Your Search Results

Novel biophotonic devices

The project will explore novel biomedical applications of a new type of fibre, taking advantage of our recent breakthrough in fabrication of fibres in low Young's modulus materials more...

Supervisor(s): Fleming, Simon (Professor)

Understanding visual experience: The visual perception of 3D shape, material, and colour

My lab is dedicated to understanding what shapes our visual experience of the world. Our goal is to discover the information that the brain uses to extract meaningful properties more...

Supervisor(s): Anderson, Barton (Professor)

Quantum transport in molecule/carbon-based nanostructures for new molecular electronic devices

Various projects available in the field molecular electronics and sensors. Large scale ab initio calculations will be used to investigate and predict novel structures and systems. A more...

Supervisor(s): Stampfl, Catherine (Professor)

Mechanism and control of diamond and graphene-based nanostructures using direct electric-field and laser excitation

To investigate the sculpting of carbon-based structures through controlled electric field and/or laser excitation, through first-principles based calculations. more...

Supervisor(s): Stampfl, Catherine (Professor)

Customising the acidity of novel nano-catalysts for desired catalytic reactions

To investigate through first principles calculations, the fundamental physics and chemistry of novel solid acid nano-catalysts with the overall goal of understanding and predicting more...

Supervisor(s): Stampfl, Catherine (Professor)

Nano-catalysts for carbon neutral futures: Conversion of CO2 into valuable chemicals

To investigate functionalized porous nano-composites for advanced physical and chemical processes to convert CO2 to valuable chemicals from theory and computations. more...

Supervisor(s): Stampfl, Catherine (Professor)

Understanding and design of new multiferroic materials

Using first-principle theory and calculation, this project will investigate puzzling complex phenomena in multiferroics with the aim of designing new multiferroic materials for the more...

Supervisor(s): Stampfl, Catherine (Professor)

Modelling charge transfer in donor-acceptor molecule using TDDFT and Spintronics of main-metal organometallic chains

Two projects: (i) To identify the charge transfer mechanism in donor-bridge-acceptor molecules, whether superexchange or sequential hopping or a different mechanism, for the systems more...

Supervisor(s): Stampfl, Catherine (Professor)

2D materials – effect of strain on chemical reactivity; and the physics of borophene

Two projects: (i) To study the catalytic properties of 2D structures for the Oxygen Reduction Reaction (ORR) and determine how the catalytic properties are influenced by applying st more...

Supervisor(s): Stampfl, Catherine (Professor)

Understanding the growth of hydrodynamic instabilities in Inertial Confinement Fusion

The National Ignition Facility (NIF) in the USA has managed to achieve a fusion fuel gain of 1 in landmark experiments. However, the targeted gain is substantially higher than this more...

Supervisor(s): Thornber, Ben (Dr)