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Abstract We propose a novel methodology for high
dimensional time series prediction based on the ker-
nel method extension of data-driven Koopman spectral
analysis, via the following methodological advances: (a)
a new numerical regularization method, (b) a natural5

ordering of Koopman modes which provides a fast alter-
native to the sparsity-promoting procedure, (c) a pre-
dictable Koopman modes selection technique which is
equivalent to cross validation in machine learning, (d)
an optimization method for selected Koopman modes10

to improve prediction accuracy, (e) prediction model
generation and selection based on historical error mea-
sures. The prediction accuracy of this methodology is
excellent: for example, when it is used to predict clients’
order flow time series of foreign exchange, which is al-15

most random, it can achieve more than 10% improve-
ment on root-mean-square error (RMSE) over auto-
regressive moving average (ARIMA). This methodology
also opens up new possibilities for data-driven mod-
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eling and forecasting complex systems that generate20

the high dimensional time series. We believe that this
methodology will be of interest to the community of sci-
entists and engineers working on quantitative finance,
econometrics, system biology, neurosciences, meteorol-
ogy, oceanography, system identification and control,25

data mining, machine learning, and many other fields
involving high-dimensional time series and spatio-temporal
data.

Keywords High-dimensional time series · Spatio-
temporal dynamics · Complex systems · Data-driven30

Koopman operator · Dynamic mode decomposition ·
Kernel methods

1 Introduction

High dimensional time series are commonly encoun-
tered in science and engineering. Although their anal-35

ysis, modeling, and prediction are crucial problems in
their respective fields, extracting the relevant informa-
tion content in these problems is difficult and not stud-
ied at sufficient depth. Methodologies and techniques
developed for univariate time series are not easily gen-40

eralized to high dimensional ones, both conceptually
and in terms of computational cost. For example, if one
applies some analysis method or modeling technique
to each one dimensional time series within a ten thou-
sand dimension time series, not only will the computa-45

tional cost be orders of magnitude higher, but also the
conceptual and physical relation between variables will
be ignored. On the other hand, many high-dimensional
time series are global simulations or comprehensive ex-
perimental observations of complex phenomena whose50

dynamics have to be understood from the perspective of
system theory, where high dimensional time series may
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be considered as a spatio-temporal field generated from
the time evolution of a dynamical system. Although the
precise rules of evolution are usually unknown and the55

only available information is a huge amount of data,
the investigation of spectral properties of the Koop-
man operator—which can be approximated purely from
data—provides an alternative yet powerful methodol-
ogy for analysis, modeling, and potentially forecasting60

high dimensional time series.

The Koopman operator [34] is the linear time evolu-
tion operator on an infinite-dimensional function space
of observables defined over a dynamical system. The in-
vestigation of its spectral properties was pioneered by65

Igor Mezić [41,43] and had been developed mainly in
the context of fluid dynamics [42]. The spatio-temporal
field of the high dimensional time series can be con-
sidered as time evolution of a vector-valued observable,
which can be projected onto Koopman eigenfunctions70

to obtain Koopman modes whose time evolutions are
determined by the corresponding eigenvalues. Koopman
modes are a generalization of normal modes [23,15,42,
7,60,24], and each represents a global collective motion
within the spatio-temporal dynamics. The Koopman75

mode decomposition/analysis provides a powerful theo-
retical tool for analyzing, modeling [12], and forecasting
[20] dynamical system. The most widely adopted nu-
merical computation method of Koopman modes was
developed in parallel from another perspective: the dy-80

namic mode decomposition (DMD) [57,56] which was
first introduced by Peter Schmid as a data mining and
diagnostic tool for fluid dynamics. Interestingly, Rowley
et al. discovered that DMD modes approximate Koop-
man modes [52]. Because of the simplicity and rela-85

tively low computational cost of its algorithm, and most
importantly, its allowing for analysis and modeling of
nonlinear systems using linear theories and techniques
in an equation-free manner and relying on data alone,
this procedure spread rapidly within the fluid dynamics90

community and extended its applications to many other
fields, including power systems [61], sustainable build-
ings [12], robotics [5], system identification and control
[48,49,11,39], epidemiology [50], medicine [8], neuro-
science [10], oceanography and meteorology [21], com-95

puter vision [18], financial time series analysis [29] and
trading strategies [37]. Recent development and formu-
lation of dynamic mode decomposition [62] made it sim-
ilar to a supervised machine learning algorithm, and the
extended dynamic mode decomposition (EDMD) [74]100

reformulated the algorithm such that it become pos-
sible and suitable to incorporate kernel methods [58,
13,73,6,14,25,70], which provides access to a higher
or infinite dimensional feature space for more accurate
data-driven approximations of the Koopman operator105

[75]. This creates new possibilities in utilizing Koopman
mode analysis as a methodology for high dimensional
time series prediction.

In this paper, we describe a high dimensional time
series prediction methodology based on the kernel method110

extension of data-driven Koopman spectral analysis as
introduced in Refs. [74] and [75], called kernel-based
Koopman mode regression (Kernel KMR or K-KMR).
Specifically, we achieved several important methodolog-
ical improvements and advancements, including (1) a115

new numerical regularization method, (2) a natural or-
dering of Koopman modes which provides a fast alter-
native to the sparsity-promoting procedure [32], (3) a
predictable Koopman modes selection technique which
is equivalent to cross validation in machine learning,120

(4) optimization methods for selected Koopman modes
to improve prediction accuracy, (5) prediction model
generation and selection based on historical root-mean-
square error (RMSE) or other error measures. We tested
this new methodology on both synthetic data and sev-125

eral different real-world data sets and found promising
prediction performance. Our methodology is conceptu-
ally equivalent to inference of the time evolution oper-
ator of functions defined on a dynamical system from
time series data. Compared to conventional time series130

prediction methodologies and techniques, our method-
ology exploits the fact that many high-dimensional time
series are generated by dynamical systems, where state
variables have physical or causal relations that are usu-
ally ignored by many conventional methodologies and135

techniques. Even if the high dimensional time series is
not apparently generated by a dynamical system, as-
suming so could potentially enable methodologies such
as Kernel KMR to capture the possible relations be-
tween the univariate time series constituting the high140

dimensional time series.
There are many available methods and techniques

to analyze each univariate time series one-by-one within
the high-dimensional time series by using training data
in order to make predictions. However, utilizing the145

spectral properties of Koopman operator is advanta-
geous for these reasons: (a) the evolution law of the
underling dynamical system that generates the high-
dimensional time series is usually highly nonlinear and/or
stochastic, whereas the Koopman operator is linear, so150

it is easier to investigate and much more convenient to
generate predictive models, as explained in Sec. 2.2.4,
(b) because of the linearity, the high-dimensional time
series generated by the system dynamics can be decom-
posed linearly using spectral properties of Koopman op-155

erator as a summation (Eq. (4)), where by truncating
out some noisy, irregular, or non-important terms in
the summation, one can accomplish both dimensional-
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ity reduction and time series prediction simultaneously,
(c) the dynamics associated with each Koopman eigen-160

function is determined by its corresponding eigenvalue,
such that one can predict the system state at any time
later (rather than a fixed time length only), by set-
ting an arbitrary real number τ in Eq. (4), (d) the
state variables of the high-dimensional time series and165

many designed or learned features are extrinsic to the
underlying dynamical system, which means that mod-
els and predictions could be dependent on specific ex-
trinsic variables chosen or features designed to sample
and describe the system dynamics, whereas the Koop-170

man eigenfunctions are intrinsic dynamic variables [76]
of the underlying system which are independent from
particular experimental apparatus such as sensors or
specific observations of the high dimensional time se-
ries, so they are able to extract the intrinsic features of175

the system dynamics that generates the time series and
are more fundamental and physically meaningful, (e)
Koopman modes and eigenfunctions characterize the
underlying system dynamics collectively in continuous
time instead of a number of functions individually with180

each of them predicting a single variable at a fixed time
length later, and hence they enable us to avoid over-
fitting not only by regularization and cross-validation
on parameters and/or model complexity in usual ways
of statistics, but also by “physical” cross-validation on185

intrinsic dynamic features at the system level, as ex-
plained in Sec. 2.2.3, and by identifying irregular and
non-repeatable/non-predictable features and dropping
them out in the summation (Eq. (4)), one can achieve
more reliable predictions.190

2 Methodology

2.1 A Survey of Kernel-Based Extension for
Data-Driven Koopman Spectral Analysis

In this section, we summarize the methodology devel-
oped in Ref. [74,75] to provide a self-contained descrip-195

tion and to introduce notations for later use.

2.1.1 The Koopman Operator

Consider a high dimensional time series {xn} which can
be understood as a spatio-temporal field u(x, n) gener-
ated by or sampled from the time evolution of an under-200

lying dynamical system (M, n,F ), where n ∈ Z is dis-
crete time, M ⊂ RN is the N -dimensional state space
containing the {xn}, and xi 7→ F (xi) = xi+1 defines
the evolution law. For continuous-time dynamical sys-
tem (M, t,F t) where t ∈ R is the continuous time, the205

flow F t evolves the system state as x0 7→ F t(x0) = xt.

Since time series data are often sampled with a fixed
time gap ∆t, the adjacent two snapshots of the system
are related by F∆t(xt) = xt+∆t. When the context is
clear, we will drop the ∆t in F∆t to denote either the210

discrete time map or continuous time flow of a fixed
time gap ∆t. Here we restrict ourselves to stationary
time series, or at least locally stationary time series,
which can be considered as being sampled from au-
tonomous dynamical systems. The Koopman operator215

K : F → F , where F consists of scalar observables or
functions of state space φ :M→ C, is defined as

(Kφ)(x) = (φ ◦ F )(x) = φ(F (x)), (1)

where ◦ denotes the composition of φ with F . Since Kφ
is another element in F , the Koopman operator defines220

a new dynamical system (F , n,K) where K evolves ob-
servables φ ∈ F to a new function Kφ that gives the
value of φ at “one step in the future”. Unlike F which is
finite dimensional, K is infinite dimensional because it
acts on function space F . However, it is also linear even225

when F is nonlinear, and hence one can investigates
its spectral properties, i.e., eigenvalues and eigenfunc-
tions, which we refer to as Koopman eigenvalues {µk}
and eigenfunctions {ϕk}.

The dynamical systems (M, n,F ) and (F , n,K) are230

two different representations of the same evolution. The
link between them is the “full state observable” g(x) =
x, where x 7→ F (x), and gi 7→ (Kgi) = gi ◦ F where
gi ∈ F is the i-th component of the vector-valued ob-
servable g : M → RN . Assuming gi is in the span of235

a set of K Koopman eigenfunctions {ϕk}Kk=1, where K
could (and often will) be infinite, then it can be pro-
jected as gi =

∑K
k=1 ξikϕk with ξik ∈ C. Hence g can be

obtained by “stacking” these weights into vectors (i.e.,
ξj = [ξ1j , ξ2j , . . . , ξNj ]T ). As a result,240

x = g(x) =
K∑
k=1

ξkϕk(x), (2)

where ξk is the k-th Koopman mode corresponding to
the eigenfunction ϕk. To make prediction or arrive at
the system state of “one step in the future”, one can
either evolve x through F directly, or evolve the full245

state observable g(x) through the Koopman operator
K as:

F (x) = (Kg) (x) =
K∑
k=1

ξk(Kϕk)(x) =
K∑
k=1

µkξkϕk(x).(3)

Similarly, for continuous time case [12,74], we have

xt+∆t = F∆t(xt) = g(F∆t(xt)) = (K∆tg) (xt)

=
K∑
k=1

eλk∆tξkϕk(xt),
(4)250
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where λk and ϕk are the k-th eigenvalue and eigenfunc-
tion of the infinitesimal generator K̂ , d

dt of the semi-
group of Koopman operators {Kt}t∈R+ , and µk = eλk∆t

is the k-th eigenvalue of finite-time Koopman operator
K∆t = e∆tK̂.255

From the viewpoint of spatio-temporal dynamics, if
assuming the temporal variation u(x, ·) at each spatial
location x is in the span of {ϕk}Kk=1, then the spatio-
temporal field u(x, t) can be decomposed as

u(x, t) = g(xt) = g(F t(x0)) = (Ktg) (x0)

=
K∑
k=1

eλktξkϕk(x0),
(5)260

where ϕk(x0) is the initial condition and provides an
extra degree of freedom to the corresponding eigenfunc-
tion ϕk which can only be determined up to a normal-
ization constant. This initial condition is equivalent to
the “DMD amplitude”[57,32], which can be utilized to265

improve the prediction performance. This will be dis-
cussed in detail in Sec. 2.2.4.

In many applications, the spatio-temporal field u(x, t)
is decomposed using Principal Component Analysis (PCA)
or Proper Orthogonal Decomposition (POD) modes [2]270

as

u(x, t) =
∑
k

ak(t)ηk(x), (6)

where {ηk(x)} are orthonormal POD modes with
∫

η∗i (x)ηj(x)dx = δij , and {ak(t)} are projection coef-
ficients of u(x, t) on {ηk(x)}, which are orthogonal but275

not necessarily normalized. To utilize the Koopman modes
in the decomposition and maintain our notations, no-
tice that given any t, u(·, t) is a vector, and the x-
dependence is reflected in Koopman modes {ξk} which
are vectors. Hence when the context is clear, one can280

simplify the notation in (5) by writing

u(x, t) =
K∑
k=1

ξkϕk(xt), (7)

where ϕk implicitly depends on t, and the system state
xt should not be confused with the spatial location x
of u(x, t).285

2.1.2 Extended Dynamic Mode Decomposition

The Extended Dynamic Mode Decomposition (EDMD)
introduced in Ref. [74] is a regression procedure whose
solution produces a finite-dimensional approximation
of the Koopman operator and therefore the Koopman290

eigenvalue, eigenfunction, and mode tuples {(µk, ϕk, ξk)}Kk=1.
The idea to find a matrix representation of K in a
subspace FK ⊂ F , where FK is often called feature
space and is spanned by a basis of K scalar observables

{ψk}Kk=1. We also define the vector valued observable295

ψ :M→ CK which is often called feature vector, where

ψ(x) =
[
ψ1(x) ψ2(x) · · · ψK(x)

]
. (8)

In this application, ψ is the mapping from physical
space to feature space whose dimension K could (and300

often will) be infinite. For notational convenience, we
organize the snapshot pairs {(xm,ym)}Mm=1 as a pair
of data matrices:
X = [x1, · · · ,xM ]T , Y = [y1, · · · ,yM ]T (9)
where xm,ym ∈ M organized in column vectors are305

snapshots of the system state with yi = F (xi), although
F is usually unknown. Analogous to Eq. 9, we also or-
ganize the snapshots of feature vectors (8) as:

Ψx ,

ψ(x1)
...

ψ(xM )

 , Ψy ,

ψ(y1)
...

ψ(yM )

 , (10)

which are M -by-K matrices.310

Notice that the snapshot pairs X and Y are not
necessarily in sequential order. The only requirement is
that yi is the snapshot of “one step in the future” for xi
for all i = 1, 2, · · · ,M . When the data is indeed sequen-
tially sampled with a fixed sampling interval, say ∆t, as315

one time series or several pieces of time series with gaps
(not equal to ∆t), there will be duplicated snapshots in
the rows ofX and Y . Specifically, if the data is given as
one time series without gaps, {xm}Mm=2 and {ym}M−1

m=1
are identical. In theses cases, the spatio-temporal field320

u(x, t) is the union of {xm}Mm=1 and {ym}Mm=1, or in
matrix notation, we can organize the rows of X and
Y in time-increasing order without repetition to form
a matrix:
UXY , [x1,1,x1,2, · · · ,x1,M1 ,y1,M1 ,x2,1,x2,2,

· · · ,xP,1,xP,2, · · · ,xP,MP
,yP,MP

]T
(11)325

where xP,MP
is the MP -th snapshot in P -th piece of

time series, and only the last snapshots {yp,Mp}Pp=1 of
each piece are not in {xm}. This manipulation is useful
because we have assumed that the time series we try to
analyze and forecast is at least locally stationary. Un-330

fortunately, real world time series are non-stationary
in general. For example, financial time series usually
exhibit intra-day seasonality which is clearly not sta-
tionary [59,27], so this methodology cannot be applied
directly to the entire time series. Nevertheless, if the335

time series can be considered as locally stationary over
some short time scale in each day (e.g., one hour), then
we can organize the snapshots to form this data matrix
UXY . In this case, the number of pieces of short time
series is the number of days, and the length of each340

short piece is one hour.



High-Dimensional Time-Series Prediction Using Kernel-Based Koopman Mode Regression 5

Now we seek to obtain K ∈ RK×K , which is an
approximation and matrix representation of K in fea-
ture space FK . By definition, a function φ ∈ FK can be
written as345

φ(x) =
K∑
k=1

akψk(x) = ψ(x)a, (12)

i.e., the linear combination of K elements in the feature
space with weights a in column vector. Because FK is
typically not an invariant subspace of K,

(Kφ)(x) = (ψ ◦ F )(x)a = ψ(x)(Ka) + r(x), (13)350

with a residual function r ∈ F . To determine K, we
minimize

J = 1
2

M∑
m=1
|r(xm)|2

= 1
2

M∑
m=1
|((ψ ◦ F )(xm)−ψ(xm)K)a|2

= 1
2

M∑
m=1
|(ψ(ym)−ψ(xm)K)a|2 ,

(14)

where ψ(xm) is the m-th row in Ψx, and ψ(ym) is the
m-th row in Ψy. Following Ref. [74,75], the K that355

minimizes (14) is:

K , Ψ+
xΨy = G+A, (15a)

where + denotes the pseudoinverse and

G = ΨT
xΨx =

M∑
m=1

ψ(xm)Tψ(xm), (15b)

A = ΨT
xΨy =

M∑
m=1

ψ(xm)Tψ(ym), (15c)

withK,G,A ∈ CK×K . As a result,K is aK-dimensional
approximation of K that maps φ ∈ FK to some other
φ̂ ∈ FK by minimizing the residuals at the data points360

{(xm,ym)}Mm=1. Using Eq. 13, if vk is the k-th eigen-
vector of K with eigenvalue µk, then the EDMD ap-
proximation of an eigenfunction of K is

ϕk(x) = ψ(x)vk, (16)

and µk is an approximation of an eigenvalue of K. When365

the data are obtained by sampling a continuous-time
dynamical system with a fixed sampling interval ∆t, we
also define the approximation of the continuous-time
eigenvalue as λk , log(µk)/∆t. The left eigenvector,
wk, can be used to approximate the Koopman mode370

ξk, and the detail can be found in Ref. [74].

2.1.3 The Kernel Method

The EDMD procedure is a generalization of the DMD
defined in Ref. [62]. EDMD seeks a matrix representa-
tion of Koopman operator K in the feature space FK375

whose dimension K could be very high or even infi-
nite, whereas the DMD defined in Ref. [62] is equivalent
to seeking a matrix representation of K in the original
state space whose dimension is N . Generally speaking,
higher dimensionality K in the feature space is more380

likely to produce better and more accurate approxi-
mation to the Koopman modes. However, the EDMD
procedure requires a K ×K matrix to be formed and
decomposed, and the value of K for a “rich” set of ba-
sis functions grows rapidly as the dimension of state385

space increases, such that K is far too large for prac-
tical computations. This is the case where the dimen-
sion of feature space is huge compared to the number
of snapshots (i.e., K � M) and is frequently encoun-
tered in fluid dynamics problems [57]. To overcome this390

curse of dimensionality problem, DMD [57] performs an
SVD on XT first, followed by a procedure equivalent
to searching for a matrix representation of Koopman
operator K in a subspace of scalar observables FM ⊂ F
which is chosen using the Proper Orthogonal Decompo-395

sition. Analogous to this approach, Ref. [75] combined
the kernel method with EDMD and chose this subspace
FM ⊂ F by using what is in effect Kernel Principal
Component Analysis [6]. The outline of this approach
is as follow according to Ref. [75]:400

Because the matrix K is the solution to a regression
problem, the non-zero eigenvalues and their associated
left and right eigenvectors can also be obtained by solv-
ing the dual form of this problem [6]. To show this, note
thatR(K) ⊆ R(ΨT

x ), i.e., the range of ΨT
x contains the405

range of K. If we could compute the SVD of Ψx,
Ψx , QΣZT , (17)
where Q,Σ ∈ RM×M and Z ∈ RK×M , then an eigen-
vector of K with µk 6= 0 could be written as v = Zv̂

for some v̂ ∈ CM . Thus, the eigenvalue problem µv =410

Kv can be written as µZv̂ =
(
ZΣ+QT

)
Ψy (Zv̂) =

Z
[(

Σ+QT
)
Ψy

(
ΨT
xQΣ+)] v̂. Therefore, an alternative

method for computing an eigenvector of K is to form
the matrix
K̂ ,

(
Σ+QT

)
Â
(
QΣ+) , (18)415

where Â , ΨyΨT
x , compute an eigenvector of K̂, say

v̂, and set v = Zv̂. Here K̂ ∈ RM×M , so the com-
putational cost of the decomposition is determined by
the number of snapshots rather than the dimension of
the system state or “feature” space. Specifically, the420

time complexity of this eigen-decomposition is O(M3),
whereas the time complexity of the eigen-decomposition
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in EDMD utilizing K-dimensional feature space and
N -dimensional state space are O(K3) and O(N3), re-
spectively. When the dimension of time series or feature425

space is much larger than the number of snapshots (i.e.,
N,K � M), this approach can yield a significant im-
provement on computational cost.

The benefit of the expression in K̂ is that all the
required matrices can be obtained by computing inner
products in feature space. In addition to Â, we define
the matrix Ĝ , ΨxΨT

x . The ij-th elements of Ĝ and
Â are

Ĝ(ij) , ψ(xi)ψ(xj)T , Â(ij) , ψ(yi)ψ(xj)T . (19)

On the other hand, Ĝ = QΣ2QT , following the defini-
tion of Q and Σ in (17). Therefore, given Ĝ we can ob-430

tain Q and Σ via its eigen-decomposition. As a result,
we could compute K̂ by forming Ĝ and Â using (19).
This is a large improvement over “standard” extended
DMD, but still impractical as K can be extremely large
or infinite.435

Rather than explicitly defining the feature map ψ
and computing the entries of Ĝ and Â directly, the ker-
nel method is a common technique for implicitly com-
puting inner products [58,13,73]. Instead of defining ψ,
we define a kernel function f :M×M→ R that com-440

putes inner products in feature space given pairs of data
points; that is, f(xi,xj) = 〈xi,xj〉FK

= ψ(xi)ψ(xj)T
[13]. In effect, the choice of f defines ψ, which is equiva-
lent to choosing the basis set in EDMD. It is, however,
crucial to note that f does not compute these inner445

products directly.
In our application in time series prediction, we choose

the Gaussian kernel f(x,y) = exp(−‖x − y‖2/σ2) [6,
58,14,70] for its smoothness, better numerical condi-
tioning, and infinite dimensionality for a possibly bet-450

ter approximation of Koopman operator [25], although
the optimal choice of kernel, which is equivalent to the
ideal choice of the basis set, remains an open question.

In summary, the procedure for approximating the
Koopman operator using kernel method is: construct455

the matrices Ĝ(ij) , f(xi,xj) and Â(ij) , f(yi,xj)
using the kernel function f and the snapshot pairs, then
compute the eigendecomposition of the Gramian Ĝ to
obtain Q and Σ, and finally construct K̂ using (18).
Notice that if a linear kernel f(x,y) = xTy is cho-460

sen, the kernel approach outlined here is identical to
DMD [57].

2.1.4 Computing the Koopman Eigenvalues, Modes,
and Eigenfunctions

We now show how to approximate the Koopman eigen-465

values, modes, and eigenfunctions given K̂. Let V̂ be

the matrix whose columns are the eigenvectors of K̂.
Then using (16) and v = Zv̂, we define the matrix of
eigenfunctions:

Φx , ΨxZV̂ =
(
ΨxΨT

x

) (
QΣ+) V̂ = Ĝ

(
QΣ+) V̂ ,

Φy , ΨyZV̂ =
(
ΨyΨT

x

) (
QΣ+) V̂ = Â

(
QΣ+) V̂ ,(20)470

where the i-th row of Φx and Φy contain the numeri-
cally computed eigenfunctions evaluated at xi and yi,
respectively. The k-th numerically approximated Koop-
man eigenfunction can also be evaluated at a new data
point via:475

ϕk(x) =
(
ψ(x)ΨT

x

) (
QΣ+v̂k

)
=
[
f(x,x1) f(x,x2) · · · f(x,xM )

] (
QΣ+v̂k

)
,
(21)

using the same arguments as in (20).
To compute the Koopman modes, we use (2) and

(3), which when evaluated at each of the data points,
results in the matrix equations480

X = ΦxΞ, Y = ΦyΞ, (22)

where

Ξ , [ξ1, ξ2, · · · , ξM ]T = Φ+
xX = Φ+

y Y . (23)

One possible issue is that the matrix of Koopman
modes calculated from Ξ = Φ+

xX and Ξ = Φ+
y Y may485

be different. This is because the eigenfunctions {ϕk}Kk=1
are represented and calculated in FK , which is typically
not invariant to the action of the Koopman operator
K. Therefore, there is no guarantee that the residual
function r ∈ F in Eq. (13) can be minimized to zero,490

such that Y is exactly equal to ΦyΞ following (3). To
avoid this ambiguity, we need to define Koopman modes
valid for the entire spatio-temporal field u(x, t) (hence
not just data points {xm}Mm=1 in X or {ym}Mm=1 in Y ).
To achieve this, first notice that if we vertically stack495

Φx with Φy, Ψx with Ψy, and Ĝ with Â in (20) to form
matrices Φxy, Ψxy, and UĜÂ respectively, and organize
the rows in time-increasing order without repetition, we
can obtain

Φxy , ΨxyZV̂ = UĜÂ

(
QΣ+) V̂ , (24)500

where the rows of Φxy, Ψxy, and UĜÂ follow the same
order in time as UXY in (11). Then, because the en-
tire spatio-temporal field u(x, t) should be represented
according to (7) for all t (hence for all data points
{xm}Mm=1 in X and {ym}Mm=1 in Y ), we should have505

UXY = ΦxyΞ, (25)

such that the Koopman modes can be computed as Ξ ,
Φ+
xyUXY .

To make prediction at any time later, one can sim-510

ply set an arbitrary real number ∆t in Eq. (4) and mul-
tiply the eigenfunctions {ϕk} with the corresponding
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finite-time eigenvalues {µk = eλi∆t}1, and sum over all
indices as in (4). In real world applications, which in-
dices should be taken for the sum and which should515

be discarded, such that the prediction performance can
be maximized is a crucial problem. We will formally de-
velop the Koopman mode selection method in Sec. 2.2.3
and show that it is equivalent to cross-validation to
avoid over-fitting in machine learning context, and show520

how to improve prediction accuracy after this mode se-
lection.

Up to now, we have not discussed whether the evo-
lution law F of the dynamical system is determinis-
tic or stochastic. According to Ref. [74], the EDME525

procedure can generate approximation to the “stochas-
tic Koopman operator” introduced in Ref. [41], after
some modifications to the algorithm. However, it re-
quires conditional expectation of the observables “one
step in the future” to be obtained, which is impossible530

for limited amount of data from real world time se-
ries. Nevertheless, the DMD procedure can still extract
meaningful results from stochastic dynamics without
calculating any conditional expectation [62]. Therefore,
in our application for time series forecasting, we keep535

using the “standard” EDMD procedure without calcu-
lating conditional expectations (which is impossible to
obtain from our available data).

Finally, as mentioned in Ref. [74], even some non-
autonomous dynamical systems could, in principle, be540

analyzed using EDMD and hence the kernel method by
augmenting the state vector x to include time. This
opens a new possibility to analyze and predict non-
stationary high dimensional time series using EDMD
and kernal method. However, one problem is that the545

evolution of the time itself as a scalar observable will
be determined by Koopman eigenvalues, which may re-
sult in the time oscillating instead of linearly increasing.
This, however, will be left for future work. For the cur-
rent application in time series forecasting, we assume550

the data matrices X, Y , and UXY representing the
spatio-temporal field u(x, t) are obtained using a sta-
tionary or at least locally stationary time series.

1 Perhaps one of the major advantages of EDMD over DMD
in time series prediction is that when using a nonlinear kernel
function f or feature map ψ, the prediction is not trivially equal
to zero if the last snapshot yM in Y is zero. In fact, if a linear
feature map is used as in DMD and yM = 0, then ψ(yM ) = 0
such that the last row in Â and UĜÂ and hence in Φxy are
all zeros, which means that ϕk(yM ) = 0 for all k. In this case,
no meaningful or nontrivial predictions other than zeros can be
generated, however, this case is frequently encountered if the
time series is very sparse, which is true for the data set we used
in Sec. 3.3.

2.2 Kernel-Based Koopman Mode Regression for Time
Series Prediction555

Here we outline the latest developments and advance-
ments of the above methodology that we achieved for
high dimensional time series prediction, which we call
kernel-based Koopman mode regression (Kernel KMR):
– A smooth truncation method using a cosine or Lo-560

gistic function for the pseudo-inverse to improve nu-
merical condition.

– Ordering of Koopman mode based on new defini-
tion of “energy”, which provides a fast alternative
to the sparsity promoting procedure for Dynamic565

Mode Decomposition [32].
– Cross validation technique for predictable Koopman

modes selection, which conceptually relates to re-
dundancy and entropy of time series.

– Improving prediction accuracy by optimizing the570

“amplitudes” of selected Koopman modes or by re-
computing the Koopman modes using selected Koop-
man eigenfunctions, and by utilizing the residue of
reconstruction by selected Koopman modes.

– Prediction model generation and selection based on575

recent RMSE or other error measures.
Each of the above will be explained in detail below.

2.2.1 Numerical Regularization

Both DMD [57] and kernel-based EDMD [75] imple-
mented numerical regularization via truncation on SVD580

spectrum of XT (for DMD) or Ψx (for kernel-based
EDMD). Specifically, it is done by first organizing all
singular values in non-increasing order in the diagonal
matrix of SVD, then discarding small values (or effec-
tively setting to zero) and truncating corresponding sin-585

gular vectors. The reason behind this approach is that
both DMD and kernel-based EDMD involve pseudo-
inverse of the diagonal matrix of singular values, where
tiny errors on those small singular values will result in
significant change in the pseudo-inverse.590

Here we take an improved approach: instead of “hard”
truncation on Σ and Q in (17) and (18), we multiply
the diagonal line of Σ+ by a very smooth function (e.g.,
f(x) = 1

2 (cos(x) + 1), x ∈ [0, π] or f(x) = 1
1+ekx which

decrease smoothly from 1 to 0), which will smoothly595

suppress those possible instabilities arising from numer-
ical errors on the small values on the diagonal line of
Σ. This also achieves dimensionality reduction as a pre-
processing of the data.

To determine the appropriate starting and ending600

point of the smooth cutoff, first notice that the non-
increasing sorted singular values in Σ have “discontinu-
ities” in many cases. These are sudden drops that differ
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from previous values by one or more orders of magni-
tude. Based on numerical tests, we found that these605

discontinuities are related to the minimum fluctuations
or numeric resolution in the data matrix X. In fact, in
many video recordings of fluid dynamics, information
is stored as video frames which are gray scale images
whose range is integers between 0 and 255. This gives610

the variation resolution of the time series, and can be
used to calculate an “energy” ratio of minimum fluctua-
tion to the total fluctuation. For a spatio-temporal field
u(x, t), the energy is defined as the total squared fluc-
tuation

∫∫
|u(x, t)|2dtdx (integrals shall be replaced by615

summations for discrete cases) [2]. In matrix notation,
this is equal to tr(UXY U

∗
XY ), which is also equal to the

Frobenius norm ‖UXY ‖F , where ∗ denotes the Hermi-
tian transpose. Since the snapshots {xm} are mapped
into feature space to form Ψx, its energy of total fluctu-620

ation is ‖Ψx‖F = tr(ΨxΨT
x ) = tr(Ĝ) = tr(Σ2), where

each diagonal entry of Σ2 corresponds to the fluctua-
tion energy of one kernel PCA/POD modes. Now, if the
spatio-temporal field has a resolution of minimum vari-
ation, one can construct a “noisy” spatio-temporal field625

whose entries are all equal to this minimum variation
and calculate the energy ratio of this noisy field to the
original field. What we found empirically is that this
ratio is equal to the sum of small diagonal entries of Σ2

right after the discontinuities divided by tr(Σ2). A pos-630

sible reason is that if there are some kernel PCA/POD
modes whose energy sum is lower than the minimum
fluctuation energy, these modes should all be considered
as noise and be neglected, and what we found is that
the energies of these modes are usually the diagonal635

entries of Σ2 right after the discontinuity. This discon-
tinuity is a suitable ending point for the smooth cutoff,
because the diagonal entries of Σ after discontinuity are
quite small and have a possible physical interpretation
related to noise.640

After fixing the ending point of smooth cutoff, one
can start to search for the appropriate starting point.
It should be noted that the final objective of numerical
regularization is to stabilize the eigen-decomposition of
K̂ ,

(
Σ+QT

)
Â (QΣ+), so one can move the starting645

point for smooth cutoff of Σ+ until the maximum con-
dition number with respect to eigenvalues of K̂ is lower
than a pre-specified value. If no starting point satisfies
this criterion, one can fix a small starting point and
decrease the ending point.650

The merit of this smooth cutoff is that it keeps
as many kernel PCA/POD modes (or features) as it
can without destabilizing the matrix representation of
Koopman operator in the subspace FM ⊂ F spanned
by kernel PCA/POD modes, and we do find experimen-655

tally that this smooth cutoff usually improves predic-

tion accuracy slightly. In fact, in our previous studies,
we also found that using a sharp cutoff may sometimes
result in spurious spectral components which are anal-
ogous to the Gibbs truncation artifacts in signal pro-660

cessing [1,4,33].

2.2.2 A Natural Ordering of Koopman Modes by
“Energy”

After computing the tuples {(µk, ϕk, ξk)}Mk=1 of Koop-
man eigenvalues, eigenfunctions, and modes, a natural665

question is which modes are more important and how
much more important are they in reconstruction (i.e.,
reduced-order modeling of the spatio-temporal field u(x, t))
and prediction? Notice that for each tuple (µk, ϕk, ξk),
one can construct a spatio-temporal field ξkϕk(xt), or670

ϕkξ
T
k in matrix notation (where ϕk and ξk are column

vectors and ϕkξTk is a matrix with number of rows equal
to the number of snapshots in UXY ), and compute its
fluctuation energy, i.e., Frobenius norm ‖ϕkξTk ‖F [2].
This energy may be considered as a measure of impor-675

tance for individual Koopman modes.
In fact, this approach is appropriate for POD modes,

because according to (6), the total fluctuation energy
of u(x, t) can be written as∫∫
|u(x, t)|2dtdx =

∫∫ ∑
i

∑
j

a∗i (t)aj(t)η∗i (x)ηj(x)dtdx

=
∑
i

∫∫
|ai(t)ηi(x)|2dtdx

=
∑
i

∫
|ai(t)|2dt =

∑
i

Li,

where Li > 0 is the energy of the i-th POD mode
and is sometimes referred to as “latency” in literature,
and the second and third equals sign holds because of
the orthonormality of POD modes. Due to this prop-680

erty, the energy of the original spatio-temporal field can
be decomposed as a sum of energy of individual POD
modes. As a result, if one seeks a reduced-order mod-
eling of the original spatio-temporal field using as few
POD modes as possible subject to given a “quality” re-685

quirement of the approximation with respect to energy,
i.e., βI =

∑
k∈I

Lk∫∫
|u(x,t)|2dtdx

where I is the index set for the
selected POD modes, then one can simply sort all POD
modes by non-increasing energies and cumulatively sum
them up until βI is greater than a pre-required percent-690

age.
In the context of machine learning, the above opti-

mal reduced-order modeling is equivalent to the follow-
ing optimization problem:
minimize

I
‖u(x, t)−

∑
k∈I

ak(t)ηk(x)‖F+γcard(I),(26)695
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where card(I) is the cardinality of the index set I which
penalizes the number of POD modes used for reduced-
order modeling, and γ is the hyper-parameter that bal-
ances between the quality of reduced-order modeling
and the complexity of the modeling, which potentially700

avoids over-fitting. Notice that (26) is very similar to
the original objective function that sparsity-promoting
DMD [32] tried to minimize, except that the modes
used here are POD modes.

The equivalence of optimal reduced-order model-705

ing and the optimization problem (26) relies on the
fact that not only can u(x, t) be decomposed as a sum
of POD modes, but also its energy

∫∫
|u(x, t)|2dtdx

can be decomposed as a sum of energies of individ-
ual POD modes. This fact makes it sensible to sort710

POD modes by their energies in non-increasing order.
However, this fact relies on the orthonormality of POD
modes, and unfortunately, Koopman modes (and dy-
namic modes) are not orthogonal. Hence the energy of
individual Koopman mode ‖ϕkξTk ‖F (or

∫∫
|ξkϕk(xt)|2715

dtdx where x-dependence is reflected in the vector na-
ture of ξk) may not be an appropriate measure of im-
portance. In fact, there are circumstances in fluid dy-
namics [55] where some low energy Koopman modes
have strong impact of the spatio-temporal field u(x, t)720

and hence have higher importance than some high en-
ergy modes.

To solve this problem, the authors introduced an-
other definition of “energy” in Ref. [53,29,28] for each
individual Koopman mode, which keeps the nice prop-725

erty that
∫∫
|u(x, t)|2dtdx can be decomposed as sum

of these new energies, although with the cost of sacri-
ficing the positive-definiteness of each energy. To pro-
ceed, first notice that Koopman modes are obtained by
projecting u(x, t) on Koopman eigenfunctions {ϕk} as730

ξk =
∫
ϕ̃∗k(xt)u(x, t)dt, or Ξ = Φ+

xyUXY in matrix no-
tion as implied by (25), where ϕ̃∗k is the k-th row in
Φ+
xy and satisfies the (pseudo-)orthonormal condition∫
ϕ̃∗i (xt)ϕj(xt)dt = δij and

∫
ϕ̃∗i (xt)ϕi(xt)dt = 0 for

some i if Φxy is not full rank. The set of {ϕ̃k} approx-735

imates eigenfunctions of Hermitian adjoint of Koopman
operator — the Perron-Frobenius operator (if some tech-
nical requirements are satisfied, e.g., the evolution law
F of the dynamical system is non-singular), and is non-
trivial to calculate in general [42,41,43]. Fortunately,740

for discrete case, this can be done by the pseudo-inverse
of Φxy.

When projecting u(x, t) on the {ϕ̃k} basis, it can be
decomposed as u(x, t) =

∑M
k=1 ξ̃kϕ̃k(xt), or u∗(x, t) =∑M

k=1 ξ̃
∗
kϕ̃
∗
k(xt) after taking complex conjugation. This

can be written as U∗XY = Ξ̃∗Φ+
xy in matrix notation,

where ∗ denotes the Hermitian transpose and ξ̃∗k is the
k-th column in Ξ̃∗ which can be calculated by Ξ̃∗ =

U∗XY Φxy. Now the energy of u(x, t) can be expanded
as∫∫

u∗(x, t)u(x, t)dtdx =
∫∫ M∑

m=1

M∑
n=1

ξ̃∗mξnϕ̃
∗
m(xt)ϕn(xt)dtdx

=
M∑
m=1

∫∫
ξ̃∗mξmϕ̃

∗
m(xt)ϕm(xt)dtdx

=
∑
i

∫
ξ̃∗i ξidx =

∑
i

L̃i,

where L̃i is the “energy” of i-th Koopman mode and
the number of summation index i is equal to the rank of
Φxy. When written in matrix notation, we have ‖UXY ‖F745

= tr(U∗XY UXY ) = tr(Ξ̃∗Φ+
xyΦxyΞ) = tr(ΞΞ̃∗) = tr(ΞU∗XY Φxy).

The diagonal line of ΞU∗XY Φxy contains energies L̃i of
Koopman modes, and some of them will be zero if Φxy

is not full rank.
Although L̃i is not positive definite, we can always750

sort all Koopman modes in non-increasing order of |L̃i|.
Although the physical meaning of a negative L̃i is un-
clear, a small |L̃i| will definitely have little contribution
to the total energy ‖u(x, t)‖F . Hence if we need to solve
the following optimization problem755

minimize
I

‖u(x, t)−
∑
k∈I

ξkϕk(xt)‖F +γcard(I),(27)

we can discard those modes with smaller |L̃i| in the
same way as we did for POD modes, and as long as
the number of negative energy modes is small (which
is usually true), or γ is not too large, the result should760

be very similar to that of the sparsity-promoting DMD
procedure [32], whose alternating direction method of
multipliers (ADMM) algorithm usually takes minutes
or hours to run, whereas computing the diagonal line
of ΞU∗XY Φxy and sorting those |L̃i| takes fractions of765

a second if the number of snapshots M is ∼ 103 or
less. For real world, fast pace predictions, this approach
is a much more feasible alternative to the sparsity-
promoting procedure.

2.2.3 Predictable Koopman Modes Selection770

After finishing the above procedure, we can achieve a
natural ordering of Koopman modes by their impor-
tances in contribution to the total fluctuation energy
‖u(x, t)‖F . However, a large contribution to the fluctua-
tion energy does not necessarily correlate to predictabil-775

ity (or robustness in physics term), since noise and
other irregular patterns/features can also be extracted
as one or several Koopman modes and their time evo-
lution, and these modes may have very high contri-
bution to the fluctuation energy. To differentiate more780
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robust (and hence more predictable) Koopman modes
from the less robust ones, we introduced a technique
in Ref. [53] which was developed further in Ref. [29,
28], where the authors conjectured that configuration-
independent (or robust) features of spatio-temporal dy-785

namics can be captured through Koopman modes that
are reproduced in multiple experiments, or in other
words, these Koopman modes should present in many,
if not all, subsets or subsections of the high dimensional
time series. In contrast, Koopman modes representing790

noise and non-robust features depend on the specific
realization or instance of the time series. This idea and
the link between robustness in physics and predictabil-
ity in statistics have the roots in information theory,
specifically, in complexity and entropy of time series.795

As discussed in Ref. [19], redundancy is an effective
way to quantify complexity and predictive structure
in an experimental time series and weighted permuta-
tion entropy is an effective way to estimate that re-
dundancy. If a pattern is redundant, or in other words,800

appears frequently in many subsections or subsets of
a long time series, then it will reduce the entropy and
increase the predictability of time series, and that pat-
tern should be deemed as predictable. Although the
weighted permutation entropy and other definitions of805

entropy may only apply to one dimensional time series,
the idea can be generalized to high dimensional ones.
When applying this idea to Koopman mode analysis,
which is a feature extraction and data mining method-
ology at the first place, the authors made the conjecture810

that Koopman modes and their time evolution repre-
senting predictable or robust features should persist in
many different sub-groupings of the time series. In other
words, these Koopman modes and their time evolution
extracted from many different subsets of the snapshot815

pairs {(xm,ym)}Mm=1 should be identical or at least
very close to those extracted from all available snap-
shot pairs.

In actual computation, we randomly select some
percent of the snapshot pairs {(xm,ym)}Mm=1 and or-820

ganize them as one sub-grouping. When u(x, t) con-
tains only one piece or segment, we also consider all
consecutive even and odd numbered snapshots and or-
ganize them separately as snapshot pairs to form two
sub-groupings, and in this case the sampling interval825

∆t is doubled. We continue the random selection of
snapshot pairs until we have a sufficient amount of sub-
groupings, and perform the same kernel-based EDMD
procedure to each sub-grouping and collect the Koop-
man modes and eigenvalues. We then search for (nearly)830

identical Koopman eigenvalues among the different sub-
groupings and investigate whether the corresponding
Koopman modes are close. Specifically, the similarity

between {(λi, ξi)} extracted from all data and those
extracted from different sub-groupings are defined us-835

ing the following criteria:

– The imaginary parts of the eigenvalues from multi-
ple sub-groupings should be sufficiently close; specif-
ically,

max
g

(| Im(λi)− Im(λ(g)
j )|) ≤ δI , (28)840

where g represents different sub-groupings, and δI
is a cutoff. We note that indexing of eigenvalues via
non-increasing absolute values of energy may change
between different sub-groupings, so j and i are usu-
ally different.845

– The real parts of an eigenvalue identified from the
first condition should not vary significantly among
different sub-groupings; specifically,

max
g

(|Re(λi)− Re(λ(g)
j )|) ≤ δR, (29)

for a cutoff δR.850

– Koopman modes from different sub-groupings that
satisfy the earlier conditions should be close. Specif-
ically, if ξi and ξ(g)

j are normalized Koopman modes
associated with proximate eigenvalues, then

max
g
{min

θ
‖ exp(iθ)ξi − ξ(g)

j ‖2} ≤ ∆, (30)855

for a cutoff ∆. Here, we have noted that Koopman
modes computed from different sub-groupings may
differ in phase.

At this point, we do not have a unique and unam-
biguous set of cutoff values δI , δR, and ∆; in fact, they860

usually depend on the data. Since the left side of (30)
is known to ∈ [0, 2], ∆ is selected first to be 2 sin π

8 . Its
suitability is explained in Figure 1, where normalized
Koopman modes lie on the unit hypersphere in CN ,
where N is the number of spatial dimension of u(x, t)865

or number of columns of UXY . When embedding in
R2N and considering the difference between two unit
vectors ξi and ξ(g)

j , we can always find one unit cir-
cle containing these two vectors. We are interested in
ξ

(g)
j pointing to similar direction as ξi. Those ξ(g)

j or-870

thogonal to ξi or pointing to opposite directions can be
regarded as different modes, and if the angle between
ξ

(g)
j and ξi is less than π

4 , we may consider that they
are approximately pointing to the same direction, and
in this case, the L2 distance between them is less than875

2 sin π
8 . Notice that this is a rough requirements and

further filtering can be done by δI and δR.
Next, δI and δR are simultaneously increased from

0 and the number of modes satisfying the three criteria
are recorded. We find that number of modes increases880

initially as δI and δR are increased, and subsequently
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π/4ξi

ξj
(g)

π/42sin(π/8)

π/8
π/8

ξj
(g)

Fig. 1 A unit circle containing ξi and ξ(g)
j in R2N . If

the angle between ξi and ξ(g)
j is less than 45 degrees,

or equivalently, the distance between them is less than
2 sin π

8 , they are considered as close enough and point-
ing to same direction

reaches a plateau, which means that the number of pre-
dictable Koopman modes obtained is becoming insen-
sitive to δI and δR. The plateau region is a more rea-
sonable selection for the cutoff, and the corresponding885

modes and eigenvalues can be considered as predictable.
From the perspective of machine learning, the above

technique is equivalent to cross-validation, which ran-
domly partitions all data to training set and validation
set, and performs training of prediction model param-890

eters and validating those parameters on these sets re-
spectively. In practice, multiple rounds of cross-validation
are performed to limit over-fitting using different par-
titions. For Koopman mode analysis/regression here,
the prediction models are combinations of a finite set895

of Koopman modes and their eigenvalues, which can
be obtained by using all available data as training set.
Then, for some of these modes and eigenvalues, if nearly
identical modes and eigenvalues can be obtained by us-
ing multiple randomly selected partial data sets as val-900

idation sets, these modes and eigenvalues are success-
fully validated and can be combined as a prediction
model.

In real world applications, the time series are some-
times very noisy, such that there are very few or no905

predictable Koopman modes and eigenvalues obtained
through this technique. Since we do not know the actual
predictability of the data before comparing the predic-
tion and actual observation (contrary to predictability
measures like entropy before the actual forecasting is910

performed), we have to keep several or many model
candidates which are different combinations of some

high energy modes and predictable modes, such that
we can finally select the best prediction model after we
accumulate enough results on the performance of each915

model. However, before we do that, there is an opti-
mization step after selecting a collection of Koopman
modes and eigenvalues, which will be detailed in Sec-
tion 2.2.4.

2.2.4 Optimization of Selected Modes and Prediction920

Model Generation

Back to Eq. (5) and (7), when expanding u(x, t) as∑M
k=1 ξkϕk(xt), the eigenfunction ϕk can only be de-

termined up to a normalization constant, which is its
initial condition ϕk(x0) that is equivalent to the “DMD925

amplitude”. Following the same notations as in Ref. [57,
32], if we define αk , ϕk(x0) as the “amplitude” of the
k-th Koopman mode and Dα , diag(α1, α2, · · · , αM )
as the diagonal matrix whose diagonal line contains
these amplitudes, we can rewrite the expansion as u(x, t) =930 ∑M
k=1 αkeλktξk, or UXY = ΦxyDαΞ in matrix nota-

tion. Notice that, when computing Koopman modes
{ξk} as Ξ = Φ+

xyUXY , the Dα will be determined au-
tomatically and contained in Ξ by the pseudo-inverse
of Φxy, because the solving of Ξ is almost always in935

the least square sense due to the fact that the num-
ber of unique snapshots in UXY is always greater than
the number of snapshot pairs M of {(xm,ym)}Mm=1,
which is also the largest possible rank of Φxy. How-
ever, after selecting predictable Koopman modes by the940

technique in Section 2.2.3 and combining them with
some high energy modes, we have one or more new col-
lections of Koopman modes used for predictions, and
since {αk}Mk=1 is optimized using all Koopman modes
whereas the number of modes in each new collection is945

typically smaller thanM , theDα has to be re-calculated
using only the selected Koopman modes.

To proceed, first notice that if the number of se-
lected Koopman modes in a collection is I, then we are
solving for a matrix equation UXY = ΦxyDαΞ where950

there are I unknown and M ′ ×N equations to be sat-
isfied, where M ′ is the number of unique snapshots in
UXY . If we flatten UXY and rewrite the right-hand
side to be an (M ′×N)-by-I matrix multiplied by a col-
umn vector containing {αk}Ik=1, the unknown {αk}Ik=1955

can be trivially solved in least square sense by multiply-
ing the pseudo-inverse of the (M ′ ×N)-by-I matrix by
the flattened UXY from the right. In another notation,
this is seeking for least square solution {αk}Ik=1 satis-
fying M ′ × N equations u(x, t) =

∑I
k=1 ϕk(xt)ξkαk,960

and it is always possible to re-organize the right-hand
side to be an (M ′×N)-by-I matrix containing all given
entries from {ϕk} and {ξk}, multiplied by an unknown
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column vector containing {αk}Ik=1. Notice that this op-
timization is the same as the second step of sparsity-965

promoting procedure [32], but pseudo-inverse is much
more trivial to compute and should not be slower than
the complicated ADMM algorithm.

Alternatively, besides seeking for optimal amplitudes
Dα, another approach to optimize the selected I Koop-970

man modes and eigenvalues is to re-compute the modes
by projecting u(x, t) onto the selected eigenfunctions
{ϕk}Ik=1 as Ξ = Φ+

xyUXY , where the new Ξ has I
rows and Φxy has I columns. In this case, there are
I ×N entries in Ξ, so it is seeking for least square so-975

lution of I ×N unknown satisfying M ′ ×N equations,
which is equivalent to independently optimizing N col-
umn vectors each containing I unknown {αk} for each
one dimensional time series with length M ′ in UXY .
Depending on the data, this approach may have better980

or worse performance than the above optimal amplitude
approach. Hence a better idea is to consider both of
them as different model generation methods, and keep
all prediction performance results for all models for fi-
nal selection as discussed in Section 2.2.5.985

After predictable modes selection and optimization,
the contribution of other unselected modes can be re-
garded as noise or unpredictable features, which should
not be used for prediction. However, there is a residue
or difference between u(x, t) and the optimized

∑I
k=1990

αkeλktξk, and since this residue is deemed to be unpre-
dictable, its statistical properties (e.g., time average)
may be used for prediction and adding to

∑I
k=1 αkeλktξk.

Näıve predictors, such as the last observation of this
residue may also be considered and added to the sum for995

prediction. Finally, all these different approaches gen-
erate different prediction models for a given selection of
Koopman modes and eigenvalues.

2.2.5 Prediction Model Selection

Based on the above procedures, we can generate many1000

prediction models for each collection of selected Koop-
man modes and eigenvalues, and we can have many
different collections of modes, so the final number of
prediction models can be large. The model selection
can be done by recording recent performance of each1005

model, and then use the best performed one for predic-
tion. Alternatively, one can (weighted) average the pre-
dictions generated by a set of recently best performed
models, and this approach is analogous to the ensem-
ble forecasting in numerical weather prediction [22] and1010

also very similar to the ensemble learning [26,78], es-
pecially the boosting technique [54]. Depending on the
applications, different error measures are used to as-
sess the prediction performance of the models, such as

root-mean-squared error (RMSE), mean absolute error1015

(MAE), or hedging error [44].
Finally, although we have considered the high di-

mensional time series as one unified spatio-temporal
field u(x, t) whose time evolution is determined by Koop-
man operator, each one dimensional time series in u(x, t)1020

may have different or non-uniform dynamical features,
so model selection for each univariate time series usu-
ally results in better performance.

3 Description of Data

3.1 Stock Market Data1025

We obtained daily data from “Yahoo! finance.” We first
downloaded a table from “http://finviz.com/screener.
ashx,” which contains basic information of all stocks
traded in the three major stock exchanges (NYSE, NAS-
DAQ, AMEX) in the United States. The table contains1030

trading symbols of selected stocks which can be used
to download historical daily data from Yahoo! finance.
The retrieved data contains open, low, high, close, ad-
justed close, and volume of a stock within a specified
date range, which we selected to be from 1992-01-021035

(when high quality computerized recording of financial
data became widely available) to 2014-10-03. The his-
torical data was batch-downloaded on Saturday, 2014-
10-04. We limited consideration only to stocks (both
optionable and shortable) with a market capitalization1040

no less than 7.5 billion US dollars as of 2014-10-03, and
whose price history can be traced back to 3000 trad-
ing days from 2014-10-03. We excluded stocks [e.g.,
American International Group, Inc. (AIG), Citigroup
Inc. (C), The Governor and Company of the Bank of1045

Ireland (IRE), Lloyds Banking Group plc (LYG), Na-
tional Bank of Greece SA (NBG), The Royal Bank of
Scotland Group plc (RBS)], which either collapsed or
nearly collapsed and were taken over by the central
bank or government during the recession of 2008. A1050

total of 567 stocks satisfied these criteria. Finally, they
were grouped by sector and industry, as retrieved from
Yahoo! finance.

In computing the “return” Xt = ln Pt

P0
, we used

the “adjusted price,” which incorporates dividends and1055

stock splitting. The reference price P0 was chosen to
be the adjusted close of the initial trading day. The
dynamics of Xt is typically modeled as an Itō process

dXt = µdt+ σdBt, (31)

where µ and σ can, in general, depend on Xt and t.1060

They degenerate to constants for geometric Brownian
motion, where Pt = P0e

µt+σBt , Bt being the centered

http://finviz.com/screener.ashx
http://finviz.com/screener.ashx
http://finviz.com/screener.ashx
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standard Brownian motion with E [Bt] = 0 and Var(Bt2−
Bt1) = t2 − t1.

We obtained an empirical data matrix u(x, t), whose1065

rows contain snapshots of return Xt of all 567 stocks,
and whose columns contain the time series of returns
for a stock for the 3000 trading days. The reported cal-
culations do not depend on the order of stocks within
each row as long as it is unchanged between trading1070

days.

3.2 Electricity consumption and generation data from
Ausgrid

Ausgrid is a state owned electricity infrastructure com-
pany which owns, maintains, and operates the electrical1075

distribution networks to millions of customers in New
South Wales, Australia. Ausgrid has published solar
home electricity data to help with analysis by research
organizations, solar companies, government and regula-
tors as well as other interested parties [3]. The data in-1080

cludes the overall household consumption as well as the
power generated by solar panels, recorded at 30 minute
intervals for 300 households. For this experiment, we
randomly selected 10 customers.

3.3 Clients’ Order Flow Data1085

Westpac Institutional Bank is a major dealer for for-
eign exchange (FX) in Australia, servicing Australia
and New Zealand’s corporates and institutional clients’
financial needs. Westpac provided a snapshot of their
retail clients’ foreign exchange transactions, which can1090

be used to construct their order flow. Each transaction
records the ordering and deal execution times, client’s
ID (anonymized using a one-way hash to protect West-
pac client’s confidentiality), currency pairs (e.g., AUDUSD
or EURUSD), trading volume, direction (buy or sell),1095

etc. of that transaction. The trading volume of each
customer can be considered as a univariate time series,
so the collective trading behavior of all customer can
be regarded as a high dimensional time series. Here the
objective is to predict the net trading volume of each1100

currency which is the sum of all customers’ signed trad-
ing volume (e.g., + for buy, - for sell), in the next time
period. This prediction can be used to manage the risk
of fluctuating currency rates by appropriately trading
in the FX spot market [47,45]. One can always work on1105

the univariate time series of the total net trading vol-
ume of all customers, however, we found this time series
to be almost random. We take another approach to pre-
dict the high dimensional time series of each customer
and sum over all customers after prediction. Because of1110

the almost random nature of the data, we only hope for
a minor improvement over a non-zero mean Gaussian
distribution model.

4 Prediction Results

4.1 Synthetic Data1115

To illustrate the effectiveness of this methodology and
the achieved improvements, we first run tests on syn-
thetic data, which consist of sum of sinusoidal waves
with co-prime frequencies, different amplitudes, and ran-
dom phases for each spatial dimension. We also added1120

different levels and types of noise to the determinis-
tic data. Specifically, we first generated a 500-by-500
data matrix, where each row contains sum of several si-
nusoidal waves with co-prime frequencies and different
amplitudes, and the phases are shuffled for each row1125

and for each sinusoidal wave, such that each spatial di-
mension has a completely different trajectory. Then we
added 500-by-500 Gaussian white noise, or the cumula-
tive sum of each row of the 500-by-500 Gaussian white
noise which is effectively a Gaussian random walk. To1130

perform the prediction, we input consecutive 250 obser-
vations of the 500 spatial dimensions to our algorithm
and generate the next step, and slide the 250 steps in-
put window forward until we accumulate 100 consecu-
tive predictions.1135

To compare the performance, we rank the predic-
tion models as introduced in Sec. 2.2.4 by normalized
root-mean-squared error (RMSE) and normalized mean
absolute error (MAE), which are calculated from `2

and `1 norms of high dimensional error vectors, re-1140

spectively. The normalization is performed against the
square root of mean squared values and mean abso-
lute values of the added noise, respectively. Table 1
demonstrates the performance of many different pre-
diction models, together with some näıve predictors,1145

where the results are based on 100 consecutive predic-
tions, and the added noise is Gaussian white noise with
σ = 2.5, whereas the maximum amplitude of those si-
nusoidal waves is 1. As can be seen, using all Koopman
modes without cross validation performs poorly. Us-1150

ing predictable Koopman modes without optimization
is not optimal, although combining them with higher
energy modes (i.e., the lower order modes, since we
sort all modes by non-increasing absolute values of en-
ergies as explained in Sec. 2.2.2) may slightly improve1155

the results. The best results come from either using op-
timal amplitude on the predictable Koopman modes,
or re-projecting the data matrix onto corresponding
eigenfunctions. Depending on the data, different opti-
mization on the selected Koopman modes may yield1160
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very different performances, so in real world forecast-
ing application, one needs to keep monitoring the errors
of each prediction model and perform model selection
properly to achieve the best prediction accuracy.

Table 1 Comparison of different prediction models’
performance on synthetic data which consists of sum of
several sinusoidal waves with co-prime frequencies, dif-
ferent amplitudes, and random phases for each spatial
dimension and for each sinusoidal wave. The RMSE and
MAE of “Noiseless Sinusoidal Waves” are normalized
measures of added noise amplitude, which are the nor-
malized square root of mean squared values and mean
absolute values of the added Gaussian white noise, re-
spectively.

Forecaster RMSE MAE
Noiseless Sinusoidal Waves 100% 100%
Kernel KMR: Re-projecting onto
Predictable Koopman Modes 101.18% 101.11%

Kernel KMR: Predictable Koopman Modes
with Optimal Amplitudes 101.35% 101.27%

Kernel KMR: Predictable Koopman Modes
and Lower Order Modes, without Optimization 103.01% 102.89%

Kernel KMR: Predictable Koopman Modes,
without Optimization 104.26% 103.91%

Kernel KMR: All Koopman Modes
(No Cross Validation) 110.99% 110.68%

Moving Average 107.33% 107.14%
Näıve (Last Observations) 141.76% 141.64%

We observed that when decreasing the σ of Gaus-1165

sian white noise to 1, the RMSE and MAE of moving
average predictor increase to 139.15% and 140.17%, re-
spectively, whereas the performances of other Kernel
KMR predictors are almost the same. This indicates
that using all Koopman modes without cross valida-1170

tion is effectively over-fitting, since when increasing the
noise level σ to 2.5, even the moving average can out-
perform the predictor using all modes.

We also tested on sum of sinusoidal waves plus Gaus-
sian random walk noise, and in this case, the effective1175

noise is actually the white noise of each step, because if
we treat the last observation as ground truth instead of
the sinusoidal waves’ latest values plus the known lat-
est random walk noise, then the next step’s sinusoidal
waves’ values should only be affected by the increments1180

of the random walk noise. In this case, it is expected
that predicting on the increments will yield better re-
sults, and this is confirmed in Table 2, where we com-
pared the prediction on original time series, centered
time series with mean removed for each spatial dimen-1185

sion (the mean was added back after prediction), and
the 1st differences of the original time series (the pre-
dicted values were added to the last observations). The
σ of Gaussian white noise for each step is 5√

500 such that
the standard deviation of the random walk noise at the1190

end of the 500 time steps is 5. Notice that if the maxi-
mum amplitude of sinusoidal waves is 1, although their
1st differences are also sinusoidal, their amplitudes will
be significantly reduced and smaller than the σ of Gaus-
sian white noise for each step. It can be seen from Table1195

2 that predicting on the increments of sinusoidal waves
with Gaussian random walk noise added can achieve al-
most the same performance compared to predicting on
sinusoidal waves plus Gaussian white noise as shown in
Table 1.1200

This gives us another approach for prediction, since
we can generate predictions by predicting on increments
other than on the original time series, using the same
prediction models. Therefore, we can combine the pre-
diction models for original time series and those for in-1205

crements. We can also remove the time average of the
input time series and add them back on the predicted
values. In total, the number of prediction models is
quadrupled: we can use the same set of prediction mod-
els to predict the original time series, mean-removed1210

original time series, increments, and mean-removed in-
crements. Again, in real world application, a proper
model selection criterion is needed to achieve the best
results.

Table 2 Comparison of the best prediction models
generated by Kernel KMR on original time series, cen-
tered time series with mean removed for each spatial
dimension, and the 1st differences of the original time
series.

Forecaster RMSE MAE
Noiseless Sinusoidal Waves 100% 100%
Kernel KMR: Best Model, Predicting on
Increments (1st Finite Difference) 101.13% 101.23%

Kernel KMR: Best Model, Predicting on
Original Time Series with Mean Removed 102.85% 102.96%

Kernel KMR: Best Model, Predicting on
Original Time Series 104.09% 104.13%

Näıve (Last Observations) 105.54% 105.64%

Up to now, we have not discussed the effect of smooth1215

truncation for numerical regularization introduced in
Sec. 2.2.1 compared to the traditional hard cutoff, since
for our synthetic data, the maximum condition number
with respect to eigenvalue was never too large, so nu-
merical regularization is not needed. However, for real1220

world data, which contains much more irregular fea-
tures such as sparsity or spikes, this numerical regu-
larization will be crucial to produce reasonable results,
and we will show that in the next subsection. Also, we
used one prediction model uniformly for all 500 spatial1225

dimensions for synthetic data, however, in real world
application, choosing the best prediction model for each
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univariate time series usually yield better results, which
will also be shown in the next subsection.

4.2 Stock Markets Data1230

For stock market data, the spatio-temporal field u(x, t)
contains 567 returns for the latest 3000 trading days. In
prediction tests we used a training windows size of 250
trading days and moved that window one day forward
after each prediction of the next day’s returns. The re-1235

sults shown in Table 3 are based on 100 most recent
days’ predictions.

Table 3 Comparison of return Xt’s prediction errors
for different forecasters. Errors are normalized as a per-
centage of the error of näıve predictor (last observa-
tions).

Forecaster RMSE MAE
Kernel KMR: Best Model for Each 1-D Time Series 98.28% 97.71%
Kernel KMR: Best Single Model, Using New
Smooth Cutoff for Numerical Regularization 99.81% 99.84%

Kernel KMR: Best Single Model, Using
Hard Cutoff for Numerical Regularization 100.08% 100.20%

Näıve (Last Observations) 100% 100%
Moving Average on Increments (1st Finite Differences) 100.23% 100.23%
Moving Average on Original Time Series 1061.40% 1274.46%

Stock returns time series are very close to random
walk, that is why there is little that can be improved
over last observations by using single prediction model1240

uniformly for all 567 stocks. However, by choosing the
best prediction model for each univariate time series,
it is still possible to achieve some improvements, and
whether these improvements can be exploited for op-
timal trading strategy will be left for future investiga-1245

tion. We observed that smooth truncation for numeri-
cal regularization can slightly improve the results, and
since we developed a fast search algorithm to perform
the smooth truncation such that the number of times
needed to calculate condition number with respect to1250

eigenvalue (which could be very slow) is minimized, we
adopted this smooth truncation method for all scenar-
ios.

4.3 Electricity consumption and generation data from
Ausgrid1255

The residential electricity consumption and generation
data provided by Ausgrid contained readings of elec-
tricity meters and solar panels of 10 different residen-
tial buildings in 30 minutes time resolution. We tested
our prediction methodology on a consecutive 7 days1260

from 2011-06-24 to 2011-06-30, with 48 predictions per

day resulting in a total of 336 predictions. For com-
parison, we utilized another näıve predictor, which is
averaging the values of recent 30 days at the same time
in day as the prediction time in day, as the data ex-1265

hibit a clear daily cycle. As can be seen in Table 4
and 5, the electricity generation time series are much
more predictable, which is reasonable, since solar en-
ergy generation almost only depends on weather con-
ditions (which are comparatively stable in NSW, Aus-1270

tralia), whereas electricity consumption can be much
more complicated and depends on many other factors
such as day of week (weekend or weekdays), residents’
behavior, weather and temperature.

Table 4 Prediction results on Ausgrid’s 10 dimen-
sional electricity generation time series.

Forecaster RMSE MAE
Kernel KMR: Best Model for Each 1-D Time Series 84.71% 76.09%
Kernel KMR: Best Single Model 87.54% 79.83%
Näıve (Last Observations) 100% 100%
Time of Day based Moving Average 147.61% 162.55%
Ordinary Moving Average 166.23% 165.15%

Table 5 Prediction results on Ausgrid’s 10 dimen-
sional electricity consumption time series.

Forecaster RMSE MAE
Kernel KMR: Best Model for Each 1-D Time Series 96.44% 99.58%
Kernel KMR: Best Single Model 99.06% 100.02%
Näıve (Last Observations) 100% 100%
Time of Day based Moving Average 123.60% 147.13%
Ordinary Moving Average 132.55% 165.15%

4.4 Clients’ Order Flow Data1275

Considering the almost random nature of the FX mar-
ket, the main objective is to make improvement com-
pared to other established prediction techniques. The
benchmark is a random walk model, where a non-zero
mean Gaussian distribution is used for predicting the1280

size and direction of the client flow. Other methods in-
clude auto-regressive moving average (ARIMA) and ex-
ponential smoothing (ETS), which are widely used in
different time-series prediction applications [66,64,63,
65].1285

In Table 6, the RMSE and MAE improvements are
normalized root mean square error and mean absolute
error improvement in percentage between ARIMA and
prescient model (i.e., accurate forecasting), respectively.
Additionally, as the objective of prediction is active risk1290

hedging, a new measure, dubbed ∆J , is also reported.
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This measure models the effects of forecast error ac-
cumulation on the final system cost in dynamic multi-
period systems, and was first introduced in Ref. [46].
Using ∆J will result in selecting more accurate models1295

compared to simpler measures (e.g., RMSE and MAE)
that do not consider these effects.

The random walk model was fitted to the last 21
weeks of observation for each forecast. Both ARIMA
and ETS models were fitted and cross-validated using1300

R package forecast [31]. Kernel KMR’s models were se-
lected according to the chosen performance objective
(i.e., RMSE, MAE, or ∆J).

The results show that ETS and ARIMA model of-
fer the least improvement, but are consistent between1305

different error measures. This is caused by the models
being selected with an order of zero due to random-
ness and non-stationarity of the data. This is effectively
equal to a random walk model, but as the reported
random walk model was fitted dynamically, this non-1310

stationarity was included and thus resulted in a better
outcome.

The random walk model, which was fitted to three
months of data, showed an improvement in RMSE and
MAE, but performed worse in ∆J . Consequently, it is1315

expected that this techniques would be worse in real-
life as well. Overall, the proposed methodology outper-
formed all models over all available measures.

Table 6 Prediction performance and improvements
on clients’ order flow.

Forecaster RMSE
Improvement

MAE
Improvement

∆J
Improvement

Prescient 100% 100% 100%
Kernel KMR: Best Model
for Each of the 5 Currencies 10.1% 1.8% 4.6%

Random Walk 7.9% 0.3% -4.7%
ETS (Exponential Smoothing) 0% 0% 0%
ARIMA 0% 0% 0%

5 Discussion and Conclusion

In this paper, we advanced and improved the kernel1320

method extension of Koopman mode analysis and fur-
ther devised it as a new methodology for high dimen-
sional time series prediction, which we refer to as kernel-
based Koopman mode regression (Kernel KMR). Specif-
ically, we introduced a new method for numerical regu-1325

larization, an ordering method of Koopman modes us-
ing new definition of “energy”, and showed that this
ordering of modes provides a fast alternative to the
sparsity-promoting procedure [32]. We also developed
a technique for predictable Koopman modes selection,1330

and showed that the idea behind has conceptual re-
lations to the redundancy and entropy of time series
and the procedure is equivalent to cross-validation in
machine learning. Several optimization methods for a
selected set of Koopman modes to improve prediction1335

accuracy were proposed and combined with different se-
lections of Koopman modes to serve as prediction model
generation methods. Finally we discussed the selection
of prediction models.

To illustrate the effectiveness of this new method-1340

ology, we first applied it to synthetic data and then to
several different real-world data sets which are multi-
variate or high dimensional time series. The prediction
results are excellent, although more sophisticated model
selection methods are needed in real world application1345

to achieve the best performance. Since the real-world
high dimensional time series we used here are represen-
tations of collective social or economic behaviors, the
effectiveness of this methodology shows that there are
some subtle features or laws underlying these complex1350

systems dynamics, and this methodology opens up new
possibilities for data-driven modeling and forecasting of
these complex systems.

Designing models for real world complex systems
is nontrivial, and it is even more difficult to test and1355

validate those models against empirical data [9,69,71,
72,36,67,38,68,17,77], because high dimensional time
series or spatio-temporal data generated by real world
complex systems usually contain significant amount of
irregular or irrelevant features which will mislead the1360

modeling of those systems. The technique we developed
and discussed in Section 2.2.3 to retain only the ro-
bust features of spatio-temporal dynamics is crucial to
correctly model real world complex systems, especially
when efforts are made to directly identify the dynamical1365

models or infer the complex networks properties from
data [39,40]. Combining the perspectives of machine
learning and physics, the robust features extracted from
complex system dynamics are the only physically mean-
ingful information that can be learned from data and1370

should be treated as baseline to guide the modeling and
validating the models designed for real world complex
systems.

Finally, regarding the limitation of this methodol-
ogy, the first issue is the non-stationarity of time series,1375

which was discussed at the end of Section 2.1.4 and in
Ref. [74]. For current applications, the input data orga-
nized in spatio-temporal field u(x, t) can have multiple
short pieces or segments of time series, each of which
is sliced from the same time interval within multiple1380

longer time series which form an ensemble of sample
paths of a process, and each short piece can be con-
sidered as locally stationary. It might be theoretically
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feasible to append the time explicitly to each snapshot
in u(x, t), which will consider the time as an additional1385

state variable, such that the spatial dimension increases
by 1, and the evolution of time itself as a scalar observ-
able will be governed by Koopman operator. This, how-
ever, may result in the time oscillating instead of lin-
early increasing when not selecting all Koopman modes1390

for reconstruction or prediction. Some new ideas [35,
49] may be helpful to resolve this problem further, es-
pecially by considering the time as an input to the sys-
tem, which might also open up new possibilities for de-
veloping a novel methodology of control theory based1395

on Koopman operator. However, extending Koopman
operator theory to include input is non-trivial, and the
first author of this paper is currently working on this
new development. The second issue is more conceptual
and philosophical, which involves the validity and suit-1400

ability of considering a high dimensional time series as
a spatio-temporal field generated from the time evolu-
tion of a dynamical system. From the viewpoint of sys-
tem theory, natural and social complex phenomena can
and should be investigated following this way of think-1405

ing, however, this methodology may implicitly assume
that the high dimensional time series contains homoge-
neous data type, e.g., all variables have same physical
unit. Data fusion, as discussed in Ref. [76], might be
helpful when dealing with heterogeneous data types,1410

however, the method introduced in Ref. [76] requires
a simple and invertible transformation between differ-
ent sets and types of data. More sophisticated methods
from differential geometry [51], or other methodologies
such as deep neural networks [30,16] might be useful1415

to overcome this limitation. This, again, will be left for
future investigation.
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43. Mezić, I., Banaszuk, A.: Comparison of systems with com-
plex behavior. Physica D: Nonlinear Phenomena 197(1–2),
101–133 (2004). DOI 10.1016/j.physd.2004.06.0151575

44. Noorian, F.: Risk Management using Model Predictive
Control. Ph.D. thesis, University of Sydney (2015)

45. Noorian, F., Flower, B., Leong, P.H.W.: Stochastic Reced-
ing Horizon Control for Short-Term Risk Management in
Foreign Exchange. Journal of Risk 18(5), 29–62 (2016).1580

DOI 10.21314/J0R.2016.333
46. Noorian, F., Leong, P.H.: On time series forecasting error

measures for finite horizon control. IEEE Transactions on
Control Systems Technology, in press (2016)

47. Noorian, F., Leong, P.H.W.: Dynamic hedging of foreign1585

exchange risk using stochastic model predictive control.
In: 2014 IEEE Conference on Computational Intelligence
for Financial Engineering Economics (CIFEr), pp. 441–448
(2014). DOI 10.1109/CIFEr.2014.6924107

48. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic Mode1590

Decomposition with Control. SIAM Journal on Applied
Dynamical Systems 15(1), 142–161 (2016). DOI 10.1137/
15M1013857

49. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Generaliz-
ing Koopman Theory to allow for inputs and control.1595

arXiv:1602.07647 [math] (2016)
50. Proctor, J.L., Eckhoff, P.A.: Discovering dynamic patterns

from infectious disease data using dynamic mode decom-
position. International health 7(2), 139–145 (2015)

51. Robinson, M.: Sheaves are the canonical datastructure for1600

sensor integration. arXiv:1603.01446 [math] (2016)
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