# Table R - Higher Degree By Research

Unit outlines will be available through Find a unit outline.

## Table R - Science

This table lists Table R - Higher Degree by Research units of study

**AFNR5511 Soil Processes, Assessment and Management**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

Soils support agricultural and natural ecosystems and regulate environmental interactions between the hydrosphere and atmosphere. It is the quality of our soils that affect productivity, the environment, health and ultimately sustainability. However, challenges such as those presented by lack of plant nutrient supply, soil acidification, physical degradation, soil contamination, and loss of soil biodiversity are problems at a global scale that threaten the sustainability of the environment and society. As well as the threats the importance of maintaining a quality soil that regulates environmental interactions will be explored, such as soil as a sink for carbon affecting climate interactions or understanding how a rich soil biodiversity can contribute to food production affecting food security. To do this, this unit of study is concerned with exploring the key pedology, soil chemistry, soil physical and soil biological processes that drive these challenges to soil quality. Time will be spent investigating how the quality of the soil can be assessed, using the indicators of the mentioned soil processes, and how the resulting data can be aggregated and communicated in a meaningful way. Working with case studies, the students will identify problems that are assessed using soil quality or function analysis with the aim of identifying management options. The management options will be evaluated to determine their adoptability and implement ability. By investigating the case studies using soil quality or function analysis students will develop their research and enquiry skills. Assessing and developing adoptable management strategies the students will develop their skills in synthesising material from multiple sources and enhance their intellectual autonomy. By producing reports and presenting seminars the students will develop their communication skills.

Textbooks

Textbooks: D. Hillel, 2004. Introduction to Environmental Soil Physics, Elsevier Science, San Diego, CA USA

**AFNR5801 Climate Change: Process, History, Issues**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: A basic understanding of climate change processes and issues. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

This unit provides students with an overview of current debates and approaches to understanding and quantifying interactions between the biosphere, oceans and atmosphere, as used around the world, and the consequences of those interactions for climate. The unit considers climate change on a variety of timescales. This unit will include a weekend field trip to Snowy Mountains field sites where students will be introduced to climate change research.

Textbooks

A reading list will be provided consisting of selected book chapters, journal articles and other publications

**CHEM5101 Special Topics in Chemistry 1**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Knowledge of chemical nomenclature and structural representations Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

Chemistry underpins many advances in technology, industry and medicine. It is a broad scientific discipline that impacts on, and is influenced by, other scientific fields. Research in this field occurs in areas as diverse as the design of new drugs and tools for biomedicine, the development of new functional materials, novel approaches to quantum computing and investigating how to communicate chemistry to students and non-scientists. In this unit you will attend cutting-edge research seminars covering the wide breadth of the discipline and learn about state-of-the art research in different sub-discipline areas. You will learn how to critically analyse research presentations and apply this skill to assist you in presenting your own research to a scientific audience. By doing this unit you will develop an understanding of the principles and concepts from a range of chemistry subdiscipline areas. You will develop an ability to analyse and critique what makes a good research presentation. This will assist you in the development and communication of your own research ideas.

Textbooks

Refer to the unit of study outline https://www.sydney.edu.au/units

**CHEM5102 Special Topics in Chemistry 2**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with basic concepts and terminology of chemistry Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

Chemistry, like all sciences, requires an individual not only to perform experimentation and data analysis but also needs us to be able to communicate our findings to others. This unit will expand our consideration of successful communication from oral presentations to written media. You will attend cutting-edge research seminars covering the wide breadth of the discipline and learn about state-of-the-art research in different subdiscipline areas. You will discover how discipline experts communicate the results of their research to others and through critical reflection upon the research papers referred to in the seminars, you will develop an understanding of how successful scientists write about their work. Further from this, you will also critically reflect on how this impacts your own research ideas and, through peer-peer discussions, gain an appreciation of the subjectivity surrounding successful and impactful communication. By doing this unit, you will develop scientific writing skills that will be useful in the writing of your research thesis, any future publications or indeed any scientific writing platform.

Textbooks

Refer to the unit of study outline https://www.sydney.edu.au/units

**ENVI5801 Social Science of Environment**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

This unit provides both a conceptual and an empirical foundation for the analysis of relationships between society, the environment and natural resources. In our recent past the rapid rate of global environmental change has necessitated a breakdown of traditional disciplinary boundaries in research and social scientists are increasingly called upon to work alongside natural scientists in unraveling the complexities of the human-environmental nexus. Students will examine a number of environmental issues and consider a variety of social science academic perspectives about environmental management.

**GEOG5001 Geographic Information Science A**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1a Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: This unit assumes a sound understanding of scientific principles, HSC level mathematics and understanding of basic statistics. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

This unit of study gives an overview of basic spatial data models, and enables students to understand the use of data from a variety of sources within a geographical information system (GIS). The analysis of spatial data, and its manipulation to address questions appropriate to planning or locational applications, will be addressed, as will the development of thematic maps from diverse data layers.

**MARS5001 Coastal Processes and Systems**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: This unit assumes a sound understanding of scientific principles, HSC level mathematics and understanding of basic statistics. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

This unit of study explains the major coastal processes and systems of relevance to coastal zone management. These include beaches, barriers and dunes; estuaries and inlets; and coral reefs. The interactions between these processes and systems that are of most relevance to coastal management are highlighted, including coastal hazards such as beach erosion. Anthropogenic impacts are also analysed. This unit includes an introduction to numerical modeling of coastal processes and systems using state-of-the-art modeling tools. The unit is presented in lectures and field excursions, the latter enabling each system to be examined first hand.

**MATH5310 Topics in Algebra**

*This unit of study is not available in 2021*

Credit points: 6 Teacher/Coordinator: Oded Yacobi Session: Semester 1 Classes: 4-5 contact hours/week comprising lectures, and tutorials or seminars Assumed knowledge: Familiarity with abstract algebra (e.g., MATH4062 or equivalent) and commutative algebra (e.g., MATH4312 or equivalent). Please consult with the coordinator for further information. Assessment: tutorial participation (10%), written assignments (40%), final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day

Algebra is one of the broadest fields of mathematics, underlying most aspects of mathematics. It is sometimes considered "the mathematics of symmetry" or the "language of mathematics". In its most general description, algebra includes number theory, algebraic geometry and the classical study of algebraic structures such as rings and groups as well as their representations. Advanced algebra intersects other fields of modern mathematics, for instance via algebraic topology, homological algebra and categorical representation theory; and modern physics, via Lie groups and Lie algebras. You will learn about fundamental concepts of a branch of advanced algebra and its role in modern mathematics and its applications. You will develop problem-solving skills using algebraic techniques applied to diverse situations. Learning an area of pure mathematics means building a mental framework of theoretical concepts, stocking that framework with plentiful examples with which to develop an intuition of what statements are likely to be true, testing the framework with specific calculations, and finally gaining the deep understanding required to create technically sophisticated proofs of general results. The selection of topics is guided by their relevance for current research. Having gained an abstract understanding of symmetry, you will discover the manifestation of algebraic structures everywhere!

**MATH5320 Topics in Analysis**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with metric spaces (e.g., MATH4061 or equivalent) and higher analysis (e.g., MATH4313 or MATH4315 or equivalent). Please consult with the coordinator for further information. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

Differential equations and the notion of convergence are ubiquitous within the natural sciences, engineering and mathematics. Analysis has, thus, far reaching applications, and it is a major discipline in its own right. The origins of many major areas such as topology, functional and harmonic analysis have their roots in real and complex analysis. Analysis makes unexpected appearances in other areas such as number theory, where it played a key role in a recent breakthrough on arithmetic progression of prime numbers by Fields medalist Terrence Tao. Analysis deals with any kind of limit process, notions of distance, measure, continuity or differentiability. It makes up a crucial part of diverse areas in mathematics. The fields of application of analysis that you will encounter in this unit may include partial differential equations, differential geometry, harmonic analysis, topological groups, optimal control, scattering theory, ergodic theory, differential topology or mathematical physics. The selection of topics in this unit is guided by their relevance for applications and current research. In this unit, you will gain an understanding of the systematic, abstract foundations of a branch of analysis and develop tools needed to get to the present frontiers.

**MATH5321 Topics in Analysis (Alt)**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with metric spaces (e.g., MATH4061 or equivalent) and higher analysis (e.g., MATH4313 or MATH4315 or equivalent). Please consult with the coordinator for further information. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

Differential equations and the notion of convergence are ubiquitous within the natural sciences, engineering and mathematics. Analysis has, thus, far reaching applications, and it is a major discipline in its own right. The origins of many major areas such as topology, functional and harmonic analysis have their roots in real and complex analysis. Analysis makes unexpected appearances in other areas such as number theory, where it played a key role in a recent breakthrough on arithmetic progression of prime numbers by Fields medalist Terrence Tao. Analysis deals with any kind of limit process, notions of distance, measure, continuity or differentiability. It makes up a crucial part of diverse areas in mathematics. The fields of application of analysis that you will encounter in this unit may include partial differential equations, differential geometry, harmonic analysis, topological groups, optimal control, scattering theory, ergodic theory, differential topology or mathematical physics. The selection of topics in this unit is guided by their relevance for applications and current research. In this unit, you will gain an understanding of the systematic, abstract foundations of a branch of analysis and develop tools needed to get to the present frontiers.

**MATH5331 Topics in Geometry (Alt)**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with metric spaces (e.g., MATH4061 or equivalent) and differential geometry (e.g., MATH4068 or equivalent). Please consult with the coordinator for further information. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

Geometry, as one of the most ancient branches of pure mathematics, arose from the necessity and desire to describe and thoroughly understand the surrounding world and the universe. The development of geometry substantially contributes to the evolution of mathematics as a whole subject through the concepts and notions of axiom and manifold, which lays the foundation of modern mathematics. Despite the abstract appearance of modern geometry, the objects and problems of modern geometry can usually be traced back to practical situations. A good example is the recent breakthrough in image identification technology, which is rooted in differential geometry. From both a research and an educational perspective, geometry provides perfect opportunities for the implementation and interaction of ideas and techniques from other branches of mathematics like algebra, analysis, topology and probability, and other subjects like chemistry, finance and physics through topics including financial derivatives, Einstein Equations and black holes, which have attracted enormous public attention in recent years. You will learn to approach questions initially through intuition and then make this rigorous using mathematical tools. Through the selection of topics in this unit, you will train your mathematical imagination to discover the geometric framework of a complex problem.

**MATH5340 Topics in Topology**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with metric spaces (e.g., MATH4061 or equivalent) and algebraic topology (e.g., MATH4311 or equivalent). Please consult with the coordinator for further information. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

Topology is the mathematical theory of the "shape of spaces". It gives a flexible framework in which the fabric of space is like rubber and thus enables the study of the general shape of a space. The spaces often arise indirectly: as the solution space of a set of equations; as the parameter space for a family of objects; as a point cloud from a data set; and so on. This leads to strong interactions between topology and a plethora of mathematical and scientific areas. The love of the study and use of topology is far reaching, including the use of topological techniques in the phases of matter and transition which received the 2016 Nobel Prize in Physics. This unit introduces you to a selection of topics in pure or applied topology. Topology receives strength from its areas of applications and imparts insights in return. A wide spectrum of methods is used, dividing topology into the areas of algebraic, computational, differential, geometric and set-theoretic topology. You will learn the methods, key results, and role in current mathematics of at least one of these areas, and gain an understanding of current research problems and open conjectures in the field.

**MATH5341 Topics in Topology (Alt)**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with metric spaces (e.g., MATH4061 or equivalent) and algebraic topology (e.g., MATH4311 or equivalent). Please consult with the coordinator for further information. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

Topology is the mathematical theory of the "shape of spaces". It gives a flexible framework in which the fabric of space is like rubber and thus enables the study of the general shape of a space. The spaces often arise indirectly: as the solution space of a set of equations; as the parameter space for a family of objects; as a point cloud from a data set; and so on. This leads to strong interactions between topology and a plethora of mathematical and scientific areas. The love of the study and use of topology is far reaching, including the use of topological techniques in the phases of matter and transition which received the 2016 Nobel Prize in Physics. This unit introduces you to a selection of topics in pure or applied topology. Topology receives strength from its areas of applications and imparts insights in return. A wide spectrum of methods is used, dividing topology into the areas of algebraic, computational, differential, geometric and set-theoretic topology. You will learn the methods, key results, and role in current mathematics of at least one of these areas, and gain an understanding of current research problems and open conjectures in the field.

**MATH5411 Special Topics in Applied Mathematics (Alt)**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with the methods of classical applied mathematics (e.g., MATH4412) and the ability to write code and numerical schemes to solve standard applied mathematical problems (e.g., MATH4411 or equivalent). Please consult with the coordinator for further information. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

In his book on Applied Mathematics, Alain Goriely states "There is great beauty in mathematics and great beauty in the world around us. Applied Mathematics brings the two together in a way that is not always beautiful, but is always interesting and exciting. "In this unit you will explore classic problems in Applied Mathematics and their solutions or investigate an area of Applied Mathematics that is currently the focus of active research. You will delve deeply into powerful mathematical methods and use this mathematics to investigate and resolve problems in the real world, whether than is in computation, the social sciences or the natural sciences. You will learn how the synergies between mathematics and real world problems that are found throughout Applied Mathematics both drive the creation of new mathematical methods and theory, and give powerful insights into the underlying problems, resulting in new ways of seeing the world and new types of technology. By doing this unit you will grow in your appreciation of the links between mathematical theory and its practical outcomes in other disciplines and learn to use mathematics in deeply profound ways in one or more areas of application.

**MATH5420 Deterministic and Stochastic Systems**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with the methods of classical applied mathematics (e.g., MATH4412) and some experience of probabilistic systems (e.g., STAT3021, MATH4311 or equivalent). Please consult with the coordinator for further information. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

Deterministic and stochastic systems lie at the heart of applied mathematics. They are dynamical models of the real world, whose reach is widespread and growing rapidly. Interest in such models grew from the discovery of chaos in simple models of atmospheric circulation, at almost the same time as astonishingly well-ordered and predictable behaviour was observed in models of particle physics. These starting points led to the development of new tools in applied mathematics, which turned out to be profoundly effective at describing emergent behaviours and change. The Economist magazine has stated that "The equations of a good theory are taken to represent physical reality because they can be used to make predictions". This unit will present a toolbox for describing and predicting outcomes. The tools also allow for methods of checking how parameters in a model could be changed to compare predictions to observations. You will learn how profound mathematical theory is applied to produce tools that are universal, adaptable and far-reaching. You will adapt and apply this fundamental theory to these to explore classical and current applications of mathematics to real world problems. You will use methods, developed to study classical areas, as springboards for new tools for innovative applications such as artificial intelligence and machine learning.

**MATH5421 Deterministic and Stochastic Systems (Alt)**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assumed knowledge: Familiarity with the methods of classical applied mathematics (e.g., MATH4412) and some experience of probabilistic systems (e.g., STAT3021, MATH4311 or equivalent). Please consult with the coordinator for further information. Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

Deterministic and stochastic systems lie at the heart of applied mathematics. They are dynamical models of the real world; whose reach is widespread and growing rapidly. Interest in such models grew from the discovery of chaos in simple models of atmospheric circulation, at almost the same time as astonishingly well-ordered and predictable behaviour was observed in models of particle physics. These starting points led to the development of new tools in applied mathematics, which turned out to be profoundly effective at describing emergent behaviours and change. The Economist magazine has stated that "The equations of a good theory are taken to represent physical reality because they can be used to make predictions". This unit will present a toolbox for describing and predicting outcomes. The tools also allow for methods of checking how parameters in a model could be changed to comparepredictions to observations. You will learn how profound mathematical theory is applied to produce tools that are universal, adaptable and far-reaching. You will adapt and apply this fundamental theory to these to explore classical and current applications of mathematics to real world problems. You will use methods, developed to study classical areas, as springboards for new tools for innovative applications such as artificial intelligence and machine learning.

**MATH5550 Optimal Control and Game Theory**

*This unit of study is not available in 2021*

Credit points: 6 Teacher/Coordinator: Oded Yacobi Session: Semester 2 Classes: 3 x 1 hr lectures and 1 x 1hr tutorial per week for 13 weeks Assumed knowledge: At least 6 credit points of (2000-level Advanced Mathematics or 3000-level Advanced Mathematics or 4000-level Mathematics units) or equivalent. Assessment: 2 x take-home assignments (40%), final exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day

Note: This unit is only available in even years.

How to maximise gains (or to minimise costs) and how to determine optimal strategies or policies are fundamental questions for engineers, economists, doctors designing a cancer therapy, fund managers or a government agency planning social policies. Several problems in Science (e. g. mechanics, physics, neuroscience or biology) can be also formulated as optimisation problems in random environments. The theory of stochastic optimal control and games is an indispensable tool in many areas of applied mathematics. In the first part of this unit, you will be familiarised with the dynamic programming principle and learn how to show that it provides a unified approach to a large number of seemingly unrelated problems. The second part is devoted to backward stochastic differential equations and their applications to stochastic optimal control and game theory. You will learn how to solve continuous time problems based either on the Wiener process or more general classes of stochastic processes. After completing this unit, you will be able to formulate a diverse suite of problems arising in finance, applied sciences, engineering and medicine as stochastic optimal control problems and solve them using the concepts of the Bellman principle, Hamilton-Jacobi-Bellman equation and backward stochastic differential equations.

**MATH5551 Stochastics and Finance**

*This unit of study is not available in 2021*

Credit points: 6 Teacher/Coordinator: Oded Yacobi Session: Semester 1 Classes: lecture 3 hrs/week, tutorial 1 hr/week for 13 weeks Assumed knowledge: Students should have a sound knowledge of probability theory and stochastic processes from, for example, STAT2X11 and STAT3021 or equivalent. Assessment: 2 xassignment (20% each, 40% total), final exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day

Note: This unit is only available in odd years.

Stochastics examines phenomena in which chance plays a central role. The theory of stochastic phenomena has applications in engineering systems, the physical and life sciences and economics, to give just a few examples. Applications of stochastic processes arise particularly naturally in finance where there are fluctuations in stock prices and practitioners are required to solve different types of optimisation problems in stochastically driven systems. For this reason, it is particularly important that mathematicians in general and especially mathematicians specialising in problems in the financial industry are equipped with tools to analyse and quantify random phenomena. This unit will expose you to critical topics in the theory and application of stochastic processes and analysis in mathematical finance. You will learn how to identify problems that require the application of stochastic theory, how to rigorously describe such problems using appropriate mathematical frameworks and how to tackle and solve the problem once it has been phrased in terms of stochastic theory. Along the way, you will also gain a deep knowledge about diverse topics in finance and the relevance of mathematical analysis in the financial industry.

**OLET5604 Health Literacy for Better Lives**

Credit points: 2 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Intensive April Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Block mode

An individual's health literacy has a major impact on their health and wellbeing across their life. Health literacy comprises the cognitive and social skills which determine the motivation and ability of an individual to gain access to, understand, and use information to promote and maintain good health. People of lower health literacy commonly engage less frequently with the healthcare system, presenting later with illnesses, have lower adherence to medical advice and treatments, and higher mortality rates. In this unit you will learn about health literacy, how it can adversely impact populations, its measurement and applications in healthcare, and an understanding of approaches to increase health literacy. You will develop skills to use within the healthcare system and with external partners to increase levels of health literacy.

**PHYS5011 Nuclear Physics and Magnetic Resonance Imaging**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

This unit is normally undertaken as part of the Master of Medical Physics or the Graduate Diploma in Medical Physics. Nuclear properties and models, and the main types of radioactive decay (alpha, beta, and gamma decay) are covered. There is also a brief introduction to nuclear reactions. This UoS also includes fundamentals of nuclear magnetic resonance spectroscopy, and magnetic resonance imaging.

**PHYS5012 Radiation Physics and Dosimetry**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 1 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Prohibitions: PHYS5001 Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) day

This unit is normally undertaken as part of the Master of Medical Physics degree or the Graduate Diploma in Medical Physics. Sources of radiation, interaction of radiation with matter, physical, chemical and biological effects of radiation in human tissue, physical principles of dosimetry, internal and external dosimetry, radiation units and measurement are covered.

**SUST5002 Food and Water Security**

Credit points: 6 Teacher/Coordinator: Refer to the unit of study outline https://www.sydney.edu.au/units Session: Semester 2 Classes: Refer to the unit of study outline https://www.sydney.edu.au/units Assessment: Refer to the unit of study outline https://www.sydney.edu.au/units Mode of delivery: Normal (lecture/lab/tutorial) evening

Note: This unit of study involves essay and blog writing and group work. Academic writing skills equivalent to HSC Advanced English or significant consultation via the Writing Hub is assumed.

Potentially the greatest challenge facing humanity is how to feed 10 billion people in a hot world. How do we reverse trends which suggest that essential resources are becoming scarce, consumers sicker and traditional systems of food production are breaking down? This is the situation that faces us in the 21 Century. This unit explores the imperatives and challenges of ensuring an adequate supply of safe water and nutritious food in the face of changes in the environment, human population and global markets. Factors influencing trends in supply and demand include environmental degradation, climate change, energy scarcity, technology, changes in population and the patterns of global prosperity, growing urbanisation, and increased consumption. The unit will consider the underlying policy, economic and market-driven forces that play an important role in affecting both supply and demand. The needs of low-, middle- and high-income nations will be compared and the role of international, national and regional mechanisms will be discussed. Placing emphasis on the relevance to Australia, the unit will explore available interdisciplinary and multi-sectoral actions across a range of organisational levels such as communities, governments, NGOs and international agencies.