated topics in metabolic biochemistry will be covered.
Textbooks
Devlin T Textbook of Biochemistry With Clinical Correlations 7th edition. Wiley 2011.
BCHM3092 Proteomics and Functional Genomics

Credit points: 6 Teacher/Coordinator: A/Prof Stuart Cordwell, Mrs Jill Johnston Session: Semester 2 Classes: Two 1-hour lectures per week and one 3-hour practical per week. Prerequisites: (MBLG1001/1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972). For BMedSc: (18 credit points of BMED including BMED2401 and BMED2405 and one of MBLG2071/2971 or BCHM2071/2971) or (BMED2801 and BMED2802 and BMED2804). Prohibitions: BCHM3992 Assessment: One 2.5-hour exam, practical work (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study will focus on the high throughput methods for the analysis of gene structure and function (genomics) and the analysis of proteins (proteomics), which are at the forefront of discovery in the biomedical sciences. The course will concentrate on the hierarchy of gene-protein-structure-function through an examination of modern technologies built on the concepts of genomics versus molecular biology, and proteomics versus biochemistry. Technologies to be examined include DNA sequencing, nucleic acid and protein microarrays, two-dimensional gel electrophoresis of proteins, uses of mass spectrometry for high throughput protein identification, isotope tagging for quantitative proteomics, high-performance liquid chromatography, high-throughput functional assays, affinity chromatography and modern methods for database analysis. Particular emphasis will be placed on how these technologies can provide insight into the molecular basis of changes in cellular function under both physiological and pathological conditions as well as how they can be applied to biotechnology for the discovery of biomarkers, diagnostics, and therapeutics. The practical component is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in proteomics and genomics.
Textbooks
Kraj A and Silberring J Proteomics Introduction to Methods and Applications Wiley 2008
BCHM3992 Proteomics and Functional Genomics (Adv)

Credit points: 6 Teacher/Coordinator: A/Prof Stuart Cordwell, Mrs Jill Johnston Session: Semester 2 Classes: Two 1-hour lectures per week and one 3-hour practical per fortnight. Prerequisites: (MBLG1001/1901) and Distinction in 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972). For BMedSc: (18 credit points of BMED including BMED2401 and Distinction in BMED2405 and one of MBLG2071/2971 or BCHM2071/2971) or (Distinction average in BMED2801 and BMED2802 and BMED2804). Prohibitions: BCHM3092 Assessment: One 2.5-hour exam, practical work (100%) Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study will focus on the high throughput methods for the analysis of gene structure and function (genomics) and the analysis of proteins (proteomics) which are at the forefront of discovery in the biomedical sciences. The course will concentrate on the hierarchy of gene-protein-structure-function through an examination of modern technologies built on the concepts of genomics versus molecular biology, and proteomics versus biochemistry. Technologies to be examined include DNA sequencing, nucleic acid and protein microarrays, two-dimensional gel electrophoresis of proteins, uses of mass spectrometry for high throughput protein identification, isotope tagging for quantitative proteomics, high-performance liquid chromatography, high-throughput functional assays, affinity chromatography and modern methods for database analysis. Particular emphasis will be placed on how these technologies can provide insight into the molecular basis of changes in cellular function under both physiological and pathological conditions as well as how they can be applied to biotechnology for the discovery of biomarkers, diagnostics, and therapeutics. The practical component is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in proteomics and genomics.
The lecture component of this unit of study is the same as BCHM3092. Qualified students will attend seminars/practical classes in which more sophisticated topics in proteomics and genomics will be covered.
Textbooks
Kraj A and Silberring J Proteomics Introduction to Methods and Applications Wiley 2008