University of Sydney Handbooks - 2020 Archive

Download full 2020 archivePage archived at: Tue, 27 Oct 2020

Power Engineering Major

Overview

The major in power engineering builds on foundations in physics, mathematics, computer science and electrical engineering principles. The main focus is in the areas of power systems, power electronics, control engineering, energy systems and management. Power engineers plan, analyse, design, simulate, construct, operate, optimize and maintain power systems and power electronics. The power system infrastructure includes power generation, transmission, distribution, and conversion that evolves into the heartbeat of modern society.

As a power engineering graduate, you may pursue a career with industrial corporations and government departments involved with providing, converting, controlling, managing, and using electrical power, or conduct research on developing new technology for utilizing alternative power sources such as solar and wind energy.

This major best aligns with the Electrical or Software stream.

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Power Engineering Major

Achievement of a major in Power Engineering requires 48 credit points from this table including:
(i) 12 credit points of 2000-level core units
(ii) 18 credit points of 3000-level core units
(iii) 6 credit points of 3000-level project units
(iv) 6 credit points of 5000-level core units
(v) 6 credit points of 5000-level selective units

Units of Study

2000-level units of study
Core units
ELEC2104
Electronic Devices and Circuits
6    A ELEC1103. Ohm's Law and Kirchoff's Laws; action of Current and Voltage sources; network analysis and the superposition theorem; Thevenin and Norton equivalent circuits; inductors and capacitors, transient response of RL, RC and RLC circuits; the ability to use power supplies, oscilloscopes, function generators, meters, etc.
Semester 2
ELEC2302
Signals and Systems
6    A (MATH1001 OR MATH1021) AND MATH1002 AND (MATH1003 OR MATH1023). Basic knowledge of differentiation & integration, differential equations, and linear algebra.
Semester 2
3000-level units of study
Core units
ELEC3203
Electricity Networks
6    A This unit of study assumes a competence in 1000 level MATH (in particular, the ability to work with complex numbers), in elementary circuit theory and in basic electromagnetics.
Semester 1
ELEC3206
Electrical Energy Conversion Systems
6    A Following concepts are assumed knowledge for this unit of study: familiarity with circuit theory, electronic devices, ac power, capacitors and inductors, and electric circuits such as three-phase circuits and circuits with switches, the use of basic laboratory equipment such as oscilloscope and power supply.
P ELEC3203
Semester 2
ELEC3304
Control
6    A Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, Physics; solution of linear differential equations, Matrix Theory, eigenvalues and eigenvectors; linear electrical circuits, ideal op-amps; continuous linear time-invariant systems and their time and frequency domain representations, Laplace transform, Fourier transform.
P ELEC2302 AND (MATH2061 OR MATH2067 OR MATH2021 OR MATH2961 OR AMME2000)
N AMME3500
Semester 2
Project units
ELEC3204
Power Electronics and Applications
6    A 1. Differential equations, linear algebra, complex variables, analysis of linear circuits. 2. Fourier theory applied to periodic and non-periodic signals. 3. Software such as MATLAB to perform signal analysis and filter design. 4. Familiarity with the use of basic laboratory equipment such as oscilloscope, function generator, power supply, etc. 5. Basic electric circuit theory and analysis
P ELEC2104
Semester 1
5000-level units of study
Core units
ELEC5204
Power Systems Analysis and Protection
6    A (ELEC3203 OR ELEC9203 OR ELEC5732) AND (ELEC3206 OR ELEC9206 OR ELEC5734). The unit assumes basic knowledge of circuits, familiarity with basic mathematics, competence with basic circuit theory and an understanding of three phase systems, transformers, transmission lines and associated modeling and operation of such equipment.
Semester 1
Selective units
ELEC5203
Topics in Power Engineering
6    A ELEC3203 Power Engineering and ELEC3204 Power Electronics and Drives. Familiarity with basic mathematics and physics; competence with basic circuit theory and understanding of electricity grid equipment such as transformers, transmission lines and associated modeling; and fundamentals of power electronic technologies.
Semester 2
ELEC5205
High Voltage Engineering
6    A The following previous knowledge is assumed for this unit. Circuit analysis techniques, electricity networks, power system fundamentals.
P (ELEC3203 OR ELEC9203 OR ELEC5732) AND (ELEC3206 OR ELEC9206 OR ELEC5734)
Semester 2
ELEC5206
Sustainable Energy Systems
6    A Following concepts are assumed knowledge for this unit of study: familiarity with transformers, ac power, capacitors and inductors, electric circuits such as three-phase circuits and circuits with switches, and basic electronic circuit theory.
Semester 2
ELEC5207
Advanced Power Conversion Technologies
6    A ELEC3204
Semester 2
ELEC5208
Intelligent Electricity Networks
6    A Fundamentals of Electricity Networks, Control Systems and Telecommunications
Semester 1
ELEC5211
Power System Dynamics and Control
6    A The assumed knowledge for learning this UoS is a deep understanding on circuit analysis and its applications in power system steady state analysis.
P ELEC3203 OR ELEC9203 OR ELEC5732
Semester 1
ELEC5212
Power System Planning and Markets
6    A The assumed knowledge for learning this UoS is power system steady state analysis
P ELEC3203 or ELEC9203 OR ELEC5732
Semester 2