Your Search Results

Modeling brain dynamics with spatial gradients

A core aim of neuroscience is to understand how the brain, with its staggering complexity of 100 billion neurons, makes sense of the world around it. Large-scale global initiatives more...

Supervisor(s): Fulcher, Ben (Dr)

Algorithmic principles of navigating the brain using nanorobots

Over the past several years, high-throughput neuroscience methods have yielded comprehensive cellular maps of the entire brain. These data have revealed features, like distinctive m more...

Supervisor(s): Fulcher, Ben (Dr)

MODELLING EFFECTS OF LIGHT ON THE CIRCADIAN RHYTHMS

This project aims to advance our understanding of the effects of light on the circadian rhythms and develop a detailed biophysical model of the circadian photoreceptor system that i more...

Supervisor(s): Postnova, Svetlana (Dr)

The Physics of Circadian Desynchrony

This project will investigate brain mechanisms and health consequences of circadian misalignment. more...

Supervisor(s): Postnova, Svetlana (Dr)

QUANTIFYING INTER-INDIVIDUAL VARIABILITY IN CIRCADIAN RHYTHMS

The overarching goal of this set of projects is to understand the brain mechanisms of inter-individual variability in circadian rhythms and develop tools for personalized prediction more...

Supervisor(s): Postnova, Svetlana (Dr)

Artificial Intelligence in Ion Channel Drug Discovery

Application of machine learning and artificial intelligence methods to develop models predictive of drug activity, selectivity, stability and distribution. The project will be condu more...

Supervisor(s): Balle, Thomas (Associate Professor)