Protein and peptide biomarkers of myocardial ischemia


This project will identify novel biomarkers (diagnostics) of ischemia / reperfusion injury in the heart.


Professor Stuart Cordwell

Research Location

School of Life and Environmental Sciences

Program Type



Cardiovascular disease (CVD) results in approximately 7 million deaths per annum world-wide and is the most significant cause of death in Australians. Many of these result from sequelae following myocardial ischemia / reperfusion (I/R) injury. Reduction or cessation of blood flow (ischemia) generally results from the formation of atherosclerotic lesions in the coronary arteries. Reintroduction of blood-flow (reperfusion) by thrombolysis or primary percutaneous coronary artery intervention remains the best strategy for resolving ischemia and preventing cell death and permanent cardiac dysfunction (infarction). Morbidity and mortality from acute myocardial infarction (AMI) remain significant. The endogenous or ‘native’ peptidome is the full complement of natural, low molecular mass (<10kDa) peptides, as well as those created by the proteolysis of larger proteins, contained within a cell, tissue or body fluid. Pathology is often underpinned by protein damage, particularly following protease activation. The peptidome is therefore a rich source of putative disease biomarkers. This project will utilize chromatography coupled with mass spectrometry to identify peptide biomarkers of I/R injury in animal models and thus act as a model for developing new and more effective strategy for the rapid diagnosis of myocardial ischemia.

Additional Information

HDR Inherent Requirements

In addition to the academic requirements set out in the Science Postgraduate Handbook, you may be required to satisfy a number of inherent requirements to complete this degree. Example of inherent requirement may include:

- Confidential disclosure and registration of a disability that may hinder your performance in your degree;
- Confidential disclosure of a pre-existing or current medical condition that may hinder your performance in your degree (e.g. heart disease, pace-maker, significant immune suppression, diabetes, vertigo, etc.);
- Ability to perform independently and/or with minimal supervision;
- Ability to undertake certain physical tasks (e.g. heavy lifting);
- Ability to undertake observatory, sensory and communication tasks;
- Ability to spend time at remote sites (e.g. One Tree Island, Narrabri and Camden);
- Ability to work in confined spaces or at heights;
- Ability to operate heavy machinery (e.g. farming equipment);
- Hold or acquire an Australian driver’s licence;
- Hold a current scuba diving license;
- Hold a current Working with Children Check;
- Meet initial and ongoing immunisation requirements (e.g. Q-Fever, Vaccinia virus, Hepatitis, etc.)

You must consult with your nominated supervisor regarding any identified inherent requirements before completing your application.

Want to find out more?

Contact us to find out what’s involved in applying for a PhD. Domestic students and International students

Contact Research Expert to find out more about participating in this opportunity.

Browse for other opportunities within the School of Life and Environmental Sciences .


Ischemia / Reperfusion Injury, Myocardium, cardiovascular disease, Proteomics, Peptidomics, Chromatography, mass spectrometry, Cardiovascular & respiratory diseases, Cell biology, Heart & circulation

Opportunity ID

The opportunity ID for this research opportunity is: 61

Other opportunities with Professor Stuart Cordwell