Your Search Results

Accelerating perovskite solar cells for the real world

While perovskite solar cells have been the fastest advancing PV technology, what else is needed to accelerate the deployment of this technology in the real world? Why do demonstrate more...

Supervisor(s): Ho-Baillie, Anita (Professor)

The power of perovskites

Metal halide perovskites have attracted global research attention in the last decade. While their application for solar is promising being the fastest advancing PV technology with m more...

Supervisor(s): Ho-Baillie, Anita (Professor)

Radio Emissions from the Edge of our Solar System

The two Voyager spacecraft have observed strong radio waves generated when shocks produced by solar activity cross into the local interstellar medium. This project will develop a de more...

Supervisor(s): Cairns, Iver (Professor)

Accelerating Hydrogen Economy

Hydrogen is an extremely important industrial chemical but is also a clean fuel or as an energy carrier whether in the form of liquid hydrogen or liquid ammonia replacing carbon-con more...

Supervisor(s): Ho-Baillie, Anita (Professor)

Plasma surface modification for applications in microfluidic diagnostic systems and implantable cardiovascular devices

You will develop novel hemocompatible, bioactive surfaces in microfluidic models for cardiovascular applications. The project is part of an existing collaboration between medic more...

Supervisor(s): Bilek, Marcela (Professor)

Nanoparticle-based biomolecule detection systems

You will develop novel systems to detect biomolecular expression profiles for use in imaging and flow cytometry. This multidisciplinary project aims to improve our understandin more...

Supervisor(s): Bilek, Marcela (Professor)

PLASMONIC-ENHANCED RAMAN SCATTERING SCANNER: A REVOLUTION IN MOBILE SENSING

This project aims to develop nanoscale waveguide-enhanced spontaneous Raman scattering, thereby bringing on-chip single molecule detection and identification to reality. This projec more...

Supervisor(s): Palomba, Stefano (Associate Professor)

Modelling plasma surface functionalisation of additively manufactured, porous, prosthetic implants

This project will develop multiphysics models of plasma surface treatment to enable the creation of prosthetic implants with controllable surface properties and long-term biostabili more...

Supervisor(s): Bilek, Marcela (Professor), Baldry, Mark (Dr)

Modelling plasma synthesis of nanoparticles for non-invasive diagnosis and targeted treatment of disease

This project will develop multiphysics models of a low temperature capacitively coupled plasma reactor to engineer functionalised nanoparticles for biomedical applications.This proj more...

Supervisor(s): Bilek, Marcela (Professor), Baldry, Mark (Dr)

Modelling atmospheric plasma processes for biofunctionalization in additive manufacturing

This project will develop multiphysics models of atmospheric pressure plasma systems to engineer interfaces and biofunctionalised scaffolds in 3D bioprinting.  The Applied Phys more...

Supervisor(s): Bilek, Marcela (Professor), Baldry, Mark (Dr)