University of Sydney Handbooks - 2016 Archive

Download full 2016 archive Page archived at: Fri, 13 May 2016 14:40:30 +1000

Unit of study descriptions

Graduate Diploma in Computing

Candidates for the Graduate Diploma in Computing are required to complete 60 credit points of the units of study from the table below, as follows:
1. a maximum of 24 credit points of the Foundation units of study
2. a minimum of 36 credit points of the Information Technology or Information Technology Management Specialist units of study.

Foundation Units

Candidates for the Graduate Diploma in Computing complete a maximum of four Foundation units of study (24 credit points) out of the units listed. Candidates need to complete relevant Foundation units or provide evidence of prior learning before undertaking any Specialist unit(s). This will be assessed by either completion of prerequisite learning in the Foundation units or evidence from prior learning that fulfils the assumed knowledge criteria for the Specialist unit(s) chosen.
COMP9007 Algorithms

Credit points: 6 Teacher/Coordinator: Dr Anastasios Viglas Session: Semester 1,Semester 2 Classes: One 2 hour lectures and one 1 hour tutorial per week. Prohibitions: COMP5211 Assumed knowledge: This unit of study assumes that students have general knowledge of mathematics (especially Discrete Math) and problem solving. Having moderate knowledge about Data structure can also help students to better understand the concepts of Algorithms will be taught in this course. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Block mode
The study of algorithms is a fundamental aspect of computing. This unit of study covers data structures, algorithms, and gives an overview of the main ways of computational thinking from simple list manipulation and data format conversion, up to shortest paths and cycle detection in graphs. Students will gain essential knowledge in computer science, including basic concepts in data structures, algorithms, and intractability, using paradigms such as dynamic programming, divide and conquer, greed, local search, and randomisation, as well NP-hardness.
Textbooks
Jon Kleinberg and Eva Tardos/Algorithm Design/United States edition/2006/978-032129535-8//
COMP9103 Software Development in Java

Credit points: 6 Teacher/Coordinator: Dr Xiu Ying Wang, Prof David Feng Session: Semester 1,Semester 2 Classes: Lecture: 2 hours per week; Laboratory: 1 hours per week Prohibitions: COMP5214 Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
Programming in a legible, maintainable, reusable way is essential to solve complex problems in the pervasive computing environments. This unit will equip students with foundation of programming concepts that are common to widely used programming languages. Students will be progressively guided in this introductory unit from necessary and important building blocks of programming to the object-oriented approach. Java, one of the most popular programming languages, is used in this unit. It provides interdisciplinary approaches, applications and examples to support students from broad backgrounds such as science, engineering, and mathematics.
Textbooks
Cay S. Horsmann/Java Concepts/5th/978-0-470-10555-9//
COMP9110 System Analysis and Modelling

Credit points: 6 Teacher/Coordinator: Dr Vera Chung Session: Semester 1,Semester 2 Classes: Lecture: 2 hours per week; Tutorial: 1 hours per week Prohibitions: : ELEC3610 OR ELEC5743 OR INFO2110 OR INFO5001 Assumed knowledge: Experience with a data model as in COMP9129 or COMP9103 or INFO9220 or INFO9120 or COMP5212 or COMP5214 or COMP5028 or COMP5138 Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit provides a comprehensive introduction to the analysis of complex systems. Key topics are the determination and expression of system requirements (both functional and on-functional), and the representation of structural and behavioural models of the system in UML notations. Students will be expected to evaluate requirements documents and models as well as producing them. This unit covers essential topics from the ACM/IEEE SE2004 curriculum, especially from MAA Software Modelling and Analysis. Note: The lectures of this unit are co-taught with INFO2110.
Textbooks
Dennis, A., Wixom, B.H., and Tegarden, D./System Analysis & Design with UML Version 2/5th/2015//
COMP9120 Database Management Systems

Credit points: 6 Teacher/Coordinator: A/Prof Uwe Roehm, Prof Sanjay Chawla Session: Semester 1,Semester 2 Classes: One 2 hour lecture and one 2 hour tutorial per week. Prohibitions: INFO2120 OR INFO2820 OR INFO2005 OR INFO2905 OR COMP5138. Students who have previously studied an introductory database subject as part of their undergraduate degree should not enrol in this foundational unit, as it covers the same foundational content. Assumed knowledge: Some exposure to programming and some familiarity with data model concepts Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study provides a conceptual and practical introduction to the use of common platforms that manage large relational databases. Students will understand the foundations of database management and enhance their theoretical and practical knowledge of the widespread relational database systems, as these are used for both operational (OLTP) and decision-support (OLAP) purposes. The unit covers the main aspects of SQL, the industry-standard database query language. Students will further develop the ability to create robust relational database designs by studying conceptual modelling, relational design and normalization theory. This unit also covers aspects of relational database management systems which are important for database administration. Topics covered include storage structures, indexing and its impact on query plans, transaction management and data warehousing.
Objectives: In this unit students will develop the ability to:
- Understand the foundations of database management;
- Strengthen their theoretical knowledge of database systems in general and relational data model and systems in particular;
- Create robust relational database designs;
- Understand the theory and applications of relational query processing and optimization;
- Study the critical issues in data and database administration;
- Explore the key emerging topics in database management.

Note that the first two thirds of the lectures of this foundational unit will be co-taught with the corresponding undergraduate class in semester 1 (INFO2120); tutorials and assignments will be organised separately.
Textbooks
R. Ramakrishnan and I. Gehrke/Database Management Systems/3rd edition//
COMP9121 Design of Networks and Distributed Systems

Credit points: 6 Teacher/Coordinator: Dr Masahiro Takatsuka Session: Semester 2 Prohibitions: COMP5116 Assessment: Computing Exercise 20%, Exam/Quiz (In Session) 20%, Exam (Final) 60% Mode of delivery: Normal (lecture/lab/tutorial) day
The unit covers general foundations of communication systems and a detailed walk through of the implementation of the TCP/IP protocol stack, which forms the basis of the Internet. The unit also covers the basic knowledge of how to analyse, design and implement simple communication protocols. Objectives: On completion of this unit students will have developed an understanding of the principles and practice of the layered model of communications architecture, the TCP/IP protocol stack and its component protocols, and various common techniques and tools for protocol analysis and design.
Textbooks
Andrew Tanenbaum/Computer Networks, Fifth Edition/5th/2010/0-13-212695-8//
COMP9220 Object-Oriented Design

Credit points: 6 Teacher/Coordinator: Dr Masahiro Takatsuka Session: Semester 1 Classes: One 2 hour lecture and one 1 hour tutorial per week. Prohibitions: : COMP5028 OR INFO3220 Assumed knowledge: Students enrolled in COMP5028/INFO9220 are assumed to have elementary Java programming experience or equivalent experience in another object oriented programming language. This unit does not have assessment with heavy coding task. But some knowledge in object-oriented programming would have big impact on learning experience. Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit introduces essential object-oriented design methods and language mechanisms, especially the principles of modelling through Rational Unified Process and agile processes using Unified Modeling Language (UML) and Java or C++, both of which are industry standard. Students work in small groups to experience the process of object-oriented analysis, object-oriented design, implementation and testing by building a real-world application. Java or C++ is used as the implementation language and a special emphasis is placed on those features of Java or C++ that are important for solving real-world problems. Advanced software engineering features, including exceptions and name spaces are thoroughly covered.
COMP9419 Digital Media Fundamentals

Credit points: 6 Teacher/Coordinator: Dr Zhiyong Wang, Prof David Feng Session: Semester 1 Classes: One 2 hour lecture and one 1 hour tutorial per week. Prohibitions: COMP5114 Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
Digital media has become indispensable our heterogeneous computing and communication environment. This unit provides an overview of creating, processing, manipulating, and compressing digital media which mainly include image, audio and video. It introduces principles and current techniques such as multimedia data acquisition, analysis, processing and compression and management. It also elaborates different multimedia coding standards, various multimedia systems and cutting-edge multimedia applications such as web media.
Textbooks
Jennifer Burg/The Science of Digital Media/2009/0132435802//
COMP9601 Computer and Network Organization

Credit points: 6 Teacher/Coordinator: Dr Javid Taheri Session: Semester 1 Prohibitions: COMP5213 Assessment: Computing Exercise 25%, Writing - Technical 15%, Exam (Final) 60% Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study provides an introduction to computer organisation and network protocols. It covers a broad range of topics including computer hardware, software architecture (operating systems, compilers, etc), and principles of communication network protocols. It is designed to give students an understanding of how software programs operate and run inside the computer hardware, and therefore the knowledge how to use computers most effectively.
Textbooks
Randal Bryant and David O'Hallaron/Computer Systems: A Programmer's Perspective/2011//
INFO9117 Intro to Software Engineering Practice

Credit points: 6 Teacher/Coordinator: Dr Tom Cai, Prof Alan Fekete Session: Semester 1,Semester 2 Classes: Lecture 1 hour per week; Tutorial 2 hours per week. Assumed knowledge: Skill as an individual programmer (as expected from any IT graduate, who could be admitted to GCertIT, GDipIT or MIT degree) Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This is an elective for students in the postgraduate IT degrees. It is expected to be taken early in the degree if (and only if) their undergraduate education and subsequent experience have not covered this vital aspect, namely working in groups under a defined process to deliver a software development project. Remark: the USyd undergraduate degrees in IT and in SE all cover this material, especially through the unit COMP3615 or INFO3600 and INFO3402; however, not all institutions guarantee this sort of experience for IT graduates. This unit will scaffold such students to do well in future group development projects, in their coursework or in industry, by providing fundamental knowledge of Software Engineering processes and practices. Much of the student's effort will be directed towards a carefully managed small-group project to deliver a software system to meet a client's needs; they will be working with a client who may be external, or who may be a member of the teaching staff role-playing as an external client. A member of the teaching staff (separate from anyone who is acting as client) will take the role of manager for the group, checking progress and providing feedback frequently. By the end of the unit, the students will understand the processes and practices used in group projects that develop software, and they will be able to follow these processes and practices, so that they can contribute effectively in a small group that is developing software to meet clients needs.

Information Technology Specialist Units

36 credit points are to be completed from the Specialist units of study in Information Technology or Information Technology Management. Candidates need to complete relevant Foundation units or provide evidence of prior learning before undertaking any Specialist unit(s). This will be assessed by either completion of prerequisite learning in the Foundation units or evidence from prior learning that fulfils the assumed knowledge criteria for the Specialist unit(s) chosen.
COMP5045 Computational Geometry

Credit points: 6 Teacher/Coordinator: Dr Joachim Gudmundsson Session: Semester 1 Classes: Project Work - in class 12 hrs/week. Assumed knowledge: Students are assumed to have a basic knowledge of the design and analysis of algorithms and data structures: you should be familiar with big-O notations and simple algorithmic techniques like sorting, binary search, and balanced search trees. Assessment: Through semester assessment (72%) and Final Exam (28%) Mode of delivery: Normal (lecture/lab/tutorial) day
In many areas of computer science - robotics, computer graphics, virtual reality, and geographic information systems are some examples - it is necessary to store, analyse, and create or manipulate spatial data. This course deals with the algorithmic aspects of these tasks: we study techniques and concepts needed for the design and analysis of geometric algorithms and data structures. Each technique and concept will be illustrated on the basis of a problem arising in one of the application areas mentioned above.
Textbooks
M. de Berg, O. Cheong, M. van Kreveld and M. Overmars./Computational Geometry: Algorithms and Application/3rd edition/2008/978-3-540-77973-5//
COMP5046 Statistical Natural Language Processing

Credit points: 6 Teacher/Coordinator: DrJames Curran Session: Semester 1 Classes: Lecture 2 hrs/week; Laboratory 1 hr/week. Assumed knowledge: Knowledge of an OO programming language Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This unit introduces computational linguistics and the statistical techniques and algorithms used to automatically process natural languages (such as English or Chinese). It will review the core statistics and information theory, and the basic linguistics, required to understand statistical natural language processing (NLP).
Statistical NLP is used in a wide range of applications, including information retrieval and extraction; question answer; machine translation; and classifying and clustering of documents. This unit will explore state of the art approaches to the key NLP sub-tasks, including tokenisation, morphological analysis, word sense disambiguation, part-of-speech tagging, named entity recognition, text categorisation, phrase structure and Combinatory Categorial Grammar parsing.
Students will implement many of these sub-tasks in labs and assignments. The unit will also investigate the annotation process that is central to creating training data for statistical NLP systems. Students will annotate data as part of completing a real-world NLP task.
Textbooks
Christopher D. Manning & Hinrich Schutze/The Foundations of Statistical Natural Language Processing/1999//
COMP5047 Pervasive Computing

Credit points: 6 Teacher/Coordinator: A/Prof Bob Kummerfeld Session: Semester 2 Classes: Studio class 3 hrs/week. Assumed knowledge: Background in programming and operating systems that is sufficient for the student to independently learn new programming tools from standard online technical materials. Ability to conduct a literature search. Ability to write reports of work done. Assessment: Through semester assessment (60%) and Final Exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This is an advanced course in HCI, Human Computer Interaction, with a focus on Pervasive Computing. It introduces the key aspects of HCI and explores these in terms of the new research towards creating user interfaces that disappear into the environment and are available pervasively, for example in homes, workplaces, cars and carried or work.
COMP5048 Visual Analytics

Credit points: 6 Teacher/Coordinator: Dr Masahiro Takatsuka Session: Semester 2 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Assumed knowledge: It is assumed that students will have basic knowledge of data structures, algorithms and programming skills. Assessment: Through semester assessment (60%) and Final Exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Visual Analytics aims to facilitate the data analytics process through Information Visualisation. Information Visualisation aims to make good pictures of abstract information, such as stock prices, family trees, and software design diagrams. Well designed pictures can convey this information rapidly and effectively. The challenge for Visual Analytics is to design and implement "effective Visualisation methods that produce pictorial representation of complex data so that data analysts from various fields (bioinformatics, social network, software visualisation and network) can visually inspect complex data and carry out critical decision making. This unit will provide basic HCI concepts, Visualisaiton techniques and fundamental algorithms to achieve good visualisation of abstract information. Further, it will also provide opportunities for academic research and developing new methods for Visual Analytic methods.
COMP5216 Mobile Computing

Credit points: 6 Teacher/Coordinator: Dr Tom Cai Session: Semester 2 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Assumed knowledge: COMP5214 Software Development in JAVA, or similar introductory software development units. Assessment: Through semester assessment (45%) and Final Exam (55%) Mode of delivery: Normal (lecture/lab/tutorial) day
Mobile computing is becoming a main stream for many IT applications, due to the availability of more and more powerful and affordable mobile devices with rich sensors such as cameras and GPS, which have already significantly changed many aspects in business, education, social network, health care, and entertainment in our daily life. Therefore it has been critical for students to be equipped with sufficient knowledge of such new computing platform and necessary skills. The unit aims to provide an in-depth overview of existing and emerging mobile computing techniques and applications, the eco-system of the mobile computing platforms, and its key building components. The unit will also train students with hand-on experiences in developing mobile applications in a broad range of areas.
COMP5313 Large Scale Networks

Credit points: 6 Teacher/Coordinator: Dr Vincent Gramoli Session: Semester 1 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Assumed knowledge: Algorithmic skills (as expected from any IT graduate). Basic probability knowledge. Assessment: Through semester assessment (60%) and Final Exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The growing connectedness of modern society translates into simplifying global communication and accelerating spread of news, information and epidemics. The focus of this unit is on the key concepts to address the challenges induced by the recent scale shift of complex networks. In particular, the course will present how scalable solutions exploiting graph theory, sociology, game theory and probability tackle the problems of communicating (routing, diffusing, aggregating) in dynamic and social networks.
Textbooks
D. Easly and J. Kleinberg/Networks, Crowds and Markets - Reasoning about a Highly Connected World/2010/978-0-521-19533-1//
COMP5318 Knowledge Discovery and Data Mining

Credit points: 6 Teacher/Coordinator: A/Prof Ramos Fabio Session: Semester 1 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Assumed knowledge: INFO9120 OR COMP5138 Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
Knowledge discovery is the process of extracting useful knowledge from data. Data mining is a discipline within knowledge discovery that seeks to facilitate the exploration and analysis of large quantities for data, by automatic and semiautomatic means. This subject provides a practical and technical introduction to knowledge discovery and data mining.
Objectives: Topics to be covered include problems of data analysis in databases, discovering patterns in the data, and knowledge interpretation, extraction and visualisation. Also covered are analysis, comparison and usage of various types of machine learning techniques and statistical techniques: clustering, classification, prediction, estimation, affinity grouping, description and scientific visualisation
Textbooks
P.-N. Tan, M. l. Steinbach and V. Kumar/Introduction to Data Mining/2006/0-321-32136-7//
COMP5338 Advanced Data Models

Credit points: 6 Teacher/Coordinator: Dr Ying Zhou Session: Semester 2 Classes: Tutorial 1 hr/week. Assumed knowledge: This unit of study assumes foundational knowledge of relational database systems as taught in COMP5138/ INFO9120 (Database Management Systems) or INFO2120/2820 (Database Systems 1). Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study gives a comprehensive overview of post-relational data models and of latest developments in data storage technology.
Particular emphasis is put on spatial, temporal, and NoSQL data storage. This unit extensively covers the advanced features of SQL:2003, as well as a few dominant NoSQL storage technologies. Besides in lectures, the advanced topics will be also studied with prescribed readings of database research publications.
COMP5347 Web Application Development

Credit points: 6 Teacher/Coordinator: Dr Ying Zhou Session: Semester 1 Classes: Lecture 2 hrs/week; Laboratory 1 hr/week; Project Work - own time 3 hrs/week; Independent Study, Assumed knowledge: INFO9220 or COMP5028. The course assumes basic knowledge on OO design and UML diagrams. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will focus on technological advances supporting the development of e-commerce applications and systems. This includes client and server side development of e-commerce applications. AJAX is the core client side technology covered in this course. Both server scripting and server page technology are covered as key server side technology. It will also examine the emerging trend of web services and its role in E-commerce systems. This unit aims at providing both conceptual understanding and hand-on experiences for the technologies covered.
Textbooks
Bryan Basham, Kathy Sierra & Bert Bates/Head First Servlet & JSP/2nd/2008// Leon Shklar and Rich Rosen/Web Application Architecture/2nd/2009//
COMP5348 Enterprise Scale Software Architecture

Credit points: 6 Teacher/Coordinator: Prof Alan Fekete Session: Semester 1 Classes: Lecture 2 hrs/week; Laboratory 1 hr/week. Assumed knowledge: Programming competence in Java or similar OO language. Capacity to master novel technologies (especially to program against novel APIs) using manuals, tutorial examples, etc. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit covers topics on software architecture for large-scale enterprises. Computer systems for large-scale enterprises handle critical business processes, interact with computer systems of other organisations, and have to be highly reliable, available and scalable. This class of systems are built up from several application components, incorporating existing "legacy" code and data stores as well as linking these through middleware technologies, such as distributed transaction processing, remote objects, message-queuing, publish-subscribe, and clustering. The choice of middleware can decide whether the system achieves essential non- functional requirements such as performance and availability. The objective of this unit of study is to educate students for their later professional career and it covers Software Architecture topics of the ACM/IEEE Software Engineering curriculum. Objective: The objective of this unit of study is to educate students for their later professional career and it covers topics of the ACM/IEEE Software Engineering curriculum.
COMP5349 Cloud Computing

Credit points: 6 Teacher/Coordinator: A/Prof Uwe Roehm Session: Semester 1 Classes: Lecture 2 hrs/week; Practical Labs 2 hrs/week; Project Work 3 hrs/week. Assumed knowledge: Good programming skills, especially in Java for the practical assignment, as well as proficiency in databases and SQL. The unit is expected to be taken after introductory courses in related units such as COMP5214 OR INFO9103 Software Development in JAVA Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit covers topics of active and cutting-edge research within IT in the area of 'Cloud Computing'.
Cloud Computing is an emerging paradigm of utilising large-scale computing services over the Internet that will affect individual and organization's computing needs from small to large. Over the last decade, many cloud computing platforms have been set up by companies like Google, Yahoo!, Amazon, Microsoft, Salesforce, Ebay and Facebook. Some of the platforms are open to public via various pricing models. They operate at different levels and enable business to harness different computing power from the cloud.
In this course, we will describe the important enabling technologies of cloud computing, explore the state-of-the art platforms and the existing services, and examine the challenges and opportunities of adopting cloud computing. The course will be organized as a series of presentations and discussions of seminal and timely research papers and articles. Students are expected to read all papers, to lead discussions on some of the papers and to complete a hands-on cloud-programming project.
COMP5415 Multimedia Design and Authoring

Credit points: 6 Teacher/Coordinator: Prof David Feng, Dr Xiu Ying Wang Session: Semester 2 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Assumed knowledge: COMP5114 or COMP9419. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit provides principles and practicalities of creating interactive and effective multimedia products. It gives an overview of the complete spectrum of different media platforms and current authoring techniques used in multimedia production. Coverage includes the following key topics: enabling multimedia technologies; multimedia design issues; interactive 2D and 3D computer animation; multimedia object modelling and rendering; multimedia scripting programming; post-production and delivery of multimedia applications.
COMP5416 Advanced Network Technologies

Credit points: 6 Teacher/Coordinator: Dr Vincent Gramoli Session: Semester 2 Classes: Lecture 2 hrs/week; Laboratory 1 hr/week. Assumed knowledge: ELEC3506 OR ELEC9506 OR ELEC5740 OR COMP5116 Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
The unit introduces networking concepts beyond the best effort service of the core TCP/IP protocol suite. Understanding of the fundamental issues in building an integrated multi-service network for global Internet services, taking into account service objectives, application characteristics and needs and network mechanisms will be discussed. Enables students to understand the core issues and be aware of proposed solutions so they can actively follow and participate in the development of the Internet beyond the basic bit transport service.
Textbooks
James F. Kurose, Keith W. Ross/Computer Networks, a top-Down Approach/2013/2012/978-0-273-76896-8//
COMP5424 Information Technology in Biomedicine

Credit points: 6 Teacher/Coordinator: Dr Tom Cai Session: Semester 1 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
Information technology (IT) has significantly contributed to the research and practice of medicine, biology and health care. The IT field is growing enormously in scope with biomedicine taking a lead role in utilizing the evolving applications to its best advantage. The goal of this unit of study is to provide students with the necessary knowledge to understand the information technology in biomedicine. The major emphasis will be on the principles associated with biomedical digital imaging systems and related biomedicine data processing, analysis, visualization, registration, modelling, compression, management, communication and security. Specialist areas such as Picture Archiving and Communication Systems (PACS), computer-aided diagnosis (CAD), content-based medical image retrieval (CBMIR), and ubiquitous m-Health, etc. will be addressed. A broad range of practical integrated clinical applications will be also elaborated.
Textbooks
David Dagan Feng/Biomedical Information Technology/First Edition/2008/9780123735836//
COMP5425 Multimedia Retrieval

Credit points: 6 Teacher/Coordinator: Dr Zhiyong Wang Session: Semester 1 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Assumed knowledge: COMP9007 or COMP5211. Basic Programming skills and data structure knowledge. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
The explosive growth of multimedia data, including text, audio, images and video, has generated an extremely challenging job in effective and efficient retrieval techniques demanded by users to meet their information needs. This unit provides students with the most updated knowledge in order to address this issue in the context of big data, from the basics of textual information retrieval, to many advanced techniques in the field, such as large scale retrieval and social media.
Textbooks
D. Feng, W. C. Siu, and H. J. Zhang/Multimedia Information Retrieval and Management-Technological Fundamentals and Applications/2003//
COMP5426 Parallel and Distributed Computing

Credit points: 6 Teacher/Coordinator: A/Prof Bing Bing Zhou Session: Semester 1 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Assumed knowledge: COMP5116 Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is intended to introduce and motivate the study of high performance computer systems. The student will be presented with the foundational concepts pertaining to the different types and classes of high performance computers. The student will be exposed to the description of the technological context of current high performance computer systems. Students will gain skills in evaluating, experimenting with, and optimizing the performance of high performance computers. The unit also provides students with the ability to undertake more advanced topics and courses on high performance computing.
Textbooks
A. Grama, A. Gupta, G. Karypis and V. Kumar/Introduction to Parallel Computing/Second Edition/2003/0 201 64865 2//
COMP5427 Usability Engineering

Credit points: 6 Teacher/Coordinator: Prof Judy Kay Session: Semester 2 Classes: Lecture 2 hrs/week; Laboratory 2 hrs/week. Assessment: Through semester assessment (60%) and Final Exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Usability engineering is the systematic process of designing and evaluating user interfaces so that they are usable. This means that people can readily learn to use them efficiently, can later remember how to use them and find it pleasant to use them. The wide use of computers in many aspects of people's lives means that usability engineering is of the utmost importance.
There is a substantial body of knowledge about how to elicit usability requirements, identify the tasks that a system needs to support, design interfaces and then evaluate them. This makes for systematic ways to go about the creation and evaluation of interfaces to be usable for the target users, where this may include people with special needs. The field is extremely dynamic with the fast emergence of new ways to interact, ranging from conventional WIMP interfaces, to touch and gesture interaction, and involving mobile, portable, embedded and desktop computers.
This unit will enable students to learn the fundamental concepts, methods and techniques of usability engineering. Students will practice these in small classroom activities. They will then draw them together to complete a major usability evaluation assignment in which they will design the usability testing process, recruit participants, conduct the evaluation study, analyse these and report the results.
Textbooks
Hartson, Rex, and Pardha S. Pyla./The UX Book: Process and Guidelines for Ensuring a Quality User Experience./[http://www.theuxbook.net/]/2012//
COMP5456 Introduction to Bioinformatics

This unit of study is not available in 2016

Credit points: 6 Session: Summer Main Classes: Laboratory 2 hrs/week; Lecture 2 hrs/week. Prohibitions: COMP3456 Assumed knowledge: Some experience with basic programming (coding) in Java, C, C++ or Perl; Some proven ability in mathematical or information sciences (as evinced in the prerequisites); Some knowledge of molecular biology either through first year BIOL papers or MBLG1001. Assessment: Through semester assessment (30%) Final Exam (70%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit brings together a wide range of skills that are routinely practised in bioinformatics, from the 'hard' subjects of mathematics, statistics and computer science, to the 'soft' subjects in the biological / health sciences and pharmacology. The unit covers the essentials of bioinformatics data gathering, manipulation, mining and storage that underpin bioinformatics research. It further provides additional practice in the graduate attributes of Research and Inquiry, Information Literacy and Communication through analysis of scientific research, use of large bioinformatics data sets, and writing of reports.
INFO5060 Data Analytics and Business Intelligence

Credit points: 6 Teacher/Coordinator: A/Prof Simon Poon, Prof Joseph Davis Session: Summer Early Classes: Lecture 4 hrs; Tutorial 2 hrs; Laboratory 6 hrs; Presentation 3 hrs; Project Work - own time 6 hrs. Assumed knowledge: The unit is expected to be taken after introductory courses or related units such as COMP5206 Information Technologies and Systems Assessment: Through semester assessment (65%) and Final Exam (35%) Mode of delivery: Block mode
The frontier for using data to make decisions has shifted dramatically. High performing enterprises are now building their competitive strategies around data-driven insights that in turn generate impressive business results. This course provides an overview of Business Intelligence (BI) concepts, technologies and practices, and then focuses on the application of BI through a team based project simulation that will allow students to have practical experience in building a BI solution based on a real world case study.

Information Technology Management Specialist Units

36 credit points are to be completed from the Specialist units of study in Information Technology or Information Technology Management. Candidates need to complete relevant Foundation units or provide evidence of prior learning before undertaking any Specialist unit(s). This will be assessed by either completion of prerequisite learning in the Foundation units or evidence from prior learning that fulfils the assumed knowledge criteria for the Specialist unit(s) chosen.
COMP5206 Information Technologies and Systems

Credit points: 6 Session: Semester 1,Semester 2 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Assessment: Through semester assessment (50%) Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will provide a comprehensive introduction to the field of information systems from organisational and managerial perspectives. The emergence of the digital firm and its implications will be studied. The critical role of information and knowledge management will be emphasised from both conceptual and practical standpoints. Key topics covered will include:
* Basic Information Systems Concepts
* Systems Approach and Systems Thinking
* E-Business and E-Commerce
* IT Strategy and Competitive Advantage
* Data and Knowledge Management
* Information Systems Development and IS Management
* Decision support systems, business intelligence and online analytical processing systems (OLAP)
* Enterprise Resource Planning (ERP) systems, Customer Relationship Management (CRM) systems, Enterprise Content Management and Supply Chain Management (SCM) systems
* Ethical, Legal and Social Aspects of Information technologis.
INFO5301 Information Security Management

Credit points: 6 Teacher/Coordinator: Dr Jinman Kim, A/Prof Simon Poon Session: Semester 1 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Assumed knowledge: This unit of study assumes foundational knowledge of Information systems management. Two year IT industry exposure and a breadth of IT experience will be preferable. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study gives a broad view of the management aspects of information security. We emphasise corporate governance for information security, organisational structures within which information security is managed, risk assessment, and control structures. Planning for security, and regulatory issues, are also addressed.
INFO5991 Services Science Management and Eng

Credit points: 6 Teacher/Coordinator: Andrea Stern, Prof Joseph Davis Session: Semester 1,Semester 2 Classes: Lecture 1 hr/week; Seminar 2 hrs/week. Assumed knowledge: INFO5990. Students are expected to have a degree in computer science, engineering, information technology, information systems or business. Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The service economy plays a dominant and growing role in growth and employment in most parts of the world. Increasingly, the improved productivity and competitive performance of firms and nations in the services arena relies on innovative and effective design, engineering and management of IT-centric services. In response to industry needs, this unit offers IT professionals a social, economic and technical perspective of service-oriented IT.
INFO5992 Understanding IT Innovations

Credit points: 6 Teacher/Coordinator: Bill Simpson-Young, Prof Joseph Davis, A/Prof Simon Poon Session: Semester 1,Semester 2 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Prohibitions: PMGT5875 Assumed knowledge: INFO5990. Students are expected to be fluent in English and capable of participating in group discussions, and capable of producing an individually written paper of 5-9 pages (double spaced) of high quality and clarity. Although some work experience is ideal in adding value to the case discussions, allowing students to pull from their personal experiences, those students with no work experience will be expected to do appropriate research on the discussion topics in order to contribute. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
An essential skill for an IT manager is the ability to keep up-to-date with emerging technologies, and be able to evaluate the significance of these technologies to their organisation's business activities. This unit of study is based around a study of current technologies and the influence of these technologies on business strategies.
Important trends in innovation in IT are identified and their implications for innovation management explored. Major topics include: drivers of innovation; the trend to open information ("open source") rather than protected intellectual property; and distribution of innovation over many independent but collaborating actors.
On completion of this unit, students will be able to identify and analyse an emerging technology and write a detailed evaluation of the impact of this technology on existing business practices.
Textbooks
Schilling, M.A./Strategic Management of Technological Innovation/3rd edition/2009//
INFO6007 Project Management in IT

Credit points: 6 Teacher/Coordinator: Dr Steven Sommer Session: Semester 1,Semester 2 Classes: Lecture Workshop 3 hrs/week; WeeklyAssignments 5 hrs; Exam Preparation 16 hrs. Prohibitions: PMGT5871 Assumed knowledge: Students enrolled in INFO6007 are assumed to have previously completed a Bachelors degree in some area of IT, or have completed a Graduate Diploma in some area of IT, or have three years experience as a practising IT professional. Recent work experience, or recent postgraduate education, in software project management, software process improvement, or software quality assurance is an advantage. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study covers the factors necessary for successful management of a wide variety of Information Technology projects. The course covers both quantitative and qualitative aspects of project management. Topics include the management of time, scope, budget, risk, quality, and resources through each of the phases of a project.
Textbooks
Schwalbe, K/Information Technology Project Management/7th/2013/978-1-133-52685-8//
INFO6010 Advanced Topics in IT Project Management

Credit points: 6 Teacher/Coordinator: Dr Steven Sommer Session: Semester 2 Classes: Lecture 2 hrs/week; Tutorial (applied workshop) 1 hr/week; E-Learning 1 hr/week. Prerequisites: INFO6007, OR 3-5 years working experience in IT Project Management Assumed knowledge: Students are assumed to understand the role of IT projects. Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will explore the limitations of IT project management and the most promising techniques to overcome project failure. It will start by reviewing case study research showing we have reached the limits of traditional IT project management practice. The theoretical base will be completed by exploring the finding that senior management have more impact on success than traditional approaches.
Participants will be introduced to and learn to apply the most promising tools and techniques needed to govern IT projects. The topics reviewed will include:
1) strategy,
2) organisational change,
3) project sponsorship,
4) programme management,
5) performance measurement,
6) culture
7) portfolio management.
8) Relevant Australian and International Standards on IT/Project Governance and new industry methodologies around portfolio, programme and change management will be reviewed.
INFO6012 Information Technology Strategy and Value

Credit points: 6 Teacher/Coordinator: A/Prof Simon Poon Session: Semester 1,Semester 2 Classes: Flexible Session 3 hrs/week. Assumed knowledge: COMP5206. Introduction to Information Systems Assessment: Through semester assessment (55%) and Final Exam (45%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The increasingly strategic role of IT in organisations is widely recognised. This unit of study is designed to provide a comprehensive introduction to strategic aspects of IT as they impact on business value. Such a perspective is critical for IT professionals in both IT producer and user organisations from the level of Chief Information Officer to managers as well as technical specialists. Deep understanding of IT strategy formulation and implementation and ensuring its alignment with the organisation's strategic directions is important for successfully managing the major changes that the IT function has undergone in recent years.
Topics covered will include technology forecasting and assessment of IT impacts, achieving sustainable competitive through IT, relationship between IT strategy and value, IT strategy formulation and implementation, evaluation of strategic investments in IT, IT portfolio management, IT souring and open innovation, and dynamics of IT strategy and game theory. It will explore IT-related strategic decision making at the different organisational levels and the concept of strategic congruence. This unit will provide students with models, tools, and techniques to evaluate an organisation's IT strategic position, and hence to help make appropriate strategic choices.
Textbooks
Johnson, Whittington, and Scholes/Fundamentals of Strategy/2nd/2012/978-0273757252 //
ISYS5050 Knowledge Management Systems

Credit points: 6 Teacher/Coordinator: Prof Joseph Davis Session: Semester 1 Classes: Lecture 2 hrs/week; Tutorial 1 hr/week. Assumed knowledge: An undergraduate degree in Computer Science or Information Systems. Good grasp of database technologies and the role of information systems in organisations. Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
The need to track and facilitate the sharing of the core knowledge resources in contemporary organisations is widely recognised. This course will provide a comprehensive introduction to the emerging area of Knowledge Management (KM) from both technological and organisational perspectives. We will review and discuss a range of published papers, case studies, and other publications that deal with a range of important KM-related topics. One of the key knowledge management technologies, Business Intelligence Systems, will be covered in detail. It will also include hands-on work using the BI (Online Analytical Processing - OLAP) tool, COGNOS.
Some of the main themes to be covered will include:
o KM: Conceptual Foundations
o Taxonomies of organizational knowledge and KM mechanisms
o Case/Field Studies of KM Initiatives
o Data Warehousing and OLAP/Business Analytics
o Data, text, and web mining.
o Social media,crowdsourcing, an KM
ISYS5070 Change Management in IT

This unit of study is not available in 2016

Credit points: 6 Session: Winter Main Classes: Lecture 6 hrs/week; Tutorial 6 hrs/week; Presentation 3 hrs/week; Project Work - own time 6 hrs. Assumed knowledge: INFO6007 and COMP5206 Assessment: Through semester assessment (70%) Final Exam (30%) Mode of delivery: Block mode
This unit of study presents the leading edge of research and practice in change management and focuses on theories, frameworks and perspectives that can guide your work as a change agent in the IT industries. The unit will cover a range of approaches, methods, interventions and tools that can be used to successfully manage change projects that relate to the implementation of new technologies. The globalisation of markets and industries, accelerating technological innovations and the need of companies to remain at the forefront of technological developments in an increasingly competitive, globalised industry have resulted in a significant increase in the speed, magnitude, and unpredictability of technological and organisational change over the last decades. Companies who have the competencies required to navigate change and overcome the inevitable obstacles to success gain a much-needed competitive edge in the marketplace. Increased globalization, economic rationalism, environmental dynamics and technological changes mean that companies, more than ever before, need to be highly flexible and adaptable to survive and thrive. Yet, a large percentage of IT projects fail to achieve the intended objectives, go over time or over budget. The capability to successfully manage organisational and technological change has become a core competency for IT professionals, business leaders and project managers. This unit has been specifically developed for IT professionals, project managers, and senior managers to equip them with the knowledge and tools needed to ensure that IT projects remain on track to achieving the intended objectives on time and on budget. The course presents the key theories, concepts and findings in the context of academic research and change management practice. The objective is to allow participants to critically assess academic theories and methodological practice and devise interventions and actions that allow the successful management of IT initiatives.

For more information on units of study visit CUSP https://cusp.sydney.edu.au