University of Sydney Handbooks - 2017 Archive

Download full 2017 archive Page archived at: Mon, 28 Aug 2017 11:21:56 +1000

Unit of study table

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Master of Professional Engineering (Electrical)

To qualify for the award of the Master of Professional Engineering in this specialisation, a candidate must complete 144 credit points, including core and elective units of study as listed below.
Candidates with a Bachelor of Engineering or equivalent in the relevant discipline, and who have reached an acceptable level of academic achievement in their prior degree, may be eligible for a reduction of volume in learning of up to 48 credit points.

Core units

Year One

Year One covers Foundation units only. Candidates with a prior Bachelor of Engineering degree or equivalent in the field related to this specialisation may be exempted from Year One Core units.
COMP9129
Software Construction
6    A Some prior knowledge of programming is preferred; for students without programming experience, extra assistance is given in the first 6 weeks of the semester.
N COMP5212

Note: Department permission required for enrolment

Semester 1
ELEC9602
Digital Logic
6    A This unit of study assumes some knowledge of digital data representation and basic computer organisation.
N ELEC5722
Semester 1
ELEC9703
Fundamentals of Elec and Electronic Eng
6    A Basic knowledge of differentiation & integration, and HSC Physics
N ELEC5710 OR ELEC1103
Semester 1
ENGG5011
Engineering Foundation Studies A
6   
Note: Department permission required for enrolment

Semester 1
Semester 2
ELEC9103
Simulations and Numerical Solutions in Eng
6    A ELEC9703. Understanding of the fundamental concepts and building blocks of electrical and electronics circuits and aspects of professional project management, teamwork, and ethics.
N ELEC5723 OR ELEC2103 OR COSC1001 OR COSC1901
Semester 2
ELEC9302
Signals and Systems
6    A Basic knowledge of differentiation & integration, differential equations, and linear algebra.
N ELEC5721
Semester 2
ELEC9601
Computer Systems
6    A HSC Mathematics extension 1 or 2
N ELEC5711
Semester 2
ELEC9704
Electronic Devices and Circuits
6    A Ohm`s Law and Kirchoff`s Laws; action of Current and Voltage sources; network analysis and the superposition theorem; Thevenin and Norton equivalent circuits; inductors and capacitors, transient response of RL, RC and RLC circuits; the ability to use power supplies, oscilloscopes, function generators, meters, etc.
N ELEC5720 OR ELEC2104
Semester 2

Year Two

ENGG5202
Sustainable Design, Eng and Mgt
6    A General knowledge in science and calculus and understanding of basic principles of chemistry, physics and mechanics
Semester 1
ENGG5204
Engineering Professional Practice
6    A Competences and experience in engineering obtained during an accepted engineering degree
Semester 1
Complete 24 credit points from the Foundation units block across Year Two.
Select 12 credit points from Electrical Electives or Management Electives units block.
Candiates complete 36 credit points of Electrical Electives and 12 credit points of Management Electives across Year Two and Year Three.

Year Three

ENGG5217
Practical Experience
  

Students should have completed one year of their MPE program before enrolling in this unit.
Intensive February
Intensive July
Semester 1
Semester 2
Select at least 12 credit points from the Project or Research Pathway block.
Select 36 credit points from Electrical Electives or Management Electives units block.
Candiates complete 36 credit points of Electrical Electives and 12 credit points of Management Electives across Year Two and Year Three.

Foundation units

Candidates must complete 24 credit points from the following Foundation units of study.
ELEC9104
Engineering Electromagnetics
6    A Differential calculus, integral calculus, vector integral calculus; electrical circuit theory and analysis using lumped elements; fundamental electromagnetic laws and their use in the calculation of static fields.
N ELEC5730
Semester 1
ELEC9203
Electricity Networks
6    A This unit of study assumes a competence in first year mathematics (in particular, the ability to work with complex numbers), in elementary circuit theory and in basic electromagnetics.
N ELEC3203 OR ELEC5732
Semester 1
ELEC9204
Power Electronics and Applications
6    A Differential equations, linear algebra, complex variables, analysis of linear circuits. Fourier theory applied to periodic and non-periodic signals. Software such as MATLAB to perform signal analysis and filter design. Familiarity with the use of basic laboratory equipment such as oscilloscope, function generator, power supply, etc.
N ELEC5733
Semester 1
ELEC9206
Electrical Energy Conversion Systems
6    A Following concepts are assumed knowledge for this unit of study: familiarity with circuit theory, electronic devices, AC power, capacitors and inductors, and electric circuits such as three-phase circuits and circuits with switches, the use of basic laboratory equipment such as oscilloscope and power supply.
P ELEC9203
N ELEC5734
Semester 2
ELEC9304
Control
6    A Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, Physics; solution of linear differential equations, Matrix Theory, eigenvalues and eigenvectors; linear electrical circuits, ideal op-amps; continuous linear time-invariant systems and their time and frequency domain representations, Laplace transform, Fourier transform.
N ELEC5735
Semester 2
ELEC9305
Digital Signal Processing
6    A Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, continuous linear time-invariant systems and their time and frequency domain representations, Fourier transform, sampling of continuous time signals.
N ELEC5736
Semester 1
ELEC9404
Electronic Circuit Design
6    A A background in basic electronics and circuit theory is assumed.
N ELEC5737
Semester 1
ELEC9405
Communications Electronics and Photonics
6    A A background in basic electronics and circuit theory is assumed.
N ELEC5738
Semester 2
ELEC9505
Communications
6    P ELEC9602. Knowledge of digital logic (logic operations, theorems and Boolean algebra, number systems, combinational logic analysis and synthesis, sequential logic, registers, counters, bus systems, state machines, design of a simple computer, and using hardware description languages such as VHDL or Verilog) is required.
N ELEC5739
Semester 1
ELEC9506
Data Communications and the Internet
6    N ELEC5740
Semester 2
ELEC9515
Digital Communication Systems
6    N ELEC5744
Semester 1
ELEC9607
Embedded Systems
6    A Logic operations, theorems and Boolean algebra, data representation, number operations (binary, hex, integers and floating point), combinational logic analysis and synthesis, sequential logic, registers, counters, bus systems, state machines, simple CAD tools for logic design, basic computer organisation, the CPU, peripheral devices, software organisation, machine language, assembly language, operating systems, data communications and computer networks.
N ELEC5741
Semester 1
ELEC9609
Internet Software Platforms
6    N ELEC5742
Semester 2
ELEC9610
E-Business Analysis and Design
6    A Basic knowledge of Database Management Systems
N ELEC5743 OR EBUS3003
Semester 1

Electrical Elective units

Candidates must complete 36 credit points from the following Electrical Elective units of study.
COMP5047
Pervasive Computing
6    A Background in programming and operating systems that is sufficient for the student to independently learn new programming tools from standard online technical materials. Ability to conduct a literature search. Ability to write reports of work done.

Note: Department permission required for enrolment

Semester 2
COMP5416
Advanced Network Technologies
6    A ELEC3506 OR ELEC9506 OR ELEC5740 OR COMP5116
Semester 2
COMP5426
Parallel and Distributed Computing
6      Semester 1
ELEC5101
Antennas and Propagation
6      Semester 2
ELEC5203
Topics in Power Engineering
6    A ELEC3203 Power Engineering and ELEC3204 Power Electronics and Drives.Familiarity with basic mathematics and physics; competence with basic circuit theory and understanding of electricity grid equipment such as transformers, transmission lines and associated modeling; and fundamentals of power electronic technologies.
Semester 2
ELEC5204
Power Systems Analysis and Protection
6    A The unit assumes basic knowledge of circuits, familiarity with basic mathematics, competence with basic circuit theory and an understanding of three phase systems, transformers, transmission lines and associated modeling and operation of such equipment.
P (ELEC3203 OR ELEC9203 OR ELEC5732) AND (ELEC3206 OR ELEC9206 OR ELEC5734)
Semester 1
ELEC5205
High Voltage Engineering
6    A The following previous knowledge is assumed for this unit. Circuit analysis techniques, electricity networks, power system fundamentals.
P (ELEC3203 OR ELEC9203 OR ELEC5732) AND (ELEC3206 OR ELEC9206 OR ELEC5734)
Semester 2
ELEC5206
Sustainable Energy Systems
6    A Following concepts are assumed knowledge for this unit of study: familiarity with transformers, ac power, capacitors and inductors, electric circuits such as three-phase circuits and circuits with switches, and basic electronic circuit theory.
Semester 2
ELEC5207
Advanced Power Conversion Technologies
6    A ELEC3204
Semester 2
ELEC5208
Intelligent Electricity Networks
6    A Fundamentals of Electricity Networks, Control Systems and Telecommunications
Semester 1
ELEC5211
Power System Dynamics and Control
6    A The pre-required knowledge for learning this UoS is a deep understanding on circuit analysis and its applications in power system steady state analysis.
P ELEC3203 OR ELEC9203 OR ELEC5732
Semester 1
ELEC5212
Power System Planning and Markets
6    A The pre-required knowledge for learning this UoS is power system steady state analysis
P ELEC3203 or ELEC9203 OR ELEC5732
Semester 2
ELEC5303
Computer Control System Design

This unit of study is not available in 2017

6    A This unit assumes a basic knowledge of calculus, functions of real variables, Laplace transform, matrix theory and control theory.

Note: Department permission required for enrolment

Semester 1
ELEC5304
Multidimensional Signal Processing
6    A Mathematics (e.g. probability and linear algebra) and programming skills (e.g. Matlab/Java/Python/C++)
Semester 1
ELEC5305
Acoustics, Speech and Signal Processing
6    A (ELEC2302 OR ELEC9302) AND (ELEC3305 OR ELEC9305). Linear algebra, fundamental concepts of signals and systems as covered in ELEC2302/ELEC9302, fundamental concepts of digital signal processing as covered in ELEC3305/9305. It would be unwise to attempt this unit without the assumed knowledge- if you are not sure, please contact the instructor.
Semester 2
ELEC5403
Radio Frequency Engineering
6    A Students will be expected to be familiar with ELEC3404 - Electronic Circuit Design , ELEC3104 - Engineering Electromagnetics and the third year course in Circuit Design: ELEC3105 - Circuit Theory and Design.
Semester 1
ELEC5507
Error Control Coding
6    A Fundamental mathematics including probability theory and linear algebra. Basic knowledge on digital communications. Basic MATLAB programming skills is desired.
Semester 1
ELEC5508
Wireless Engineering
6    A Basic knowledge in probability and statistics, analog and digital communications, error probability calculation in communications channels, and telecommunications network.
Semester 2
ELEC5509
Mobile Networks
6    A Basically, students need to know the concepts of data communications and mobile communications, which could be gained in one the following units of study: ELEC3505 Communications, ELEC3506 Data Communications and the Internet, or similar units. If you are not sure, please contact the instructor.
Semester 1
ELEC5510
Satellite Communication Systems
6    A Knowledge of error probabilities, analog and digital modulation techniques and error performance evaluation studied in ELEC3505 Communications and ELEC4505 Digital Communication Systems, is assumed.
Semester 2
ELEC5511
Optical Communication Systems
6    A (ELEC3405 OR ELEC9405) AND (ELEC3505 OR ELEC9505). Basic knowledge of communications, electronics and photonics


-
Semester 1
ELEC5512
Optical Networks
6    A Knowledge of digital communications, wave propagation, and fundamental optics
Semester 2
ELEC5514
Networked Embedded Systems
6    A ELEC3305, ELEC3506, ELEC3607 and ELEC5508
Semester 2
ELEC5516
Electrical and Optical Sensor Design
6    A Math Ext 1, fundamental concepts of signal and systems, fundamental electrical circuit theory and analysis
Semester 1
ELEC5517
Software Defined Networks
6    P (ELEC3506 OR ELEC9506) AND ELEC5509
Semester 2
ELEC5518
IoT for Critical Infrastructures
6      Semester 1
ELEC5614
Real Time Computing

This unit of study is not available in 2017

6    A SOFT2130 Software Construction (or SOFT2004 Software Development Methods 1) and ELEC3607 Embedded Computing (or ELEC2601 Microprocessor Systems)
N MECH5701
Semester 1
ELEC5616
Computer and Network Security
6    A A programming language, basic maths.
Semester 1
ELEC5618
Software Quality Engineering
6    A You are capable of writing programs with multiple functions or methods in multiple files. You are capable of design complex data structures and combine them in non trivial algorithms. You know how to use an integrated development environment. You are familiar and have worked previously with software version control systems. You know how to distribute the workload derived from the unit of study effectively throughout the week and make sure that time is truly productive.
Semester 1
ELEC5619
Object Oriented Application Frameworks
6    A Java programming, and some web development experience are essential. Databases strongly recommended
Semester 2
ELEC5620
Model Based Software Engineering
6    A A programming language, basic maths.
Semester 2
ELEC5622
Signals, Software and Health
6      Semester 2
ELEC5701
Technology Venture Creation
6    N ENGG5102
Semester 2
ELEC5803
Advanced Bioelectronics

This unit of study is not available in 2017

6    A A strong foundation in control, signal processing and electronic devices and circuits is assumed including a knowledge of analogue and digital transistor operation, circuit building blocks such as the differential pair and current mirror, AC circuit analysis, Fourier analysis.
P (ELEC2104 OR ELEC5720 OR ELEC9704) AND (ELEC2602 OR ELEC5722 OR ELEC9602)

Note: Department permission required for enrolment

Semester 1

Management Elective units

Candidates must complete 12 credit points from the following Management Elective units of study.
ENGG5203
Quality Engineering and Management
6    A First degree in Engineering or a related discipline
Semester 2
ENGG5205
Professional Practice in Project Management
6   

This is a core unit for all Master of Professional Engineering students as well as all students pursuing Project Management studies (including Master of Project Management, Graduate Certificate in Project Management and Graduate Diploma in Project Management). No prerequisite or assumed knowledge.
Intensive January
Semester 1
Semester 2
ENGG5214
Management of Technology
6    A Sound competence in all aspects of engineering, and some understanding of issues of engineering management
Semester 2
ENGG5215
International Eng Strategy and Operations
6    A Sound competence in all aspects of engineering, and some understanding of issues of engineering management and globalisation
Semester 2
ENGG5216
Management of Engineering Innovation
6    A Sound competence in all aspects of engineering, and some understanding of issues of engineering management
Semester 1

Project units

All candidates are required to complete a minimum of 12 credit points of Project or Research units during the final year of study.
Candidates achieving an average mark of 70% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Extended Capstone Project.
Extended Capstone Project candidates take Capstone Project units ELEC5020 and ELEC5022 (total 18 cp) in place of Capstone Project ELEC5021 and 6 cp of elective units.
ELEC5020
Capstone Project A
6    P 96 cp from MPE degree program or 24 cp from the ME program (including any credit for previous study)
Semester 1
Semester 2
ELEC5021
Capstone Project B
6    C ELEC5020

Note: Department permission required for enrolment

Semester 1
Semester 2
ELEC5022
Capstone Project B Extended
12    P 42 credit points in the Master of Engineering and WAM >70, or 66 credit points in the Master of Professional Engineering and WAM >70 or exemption

Note: Department permission required for enrolment

Semester 1
Semester 2

Research pathway

Candidates achieving an average mark of 75% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Research Pathway.
Research pathway candidates take Dissertation units ELEC5222 and ELEC5223 (total 24 cp) in place of Capstone Project units and 12 cp of elective units.
ELEC5222
Dissertation A
12    N ELEC8902, ENGG5222, ENGG5223, ELEC8901

Note: Department permission required for enrolment
In order to enrol in a project, students must first secure an academic supervisor in an area that they are interested. The topic of your project must be determined in discussion with the supervisor. The supervisor can come from any of the Engineering Departments, however, they need to send confirmation of their supervision approval to the Postgraduate Administrator.
Semester 1
Semester 2
ELEC5223
Dissertation B
12    N ELEC8901, ENGG5223, ENGG5222, ELEC8902

Note: Department permission required for enrolment
In order to enrol in a project, students must first secure an academic supervisor in an area that they are interested. The topic of your project must be determined in discussion with the supervisor. The supervisor can come from any of the Engineering Departments, however, they need to send confirmation of their supervision approval to the Postgraduate Administrator.
Semester 1
Semester 2

Exchange units

Exchange units require the approval of the Program Director. With approval, up to 12 credit points of Exchange units may taken in place of other units, towards the requirements ofthe degree.
ENGG5231
Engineering Graduate Exchange A
6      Intensive January
Intensive July
ENGG5232
Engineering Graduate Exchange B
6      Intensive January
Intensive July

For more information on degree program requirements visit CUSP (https://cusp.sydney.edu.au).