University of Sydney Handbooks - 2017 Archive

Download full 2017 archive Page archived at: Mon, 28 Aug 2017 11:21:58 +1000

Master of Architectural Science (Audio and Acoustics)

The Audio and Acoustics program is unique in Australia and one of only a few comparable programs in the world. The program offers a balance of studio-based production subjects and theoretical and investigative subjects in acoustics and technical audio. It aims to extend students' existing skills to a high level of proficiency and professionalism in the various disciplines that contribute to the audio and acoustics fields. The program suits people with an academic and/or professional track record in audio or related areas, wishing to extend the breadth and level of their expertise.

The sound studios consist of a recording studio and a 5.1 format production studio. The acoustical laboratory has an anechoic room and a reverberant room, and is equipped with state-of-the-art acoustical measurement and analysis tools.

Students in the Audio and Acoustics program have the opportunity to develop a sophisticated understanding of and skills in audio production and its application to new media, audio system and component design, audio and architectural acoustics, digital audio systems and electronics, and music as it relates to audio design.

Students are exposed to world-class research activity and have the opportunity to undertake research projects of their own. The program is currently developing in the areas of sound reinforcement system design, interactive sound design, spatial audio, psychoacoustics and advanced measurement methods.

Unit of study table

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Audio and Acoustics Stream

Core Foundational units

DESC9200
Introduction to Architectural Science
6      Semester 1

Core Advanced units

DESC9011
Audio Production
6   
Note: Department permission required for enrolment

Semester 1
DESC9090
Audio Systems and Measurement
6    A DESC9138
Semester 2
DESC9115
Digital Audio Systems
6      Semester 1
DESC9138
Architectural and Audio Acoustics
6      Semester 1
DESC9201
Indoor Environmental Quality (IEQ)
6      Semester 2
DESC9117
Sound Design for New Media
6      Semester 2

Capstone

DESC9134
Audio and Acoustics Seminar
6    A DESC9138 and DESC9011
P DESC9090 or DESC9133
Semester 1

Electives

Electives may be chosen from across Table G or, with the permission of the Program Director, from any postgradaute course in the University.

Research

DESC9300 in combination with either a Report or Dissertation may replace the capstone unit with permission of the Program Director.
DESC9300
Research in Arch. and Design Science
6    N ARCF9001

Note: Department permission required for enrolment

Semester 1
Semester 2
ARCH9031
Research Report
12   
Note: Department permission required for enrolment
Available to Masters students only.
Semester 1
Semester 2
ARCH9045
Dissertation 1
12    P 48 credit points and a WAM of at least 75
C ARCH9046
N ARCH9031 or PLAN9018 or ARCH9060 or PLAN9010 or PLAN9011

Note: Department permission required for enrolment

Semester 1
Semester 2
ARCH9046
Dissertation 2
12    C ARCH9045
Semester 1
Semester 2

Recommended electives

DESC9137
Spatial Audio
6    A DESC9138 and DESC9011
Semester 1
DESC9135
Digital Audio Production with ProTools
6      Intensive June
CAEL5035
The Art of Sound and Noise
6      Semester 1
DESC9153
Graduate Internship
6   
Note: Department permission required for enrolment
Masters students only. Graduate Diploma students with permission of the Program Coordinator. Advanced Standing will not be granted for this unit of study.
Intensive December
Intensive July
Intensive November
Semester 1
Semester 2
DESC9191
Building Acoustics and Noise Control

This unit of study is not available in 2017

6      Semester 2
DESC9133
Architectural Acoustics Practice
6    A DESC9138
Semester 2
DESC9133 (offered in odd years) DESC9191 (offered in even years)

Unit of study descriptions

Audio and Acoustics Stream

Core Foundational units

DESC9200 Introduction to Architectural Science

Credit points: 6 Teacher/Coordinator: Dr Christhina Candido Session: Semester 1 Classes: 5-day intensive (9am-5pm) Assessment: Assignment (40%), Exam (60%) Mode of delivery: Block mode
This unit aims to explore the scientific concepts of heat, light and sound, and from this develops foundational principles and methods applicable to buildings. It is divided into five topics: climate and resources: thermal environment: building services: lighting; and acoustics. Students will gain an understanding of the terminology, physical values and metrics in each of these topics, and how they apply to the design and function of buildings. Theoretical models to predict key physical values in buildings are presented and used in assessments. Learning is supported by measurement exercises. This unit has a focused pedagogy intended for all graduate students in Architectural Science. It is a common core unit for all of the programs (Audio and Acoustics, High Performance Buildings, Illumination Design and Sustainable Design). Students within these programs should undertake this unit in their first semester of study if possible.

Core Advanced units

DESC9011 Audio Production

Credit points: 6 Teacher/Coordinator: Mr Michael Bates, Assoc Prof William Martens Session: Semester 1 Classes: Lecture 3 hrs/wk Assessment: Technical documentation (20%); project development (30%); final project (30%); presentation (20%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
This unit examines tools, techniques, processes and value systems involved in audio production. Proficiency in sound recording techniques, including field and studio recordings, is developed, including technical acoustic, audio and aesthetic considerations. Students extend their understanding and experience of production principles by which sound recordings are used for building up realistic and hyper-realistic auditory scenes. Perspectives on audio production come from aesthetics, practice, acoustics theory, audio technology and digital audio systems, but ultimately are founded in the discipline of listening. By bringing these perspectives together, this unit is designed for students with a wide range of production experience at a postgraduate level.
Students are expected to work in groups to produce an audio project in one or more of the following areas: drama, feature, documentary, sound composition, or music recording. Students are expected to: participate in the workshops; complete class exercises/constructions; read additional materials to discuss in classes; submit a script, composition or otherwise detailed proposal for recording and postproduction with detailed rationale of production values; produce and present a completed audio project, including documentation, evidence of background research, a commentary on the production and production outcomes, track sheets, mixing notes. It may be an adaptation or original work.
DESC9090 Audio Systems and Measurement

Credit points: 6 Teacher/Coordinator: Assoc Prof Densil Cabrera Session: Semester 2 Classes: Lectures 10x3 hrs, Labs 3x3 hrs (and continued lab projects) Assumed knowledge: DESC9138 Assessment: Two assignments (1x40%, 1x60%) Mode of delivery: Normal (lecture/lab/tutorial) day
Students will learn to make and understand a wide range of acoustical and electroacoustical measurements, assessed through laboratory or field work, and learn major aspects of sound system design, assessed through project work. Students will work in small groups in laboratory or field project work. Audio Systems and Measurement will develop knowledge and practical skills in electroacoustics; and the laboratory and project work will extend thinking and personal skills, so that students can apply the unit content to new situations.
Upon completing Audio Systems and Measurement, students will be expected to understand the signal-processing basis, implementation and limitations of a wide range of audio and acoustical measurement techniques, such as sound pressure, linear time-invariant system response, source directivity, non-linear distortion, time variance, uncertainty in measurement, intelligibility, and audio quality. Students will also be expected to be able to design sound reinforcement systems, and to model audio system performance using various theoretical techniques.
DESC9115 Digital Audio Systems

Credit points: 6 Teacher/Coordinator: Assoc Prof William Martens Session: Semester 1 Classes: Lectures 13 x 1.5 hrs, Labs 13 x 1.5 hrs Assessment: Two written review assignments (40%); one laboratory report (20%); weekly lab assignments (20%), 4 x in-class quiz (20%) Practical field work: Practical exercises include programming for digital signal processing of audio signals using high-level software packages to generate, manipulate and analyse sounds. Mode of delivery: Normal (lecture/lab/tutorial) day
The objective of this unit is to provide both a strong theoretical understanding of digital audio and practical experience in applying these principles to digital audio systems. This unit offers a systematic approach to understanding digital audio systems. Beginning with basic principles the unit provides a knowledge base for understanding advanced digital audio components, systems and techniques. Examples of everyday audio signals are used and characterised in terms of their temporal and spectral properties. Practical application is emphasised and is supported through laboratory exercises that include programming as well as the use of current hardware and software packages. Topics include: digital principles, digital systems, sampling and quantisation, 1-bit and multi-bit conversion, digital signal processing, filtering, spectral analysis, sampling-rate conversion, data compression (MPEG, etc.), effects processing (echo, reverb, etc.), virtual reality audio, mixing, editing, digital audio storage and transmission formats.
Having successfully completed this unit the student will have the tools to understand what happens to a digital audio signal when a given process is applied to it; how to best apply this process and how to successfully combine digital audio components.
DESC9138 Architectural and Audio Acoustics

Credit points: 6 Teacher/Coordinator: Assoc Prof Densil Cabrera Session: Semester 1 Classes: Lecture 3 hrs/wk Assessment: Exercise-based assignments (1x35%, 1x65%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit introduces the fundamental concepts and issues of audio and architectural acoustics. Unit content: basic acoustical concepts, quantities and units; principles of sound propagation; sound absorption and room acoustics; physiological and psychological acoustics; noise measurement and specification; and principles and specification of sound insulation. By completing this unit students will be able to understand acoustical terminology, and perform calculations and analysis applicable to sound in the environment, in buildings, and in audio contexts. They will have the ability to critically assess claims of acoustical performance. This unit will provide the theoretical foundation of advanced units in audio and acoustics.
DESC9201 Indoor Environmental Quality (IEQ)

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 2 Classes: 5-day intensive (9am-5pm) Assessment: Lab-based assignment (40%); Exam (60%) Mode of delivery: Block mode
Humans' thermal, visual, auditory and olfactory senses determine the perceived quality of a built environment. This unit analyses built environments in context of these human factors. This unit relates human experience of buildings to the main dimensions of Indoor Environmental Quality (IEQ): thermal, acoustic, lighting and indoor pollution. This understanding of human comfort perceptions is contextualised by an understanding of the various approaches to the evaluation of built environmental performance. You will study post-occupancy evaluation tools and workplace productivity metrics. Regulations from Australia and abroad will be explored to understand their impact on acoustics, thermal comfort, lighting, indoor air quality and ventilation. The unit also pays particular attention to sustainability rating tools from around the world, including GreenStar, NABERS, LEED and BREEAM. This unit gives students extensive hands-on experience in laboratory- and field-based methods of IEQ research and building diagnostics. A recurring theme will be instrumental measurements of indoor environments, and how they can be analysed in relation to perceptual and behavioural data collected from occupants of those environments.
DESC9117 Sound Design for New Media

Credit points: 6 Teacher/Coordinator: Mr Michael Bates, Assoc Prof William Martens Session: Semester 2 Classes: Seminars 3 hrs/wk Assessment: Class attendance and participation (10%); Journal (20%); Major project: initial proposal presentation and 1000wd documentation (20%); Final project (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to introduce essential concepts in sound design for screen-based media, including for cinema, television, digital video, web-based and interactive content including head-mounted display. A grounding will be provided in the theory and criticism of sound design in order to develop an understanding of the potentialities of utilizing audio in synergy with visual media. The sound designer's role in the process of creation of meaning will be examined in cultural as well as technical contexts, with the aim of developing and extending production practices towards an individual aesthetic. The unit will also look at current computer-based tools and techniques available to the sound designer, as well as examine the various underlying strategies, processes, and sound design philosophies.
Upon completion of this unit students will be expected to: understand the audiovisual medium and its essential concepts and terminology, and to be acquainted with the history, theory and criticism of sound design for audiovision. Students will develop technical and conceptual skills in preproduction, general miking techniques, post-synchronisation dialogue recording and editing, producing sound effects, multi-track laying, creating atmospheres and various psychoacoustic effects, and mixing sound for screen-based content.

Capstone

DESC9134 Audio and Acoustics Seminar

Credit points: 6 Teacher/Coordinator: Assoc Prof Densil Cabrera Session: Semester 1 Classes: Seminar 1 hr + individual supervision Prerequisites: DESC9090 or DESC9133 Assumed knowledge: DESC9138 and DESC9011 Assessment: Preliminary Report (25%), Peer Review (10%); Oral Presentation (25%); Final Report (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit introduces students to a broad range of current research in audio and acoustics, and gives them experience in research. It consists of a series of seminars on current research projects presented by active researchers in audio and acoustics, together with individual or small-group supervision of small-scale research projects.
By completing this unit students will gain an understanding of the research process, and receive some modest experience in research. They will appreciate a range of research methods and subject areas at the forefront of audio and acoustics. They will be in a good position to assess their interest in undertaking further academic research.

Electives

Electives may be chosen from across Table G or, with the permission of the Program Director, from any postgradaute course in the University.

Research

DESC9300 in combination with either a Report or Dissertation may replace the capstone unit with permission of the Program Director.
DESC9300 Research in Arch. and Design Science

Credit points: 6 Teacher/Coordinator: Assoc Prof William Martens Session: Semester 1,Semester 2 Classes: 5 workshop sessions (1 hr/wk for first five weeks) followed by individual student supervision by an appropriate staff member, and returning for the final oral report (in-class presentation) in Week 13 of the semester. Prohibitions: ARCF9001 Assessment: Individual project based: 1 x 1500wd research proposal (30%); 1 x 3500wd final written report (50%); 1 x final oral report (20%) Mode of delivery: Block mode
Note: Department permission required for enrolment
This unit aims to prepare students for undertaking a research project in the various sub-disciplines of Architectural and Design Science. It begins with the workshop-based presentation of foundations of experimental science relevant to research projects within these sub-disciplines. It highlights principles of experimental design and methods of data collection and analysis. Examples of previous projects undertaken by graduate students in Design Science will be presented, as appropriate, in any of the following areas: Audio and Acoustics, Building Services, Facilities Management, Illumination Design and Sustainable Design). Although this unit has a focused pedagogy intended for all graduate students in Design Science, enrollment may be expected by other coursework students within the Faculty of Architecture, Design and Planning, such as those undertaking the Master of Interaction Design and Electronic Arts (M.IDEA).
ARCH9031 Research Report

Credit points: 12 Teacher/Coordinator: Program Director Session: Semester 1,Semester 2 Classes: Independent research under academic supervision. Assessment: Research proposal (10%), 10000 to 15000 word Report (90%). Final reports due by the end of the first week of the formal examination period. Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: Available to Masters students only.
The report is a substantial piece of research conducted over one semester. It takes the form of report (between 10000 and 15000 words) on an approved subject of your choice. The report is an opportunity to advance your knowledge and skills in a particular area. The objective of the report is to allow you to develop research and analytic skills by undertaking an in depth study of your own selection. The expected learning outcomes of the report include the ability to think critically about a problem and develop an appropriate research methodology or analytical approach to address it; identify and access appropriate sources of information, research and literature relevant to the issues; undertake relevant primary and secondary research; and present your findings in a way that demonstrates academic and professional competence. A report generally includes a literature review to delineate a problem; a statement of research aims or objectives, as well as research questions; an explanation of research methods; presentation and analysis of data; and discussion of conclusions. Permission to continue the Report may be subject to a satisfactory research proposal being approved by your supervisor by week 3 of semester. Reports are due at the end of the first week of exams for the semester in which you are enrolled. The assessment is based solely on the submission of your report. The report is generally marked by two examiners, neither of whom is your supervisor.
ARCH9045 Dissertation 1

Credit points: 12 Teacher/Coordinator: An academic supervisor is required. Discuss with your program coordinator. Session: Semester 1,Semester 2 Classes: Research under academic supervision Prerequisites: 48 credit points and a WAM of at least 75 Corequisites: ARCH9046 Prohibitions: ARCH9031 or PLAN9018 or ARCH9060 or PLAN9010 or PLAN9011 Assessment: 15,000 to 25,000 word dissertation (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
ARCH9045 and ARCH9046 Dissertation 1 and 2 are only available to candidates with permission from an appropriate supervisor. Planning students should take PLAN9010 and PLAN9011 Planning Dissertations 1 and 2. Students enrol either full time over one semester (ARCH9045 and ARCH9046) or part time over two semesters (ARCH9045 then ARCH9046). The units are not assessed separately - a single dissertation is required. The appointment of a supervisor will depend on the topic chosen for the dissertation by the student. Students and their supervisors should complete an Independent Study Approval form and return it to the Student Administration Centre to effect enrolment. The aim of the dissertation is to train the student in how to undertake advanced study. The student should learn how to examine published and unpublished data, survey and experimental results, set objectives, organise a program of work, analyse information, evaluate this in relation to existing knowledge and document the work; and to allow the student to pursue an area of interest in greater depth than is possible in coursework or to investigate an area of interest which is not covered in coursework. The dissertation will normally involve a critical review of published material in a specified subject area, but it may also be an experimental or theoretical investigation, a feasibility study, a case study, a computer program, or other work demonstrating the student's analytical ability. The dissertation should be 15,000 to 25,000 words in length. The dissertation should contain a literature review, a research methodology, analysis of data, a discussion of results and conclusions. The dissertation will be judged on the extent and quality of the student's work, and in particular on how critical, perceptive and constructive the student has been in assessing his or her own work and that of others. Three typed A4 sized copies of the dissertation are required to be presented for examination. These may be in either temporary or permanent binding. If in temporary binding they must be able to withstand ordinary handling and postage. The preferred method is "perfect binding"; spring back, ring back or spiral binding is not permitted. Students are required to submit one copy in permanent binding on acid free paper for the library, including any emendations recommended by the examiners. For more details see the requirements for the PhD thesis in the Postgraduate Research Studies Handbook. Dissertations are due at the end of the first week of exams for the semester in which you are enrolled for Dissertation 2. The assessment is based solely on the submission of your dissertation. The dissertation is generally marked by two examiners.
ARCH9046 Dissertation 2

Credit points: 12 Teacher/Coordinator: An academic supervisor is required. Discuss with your program coordinator. Session: Semester 1,Semester 2 Classes: Research under academic supervision. Corequisites: ARCH9045 Assessment: 15,000 to 25,000 word dissertation (100%) Mode of delivery: Supervision
ARCH9045 and ARCH9046 Dissertation 1 and 2 are only available to candidates with permission from an appropriate supervisor. Planning students should take PLAN9010 and PLAN9011 Planning Dissertations 1 and 2. Students enrol either full time over one semester (ARCH9045 and ARCH9046) or part time over two semesters (ARCH9045 then ARCH9046). The units are not assessed separately - a single dissertation is required. The appointment of a supervisor will depend on the topic chosen for the dissertation by the student. Students and their supervisors should complete an Independent Study Approval form and return it to the Student Administration Centre to effect enrolment. The aim of the dissertation is to train the student in how to undertake advanced study. The student should learn how to examine published and unpublished data, survey and experimental results, set objectives, organise a program of work, analyse information, evaluate this in relation to existing knowledge and document the work; and to allow the student to pursue an area of interest in greater depth than is possible in coursework or to investigate an area of interest which is not covered in coursework. The dissertation will normally involve a critical review of published material in a specified subject area, but it may also be an experimental or theoretical investigation, a feasibility study, a case study, a computer program, or other work demonstrating the student's analytical ability. The dissertation should be 15,000 to 25,000 words in length. The dissertation should contain a literature review, a research methodology, analysis of data, a discussion of results and conclusions. The dissertation will be judged on the extent and quality of the student's work, and in particular on how critical, perceptive and constructive the student has been in assessing his or her own work and that of others. Three typed A4 sized copies of the dissertation are required to be presented for examination. These may be in either temporary or permanent binding. If in temporary binding they must be able to withstand ordinary handling and postage. The preferred method is "perfect binding"; spring back, ring back or spiral binding is not permitted. Students are required to submit one copy in permanent binding on acid free paper for the library, including any emendations recommended by the examiners. For more details see the requirements for the PhD thesis in the Postgraduate Research Studies Handbook. Dissertations are due at the end of the first week of exams for the semester in which you are enrolled for Dissertation 2. The assessment is based solely on the submission of your dissertation. The dissertation is generally marked by two examiners.

Recommended electives

DESC9137 Spatial Audio

Credit points: 6 Teacher/Coordinator: Mr Michael Bates, Assoc Prof William Martens Session: Semester 1 Classes: Seminars 3 hrs/wk Assumed knowledge: DESC9138 and DESC9011 Assessment: 1 x 1000wd project proposal (10%); 1 x 2000wd review (20%); review presentation (20%); final project (40%); participation (10%) Mode of delivery: Normal (lecture/lab/tutorial) day
Unit content: Stereophonic, binaural, and multichannel surround sound production techniques; Spatial acoustics and auditory spatial perception; spatial hearing and auditory spatial attributes (beyond localization): spatial sound quality; high resolution spatial audio recording and rendering techniques; auralisation in architectural design; virtual auditory space and hybrid real/virtual sound spaces; and interactive spatial audio technology and applications. By completing this unit students will acquire: strong theoretical foundations in spatial audio; experience with spatial audio systems (physical and computational); an appreciation of spatial audio potential of emerging technologies; and an ability to integrate spatial audio into their broader practice.
DESC9135 Digital Audio Production with ProTools

Credit points: 6 Teacher/Coordinator: Mr Michael Bates, Assoc Prof Densil Cabrera Session: Intensive June Classes: 5-day intensive (9am-5pm) Assessment: Written project proposal (30%); class presentation (30%); project (40%). Mode of delivery: Block mode
This unit is intended to give an understanding of the principles and practice of computer-based audio production and post-production, through the focus of the industry standard ProTools software. This unit will: introduce the student to multitrack audio production concepts and practices as used with a personal computer; give an understanding of the specialised approaches and techniques used with various media, genres and formats; teach skills in computer-based audio production by way of lectures, practical demonstrations and individual or small-group practical work, both in-class and by assignments. Students will develop technical and conceptual digital sound recording skills across a wide range of production areas. They will gain an understanding of the implications of non-linear, hard disk based recording systems on production practices. They will develop sound design skills in composition, editing, signal processing and mixing, as well as data management and archiving.
CAEL5035 The Art of Sound and Noise

Credit points: 6 Session: Semester 1 Classes: 1x3-hour studio class/week Assessment: thematic project (25%) and self-directed project (75%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study will engage a studio-based approach to the production of sound art works through the prism of two of its primary means, namely recording and amplification. The emphasis will be on the production of recorded sound works and sound devices that can expand and develop the relationships between the analogue and the digital and between the composed and the open-ended structures of noise as an event. The unit will begin with ideas from sound ecology and music concrete and by way of field recording, sound manipulation and performance heading in an exploratory way towards the limits of sound as noise, situating the spectrum of a material practice with sound in a historical context. This unit will be conducted in an open studio framework within workshops, sound studios and digital labs suitable for candidates working in a broad range of artistic disciplines.
Sound has the potential to invent new sonic landscapes and to demarcate unheard psycho-geographies: from radical approaches towards production to potential new collaborations in the street (or in the landscape), from the technical and the scientific to oral investigations of the social. This open studio investigates sound as a primary vehicle for artistic expression in a work of contemporary art.
DESC9153 Graduate Internship

Credit points: 6 Teacher/Coordinator: Associate Dean (Education) Session: Intensive December,Intensive July,Intensive November,Semester 1,Semester 2 Classes: Fieldwork Assessment: Log book signed by practice supervisor and 2000wd report on the benefits of the internship (100%); pass/fail only Mode of delivery: Professional practice
Note: Department permission required for enrolment
Note: Masters students only. Graduate Diploma students with permission of the Program Coordinator. Advanced Standing will not be granted for this unit of study.
The aims of the internship are to provide a direct link between the academic core of the course and the disciplines and methods of practice; to enable candidates to experience aspects of practice and provide the opportunity for them to work in areas of the field outside their specific expertise; to enable candidates to observe, analyse and comment on the interaction between theoretical and practical issues of their Program as it is practiced, and to establish connections between practice and the development of relevant research programs. The internship is intended to provide the opportunity for students to work in various situations in their Program's area. A secondary intention is that students use the opportunities of placement to broaden their own experience beyond the limitations of their chosen discipline. Candidates must find a suitable professional placement. Permission to enrol is given after the proposed placement has been approved by the Program Director. The host organisation will nominate a supervisor for the student for the internship. The student must complete at least 120 hours of full or part-time experience, supervised by a practicing designer (or other professional depending upon the field). A log-book of each day's work, signed by the supervisor must be submitted on completion. A 2000-word report on the benefits of the internship must also be produced. At the end of the internship the student will: demonstrate that they have completed a program of work (through a log-book); present a report; analyse their experiences and compare these to the theoretical content of the units they have completed, and suggest appropriate research directions so as to improve the complementarity of theory to practice.
DESC9191 Building Acoustics and Noise Control

This unit of study is not available in 2017

Credit points: 6 Teacher/Coordinator: Dr Densil Cabrera Session: Semester 2 Classes: Lectures 3 hrs/wk Assessment: Two projects: 1 x 2,000 word theoretical report (40%); 1 x 1,500 word practical report (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit investigates the attenuation and control of noise generated by mechanical building services systems, sound insulation in buildings, and the effects of room acoustics. The unit includes fundamental theory, practical techniques to predict acoustic performance, measurement techniques and design principles. Students will gain an awareness of the statutory noise control and acoustic requirements and recommendations, current standards and sources of data. Moreover, students will obtain an ability in design and selection of acoustic treatment methods to meet those statutory requirements. Standard and advanced measurement techniques are examined. On the successful completion of this Unit students will have an awareness of the statutory noise control requirements, current standards and sources of data; an understanding of the fundamentals of the basics of sound transmission; sound pressure and power; room acoustics and human auditory response; and an ability in design and selection of acoustic treatment methods to meet those statutory requirements.
DESC9133 Architectural Acoustics Practice

Credit points: 6 Teacher/Coordinator: Assoc Prof Densil Cabrera Session: Semester 2 Classes: Lectures 3 x 3 hrs/wk Assumed knowledge: DESC9138 Assessment: Two projects - one 2000wd theoretical report (50%) and one 1500wd practical report (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will cover a range of theoretical, practical and professional issues in architectural acoustics.
Codes and standards pertaining to architectural acoustics; Method and integrity of measurement; Room acoustical measurement, modelling, simulation and criteria; Sound absorption theory, measurement and specification; Sound insulation theory, measurement and specification; Design of spaces using acoustical criteria; and Field assessment of acoustical problems in and around buildings.
By the completion of this unit students will acquire knowledge and experience in areas commonly dealt with by the acoustical consulting profession. They will gain an appreciation of current issues in architectural acoustics, possibly inspiring future research.
DESC9133 (offered in odd years) DESC9191 (offered in even years)