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Introduction

Lie algebras are called after Sophus Lie (1842 – 1899), a Norwegian nineteenth
century mathematician who realized that continuous transformation groups could
be studied by linearizing them, obtaining what he called the infinitesimal group.
These objects are what we now call Lie algebras.

Independently, Wilhelm Killing (1847 – 1923) introduced Lie algebras, and he
proved that (at least over the complex numbers) only certain finite-dimensional
simple Lie algebras could exist: the four infinite series and the five exceptional Lie
algebras that are well known today. To this end, he introduced the concepts of root
system, Cartan subalgebra, and Cartan matrix. These last two concepts now carry
the name of Élie Cartan (1869 – 1951), whose major contribution was to prove that
the five exceptional Lie algebras Killing had found actually exist. A later major
contributor to this area was Claude Chevalley (1909–1984), who wrote the Theory of
Lie Groups, a book in three volumes that systematically treats the theory of groups
of Lie type and Lie algebras. (The biographical information presented here may be
found in the excellent MacTutor History of Mathematics archive [OR09].)

Work by Chevalley and Leonard Dickson showed that the Lie algebras that
Killing and Cartan found, commonly called the classical Lie algebras, also exist over
finite fields, but there is more. Research by Nathan Jacobson, Aleksei Kostrikin,
Ernst Witt, Igor Šafarevič, and Hans Zassenhaus produced the so-called Cartan type
Lie algebras, and Hayk Melikyan found a new family of simple Lie algebras over
fields of characteristic 5. Over the past 15 years, Alexander Premet and Helmut
Strade have shown that over algebraically closed fields of characteristic at least 5
every simple Lie algebra belongs to one of these three classes. For characteristic 3
such a result has not been proved, and the characteristic 2 case is still far from set-
tled: as recently as 2006 Michael Vaughan-Lee found two new simple Lie algebras
over the field with two elements.

A brief overview of the classification of the simple Lie algebras over finite fields
can be found in an unpublished note by Strade [Str06]. The existence of several
classes of simple Lie algebras over finite fields leads to the problem of recognizing
these: given a simple Lie algebra, find out which class it belongs to. In particular:
decide whether a given simple Lie algebra is classical or not.

The new results in this thesis are set within the classical Lie algebras: the four
infinite series An, Bn, Cn, Dn and the five exceptional Lie algebras E6, E7, E8, F4,
G2. These Lie algebras occur in two ways: as Lie algebras of algebraic groups (in
the manner that Lie himself envisioned) and as the main objects that the simple
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groups of Lie type act on. The classification of finite simple groups, a major effort by the
mathematical community in the twentieth century, shows that the simple groups
of Lie type form a significant class of finite simple groups. A not too technical
introduction to this classification is a short article by Ron Solomon [Sol95] that
appeared in the notices of the AMS.

In recent years significant progress has been made to effectively calculate with
and in these groups and algebras on the computer, including implementations in,
for example, the GAP and Magma computer algebra systems. This research is
partly stimulated by the matrix group recognition project: an international project
whose main aim is solving problems with matrix groups over finite fields. We
build in particular on work by Arjeh Cohen, Willem de Graaf, Sergei Haller, Scott
Murray, and Don Taylor. Many algorithms that have been previously developed in
this branch of research, however, apply only to groups and algebras over fields of
characteristic 0 or at least 5. In this thesis we focus mainly on the characteristic 2
and 3 cases.

Reading guide

Chapter 1 covers the basic notions in the research area of Lie theory. Since this
field has existed for quite some time now, the notions are rather numerous and
the chapter accordingly elaborate. Chapter 2 contains a digression to the twisted
groups of Lie type. In particular we explicitly construct the automorphisms needed
to construct groups of type 2B2, 2F4, and 2G2, and we exhibit these automorphisms
as endomorphisms of Lie algebras as well. In Chapter 3 we investigate the compu-
tation of split maximal toral subalgebras over fields of characteristic 2, show why
existing methods will not always work, and present a heuristic algorithm for this
purpose. Chapter 4 shows how to construct Chevalley bases of the classical Lie
algebras over any characteristic, including 2 and 3. We prove that the algorithm
runs in time polynomial in the input. In Chapter 5 the results of Chapters 3 and 4
are used to produce algorithms for recognition of Lie algebras. In Chapter 6 we ap-
ply the algorithms described and their implementation to obtain a computer aided
proof that there is no graph on which a certain group acts distance transitively.

If you are an expert in the subject area of this thesis, it is probably best to skip
Chapter 1, and start reading in Chapter 2 (if you want to freshen up your knowledge
of these extraordinary twisted groups) or Chapter 3 (if you are primarily interested
in the results). If you are no expert in this area, but you are a mathematician, it is
probably best to simply start with Chapter 1 and go from there. If you are not a
mathematician or you have no desire to learn about Lie theory, skip to the abstract
(or the samenvatting), possibly read the acknowledgements, and then get a copy
of the excellent book Finding Moonshine (or Het Symmetriemonster) by Marcus du
Sautoy to learn about the beauty of symmetry.
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1Preliminaries

This chapter covers the basic notions relevant to this thesis, such as root data, al-
gebraic groups, and Lie algebras. Our treatment of algebraic groups and the cor-
responding Lie algebras rests on the theory developed mainly by Chevalley and
available in textbooks Borel [Bor91], Carter [Car72], Humphreys [Hum72, Hum75],
Jacobson [Jac62], and Springer [Spr98]. The interested reader is encouraged to con-
sult any of these excellent books for more details.

Almost all proofs have been omitted, except some that are particularly short,
elegant, or enlightening. If a result from a particular source is given along with a
proof, that proof has been taken from that same source unless otherwise mentioned.

1.1 Root systems

The root system is a combinatorial object fundamental to many of the mathematical
structures that are the topic of this thesis.

Let V be a Euclidian space of finite dimension n and let (v, w) denote the inner
product of v and w. For each non-zero vector α ∈ V we denote by sα the reflection
in the hyperplane orthogonal to α, i.e., the linear map defined by

sα : β 7→ β− 2(β, α)

(α, α)
α.

We define, for α ∈ V:

α∨ =
2α

(α, α)

and we write 〈β, α∨〉 instead of (β, α∨) (for consistency of notation when we arrive
at root data) so that the definition of sα simplifies to sα : β 7→ β− 〈β, α∨〉α.

Definition 1.2 (Root System). A subset Φ of V is called a root system in V if the
following axioms are satisfied:

(i) Φ is a finite set of non-zero vectors.

(ii) Φ spans V.

(iii) If α, β ∈ Φ then sα(β) ∈ Φ.

(iv) If α, β ∈ Φ then 〈β, α∨〉 ∈ Z.
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(v) If α, tα ∈ Φ, where t ∈ R, then t = ±1.

Observe that from (iii) it follows that −α ∈ Φ whenever α ∈ Φ. Sometimes (v)
is omitted, defining a so-called nonreduced root system. In this thesis, however, a root
system is taken to be reduced unless otherwise specified.

The elements of a root system Φ are called its roots. The rank of Φ is defined to
be dim(V) and denoted rk(Φ). A subset ∆ ⊆ Φ is called a set of fundamental roots (or
a set of simple roots) if ∆ = {α1, . . . , αn} is a basis of V relative to which each α ∈ Φ
has a unique expression α = ∑ ciαi, where the ci are integers and the ci are either
all nonnegative or all nonpositive. Such sets of fundamental roots exist (cf. [Car72,
Proposition 2.1.3]). The roots for which all ci are nonnegative (resp. nonpositive)
are called the positive (resp. negative) roots, and the set of positive (resp. negative)
roots is denoted Φ+ (resp. Φ−).

A root system Ψ is said to be isomorphic to a root system Φ if there is an isometry
of their Euclidian spaces that maps Ψ to Φ.

The length of a root α ∈ Φ is simply its length in V. It will follow from the
classification of root systems that at most two different lengths occur in a given root
system, justifying the division of the set of roots into short roots and long roots in
case different lengths occur.

A root system is called irreducible if it cannot be partitioned into the union of
two mutually orthogonal proper subsets.

1.1.1 The Weyl group

Let Φ be a root system. We denote by W(Φ) the group generated by the reflections
{sα | α ∈ Φ}. The group W(Φ) is called the Weyl group of Φ. It is a group of
orthogonal transformations of V, and by axiom (iii) of Definition 1.2 it transforms
Φ into itself. By (ii) it acts faithfully on Φ. Therefore, since Φ is a finite set, W(Φ)
is a finite group.

1.1.2 Irreducible root systems

It follows immediately from Definition 1.2(v) that, up to isomorphism, there is only
one root system of rank one. The irreducible root systems of higher rank have been
classified, and an important tool to come to that classification are the root systems
of rank two. So suppose rk(Φ) = 2 and take α, β to be two simple roots.

Lemma 1.3 ([Spr98, Lemma 7.5.1]). We have the following properties for 〈α, β∨〉:

(i) 〈α, β∨〉〈β, α∨〉 is one of 0, 1, 2, 3.

(ii) If |〈α, β∨〉| > 1 then |〈β, α∨〉| = 1.

(iii) In the four cases of (i), the order of sαsβ is 2, 3, 4, 6, respectively.

(iv) If 〈α, β∨〉 = 0, then 〈β, α∨〉 = 0.
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Proof Note that sα and sβ stabilize the two dimensional subspace of Φ spanned by
α and β. On the basis {α, β} of that space, sαsβ is represented by the matrix

M =

(
〈α, β∨〉〈β, α∨〉 − 1 〈β, α∨〉
−〈α, β∨〉 −1

)
.

Now, as the Weyl group is finite, sαsβ has finite order, so the eigenvalues of M
are two conjugate roots of unity and |〈α, β∨〉〈β, α∨〉− 2| = |tr(M)| = |λ+λ| ≤ |λ|+
|λ| = 2|λ| ≤ 2 since λn = 1. As M cannot be the identity matrix, the eigenvalues
cannot both be 1, so (i) and (ii) follow. By straightforward calculations, (iii) also
follows. If 〈α, β∨〉 = 0, then M is a triangular matrix with the same value in each
diagonal entry, so it can only have finite order if it is diagonal. This implies that
then also 〈β, α∨〉 = 0. �

In Figure 1.1 the four possible reduced root systems of rank two are shown,
corresponding to the cases in Lemma 1.3(iii). For general rank, the irreducible root
systems are described in Cartan’s notation An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn
(n ≥ 4), En (n ∈ {6, 7, 8}), F4, and G2.

1.1.3 Weights and the fundamental group

A vector w ∈ V is called a weight if 〈w, α∨〉 ∈ Z for all α ∈ Φ. These weights form a
lattice Λ called the weight lattice in which the lattice ΛΦ spanned by Φ is a sublattice
of finite index. If ∆ = {α1, . . . , αn} is a set of fundamental roots for Φ, then Λ has
a corresponding basis of fundamental weights {λ1, . . . , λn} such that 〈λi, α∨j 〉 = δij.
The quotient Λ/ΛΦ is called the fundamental group.

The fundamental group has the following structure for the irreducible root sys-
tems (see for example [Hum72, Section 13].) For An, it is Z/(n + 1)Z, for Bn, Cn,
and E7 it is Z/2Z, for Dn it is Z/2Z×Z/2Z (if n is even) or Z/4Z (if n is odd),
for E6 it is Z/3Z, and for E8, F4, and G2 it is trivial.

1.2 Coxeter systems and Dynkin diagrams

Let Φ be a root system, W = W(Φ) its Weyl group, and {α1, . . . , αn} a set of funda-
mental roots. The pair (W, S), where S = {sα1 , . . . , sαn}, is called a Coxeter system.
The Cartan matrix C of R is the n× n matrix whose (i, j) entry is 〈αi, α∨j 〉. The matrix
C is related to the Coxeter type of (W, S) as follows: sαi sαj has order mij where

cos

(
π

mij

)2

=
〈αi, α∨j 〉〈αj, α∨i 〉

4
.

The Coxeter matrix is (mij)1≤i,j≤n and the Coxeter diagram is a graph-theoretic repre-
sentation thereof: it is a graph with vertex set {1, . . . , n} whose edges are the pairs
{i, j} with mij > 2; such an edge is labeled mij. The Cartan matrix C determines the
Dynkin diagram (and vice versa). For, the Dynkin diagram is the Coxeter diagram
with the following extra information about root lengths: 〈αi, α∨j 〉 < 〈αj, α∨i 〉 if and
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An 1 2 E6

1 43 5 6

2

Bn 1 2 E7

1 43 5 6 7

2

Cn 1 2 E8

1 43 5 6 7 8

2

Dn
1 2

F4 1 2 3 4

G2 1 2

Figure 1.4: Dynkin diagrams

only if the Coxeter diagram edge {i, j} (labelled mij) is replaced by the directed
edge (i, j) in the Dynkin diagram (so that the arrow head serves as a mnemonic for
the inequality sign indicating that the root length of αi is larger than the root length
of αj).

The Dynkin diagrams of irreducible root systems are well known, and they are
depicted in Figure 1.4, where the nodes are labeled as in [Bou81].

1.3 Root data

A slightly more general notion than root system is that of a root datum, an important
tool in the theory of algebraic groups. It will turn out that connected reductive alge-
braic groups are classified by their root datum (cf. Theorem 1.43). Also, Chevalley
Lie algebras (introduced in Section 1.9) will be parametrized by root data.

Definition 1.5 (Root datum). A root datum is a quadruple R = (X, Φ, Y, Φ∨), where

(i) X and Y are dual free Z-modules of finite rank.

(ii) 〈·, ·〉 : X×Y → Z is a bilinear pairing putting X and Y into duality.

(iii) Φ is a finite subset of X and Φ∨ a finite subset of Y.

(iv) There is a one-to-one correspondence ∨ : Φ→ Φ∨.
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For α ∈ Φ we define endomorphisms sα : X → X and sα∨ : Y → Y by

sα(x) = x− 〈x, α∨〉α, sα∨(y) = y− 〈α, y〉α∨.

The following axioms are imposed:

(v) 〈α, α∨〉 = 2, for all α ∈ Φ.

(vi) sα(Φ) = Φ and sα∨(Φ∨) = Φ∨, for all α ∈ Φ.

(vii) If α, tα ∈ Φ, where t ∈ R, then t = ±1.

Denote by 〈Φ〉X the submodule of X generated by Φ and put V = 〈Φ〉X ⊗R. It
follows immediately that Φ is a root system in V, provided it is nonempty. Similarly,
Φ∨ is a root system in 〈Φ∨〉Y ⊗R.

Conversely, suppose Φ is a root system in some Euclidian space V with inner
product (·, ·). Recall from Section 1.1 that α∨ = 2α/(α, α) and define Φ∨ = {α∨ |
α ∈ Φ}. Choose the lattice X to be equal to ZΦ, take the lattice Y = {y ∈ V |
(x, y) ∈ Z for all x ∈ X}, and define 〈x, y∨〉 = (x, y∨) for x ∈ X and y ∈ Y. Then
R = (X, Φ, Y, Φ∨) is a root datum.

Example 1.6. Take Φ to be a root system of type B2 in R2, e.g., α = (−1, 1),
β = (1, 0), and Φ = {±α,±β,±(α + β),±(α + 2β)}. Then α∨ = (−1, 1) and
β∨ = (2, 0), so that the vectors (1, 0) and (0, 1) form a basis for ZΦ and the
vectors (−1, 1) and (1, 1) form a basis for ZΦ∨.

We take X = Y = ZΦ so that R = (X, Φ, Y, Φ∨) is indeed a root datum.

The rank of a root datum is defined to be the dimension of X⊗R (and therefore
that of Y ⊗R), and the semisimple rank is defined to be the dimension of ZΦ⊗R.
The roots of Φ are called the roots of the root datum and the roots of Φ∨ are called
the coroots of the root datum. A root datum is called irreducible if Φ is. A root datum
is called semisimple if its rank is equal to its semisimple rank. Each semisimple root
datum can be decomposed uniquely into irreducible root data.

A root datum R = (X, Φ, Y, Φ∨) is said to be isomorphic to a root datum R′ =
(X′, Φ′, Y′, Φ∨′) if there are isomorphisms between X and X′ and between Y and Y′,
both denoted ϕ, such that their restrictions to Φ and Φ∨ are isomorphisms of root
systems (as defined in Section 1.1). Furthermore, ϕ must satisfy 〈ϕx, ϕy〉 = 〈x, y〉,
for all x ∈ Φ, y ∈ Φ∨.

By the definition of reflections in root systems, we not only have the map sα :
X → X for all α ∈ Φ, but also sα∨ : Y → Y for all α∨ ∈ Φ∨. The group W(Φ∨)
generated by {sα∨ | α∨ ∈ Φ∨} is isomorphic to W(Φ) (see [Bou81, Chapter VI.1] for
more details).

Recall from Section 1.1.3 that a weight is a vector w in the Euclidian space X⊗R,
such that 〈w, α∨〉 ∈ Z for all α ∈ Φ. These weights form a weight lattice, and that
the fundamental group is the quotient of this lattice by the root lattice ZΦ. This
fundamental group dictates the possible semisimple root data with a given root
system Φ via the quotient X/ZΦ.

We will use this observation to introduce the isogeny type of a root datum. If
X/ZΦ is the trivial group, R is said to be of adjoint isogeny type, or the adjoint root
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datum of type Φ. If X/ZΦ on the other hand is the full fundamental group, R is said
to be of simply connected isogeny type, or the simply connected root datum of type Φ. If
neither of these holds, R is said to be of intermediate isogeny type. Note that the last
case only occurs for root systems of type An (and then only if n + 1 is not prime)
and Dn.

We denote an irreducible adjoint root datum of type Xn by Xn
ad, and the corre-

sponding simply connected root datum by Xn
sc. Intermediate root data of type An

will be denoted by A(k)
n , where k|(n + 1). Intermediate root data of type Dn will be

denoted by D(1)
n if n is odd, and by D(1)

n , D(n−1)
n , and D(n)

n if n is even.

1.3.1 Computational conventions

In order to work with these objects on a computer, we let n be the rank of R and
l the semisimple rank, we fix X = Y = Zn, and we set 〈x, y〉 = xy>, which is
an element of Z since x and y are row vectors. Now take A to be the integral
l× n matrix containing the simple roots as row vectors; this matrix is called the root
matrix of R. Similarly, let B be the l × n matrix containing the simple coroots in the
corresponding order; this matrix is called the coroot matrix of R. Then the Cartan
matrix C is equal to AB> and ZΦ = ZA and ZΦ∨ = ZB. For α ∈ Φ we define cα

to be the Z-valued size l row vector satisfying α = cα A.
In the greater part of this thesis we will deal with semisimple root data, so l = n.

In the case of semisimple root data the definition of the adjoint isogeny type implies
that for the adjoint root datum we may take A to be the n× n identity matrix and B
to be C>. Similarly, for the simply connected root datum we may take A = C and
B = I.

1.3.2 Root data of rank one

In this section we classify the semisimple root data of rank one. Recall that there
is only one root system of rank one (up to isomorphism). This root system, whose
only roots are α and −α, is called A1.

There are, however, two non-isomorphic semisimple root data of rank one: ad-
joint and simply connected (denoted A1

ad and A1
sc, respectively). The difference is

clearest exposed if we adopt the computational conventions set out in Section 1.3.1.
We fix the root lattice X = Z and the coroot lattice Y = Z, so that the pairing is
simply multiplication: 〈x, y〉 = xy. The Cartan matrix C is equal to (〈α, α∨〉) = (2).
We should then define an integral 1× 1 matrix A containing the roots as row vec-
tors and an integral 1× 1 matrix B containing the coroots as row vectors, such that
AB> = C. Now it becomes clear that there are two choices:

• A = (1), B = (2): giving the adjoint root datum, and

• A = (2), B = (1): giving the simply connected root datum.

These choices are non-isomorphic since the determinants of the root matrices A
differ.
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Cartan matrix Root matrix Coroot matrix

A1
adA1

ad

(
2 0

0 2

) (
1 0

0 1

) (
2 0

0 2

)

A1
adA1

sc

(
2 0

0 2

) (
1 0

0 2

) (
2 0

0 1

)

A1
scA1

sc

(
2 0

0 2

) (
2 0

0 2

) (
1 0

0 1

)

A2
ad

(
2 −1

−1 2

) (
1 0

0 1

) (
2 −1

−1 2

)

A2
sc

(
2 −1

−1 2

) (
2 −1

−1 2

) (
1 0

0 1

)

B2
ad

(
2 −2

−1 2

) (
1 0

0 1

) (
2 −1

−2 2

)

B2
sc

(
2 −2

−1 2

) (
2 −2

−1 2

) (
1 0

0 1

)

G2

(
2 −1

−3 2

) (
1 0

0 1

) (
2 −3

−1 2

)

Table 1.7: Root data of rank two
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1.3.3 Root data of rank two

In this section we classify the semisimple root data of rank two. Recall from Section
1.1.2 that there are only 4 root systems of rank two: A1A1, A2, B2, and G2. Recall
furthermore from Section 1.1.3 that the fundamental group of An is Z/(n + 1)Z,
the fundamental group of Bn is Z/2Z, and the fundamental group of G2 is triv-
ial. We again adopt the computational conventions from Section 1.3.1 and enu-
merate the possibilities in Table 1.7. The choices for the root and coroot matrices
are unique up to multiplication with elements of SL(2, Z): if m ∈ SL(2, Z) then
AB> = (Am)(Bm−>)>, det(A) = det(Am), and det(B) = det(Bm).

1.4 Lie algebras

In this section we introduce Lie algebras, by giving the relevant definitions and
providing some examples.

Definition 1.8 (Lie algebra). A Lie algebra L is a vector space V over a field F

equipped with an alternating bilinear product

[·, ·] : L× L→ L,

satisfying the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

Note that it follows from the requirement that [·, ·] be alternating and bilinear
that [·, ·] is anti-symmetric. Indeed, for all x, y ∈ L:

[x, y] = [x, y]− [x + y, x + y] = [x, y]− ([x, x] + [x, y] + [y, x] + [y, y]) = −[y, x].

If char(F) 6= 2 anti-symmetry of the product actually implies that it is alternating:
suppose [x, y] = −[y, x] for all x, y ∈ L and observe that for every z ∈ L:

2[z, z] = [z, z] + [z, z] = [z, z]− [z, z] = 0,

so that [z, z] = 0.
The dimension of a Lie algebra (denoted dim(L)) is simply the dimension dim(V)

of its vector space. Furthermore, V is called the underlying vector space of L and the
field F over which V is defined is called the underlying field of L.

Before proceeding, we give an elementary example.

Example 1.9. We show that any algebra A becomes a Lie algebra if we take

[a, b] := ab− ba.

Indeed, A is a vector space. To see that [·, ·] is alternating take a ∈ A and
observe:

[a, a] = aa− aa = 0.
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To see that [·, ·] is bilinear take a, b, c ∈ A and λ, µ ∈ F, where F is the field
underlying A. By anti-symmetry we only need to verify one of the coordinates.

[λa + µb, c] = (λa + µb)c− c(λa + µb)
= λ(ac− ca) + µ(bc− cb)
= λ[a, c] + µ[b, c].

To see that the Jacobi identity is satisfied take a, b, c ∈ A and observe:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = [a, bc− cb] + [b, ca− ac] + [c, ab− ba]
= (bc− cb)a− (bc− cb)a + b(ca− ac)
− (ca− ac)b + c(ab− ba)− (ab− ba)c

= 0.

For any vector space V we let gl(V) be the endomorphisms End(V) viewed as
a Lie algebra, i.e., [x, y] = xy− yx. This is called the general linear algebra (see also
Example 1.16 in Section 1.5.2 and its continuation in Section 1.6.5).

1.4.1 Subalgebras and ideals

If X is a subset of L, its closure under the vector space operations (i.e., addition,
subtraction, and multiplication with elements from F) is denoted 〈X〉F. The closure
of X under the Lie algebra operations (i.e., addition, subtraction, multiplication
with elements from F, and the Lie product [·, ·]) is denoted 〈X〉L.

A subalgebra of L is a subset X of L that is closed under the Lie algebra opera-
tions, i.e., 〈X〉L = X. So, if M is a subalgebra of L, then M is a linear subspace of L
and we have

[x, y] ∈ M for all x, y ∈ M.

An ideal I of L is a subalgebra that has the following additional property:

[x, y] ∈ I for all x ∈ I and all y ∈ L.

We will denote the intersection of all ideals containing a subset X of V by (X)L.
Note that every ideal is a subalgebra, but the converse is not true.

A subalgebra (resp.!an ideal) S is called a proper subalgebra (resp. ideal) of L if
S 6= {0} and S 6= L. The dimension of a subalgebra (and of an ideal) is simply the
dimension of the underlying subspace of L.

Example 1.10. In Example 1.9 we have seen that every matrix algebra gives rise
to a Lie algebra. In this example, we take L = sl(3, F), the Lie algebra of 3× 3
matrices with trace 0 over the field F with multiplication [a, b] := ab− ba.

The dimension of L is clearly 8: We can freely fill all coordinates but (3, 3),
and that last one is uniquely determined by the requirement that the trace be 0.
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First, we consider the subalgebra M = 〈a, b〉L of L, where

a =

0 0 1
0 0 0
0 0 0

 , b =

0 0 0
0 0 0
1 0 0

 .

We claim dim(M) = 3. Indeed:

[a, b] = ab− ba =

1 0 0
0 0 0
0 0 0

−
0 0 0

0 0 0
0 0 1

 =

1 0 0
0 0 0
0 0 −1

 .

It is straightforward to verify that taking products of elements in M does not
yield further elements: [a, [a, b]] = −2a and [b, [a, b]] = 2b. (We do not need
to check further elements in view of anti-symmetry). So M = 〈a, b, [a, b]〉F and
indeed dim(M) = 3.

Next, we consider the ideal I = (h)L of L, where

h =

1 0 0
0 −2 0
0 0 1

 .

We claim that this is in general not a proper ideal. Assume for a moment that
char(F) 6= 3 and consider, as an example,

a =

0 1 0
0 0 0
0 0 0

 ∈ L

and observe that [h, a] = 3a so that a ∈ I. More generally, write Ekl for the
3× 3 matrix whose only non-zero entry is a 1 on the (k, l)-th coordinate. It is
not hard to verify that [h, E12] = 3E12, [h, E21] = −3E12, [h, E23] = −3E23, and
[h, E32] = 3E32, so that E12, E21, E23, E32 ∈ I (as char(F) 6= 3). Moreover, since
[E12, E23] = E13 and [E32, E21] = E31, we find E13 ∈ I and E31 ∈ I. Now observe

[E12, E21] =

1 0 0
0 −1 0
0 0 0

 ,

which is a diagonal element that is not a multiple of h. Thus we have found that
dim(I) ≥ 8, but as I is an ideal of L, we must have L = I, and indeed I is not a
proper ideal of L.

To finish the example we drop the assumption that char(F) 6= 3 and assume
char(F) = 3. Then h is the identity matrix, so that, for every a ∈ L,

[h, a] = ha− ah = a− a = 0,
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so that in fact I = 〈h〉F. Thus, in this case, dim(I) = 1 and I is a proper ideal of
L.

We end this section with some special subalgebras of a Lie algebra L. If S is a
subset of L then the centralizer of S in L is

CL(S) = {y ∈ L | [x, y] = 0 for all x ∈ S},

and for x ∈ L we write CL(x) instead of CL({x}). It follows immediately from the
Jacobi identity that CL(S) is a subalgebra. The center of L is defined to be CL(L) and
denoted Z(L). Clearly, Z(L) is an ideal of L. (Note that in the previous example
I ⊆ Z(L) if char(F) = 3.)

If S is a subalgebra of L then the normalizer of S in L is

NL(S) = {y ∈ L | [x, y] ∈ S for all x ∈ S},

and for x ∈ L we write NL(x) instead of NL(〈x〉L). Observe that, if I is an ideal of
L, we have NL(I) = L. More generally, S is an ideal of NL(S) for any subalgebra S
of L.

If I is an ideal of L then the quotient algebra L/I has elements of the form x + I
(where x ∈ L) and multiplication is clearly well defined:

[x + I, y + I] = [x, y] + [x, I] + [I, y] + [I, I] = [x, y] + I.

1.4.2 Algebras defined by structure constants

Lie algebras may be presented in several ways, for example as matrices, or using
generators and relations. A matrix representation of L is defined to be a homomor-
phism ϕ : L 7→ gl(V). For instance, every Lie algebra has a representation as
dim(L)× dim(L) matrices, called the adjoint representation x 7→ adx, where

adx : L→ L, y 7→ [x, y].

Note, however, that this representation is not necessarily faithful, since Z(L) is in
its kernel.

Particularly suitable for our purposes, namely for working with Lie algebras on
a computer, is the representation as an algebra defined by structure constants. Earlier
work on this subject is due to Willem de Graaf [dG97, dG00], who introduced Lie
algebras into the GAP and Magma computer algebra systems in this manner. For
ease of notation we will assume finite dimensionality throughout this section, but
that is not strictly necessary for the construction.

Assume we have a Lie algebra L with underlying vector space V = Fn, and a
basis e1, . . . , en of V. The elements of L are represented as elements of V, and the
Lie product [·, ·] is stored in a multiplication table T: An n× n table whose entries
are F-vectors of length n such that, for i, j ∈ {1, . . . , n},

[ei, ej] =
n

∑
k=1

Tijkek.
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Example 1.10 (continued). We consider the 3-dimensional subalgebra M de-
fined in Example 1.10. Observe that {a, b, [a, b]} is a basis of M, so that [·, ·] on M
is completely determined by the following table:

a b [a, b]
a 0 [a, b] −2a
b −[a, b] 0 2b

[a, b] 2a −2b 0

To see that this small table indeed determines the multiplication on the whole
of M suppose we are given any two elements x, y ∈ M. Because {a, b, [a, b]} is
known to be a basis of M, there exist x1, x2, x3 ∈ F and y1, y2, y3 ∈ F such that
x = x1a + x2b + x3[a, b] and y = y1a + y2b + y3[a, b]. Now, by bilinearity of the
Lie product,

[x, y] = [x1a + x2b + x3[a, b], y1a + y2b + y3[a, b]]
= x1y1[a, a] + x1y2[a, b] + · · ·+ x3y3[[a, b], [a, b]],

and these are all products of basis elements, that can be looked up in the multi-
plication table.

As an algebra defined by structure constants M looks as follows:

(0 0 0) (0 0 1) (−2 0 0)
(0 0 −1) (0 0 1) (0 2 0)
(2 0 0) (0 −2 0) (0 0 0)

On the other hand, a matrix representation for M is:

a =

(
0 1
0 0

)
, b =

(
0 0
1 0

)
, so that [a, b] =

(
1 0
0 −1

)
.

Finally, M may also be represented using generators and relations: Take a and
b as generators and require [a, [a, b]] = −2a and [b, [a, b]] = 2b.

It is easy to see that the observation from this example easily generalizes, and
that, given any two elements v, w ∈ L as elements of V, we are able to compute
[v, w] using the multiplication table T.

In this thesis, almost all Lie algebras that we want to represent on a computer
are represented in this fashion. There are several advantages of this approach over
storing Lie algebra elements as matrices. The main reason is that many Lie algebras
we study do not have a small dimensional matrix representation: the sl example
we gave being the exception to the rule. So generally storing elements as vectors
is much cheaper than storing elements as matrices, as is the multiplication of two
elements.

In practice, we try to force many of these structure constants to be zero, as
multiplication of elements can be much more efficiently performed in that case.
The Chevalley basis (see Section 1.9) in particular has this property.
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Observe that in fact every algebra (and not just Lie algebras) can be represented
as an algebra defined by structure constants. However, since most algebras we deal
with in this thesis are Lie algebras we presented the construction for that class.

1.4.3 The Killing form

An important invariant of Lie algebras is the Killing form. Let L be a Lie algebra over
an arbitrary field F and x 7→ adx its adjoint representation, and define the Killing
form κ by

κ : L× L 7→ F : (x, y) 7→ Tr(adx ady).

This form is easily seen to be symmetric, bilinear, and associative. Its significance is
stated in the following theorem.

Theorem 1.11 ([Hum72, Section 5.1]). If the Killing form of L is non-degenerate, then L
is semisimple. If char(F) = 0 then the converse also holds: L is semisimple if and only if
its Killing form is non-degenerate.

1.4.4 Restricted Lie algebras

Suppose throughout this section that L is a Lie algebra over a field F and let p
denote the characteristic exponent of F, i.e., p = char(F) if char(F) > 0, and p = 1 if
char(F) = 0. The Lie algebra L is called restricted (or a p-Lie algebra) if there exists
an operation [p] : L → L, x 7→ x[p] (called the p-operation) such that, for all x, y ∈ L
and all t ∈ F (where we write adx(y) = [x, y])

(i) (tx)[p] = tpx[p],

(ii) adx[p] = (adx)p, and

(iii) (x + y)[p] = x[p] + y[p] + ∑
p−1
i=1 i−1si(x, y), where si(x, y) is the coefficient of ti

in (adtx+y)p−1(y) (this is called Jacobson’s formula).

1.5 Algebraic groups

The notion of an algebraic group is a very general one, and a very extensive theory
dealing with this concept has developed over the past six decades. This thesis is
clearly not the right place to give a comprehensive overview of all the results and
properties of these groups, so we will only give the basic definitions and properties.
We refer to [Hum75] and [Spr98] for more details. Our main goal here will be to ar-
rive at Theorem 1.42, which states that semisimple algebraic groups are determined,
up to isomorphism, by their field of definition and their root datum.

1.5.1 Affine varieties

Throughout this section we let F be an arbitrary field. By an affine variety defined over
F we will mean the set of common zeroes in some vector space over the algebraic
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closure F of F of a finite collection of polynomials with coefficients in F. We will
denote the variety arising from a set of polynomials X by V(X).

First, notice that the ideal ( f1, . . . , fk) in F[x] = F[x1, . . . , xn] generated by the
polynomials f1, . . . , fk has precisely the same common zeroes as the set { f1, . . . , fk}.
Moreover, the Hilbert Basis Theorem [Hum75, Theorem 0.1] asserts that each ideal
in F[x] has a finite set of generators, so that every ideal corresponds to an affine
variety. Unfortunately, though, the correspondence is not one-to-one:

Example 1.12. Let I1 = (x) be the ideal in Q[x] generated by {x}, and I2 = (x2).
Obviously, I1 and I2 have the same set of common zeroes, but the ideals are
distinct.

Formally, we can assign to each ideal I in F[x] the variety V(I) of its common
zeroes, and to each subset S ⊆ Fn the collection I(S) of all polynomials vanishing
on S. It is clear that I(S) is an ideal, and that we have inclusions S ⊆ V(I(S)) and
I ⊆ I(V(I)). Neither of these needs to be an equality:

Example 1.13. First, consider S = F∗, the set of non-zero elements of F. Then
I(S) = { 0 } so that V(I(S)) = F ) S. (Observe that S is (as a variety) isomorphic
to the variety of an ideal in a bivariate polynomial ring: S ∼= V({(x, y) ∈ F2 |
xy− 1 = 0}) by x ↔ (x, 1/x).)

Second, let I = (x2). Then V(I) = {0} so that I(V(I)) = (x) ) I.

By definition, the radical
√

I of an ideal I is the ideal { f ∈ F[x] | f r ∈ I for some
r ≥ 0}. Clearly, I ⊆

√
I ⊆ I(V(I)), refining the above inclusion. For some fields,

however, the second inclusion is in fact an equality:

Theorem 1.14 (Hilbert’s Nullstellensatz). If F is algebraically closed and I is an ideal in
F[x] then

√
I = I(V(I)).

If V is an affine variety then the polynomial functions of F[x] restricted to V
form an F-algebra isomorphic to S/I(V). We denote this algebra by F[V].

We will finish this section with the definition of Zariski topology. Let V = F
k be

some vector space over the algebraic closure of the field F. Observe that the func-
tion I 7→ V(I) sending ideals to varieties has the following properties (cf. [Spr98,
Definition 1.1.3]).

(i) V({0}) = V and V(F[x1, . . . , xk]) = ∅.

(ii) If I ⊆ J then V(J) ⊆ V(I).

(iii) V(I ∩ J) = V(I) ∪ V(J).

(iv) If (Ia)a∈A is a family of ideals and I = ∑a∈A Ia is their sum, then V(I) =⋂
a∈A V(Ia).



28 1. PRELIMINARIES

It follows from these observations that there is a topology on V whose closed sets
are the V(I), for I an ideal of F[x1, . . . , xk]. This is called the Zariski topology on V,
and the induced topology on a subset V′ of V is defined to be the Zariski topology
of V. A closed set in V is called an algebraic set.

A non-empty topological space is called reducible if it is the union of two proper
closed subsets and irreducible otherwise. A topological space is connected if it is
not the union of two disjoint proper closed subsets. So an irreducible space is
connected, but not all connected spaces are irreducible.

1.5.2 A group structure on a variety

Next let X and Y be affine varieties defined over F. By a morphism ϕ : X → Y we
mean a mapping of the form ϕ(x) = (ϕ1(x), . . . , ϕm(x)), where ϕi ∈ F[x]. Now
let G be an affine variety endowed with the structure of a group. If the two maps
µ : G × G → G (where µ(x, y) = xy) and ι : G → G (where ι(x) = x−1) are
morphisms of varieties, we call G an algebraic group.

Before giving additional examples, we try to clarify some of the subtleties that
occur in definitions of algebraic groups. Suppose for a moment that G is an affine
variety defined over F with suitable multiplication and inversion maps, denoted µ
and ι, respectively. We may view the algebraic group G as a functor from fields to
groups:

G : F′ 7→ F′ ∩ G,

where F′ is a field containing F. We call this the F′-rational points of G, and denote
it G(F′). Consequently, G(F) is the smallest group that can be constructed in this
manner. An equivalent viewpoint is the following:

G : F′ 7→ {x ∈ G defined over F | xσ = x for all σ ∈ Gal(F/F′)}.

Example 1.15. We consider the group Z/2Z of order two, and show that it can
be viewed as an algebraic group. Take G to be the variety over Q defined as the
zeroes of the polynomial x(x − 1), take µ : G × G → G, (x, y) 7→ (x − y)2 to be
the multiplication morphism, and ι : G → G, x 7→ x the inversion morphism.

Indeed, if x(x − 1) = 0 and y(y − 1) = 0, then (x − y)2((x − y)2 − 1) = 0
and µ and ι are polynomial maps, so that µ and ι are morphisms of varieties
and G is an algebraic group. To see that G(F), for any F ⊇ Q, is isomorphic to
Z/2Z, observe that its elements are simply 0 and 1, and that ι(0) = 0, ι(1) = 1,
µ(0, 0) = 0, µ(1, 0) = 1, µ(0, 1) = 1, and µ(1, 1) = 0.

So G is an algebraic group defined over Q, and G(Q) ∼= Z/2Z. In fact, also
G(Q) ∼= Z/2Z.

Example 1.16. GL(n, F), the general linear group, is the group of all invertible
n× n matrices over F. We will show that GL(n, ·) : F 7→ GL(n, F) is in fact an
algebraic group. Consider the polynomial ring R = F[x11, x12, . . . , xnn, t], let X be
the matrix whose (i, j)-entry is xij, and write elements of R as (X, t).
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We define the variety V to be the set of zeroes of t ·det(X)− 1. The multiplica-
tion map µ : V×V → V is obviously defined by µ ((X, t), (Y, u)) = (XY, tu), and
the inversion map ι : V → V by ι ((X, t)) = (X−1, 1

t ). Indeed tu det(XY)− 1 =

tu det(X)det(Y)− 1 = 0, 1
t det(X−1)− 1 = 1

t det(X)−1 − 1 = 0, and µ and ι are
polynomial maps, so that they are morphisms of varieties and V is an algebraic
group.

Example 1.17. The additive group Ga : · 7→ F is the affine line F with group
law µ(x, y) = x + y, so that ι(x) = −x and id = 0. The multiplicative group
Gm : · 7→ F∗ is the affine open subset F∗ with group law µ(x, y) = xy, so that
ι(x) = x−1 and id = 1. Note that Gm = GL(1, ·).

We remark that since we assume our varieties to be affine, the resulting alge-
braic groups are linear algebraic groups. The attribution “linear” is justified by the
following proposition.

Proposition 1.18 ([Bor91, Proposition 1.10]). Let G be an algebraic group defined over
the field F. Then G is F-isomorphic to a closed subgroup of some GL(n, F).

The observation that each subgroup of an algebraic group is again an algebraic
group easily gives further examples, such as the group of upper triangular matrices
or the group of diagonal matrices. Also, the direct product of two algebraic groups
is again an algebraic group.

Now let X be a set on which G acts, i.e., there is a map ϕ : G× X → X, denoted
for brevity by ϕ(x, y) = x.y, such that x1.(x2.y) = (x1x2).y for x1, x2 ∈ G and y ∈ X,
and id.y = y, for all y ∈ Y, where id is the identity of G. We denote by XG the set
of fixed points:

XG := {x ∈ X | g.x = x for all g ∈ G}.

Clearly, G acts on itself by sending y to Intx(y) := x−1yx, also called the action by
inner automorphisms.

The stabilizer of y ∈ X is

Gy := {g ∈ G | g.y = y}.

Another useful notion is the transporter: let Y and Z be subsets of X. Then we define
the transporter to be

TranG(Y, Z) := {g ∈ G | g.Y ⊆ Z}.

The centralizer of a subset Y of X is defined to be

CG(Y) := {g ∈ G | g.y = y for all y ∈ Y},

so that CG(Y) =
⋂

y∈Y Gy and the centralizer of a subgroup H of G (where G acts
on H by inner automorphisms) is

CG(H) := {g ∈ G | g−1hg = h for all h ∈ H}.
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The normalizer of a subgroup H of G is

NG(H) := {g ∈ G | g−1hg ∈ H for all h ∈ H}.

We give a few properties of the transporter, centralizer, and normalizer in the
following lemma.

Lemma 1.19 ([Hum75, Section 8.2]). Let the algebraic group G act on the variety X and
let Y, Z be subsets of X, with Z closed. Let H be a subgroup of G.

(i) TranG(Y, Z) is a closed subset of G.

(ii) For each y ∈ X, the stabilizer Gy is a closed subgroup of G.

(iii) The fixed point set of x ∈ G is closed in X; in particular XG is closed.

(iv) The centralizer CG(H) and the normalizer NG(H) are closed subgroups.

1.5.3 Reductive algebraic groups

Clearly, CG(H) is an algebraic group, since it is given by equations. Furthermore,
NG(H) is an algebraic group because closed subgroups are algebraic. A subgroup is
called solvable if the derived series terminates in the identity id. This series is defined
inductively by D0G = G, Di+1G = (DiG,DiG).

Before giving the four classical examples we introduce the key notions of semisim-
ple and reductive group. By Proposition 1.18 we may view algebraic groups as
groups of matrices. An element x ∈ G is called semisimple if the roots of its minimal
polynomial are all distinct (this is equivalent to x being diagonalizable). An element
x ∈ G is called unipotent if its sole eigenvalue is 1.

It follows from the observation that if A and B are normal solvable subgroups
then AB is, that every algebraic group G possesses a unique largest normal solvable
subgroup, which is automatically closed. Its identity component (more precisely:
the unique connected component containing the identity) G◦ is then the largest
connected normal solvable subgroup of G, and it is called the radical of G and
denoted Rad(G). The subgroup of Rad(G) consisting of its unipotent elements is
normal in G and called the unipotent radical of G and denoted Radu(G). It is the
largest connected normal unipotent subgroup of G.

If G is connected, G 6= id, and Rad(G) is trivial, we call G semisimple. If G is
connected, G 6= id, and Radu(G) is trivial, we call G reductive. Starting with an
arbitrary connected algebraic group G, we get a semisimple group G/Rad(G) and
a reductive group G/Radu(G), unless of course G = Rad(G) or G = Radu(G).

Because of these observations, the study of algebraic groups reduces to some
extent to the study of the reductive group G/Radu(G). Techniques for computing
in unipotent groups, and applications thereof in computing in reductive algebraic
groups, are described in [CHM08].

1.5.4 Classical examples

We finish this section with four examples: the classical groups. In each case the
parameter n is the dimension of the subgroup of diagonal matrices in the group
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under discussion.

Example 1.20. An
sc(F) for any field F is the special linear group SL(n + 1, F)

consisting of the matrices of determinant 1 in GL(n + 1, F). It is clearly a closed
subgroup of GL(n + 1, F), and since it is defined by a single polynomial it is a
hypersurface in M(n + 1, F), so its dimension is (n + 1)2 − 1.

Example 1.21. Cn
sc(F) for any field F is the symplectic group Sp(2n, F), consist-

ing of all x ∈ GL(2n, F) satisfying

xTsx = s, where s =
(

0 J
−J 0

)
, where J =

 1
. . .

1

 .

It is easily checked that it is a closed subgroup of GL(2n, F), but the dimension
is not as easy to compute as in the previous case.

Example 1.22. Bn
sc(F) is the special orthogonal group SO(2n + 1, F). If char(F)

is distinct from 2 it is defined to be all x ∈ SL(2n + 1, F) satisfying

xTsx = s, where s =

1 0 0
0 0 J
0 J 0

 ,

and J as in Example 1.21. Again, it is easily checked that is is a closed subgroup
of SL(2n + 1, F).

Example 1.23. D(n)
n (F) is another special orthogonal group, SO(2n, F). If char(F)

is distinct from 2 it is defined to be all x ∈ SL(2n, F) satisfying

xTsx = s, where s =
(

0 J
J 0

)
.

Again, it is easily checked that it is a closed subgroup of SL(2n, F).

Example 1.24. Over fields F of characteristic 2, the groups SO(n, F) (and by
that Bn and Dn) are defined in a rather different manner.

First, note that if F is a field of characteristic different from 2 and B(x, y) is a
symmetric scalar product on a vector space V over F, the corresponding quadratic
form f is defined by f (x) = B(x, x), and therefore satisfies

f (λx + µy) = λ2 f (x) + µ2 f (y) + 2λµB(x, y),
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for all λ, µ ∈ F. A quadratic form on a vector space V over F is defined to be a
function f : F→ F satisfying the condition

f (λx + µy) = λ2 f (x) + µ2 f (y) + 2λµB(x, y),

for all λ, µ ∈ F, where B(x, y) is some symmetric bilinear scalar product on V.
Now let F be a field of characteristic 2 for the remainder of this example. In

particular, putting µ = 0 we have f (λx) = λ2 f (x) and putting λ = µ = 1 we find
B(x, x) = 0 and B(x, y) = B(y, x). Thus B(x, y) may be regarded as a symplectic
scalar product on V. By a suitable choice of basis for V it can be represented by
a matrix of the form

0 1
1 0

0 1 0
1 0

. . .
0 1
1 0

0
0 0

. . .
0



.

Let n be the dimension of V and 2l the rank of the above matrix. Let V0 be the
set {x ∈ V | B(x, y) = 0 for all y ∈ V}, so that V0 is a subspace of V of dimension
d = n− 2l. On this subspace V0 the quadratic form f clearly satisfies

f (λx + µy) = λ2 f (x) + µ2 f (y)

for all λ, µ ∈ F, and f is said to be non-degenerate if no non-zero vector x ∈ V0
satisfies f (x) = 0.

The non-singular linear transformations T of V which satisfy the condition
f (Tx) = f (x) form the orthogonal group O(n, F, f ). Since B(x, y) = f (x + y) +
f (x) + f (y) it is clear that B(Tx, Ty) = B(x, y), so that each element of O(n, F, f )
is an isometry of the scalar product B(x, y).

The special orthogonal group SO(n, F, f ) now consists of the transformations in
O(n, F, f ) whose determinant is 1.

When we allow algebraic groups over fields that are not algebraically closed,
interesting things occur.

Example 1.25. We consider V = {(x, y) ∈ C2 | xy = 1} and show that it
produces two distinct varieties over R2. Note that the Galois group Gal(C/R)
consists of two elements: the identity and complex conjugation τ : z 7→ z.

Now first consider the points of V fixed under Gal(C/R), i.e., those fixed
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under τ. This is the set (a + bi, c + di) ∈ V for which (a + bi, c + di) = (a− bi, c−
di), i.e., Vτ = {(a, c) ∈ R2 | ac = 1}.

On the other hand, δ : C2 → C2, (x, y) 7→ (y, x) is clearly an automorphism
of C2, so to obtain a real variety from V we could just as well take the points of
V fixed under the composition τδ. This is the set (a + bi, c + di) ∈ V for which
(a + bi, c + di) = (c− di, a− bi), which straightforwardly reduces to the variety
Vτδ = {(a, b) ∈ R2 | a2 + b2 = 1}.

Clearly, Vτ and Vτδ are nonisomorphic varieties in R2, even though they arise
from the same variety in C2. In particular, V has the structure of C∗, Vτ has the
structure of R∗, and Vτδ has the structure of U1(C), the complex unitary group
of rank 1.

1.6 The Lie algebra of an algebraic group

For the definition of the Lie algebra of an algebraic group we follow Springer’s
approach [Spr98, Chapter 4]. We first introduce the concept of derivations (Section
1.6.1), and then we define tangent spaces, both heuristically and formally (Section
1.6.2). After introducing the module of differentials (Section 1.6.3) we introduce
the Lie algebra Lie(G) of an algebraic group G defined over F as the derivations
on F[G] that commute with all left translations (Section 1.6.4). The most impor-
tant proposition in this section is Proposition 1.32, where Lie(G) is identified with
the tangent space of G at the identity. Finally, in Section 1.6.5 we provide some
examples where we explicitly compute the Lie algebra of a number of algebraic
groups.

1.6.1 Derivations

Let R be a commutative ring, A an R-algebra, and M a left A-module. An R-
derivation of A in M is an R-linear map D : A → M such that, for a, b ∈ A, we
have

D(ab) = a.D(b) + b.D(a).

It is immediate that D(r.1) = 0 for all r ∈ A. The set DerR(A, M) of such derivations
is a left A-module, where the module structure is given by (D + E)a = Da+ Ea and
(b.D)a = b.D(a), for D, E ∈ DerR(A, M) and a, b ∈ A.

The elements of DerR(A, A) are the derivations of A. If B is another R-algebra,
N is a left B-module, and ϕ : A → B is a homomorphism of R-algebras then N is
an A-module in the following way. If D ∈ DerR(B, N) then D ◦ ϕ is a derivation
of A in N and the map D 7→ D ◦ ϕ defines a homomorphism of A-modules ϕ0 :
DerR(B, N)→ DerR(A, N) whose kernel is DerA(B, N).

1.6.2 Tangent spaces

We first give a heuristic introduction to the concept of tangent spaces, and we give
a formal definition at the end of this section.
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Let X be a closed subvariety of the affine variety Fn, where F is an algebraically
closed field. Let I be the ideal of polynomial functions vanishing on X, and let
f1, . . . , fk be generators of I. We identify the algebra of regular functions F[X] with
F[x] = F[x1, . . . , xn]/I.

Now let x ∈ X and let L be a line in Fn through x, so that the points on L can
be written as x + tv, where v = (v1, . . . , vn) is a direction vector and t runs through
F. The t-values of the points on L that lie in X are found by solving

fi(x + tv) = 0 for all i = 1, . . . , k. (1.26)

Clearly, t = 0 is a solution, but there may be more.
Let Dj be partial derivation in F[x] with respect to xj, so that

fi(x + tv) = t
n

∑
j=1

vj(Dj fi)(x) + t2(. . .). (1.27)

Then t = 0 is a multiple root of the set of equations (1.26) if and only if

n

∑
j=1

(Dj fi)(x) = 0 for all i = 1, . . . , k. (1.28)

If this is the case, we call L a tangent line and v a tangent vector of X in x.
We define D′ = ∑n

j=1 vjDj, so that D′ is an F-derivation of F[x], and (1.28) is
equivalent to D′ fi(x) = 0 for all i = 1, . . . , k. We let Mx be the maximal ideal in F[x]
of functions vanishing at x, and it follows that D′ I ⊆ Mx (recall that I is the ideal
of polynomial functions vanishing on X).

The linear map f 7→ (D′ f )(x) gives a linear map D : F[X]→ F = F[X]/Mx. We
view F as an F[X]-module (called Fx) via the homomorphism f 7→ f (x), and note
that D is an F-derivation of F[X] in Fx. Conversely, any element of DerF(F[X], Fx)
can be obtained in this manner from a derivation D′ of F[x] satisfying D′ I ⊆ Mx.
Hence there is a bijection of the set of tangent vectors v such that (1.28) has a
multiple root t = 0, onto DerF(F[X], Fx).

We will now formalize the above intuition. Let X be an affine variety, let x ∈
X, and define the tangent space of X at x (denoted TxX) to be the F-vector space
DerF(F[X], Fx), where Fx is as above.

Let ϕ : X → Y be a morphism of varieties with corresponding algebra homo-
morphism ϕ∗ : F[Y] 7→ F[X]. The induced linear map ϕ∗0 is a linear map of tangent
spaces

dϕx : TxX → TϕxY,

called the differential of ϕ at x or the tangent map at x.
We give two alternative descriptions of the tangent space TxX. Firstly, let Mx ⊆

F[X] be the maximal ideal of functions vanishing in x. If D ∈ TxX then D maps the
elements of M2

x to 0, so D defines a linear function λ(D) : Mx/M2
x → F. It turns

out that λ is an isomorphism of TxX onto the dual of Mx/M2
x (cf. [Spr98, Lemma

4.1.4]).
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For the second description of the tangent space let Ox be the ring of functions
regular in x (i.e., functions defined and regular in some open neighborhood of x).
It is an F-algebra with a unique maximal idealMx, which consists of the functions
vanishing in x, and we have that Ox/Mx ∼= F. Consequently, we may view F as
an Ox-module and we have an algebra homomorphism α : F[X] → Ox, inducing
a linear map α0 : DerF(Ox, F) → DerF(F[X], Fx). It turns out that the map α0 is
bijective (cf. [Spr98, Lemma 4.1.5]).

1.6.3 The module of differentials

In this section we introduce a number of results on derivations that we will need
later on. Let R be a commutative ring and A a commutative R-algebra, denote by
µ : A⊗R A→ A the product morphism, and let I = Ker(µ). This ideal I of A⊗ A is
generated by the elements a⊗ 1− 1⊗ a, for a ∈ A. The quotient algebra (A⊗ A)/I
is isomorphic to A.

The module of differentials ΩA/R of the R-algebra A is defined by ΩA/R = I/I2.
This is an (A⊗ A)-module, but since it is annihilated by I and (A⊗ A)/I ∼= A, we
may view it as an A-module.

By dA/Ra (or da if no confusion is imminent) we denote the image of a⊗ 1− 1⊗ a
in ΩA/R. The map d is an R-derivation of A in ΩA/R and the da (a ∈ A) generate
the A-module ΩA/R. The following theorem shows the connection between ΩA/R
and derivations of A.

Theorem 1.29 ([Spr98, Theorem 4.2.2(i)]). For every A-module M the map Φ from
HomA(ΩA/R, M) into DerR(A, M) defined by ϕ 7→ ϕ ◦ d is an isomorphism of A-
modules.

1.6.4 Derivations in algebraic groups

For the remainder of this section we let G be a linear algebraic group defined over F.
We denote by λ and ρ the representation of G in F[G] by left and right translations:

λ : G → F[G], (λg f )(x) = f (g−1x),

ρ : G → F[G], (ρg f )(x) = f (xg),

where g, x ∈ G and f ∈ F[G].
We view F[G] ⊗F F[G] as the algebra of regular functions F[G × G] and let

µ : F[G]⊗F[G] → F[G] be the multiplication map in F[G]. Then, for f ∈ F[G× G]
we have (µ f )(x) = f (x, x). The ideal I = Ker(µ) is the ideal of functions vanishing
on the diagonal. Clearly, for g ∈ G, the automorphisms λg×λg and ρg× ρg stabilize
I and I2, so they induce automorphisms of ΩG = I/I2. We will denote these
automorphisms also by λg and ρg. We thus have representations λ and ρ of G
in ΩG, and the derivation d : F[G] → ΩG (as defined in the previous section)
commutes with all λg and ρg.

Recall the inner automorphism Int of G from Section 1.5.2 defined by Intx(y) =
xyx−1. It induces linear automorphisms Ad x of the tangent space TidG of G at
the identity id, and (Ad x)∗ of the cotangent space (TidG)∗. Thus, for u ∈ (TidG)∗,
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x ∈ G, and X ∈ (TidG)∗ we have

((Ad x)∗u)X = u(Ad(x−1)X).

Now let Mid be the maximal ideal of F[G] of functions vanishing at id. As
in Section 1.6.2 the cotangent space (TidG)∗ can be identified with Mid/M2

id, and
for f ∈ F[G] we denote the element f − f (id) + M2

id of (TidG)∗ by δ f . It satisfies
(δ f )(X) = X f , for X ∈ TidG = DerF(F[G], Fid).

The relation between ΩG and (TidG)∗ becomes apparent in the following propo-
sition.

Proposition 1.30 ([Spr98, Proposition 4.4.2]). There is an isomorphism of F[G]-modules

Φ : ΩG → F[G]⊗F (TidG)∗,

the module structure on the right hand side being given by the first factor, satisfying

(i) For g ∈ G we have Φ ◦ λg ◦Φ−1 = λg ⊗ id, and Φ ◦ ρg ◦Φ−1 = ρg ⊗ (Ad g)∗.

(ii) For f ∈ F[G] and ∆ f = ∑i fi ⊗ gi we have Φ(d f ) = −∑i fi ⊗ δgi (where ∆ is the
comultiplication, i.e., (∆ f )(x, y) = f (xy).)

The space DG = DerF(F[G], F[G]) has a Lie algebra structure given by [D, E] =
D ◦ E− E ◦ D. Recall the automorphisms λ and ρ of G and define representations
of G in DG (denoted by the same symbols) by

λgD = λg ◦ D ◦ λg
−1, ρgD = ρg ◦ D ◦ ρg

−1,

for g ∈ G and D ∈ DG. The Lie algebra of G (denoted Lie(G)) is defined to be the
set of D ∈ DG commuting with all λg (for g ∈ G). Since left and right translations
commute, all ρg stabilize Lie(G) and we denote the induced linear maps also by ρg.

Recall from Section 1.4.4 that a Lie algebra is called restricted if there exists an
operation [p] : L → L with certain properties. It is straightforward to verify (see
also [Spr98, Section 4.4.3]) that Lie(G) is restricted with p-operation D[p] = Dp,
since we have for all D ∈ Lie(G) and all x, y ∈ F[G]:

Dp(ab) =
p

∑
i=0

(
p
i

)
(Dix)(Dp−iy) = x(Dpy) + (Dpx)y,

so that Dp ∈ Lie(G).
We have a result on DG similar to Proposition 1.30.

Proposition 1.31 ([Spr98, Corollary 4.4.4]). There is an isomorphism of F[G]-modules

Ψ : DG → F[G]⊗F TidG,

the module structure on the right hand side again being given by the first factor, satisfying

(i) For g ∈ G we have Ψ ◦ λg ◦Ψ−1 = λg ⊗ id and Ψ ◦ ρg ◦Ψ−1 = ρg ⊗Ad g.

(ii) For X ∈ TidG and f ∈ F[G] with ∆ f = ∑i fi ⊗ gi we have Ψ−1(1⊗ X)( f ) =
−∑i fi(Xgi).
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Finally, we arrive at the equivalence of Lie(G) and TidG.

Proposition 1.32 ([Spr98, Proposition 4.4.5]). Let αG : DG → TidG be the linear map
(αGD) f = (D f )(id).

(i) α induces an isomorphism of vector spaces Lie(G) ∼= TidG.

(ii) We have, for g ∈ G, that α ◦ ρg ◦ α−1 = Ad g.

(iii) Ad is a rational representation of G in TidG (called the adjoint representation).

1.6.5 Examples

In this section we give some elementary examples, using the ε-trick: the elements of
the tangent space TidG (and therefore those of the Lie algebra Lie(G)) are those x
such that for all ε with ε2 = 0 we have id + εx ∈ G.

Example 1.15 (continued). We compute the Lie algebra of the algebraic group
G isomorphic to Z/2Z:

1 + εx ∈ G ⇔ (1 + εx)(1 + εx− 1) = 0
⇔ (1 + εx)εx = 0
⇔ εx = 0
⇔ x = 0,

showing that Lie(G) is trivial.

Example 1.16 (continued). Similarly, we compute the Lie algebra of the alge-
braic group G = GL(n, F). Recall that the elements of G are pairs (X, t), with
X an n× n matrix over F and t ∈ F such that t det(X) = 1. It is clear that the
identity id of G is (I, 1), where I is the n× n identity matrix. So Lie(G) are those
(X, t) such that for all ε with ε2 = 0 we have id + ε(X, t) ∈ G:

(I, 1) + ε(X, t) ∈ G ⇔ (I + εX, 1 + εt) ∈ G
⇔ (1 + εt)det(I + εX) = 1
⇔ (1 + εt)(1 + ε Tr(X)) = 1
⇔ 1 + ε(t + Tr(X)) = 1
⇔ t = −Tr(X).

But this means that Lie(G) = gl(n, F) consists of all n× n matrices over F.

Example 1.20 (continued). As a final example, we compute the Lie algebra of
the algebraic group G = An−1

sc(F) = SL(n, F). Recall that the elements of G are



38 1. PRELIMINARIES

n× n matrices X for which det(X) = 1. Now we have

I + εX ∈ G ⇔ det(I + εX) = 1
⇔ 1 + ε Tr(X) = 1
⇔ Tr(X) = 0,

so that Lie(G) = sl(n, F) consists of all n× n matrices over F whose trace is 0.

1.7 Tori and toral subalgebras

An algebraic group G defined over an arbitrary field F is called diagonalizable if it is
isomorphic to a subgroup of the diagonal group D(n, F) of diagonal n× n matrices
over F. In this case G is obviously commutative and consists of semisimple ele-
ments. A diagonalizable group T defined over the field F is also called an F-torus,
or simply a torus.

A linear character is by definition any morphism of algebraic groups χ : G → Gm.
If χ, ψ are linear characters of G then clearly χ + ψ is if we define (χ + ψ)(g) =
χ(g)ψ(g). In this manner we obtain an abelian group called the character group of
G, denoted X(G).

Let T be a torus of G defined over F and let X(T) be its character group, and
X(T)F the subgroup of the additive group X(T) consisting of the characters that are
F-morphisms. We call T split over F (or F-split) if X(T)F spans F[T]. Equivalently,
T is F-isomorphic to dim(T) copies of the multiplicative group, i.e., T(F) ∼= F∗ ×
· · · ×F∗. At the other extreme, T is called F-anisotropic if X(T)F = 0.

Example 1.33. Consider the algebraic group T : F 7→ {(x, y) ∈ F2 | x2 + y2 =
1} defined over Z. For multiplication and inversion we define µ((x1, y1), (x2, y2))
to be (x1x2 − y1y2, x1y2 + y1x2) and ι((x, y)) = (x,−y), respectively (think of
(x, y) as the complex number x + iy). We let R = Z[T] = Z[x, y]/(x2 + y2 − 1).

Furthermore, let T′ : F 7→ {(u, v) ∈ F2 | xy = 1}, also defined over Z, with
pairwise multiplication and ι((u, v)) = (v, u) as inversion. We let R′ = Z[T′] =
Z[u, v]/(uv− 1).

First, we investigate what C-morphisms exist from T to T′. Such morphisms
T → T′ correspond to homomorphisms R′ ⊗ C → R ⊗ C of C-algebras, and
since invertible elements should be mapped to invertible elements, we consider
invertible elements of R ⊗ C (those of R′ ⊗ C are easily seen to be cuavb, for
c ∈ C and a, b ∈ N). The invertible elements of R⊗C are c(x + iy)a, for c ∈ C∗

and a ∈ Z, where we interpret (x + iy)a as (x − iy)−a if a < 0. Consequently,
homomorphisms from R′ ⊗C to R⊗C are of the form u 7→ c(x + iy)a and v 7→
1
c (x− iy)a.

Since T′ ∼= Gm and X(T) consists by definition of the C-homomorphisms from
T to Gm, the characters of T are of the form χa : (x, y) 7→ (x + iy)a, for a ∈ Z.
This means X(T)C

∼= Z, and X(T)Z spans C[T], so that T is C-split. Observe that
indeed T(C) ∼= C∗.
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It is, however, easy to see that the only invertible elements of R ⊗ Q are 1
and −1, which by the same reasoning as above leads to the observation that
X(T)Q = {1}. Consequently, T is not Q-split.

The example demonstrates that there is a notion dual to character: any mor-
phism of algebraic groups ϕ : Gm → G is called a one parameter multiplicative sub-
group of G. The set of these is denoted by Y(G). There is an obvious duality between
X(G) and Y(G) that will be denoted by ∨: χ ∈ X(G)↔ χ∨ ∈ Y(G). We give a useful
theorem due to Borel on the structure of tori of algebraic groups.

Theorem 1.34 ([Hum75, Section 34.3]). Let T be an F-torus.

(i) There exists a finite Galois extension of F over which T becomes split.

(ii) There exist unique subtori T′, T′′ of T defined over F such that T = T′T′′, where T′

is F-split, and T′′ is F-anisotropic. Moreover, T′ is the largest F-split subtorus of T
and T′′ is its largest F-anisotropic subtorus.

An algebraic group is called split if it has a split maximal torus. A Borel subgroup
of G is a closed connected solvable subgroup properly included in no other. The
following theorems show the significance of these subgroups and (split) tori.

Theorem 1.35 ([Hum75, Section 21.3]). Let B be any Borel subgroup of G. Then G/B is
a projective variety, and all Borel subgroups are conjugate to B.

A direct consequence of this theorem is the following:

Corollary 1.36 ([Hum75, Section 21.3]). The maximal tori (resp. maximal connected
unipotent subgroups) of G are those of the Borel subgroups of G, and are all conjugate.

We take F to be any field and consider tori in G(F), the rational points of G.

Theorem 1.37 ([Hum75, Section 34.4]). Let G be a connected algebraic group defined
over the field F.

(i) G has a maximal torus defined over F.

(ii) If G is reductive, then G splits over a finite Galois extension of F.

(iii) If G is reductive and S is an F-torus, then CG(S) is reductive and defined over F.
Moreover, S is contained in some maximal torus defined over F.

The following result, originally due to Borel and Tits, is the equivalent of Corol-
lary 1.36 for split tori.

Theorem 1.38 ([Spr98, Theorem 15.2.6]). Let G be a connected algebraic group defined
over the field F. Two maximal F-split F-tori are conjugate by an element of G(F).
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1.7.1 Toral subalgebras

In the Lie algebra of an algebraic group notions similar to (split) tori exist. Suppose
L is a Lie algebra over an arbitrary field F, and suppose ad : L → End(Fd) (where
d = dim(L)) is its adjoint representation. An element x ∈ L is called semisimple if
the roots of the minimal polynomial of ad(x) over F are all distinct. (If F is alge-
braically closed this is equivalent to ad(x) being diagonalizable.) An element x ∈ L
is called nilpotent if ad(x) is. In the special cases where F is algebraically closed or
L is restricted, an arbitrary element x ∈ L has a Jordan-Chevalley decomposition (or
simply Jordan decomposition) x = xs + xn, where xs is semisimple, xn is nilpotent,
and [xs, xn] = 0.

Let H be a subalgebra of the Lie algebra L. Then H is called toral if it is abelian
and consists solely of semisimple elements. A toral subalgebra is called maximal if
it is not properly contained in any other. A toral subalgebra H is called split if the
characteristic roots of every adh (for h ∈ H) are in the base field. A Lie algebra is
called split if it has a split maximal toral subalgebra.

The relation between tori and toral subalgebras becomes apparent in the follow-
ing lemma, which is an accumulation of several results by Humphreys [Hum67,
Proposition 13.2, Theorem 13.3, Corollaries 13.5, 13.6] and a result by Seligman
[Sel67, Theorem 9].

Lemma 1.39. Let G be a connected algebraic group defined over F and L = Lie(G) its Lie
algebra.

(i) If T is a maximal torus of G, then Lie(T) is a maximal toral subalgebra of L.

(ii) If H is a maximal toral subalgebra of L then H = Lie(T) for some maximal torus T
of G.

(iii) The maximal toral subalgebras of L are all conjugate under the adjoint action of G on
L.

(iv) If char(F) 6= 2 then there is a one-to-one correspondence between maximal tori of G
and maximal toral subalgebras of L given by T ↔ Lie(T).

(v) If char(F) 6= 2 then split maximal tori correspond to split maximal toral subalgebras
in the correspondence from (iv).

The concept of maximal toral subalgebra is closely related to that of Cartan
subalgebras. A subalgebra H of a Lie algebra L is called a Cartan subalgebra if it is
nilpotent and H = NL(H).

Lemma 1.40 ([Hum67, Propositions 15.1, 15.2, Corollary 15.3]). Let G be a connected
algebraic group defined over F and L = Lie(G) its Lie algebra.

(i) If T is a maximal toral subalgebra of L, then H = CL(T) is a Cartan subalgebra of L.

(ii) If H is a Cartan subalgebra of L, then H = CL(T) for some maximal toral subalgebra
T ⊆ L. The subalgebra T is in fact uniquely determined as the set of semisimple
elements of H.

(iii) The Cartan subalgebras of L are all conjugate under the adjoint action of G on L.
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Example 1.41. Over fields of characteristic 2 a split maximal toral subalgebra
can be strictly contained in a Cartan subalgebra, as can be seen by considering
the Lie algebra L of type A1

sc. (See Section 1.9 for more details on how this Lie
algebra is constructed). Over an arbitrary field F, the Lie algebra L has basis
elements h, Xα and X−α, and its multiplication table is as follows:

Xα X−α h
Xα 0 −h 2Xα

X−α h 0 −2X−α

h −2Xα 2X−α 0

but if F is taken to be a field of characteristic 2 this specializes to

Xα X−α h
Xα 0 −h 0

X−α h 0 0
h 0 0 0

Now H = 〈h〉F is a split toral subalgebra over any field, and it is even maximal.
Furthermore, if char(F) 6= 2 then H is a Cartan subalgebra (it is clearly nilpotent
and NL(H) = H). If char(F) = 2, however, NL(H) = L, so that H is no longer a
Cartan subalgebra. On the other hand, L is nilpotent and NL(L) = L, so that L
itself is a Cartan subalgebra. L is, however, not split: the minimal polynomial of
adXα is x2 rather than x.

1.8 Algebraic groups and root data

Throughout this section we let G be a split algebraic group and we fix a split max-
imal torus T of G. We call W(G, T) = NG(T)/ CG(T) the Weyl group of G relative to
T. Because of the rigidity of tori, it is a finite group. Moreover, since all maximal
tori are conjugate (cf. Corollary 1.36), all their Weyl groups are isomorphic, so such
a group will be called simply the Weyl group of G, denoted by W(G).

Recall from Section 1.7 that X(T) is the character group of T, that Y(T) is the set
of one parameter multiplicative subgroups of T, and that the roots of G relative to
T are the nontrivial weights of Ad T in TidG:

TidG = CTidG(T)⊕
⊕
α∈Φ

(TidG)α,

where (TidG)α = {x ∈ (TidG) | Ad t(x) = α(t)x for all t ∈ T}, and α ∈ X(T). We
will denote the set of such non-zero roots by Φ(G, T). The elements of the subset
{α∨ | α ∈ Φ(G, T)} ⊆ Y(G) are called the coroots of G and denoted by Φ∨(G, T).
An important result in this field is the following theorem due to Chevalley.

Theorem 1.42 ([Spr98, Section 7.4.3]). Let G be a connected linear algebraic group, T
a maximal torus of G, Φ = Φ(G, T), W = W(G), X = X(T), Y = Y(T), and Φ∨ =
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Φ∨(G, T). Then R = (X, Φ, Y, Φ∨) is a root datum whose rank is rk(G) and whose Weyl
group is isomorphic to W. The root datum R is called the root datum of G.

The following theorem asserts that simple algebraic groups are classified by their
root datum:

Theorem 1.43 ([Spr98, Theorem 9.6.2]). If G, G′ are connected reductive linear algebraic
groups having isomorphic root data, then G and G′ are isomorphic as algebraic groups.

1.9 Chevalley Lie algebras

We now show an alternative construction of the Lie algebra of a reductive algebraic
group: not as tangent space at the identity, but explicitly by the root datum of the
group. Equivalence of these constructions is stated in Theorem 1.44.

Given a root datum R = (X, Φ, Y, Φ∨) we consider the free Z-module

LZ(R) = Y⊕
⊕
α∈Φ

ZXα,

where the Xα are formal basis elements. The rank of LZ(R) is n + |Φ|. We denote
by [·, ·] the alternating bilinear map LZ(R)× LZ(R) → LZ(R) determined by the
following rules:

[y, z] = 0, (CBZ1)
[Xα, y] = 〈α, y〉Xα, (CBZ2)

[X−α, Xα] = α∨, (CBZ3)

[Xα, Xβ] =

{
Nα,βXα+β if α + β ∈ Φ,
0 otherwise,

(CBZ4)

where y, z ∈ Y and α, β ∈ Φ such that α 6= ±β. The Nα,β are integral structure
constants chosen to be ±(pα,β + 1), where pα,β is the biggest number such that
−pα,βα + β is a root and the signs are chosen (once and for all) so as to satisfy the
Jacobi identity. It is easily verified that Nα,β = −N−α,−β and it is a well-known
result (see for example [Car72, Section 4.2]) that such a product exists. LZ(R) is
called a Chevalley Lie algebra.

A basis of LZ(R) that consists of a basis of Y and the formal elements Xα and
satisfies (CBZ1) – (CBZ4) is called a Chevalley basis of the Lie algebra LZ(R) with
respect to the split maximal toral subalgebra Y and the root datum R. If no confusion is
imminent we just call this a Chevalley basis of LZ(R).

Note that, because LZ(R) is defined over the integers, tensoring LZ(R) with
an arbitrary field F yields a Lie algebra over F. We will denote this Lie algebra
LF(R). The toral subalgebra Y of each Chevalley Lie algebra LF(R) is split. These
Lie algebras are also commonly called classical Lie algebras (cf. [Str04, Section 4.1]).

The following result due to Chevalley states that this Lie algebra is in fact the
Lie algebra of the split algebraic group defined over F whose root datum is R.

Theorem 1.44 (Chevalley [Che58]). Suppose that G is a split simple algebraic group
defined over the field F with root datum R = (X, Φ, Y, Φ∨). Suppose furthermore that
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L = Lie(G) and that H is a split maximal toral subalgebra of L. Then L ∼= LF(R) and so
it has a Chevalley basis with respect to H and R.

1.9.1 Roots in Lie algebras

Let p be zero or a prime and suppose that F is a (not necessarily algebraically
closed) field of characteristic p. We fix a root datum R = (X, Φ, Y, Φ∨) and write
L = LF(R). We define roots and their multiplicities in L as follows. A root of H on L
is the function

α : h 7→
n

∑
i=1
〈α, yi〉ti, where h =

n

∑
i=1

yi ⊗ ti =
n

∑
i=1

tihi,

for some α ∈ Φ (where hi = yi ⊗ 1F); here 〈α, yi〉 is interpreted in Z (if p = 0)
or Z/pZ (if p 6= 0). Note that this implies that 〈α, h〉 := α(h) because h ∈ H is
completely determined by the values 〈α, yi〉, i = 1, . . . , n. We write Φ(L, H) for the
set of roots of H on L.

For α ∈ Φ(L, H) we define the root space corresponding to α to be

Lα =
n⋂

i=1

Ker(adhi
−α(hi)).

It is immediate that L is a direct sum of L0 = CL(H) and {Lα | α ∈ Φ, α 6= 0}. If
α 6= 0 for all α ∈ Φ then even CL(H) = H.

Given a root α, we define the multiplicity of α in L to be the number of β ∈ Φ
such that α = β. Observe that if α 6= 0 the multiplicity of α ∈ Φ(L, H) is equal to
dim(Lα). If α = 0 this multiplicity is equal to dim(L0)− n. Note that α 7→ α is a
surjective map Φ→ Φ(L, H), so in what follows we abbreviate Φ(L, H) to Φ.

If p = 0, the fact that 〈·, ·〉 puts X and Y into duality implies that α and β are
different whenever α 6= β. Indeed, suppose α ≡ β, then (α− β)(h) ≡ 0 for all
h ∈ H, implying in particular 〈α− β, y〉 ≡ 0 for all y ∈ Y. But this means α− β = 0
in Φ, hence α = β. This means that the multiplicity of α in L is 1 for all α ∈ Φ.

If p 6= 0, however, this is not necessarily the case. Indeed, suppose p = 2 and
observe that, since we interpret 〈α, yi〉 in Z/2Z, we have that α ≡ −α for all α ∈ Φ.
This means that, if p = 2, the multiplicity of α in L is at least 2 for all α ∈ Φ.

1.9.2 Computational conventions

Let LZ(R) be a Chevalley Lie algebra with root datum R, fix X = Y = Zn, a basis of
row vectors e1, . . . , en of X, and a basis of row vectors f1, . . . , fn of Y dual to e1, . . . , en
with respect to the pairing 〈·, ·〉. Moreover, we let F be a field, we set hi = fi ⊗ 1,
i = 1, . . . , n, and H = Y⊗F. Now tensoring LZ(R) with F yields a Lie algebra over
F, denoted LF(R), and the integral Chevalley basis relations (CBZ1) – (CBZ4) can



44 1. PRELIMINARIES

A1
ad A1

sc

Root lattice Root lattice X = Z; e1 = (1)
Coroot lattice Coroot lattice Y = Z; f1 = (1)
Basis elements Xα, X−α, h
Roots α = (1),−α = (−1) α = (2),−α = (−2)
Coroots α∨ = (2),−α∨ = (−2) α∨ = (1),−α∨ = (−1)
〈·, ·〉 〈α, f1〉 = 1 〈α, f1〉 = 2

〈e1, α∨〉 = 2 〈e1, α∨〉 = 1

Mult. table

Xα X−α h
Xα 0 −2h Xα

X−α 2h 0 −X−α

h −Xα X−α 0

Xα X−α h
Xα 0 −h 2Xα

X−α h 0 −2X−α

h −2Xα 2X−α 0

Table 1.45: Chevalley Lie algebras of rank one

be rephrased as:

[hi, hj] = 0, (CB1)

[Xα, hi] = 〈α, fi〉Xα, (CB2)

[X−α, Xα] =
n

∑
i=1
〈ei, α∨〉hi, (CB3)

[Xα, Xβ] =

{
Nα,βXα+β if α + β ∈ Φ,
0 otherwise,

(CB4)

where i, j ∈ {1, . . . , n} and α, β ∈ Φ such that α 6= ±β.
Note that this definition gives rise to a multiplication table as defined in Section

1.4.2, and that such a multiplication table will contain many zeroes.

1.9.3 Chevalley Lie algebras of rank one

In Table 1.45 we present the two possible Chevalley Lie algebras over Z of rank
one, following the conventions from Sections 1.3.1 and 1.9.2. Values that are by
definition equal for both cases are centered over the two columns.

1.10 The Steinberg presentation

Theorems 1.42 and 1.43 show that the structure of split simple algebraic groups is
completely determined by their root datum. The following presentation exhibits
this structure very clearly.

Definition 1.46 (Group of Lie type). Suppose R = (X, Φ, Y, Φ∨) is a root datum
and F an arbitrary field. Then the group of Lie type with root datum R and base field
F is defined to be the group whose generators are xα(a) (for α ∈ Φ and a ∈ F) and
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y⊗ t (for y ∈ Y and t ∈ F∗), and whose relations are:

(y⊗ t)(y⊗ u) = y⊗ (tu), (ST1)
(y⊗ t)(z⊗ t) = (y + z)⊗ t, (ST2)

(α∨ ⊗ t) = nα(−1)nα(t), (ST3)
(y⊗ t)nα = sα∨(y)⊗ t, (ST4)

xα(a)xα(b) = xα(a + b), (ST5)

[xα(a), xβ(b)] = ∏
i,j>0

xiα+jβ

(
Cijαβaibj

)
, (ST6)

xα(a)x−α(b) = x−α(−b2a)xα(b−1), (ST7)

for y, z ∈ Φ∨, t, u ∈ F∗, α, β ∈ Φ (such that α 6= ±β) and a, b ∈ F. Here
nα(t) = xα(t)x−α(−t−1)xα(t), nα(1) is abbreviated to nα, and the Cijαβ are struc-
ture constants defined in Section 1.10.1. The order of the terms in the product is
taken such that i + j increases (this does not uniquely determine the order, but in
the ambiguous cases the terms commute).

The following theorem provides the connection between algebraic groups and
groups of Lie type.

Theorem 1.47 ([Spr98, Theorem 9.4.3]). Let G be a connected reductive linear algebraic
group defined over F, let R be the root datum of G, and let F′ ⊇ F. Moreover, let G′ be the
group of Lie type with root datum R and base field F′. Then G(F′) and G′ are isomorphic
as abstract groups.

This presentation of an algebraic group is called the Steinberg presentation. The
usual important subgroups arise naturally: A split maximal torus T is generated by
y⊗ t, the subgroup N is generated by T and the nα (where α ∈ Φ), the unipotent
subgroup U is generated by {xα(a) | α ∈ Φ+, a ∈ F}, and a Borel subgroup is
B = TU.

Moreover, for every w ∈ W there is a corresponding element ẇ of G: Take a
reduced expression w = sβ1 · · · sβl , then ẇ = nβ1 · · · nβl . This is well-defined by
[Spr98, Proposition 9.3.2]. There is an isomorphism between N/T and W given by
Tẇ ↔ w. We write Ẇ ′ = {ẇ | w ∈ W ′} if W ′ ⊆ W. Moreover, the double cosets of
B correspond (bijectively) to the elements of W by BẇB↔ w.

We prove some additional properties of the elements of a group of Lie type that
we will need in Chapter 2.

Lemma 1.48. For α ∈ Φ, t, u ∈ F∗, and x an arbitrary element of G the following relations
hold:

α∨ ⊗ 1 = id, (ST8)
xα(0) = id, (ST9)

nα(t)−1 = nα(−t), (ST10)

nα(t)nα(u) = α∨ ⊗−u
t

. (ST11)
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Proof The first three statements are trivial to verify. For the fourth, we have

nα(t)nα(u) = nα(t)nα(1)nα(−1)nα(u)

= nα(−t)−1nα(−1)−1nα(−1)nα(u)

= (α∨ ⊗−t)−1(α∨ ⊗ u) = α∨ ⊗−u
t

.

�

1.10.1 The structure constants

We now turn to the constants Nα,β in order to arrive at the definition of the con-
stants Cijαβ. Throughout this section, let Φ be a root system, ∆ a set of funda-
mental roots, and Φ+ (resp. Φ−) the corresponding set of positive (resp. negative)
roots. Recall from Section 1.9 that the Nα,β are integral structure constants such that
Nα,β = ±(pα,β + 1), where pα,β is the biggest number such that −pα,βα + β is a root.
Similarly, we define qα,β to be the biggest number such that qα,βα + β is a root.

The fact that the relations (CBZ1) – (CBZ4) should produce a Lie algebra im-
poses several restrictions on these constants. In particular

Lemma 1.49 ([Car72, Theorem 4.1.2]). For α, β ∈ Φ, the constants Nα,β satisfy:

(i) Nβ,α = −Nα,β, and

(ii) N−α,−β = −Nα,β.

Additionally, for α, β, γ ∈ Φ such that α + β + γ = 0, we have

(iii)
Nα,β
(γ,γ) =

Nβ,γ
(α,α) =

Nγ,α
(β,β) ,

and for α, β, γ, δ ∈ Φ such that α + β + γ + δ = 0 and no two of these roots are opposite
we have

(iv)
Nα,β Nγ,δ

(α+β,α+β)
+

Nβ,γ Nα,δ
(β+γ,β+γ)

+
Nγ,α Nβ,δ

(α+γ,α+γ)
= 0.

These relations obviously impose a number of restrictions on the choices avail-
able for Nα,β. It turns out that the possible choices are parametrized by so-called
extraspecial pairs, that are defined as follows. Suppose we are given a total ordering
on the space containing the roots (for instance one extending the partial ordering
α � β whenever α− β ∈ Φ+). An ordered pair of roots (α, β) is called a special pair
if α + β ∈ Φ and 0 ≺ α ≺ β. An ordered pair of roots (α, β) is called an extraspecial
pair if it is a special pair and if for all special pairs (α′, β′) for which α + β = α′ + β′

we have α � α′. This definition easily leads to the observation that every root in Φ+

which is the sum of two roots in Φ+ is the sum of precisely one extraspecial pair.
Since every non-simple positive root is the sum of two roots in Φ+, there is a 1-1
correspondence between Φ+\∆ and the set of extraspecial pairs.

The significance of these extraspecial pairs becomes apparent in the following
lemma.
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α1 α2 α1 + α2 2α1 + α2 3α1 + α2 3α1 + 2α2 . . .
α1 0 ε1 2ε2 3ε3 0 0
α2 −ε1 0 0 0 ε4 0

α1 + α2 −2ε2 0 0 −3ε1ε3ε4 0 0
2α1 + α2 −3ε3 0 3ε1ε3ε4 0 0 0
3α1 + α2 0 −ε4 0 0 0 0

3α1 + 2α2 0 0 0 0 0 0
−α1 0 0 3ε1 2ε2 ε3 0
−α2 0 0 −ε1 0 0 ε4

−α1 − α2 3ε1 −ε1 0 −2ε2 0 −ε1ε3ε4
−2α1 − α2 2ε2 0 −2ε2 0 −ε3 ε1ε3ε4
−3α1 − α2 ε3 0 0 −ε3 0 −ε4
−3α1 − 2α2 0 ε4 −ε1ε3ε4 ε1ε3ε4 −ε4 0

Table 1.51: Structure constants Nα,β for the root system of type G2

Lemma 1.50 ([Car72, Proposition 4.2.2]). The signs of the structure constants Nα,β may
be chosen arbitrarily for extraspecial pairs (α, β), and then the structure constants for all
pairs are uniquely determined by the requirement that LZ(R) be a Lie algebra.

The signs so chosen are commonly called extraspecial signs.

Example 1.52. As an example, we consider the root system of type G2, and
calculate Nα,β for all α, β ∈ Φ. The result is shown in Table 1.51, where the
missing entries (i.e., Nα,β for β a negative root) can easily be reconstructed using
Lemma 1.49(ii).

We choose a total ordering on the roots extending α � β whenever α− β ∈
Φ+, so that the extraspecial pairs are (α1, α2), (α1, α1 + α2), (α1, 2α1 + α2), and
(α2, 3α1 + α2). Suppose we choose as extraspecial signs for these extraspecial
pairs ε1, ε2, ε3, and ε4, respectively (εi ∈ {−1, 1}). This implies for instance that
Nα1,α2 = ε1(pα1,α2 + 1) = ε1 (since −α1 + α2 is not a root and therefore pα1,α2 = 0).
Similarly, −α1 + (α1 + α2) = α2 is a root, but −2α1 + (α1 + α2) is not, so that
pα1,α1+α2 = 1 and Nα1,α1+α2 = ε2(1 + 1) = 2ε2.

Now to compute for instance N−α2,2α1+α2 observe that −α1− α2 + (α1 + α2) =
0 so that, by Lemma 1.49(iii)

N−α1,−α2

(α1 + α2, α1 + α2)
=

N−α2,α1+α2

(−α1,−α1)
,

implying N−α2,α1+α2 = N−α1,−α2 = −Nα1,α2 = −ε1 using Lemma 1.49(ii) and the
fact that these three roots are all short. Similarly, using (−3α1 − α2) + (2α1 +
α2) + α1 = 0 we find

N−3α1−α2,2α1+α2

(α1, α1)
=

N2α1+α2,α1

(−3α1 − α2,−3α1 − α2)
,
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implying N−3α1−α2,2α1+α2 = − 1
3 Nα1,2α1+α2 = −ε3.

As a final example, we compute Nα1+α2,2α1+α2 . Observe (α1 + α2) + (2α1 +
α2) + (−α2) + (−3α1 − α2) = 0, and (since no two of these are opposite roots) by
Lemma 1.49(iv):

Nα1+α2,2α1+α2 N−α2,−3α1−α2

(3α1 + 2α2, 3α1 + 2α2)
+

N2α1+α2,−α2 Nα1+α2,−3α1−α2

(2α1, 2α1)

+
N−α2,α1+α2 N2α1+α2,−3α1−α2

(α1, α1)
= 0.

Using the values computed earlier, this reduces to

Nα1+α2,2α1+α2 · −ε4

3
+ 0 +

−ε1 · ε3

1
= 0,

implying Nα1+α2,2α1+α2 = −3ε1ε3ε4. All the other entries of the table are easily
computed using the same techniques.

We end this section with the definition of Mα,β,i and Cα,β,i,j. We write

Mα,β,i =
1
i!

Nα,βNα,α+β · · ·Nα,(i−1)α+β,

adopting the convention that Mα,β,0 = 1. Using Nα,β = ±(pα,β + 1) we readily see

Mα,β,i = ±
(pα,β + 1)(pα,β + 2) · · · (pα,β + i)

i!
= ±

(
pα,β + i

i

)
,

in particular Mα,β,i is integral. Now the Cijαβ are defined as follows:

Ci1αβ = −Mα,β,i,

C1jαβ = Mβ,α,j,

C32αβ = −2
3

Mα+β,α,2,

C23αβ = −1
3

Mα+β,β,2.

Also the Cijαβ are integral. Indeed, for Ci1αβ and C1jαβ this is trivial; for C32αβ

observe
C32αβ = −2

3
Mα+β,α,2 = −2

3
1
2

Nα+β,αNα+β,2α+β,

which either is equal to zero (if 3α + 2β is not a root), or 3α + 2β is a root. Then
−(α + β) + α = −β is a root (and −2(α + β) + α = −α− 2β is not, for root chains of
such length do not exist), implying pα+β,α = 1, and both −(α + β) + 2α + β = α and
−2(α+ β)+ 2α+ β = −β are roots, so that pα+β,2α+β = 2. This implies Nα+β,α = ±2
and Nα+β,2α+β = ±3, so that C32αβ is indeed integral. A similar reasoning leads to
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the observation that C23αβ is integral.

1.10.2 The action of G on Lie(G)

In this section we combine the results of the previous two sections and exhibit the
action of an algebraic group on its Lie algebra. So let G be a split simple algebraic
group defined over the field F, R its root datum, and L = Lie(G) its Lie algebra. By
Theorem 1.47 G has a Steinberg presentation, and by Theorem 1.44 the Lie algebra
L has a Chevalley basis (cf. Equations CB1 – CB4).

The action of G on L is then given by the following relations:

(y⊗ t)hi = hi, xα(a)hi = hi + 〈α, fi〉aXα,

(y⊗ t)Xβ = t〈β,y〉Xβ, xα(a)Xβ = ∑
qαβ

i=0 Ci1αβaiXiα+β.

1.11 Tori and conjugacy classes of the Weyl group

In this section we let G be a split group of Lie type defined over an arbitrary field F,
we let T0 be a split maximal torus of G, and we let W be the Weyl group of G (see
Section 1.8 for some additional details). We claim conjugacy classes of maximal tori
of G over F are parametrized by conjugacy classes of W.

For suppose T is a torus defined over F, but not necessarily split. There is a
g ∈ G(F) such that T = Tg

0 , and Tg
0 ≤ G(F) if and only if tgF = tg for all t ∈ T0,

where F is the Frobenius automorphism of the field F. But this holds if and only
if tgFg−1

= t, which holds if and only if tFgF g−1
= t for all t ∈ T0. Now we write

w = gFg−1, and observe that (tF)w = t, so that w ∈ NG(T0) = W since both t ∈ T0
and tF ∈ T0. So there exists a correspondence between conjugacy classes of tori and
conjugacy classes of the Weyl group, and it is given by g↔ gFg−1.

Example 1.53. We determine all tori of G = SL2 defined over GF(3). The stan-
dard split torus T0 consists of the diagonal matrices in G and T0(GF(3)) consists
of the GF(3)-rational points of T0, i.e.

T0(GF(3)) =
{(

1 0
0 1

)
,
(
−1 0
0 −1

)}
.

The set of tori of G is by definition

T = {Tg
0 | g ∈ G, satisfying tF = t for all t ∈ Tg

0 }.

In this case it suffices to consider only the GF(32)-rational points of G. We let ξ
be a generating element of GF(32) such that ξ2 = ξ + 1. By explicit computations
we find 4 elements of T , namely T0(GF(3)),

T1 =

{(
−1 −1
−1 1

)
,
(

1 0
0 1

)
,
(
−1 0
0 −1

)
,
(

1 1
1 −1

)}
,
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T2 =

{(
−1 0
0 −1

)
,
(

1 0
0 1

)
,
(

1 −1
−1 −1

)
,
(
−1 1
1 1

)}
,

T3 =

{(
−1 0
0 −1

)
,
(

1 0
0 1

)
,
(

0 1
−1 0

)
,
(

0 −1
1 0

)}
.

Example elements g ∈ G giving rise to these tori are

g0 =

(
1 0
0 1

)
, g1 =

(
1 ξ
ξ6 ξ

)
, g2 =

(
1 ξ5

ξ2 ξ

)
, and g3 =

(
ξ2 1
1 ξ2

)
.

Now wi = gF
i g−1

i (for i = 1, . . . , 4) should be an element of the normalizer of the
torus of G. Indeed,

w0 =

(
1 0
0 1

)
, w1 =

(
0 ξ2

ξ2 0

)
, and w2 = w3 =

(
0 ξ6

ξ6 0

)
.

The fact that w1, w2, and w3 are the same (up to elements of the torus: ob-
serve w1T0 = w2T0) indicates that the tori T1, T2, and T3 should be conjugate in

G(GF(3)). Indeed,
(

1 1
0 1

)
sends T2 to T1 and

(
1 0
1 1

)
sends T3 to T1.

One last observation is that T0 is a split torus, and T1 is nonsplit (x2 + 1 is the
minimal polynomial of two of its elements).

We may find the g corresponding to a given w, i.e., a g such that w = gFg−1,
using Lang’s theorem:

Theorem 1.54 (Lang’s Theorem, [Lan56]). If G is a connected algebraic group defined
over the finite field F with Frobenius map F, then the map G→ G, x 7→ x−Fx is onto.

An algorithm for Lang’s theorem has been described by Cohen and Murray
[CM09], and we execute the algorithm in the following example.

Example 1.55. Let F be the field with 34 elements and F′ ⊆ F the field with 3
elements, let ξ be a primitive element of F, let F be the Frobenius automorphism
i 7→ i3, let R be the root datum of type A2

sc, let G = SL3 defined over F, and let
L = sl3(F) be the corresponding Lie algebra. An advantage of this convention is
that the action of g ∈ G on L is simply x 7→ (g−1x>g)>.

Let w = nα1 be the element of G corresponding to the first fundamental re-
flection sα1 in the root system of type A2:

w =

0 −1 0
1 0 0
0 0 1

 .

We search for a g ∈ G such that w = gFg−1. To that end, we let L′ be the
subalgebra of L consisting of those elements that are invariant under wF, viewed
as a Lie algebra over the smaller field F′. Simply solving linear equations gives
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us an F′-basis of L′, and using techniques from [CM09] we find a split maximal
toral subalgebra and a Chevalley basis (again with respect to R) for L′. It consists
of the following elements:

Xα1 =

0 0 ξ55

0 0 ξ45

0 0 0

 , Xα2 =

ξ60 ξ70 0
ξ10 ξ20 0
0 0 0

 , Xα1+α2 =

0 0 ξ35

0 0 ξ65

0 0 0

 ,

X−α1 =

 0 0 0
0 0 0

ξ65 ξ75 0

 , X−α2 =

ξ20 ξ70 0
ξ10 ξ60 0
0 0 0

 , X−α1−α2 =

 0 0 0
0 0 0
ξ5 ξ55 0

 ,

h1 =

 1 ξ10 0
ξ70 1 0
0 0 1

 , h2 =

 0 ξ10 0
ξ70 0 0
0 0 0

 .

Now, since maps between Chevalley bases are automorphisms of L, we find
a g ∈ G that sends this new Chevalley basis to the original Chevalley basis of L:

g =

 0 ξ15 ξ35

0 ξ5 ξ65

−1 0 0

 ,

and it happens that g ∈ G. (This is not automatically the case, as Aut(L) is strictly
bigger than G). It is now easily verified that gFg−1 = w.

1.12 Classification of finite simple groups

A major effort of discrete mathematicians in the twentieth century has been towards
finding all possible finite simple groups. This resulted ultimately in the classifica-
tion of finite simple groups:

Theorem 1.56 ([Gor85]). Every finite simple group is, up to isomorphism, one of 26 spo-
radic simple groups or belongs to at least one of the following three infinite families:

(i) The cyclic groups of prime order;

(ii) The alternating groups of degree at least 5;

(iii) The simple groups of Lie type, including the four classical series of Lie groups, (de-
noted An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4) ), the exceptional Lie groups
(E6, E7, E8, F4, G2), the twisted groups of Lie type (2An (n ≥ 1), 2Dn (n ≥ 4), 3D4,
2E6, 2B2(22m+1), 2F4(22m+1), and 2G2(32m+1)) and the Tits group (2F4(2)′).

This theorem implies in particular that the groups under consideration in this
thesis represent a significant portion of all finite simple groups. A large amount
of information about these groups has been collected in the famous Atlas of Finite
Groups [CCN+85].

We refer to Section 1.10 for the Steinberg presentation of the finite simple groups
of Lie type in terms of generators and relations. In Chapter 2 we describe the



52 1. PRELIMINARIES

construction of the twisted groups of Lie type, focusing on those of type 2B2, 2F4,
and 2G2.

1.13 Algorithms

Since the main focus of this thesis is working with algebraic groups and their Lie
algebras on a computer, we introduce some of the required notions regarding algo-
rithms. We will take O∼(N) to mean O(N(log N)c) for some constant c. Recall (e.g.,
from [Shp99, Introduction]) that arithmetic operations in a field F are understood
to be addition, subtraction, multiplication, division, and equality testing.

We will call a field effective if its elements can be described on a computer, equal-
ity between two elements can be tested by means of an algorithm, its arithmetic
operations can be performed by means of algorithms, and the solutions of linear
equations can be found algorithmically.

Finite fields are effective. In particular, in a field F of size q the arithmetic
operations all take O∼(log(q)) elementary operations [Shp99, Introduction]. We
will assume that performing standard linear algebra arithmetic, that is, operations
on matrices of size m, like multiplication, determinant, and kernel (solving linear
equations), takes O(m3) arithmetic operations [Shp99, Section 4.4].

Algorithms may be randomized. Two important classes of randomized algorithms
are Monte Carlo and Las Vegas [Ser06, Section 2]. A randomized algorithm is called
Monte Carlo if there is a chance of an incorrect output, but an upper bound for
the probability of error can be prescribed by the user. However, in most cases the
runtime increases when that error probability is decreased. On the contrary, a Las
Vegas algorithm never returns an incorrect answer but it may report failure with
probability bounded by the user. Again, in most cases the runtime increases when
the user requires a lower probability for failure.

An example of a Las Vegas algorithm is the Meat-axe algorithm [Hol98, HEO05],
which is generally used to compute submodules of modules over finite fields. Find-
ing an ideal I of a given Lie algebra L is equivalent to finding the submodule I of
the A-module L, where A is the associative subalgebra of End(L) generated by all
adx for x running over a basis of L. Consequently, such an ideal I can be found by
application of the Meat-axe to the A-module L. For finite fields, the Meat-axe algo-
rithm is analysed in [Rón90], [Hol98, Section 2] and [IL00]: irreducible submodules
of a finite L-module of dimension m over GF(q) can be found in Las Vegas time
O∼(m3 log(q)). For infinite fields, Meat-axe procedures are known; however, we
know of no proof of polynomiality in the literature.

Many basic algorithms for computing with Lie algebras (e.g., computing sub-
algebras, centers, ideals, etc) were designed by De Graaf [dG00] and have been
implemented in GAP and Magma.

Regarding the computation of split maximal toral subalgebras of Lie algebras of
classical type, Cohen and Murray present an algorithm for computing split maximal
toral subalgebras [CM09, Section 5]. However, in this case it is also assumed that
the characteristic of the field is not 2 or 3 (in fact, the algorithm will often work
if the characteristic is 3, but it will not work for characteristic 2). This algorithm
has been implemented in Magma. Independently, Ryba developed an algorithm
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for computing split Cartan subalgebras [Ryb07]. However, this algorithm similarly
requires the field to not be of characteristic 2. In Chapter 3 we present a heuristic
algorithm that yields good results in the characteristic 2 case. This algorithm may
fail if certain unfortunate random choices occur, but if it returns a result, that result
is correct. However, we provide no estimates on the failure probability, hence the
algorithm is not a Las Vegas algorithm in the sense defined above.

Regarding the computation of Chevalley bases, De Graaf describes an algorithm
called CanonicalGenerators that produces “a canonical set of generators” of a
Lie algebra, given a simple system of the root system of L. This returns in fact
a Chevalley basis up to scalars [dG00, Section 5.11], but the required scaling can
be accomplished by straightforwardly solving linear equations. Furthermore, in
[CM09, Section 5] Cohen and Murray give an algorithm StandardChevalleyBasis

that produces a Chevalley basis, given only the Lie algebra L. A split maximal toral
subalgebra of L and an appropriate root system are computed in the first two steps.
The drawback of both these algorithms is the assumption on the characteristic of
the field underlying the Lie algebra. The former assumes this characteristic is 0
(although the algorithm will often work if the characteristic is at least 5), and the
latter assumes the characteristic of the field is not 2 or 3. In Chapter 4 we present
an algorithm that works even in characteristics 2 and 3.

We apply these algorithms in Chapter 5 to produce algorithms for recognition
of Lie algebras of algebraic groups, and in Chapter 6 to prove the non-existence of
a graph on which a certain group acts distance transitively.
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2Twisted Groups of Lie Type

The twisted groups of Lie type were discovered independently by Steinberg, Tits,
and Hertzig. They are well known today and for example described by Steinberg
[Ste67, Section 11] and Carter [Car72, Chapters 12 – 14]. This chapter focuses on
a construction of the twisted groups by use of Lie algebras. It is joint work with
Arjeh M. Cohen, and these results will also appear in [BC].

We first briefly describe the general construction for finite fields in Section 2.1,
and then focus on types 2B2, 2F4, and 2G2 as these are the most complicated cases.
The construction of the automorphism of the group in these cases (described in
Section 2.2) is known, and described in some detail in [Car72, Sections 12.3, 12.4].
In Sections 2.3 – 2.6 we describe how to find a corresponding endomorphism of Lie
algebras (Proposition 2.10), and thus show that the automorphism used to construct
the twisted groups has a geometrical interpretation (Corollary 2.12).

To increase legibility we will mostly use action from the left in this chapter,
e.g., x 7→ g(x). Field automorphisms, however, will act from the right, e.g., t 7→ tF.

2.1 Definition of the twisted groups

Let G be a simple algebraic group defined over the field F (see Section 1.5) whose
Dynkin diagram has a non-trivial symmetry δ, and let R be its root datum. Let τ
be an automorphism of G corresponding to δ, and F be a non-trivial automorphism
of F (that extends to an automorphism of G denoted by the same symbol) chosen
so that σ = τF satisfies σn = 1, where n is the order of δ. The subgroup of G(F)
consisting of all elements that are fixed under σ is called the twisted group of Lie type
of type nR.

The same procedure can be applied to the corresponding Lie algebra: let L =
LF(R) be the Chevalley Lie algebra of type R over the finite field F. The automor-
phism δ induces an endomorphism τ of the algebraic group G, and therefore an
endomorphism dτ of L ∼= Lie(G). Moreover, since the field automorphism F natu-
rally acts on L, we find an endomorphism σ = (dτ)F of L. If dτ is an automorphism
of L, then σ again satisfies σn = 1. In that case, the subalgebra of L consisting of all
elements fixed under σ is called the twisted Lie algebra of type nR.

Consider the irreducible Dynkin diagrams, shown in Figure 1.4. “Obvious”
automorphisms exist for the cases Al (of order two for l ≥ 2), Dl (of order two for
l ≥ 4 and of order three for l = 4), and E6: see Figure 2.1. For these four cases, F
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2An
1 2 2B2 1 2

2Dn
1 2

2F4 1 2 3 4

3D4 1 2

3

4

2G2 1 2

2E6
1 43 5 6

2

Figure 2.1: Automorphisms of Dynkin diagrams

must be a field that admits an automorphism whose order is equal to the order of
δ. Therefore, in the finite case, F = GF(q2) for some prime power q for the twisted
groups 2Al , 2Dl , and 2E6, and F = GF(q3) for some prime power q for the case 3D4.

The cases B2, F4, and G2 are significantly different: Indeed, the graph automor-
phisms depicted interchange the short roots and the long roots (see Figure 2.1). For
2B2 and 2F4 the field F must be of characteristic 2 and admit an automorphism ϑ

such that 2ϑ2 = 1, i.e., for all x ∈ F we have x2ϑ2
= x. Similarly, for 2G2 the field F

must be of characteristic 3 and admit an automorphism ϑ such that 3ϑ2 = 1. The
following lemma determines which finite fields have that property.

Lemma 2.2 ([Car72, Lemma 14.1.1]). Let F = GF(pk) be a finite field of characteristic p
admitting an automorphism ϑ satisfying pϑ2 = 1. Then k is odd and ϑ is of the form

xϑ = xpm
,

where m is such that k = 2m + 1.

Proof We have xϑ = xpr
for some r, so x = xpϑ2

= xp2r+1
, so that xp2r+1

= x for
all x ∈ F. Thus F is contained in GF(p2r+1), and therefore k divides 2r + 1. It
follows that k is odd, so we write k = 2m + 1, where m ∈ N. Now let (2r + 1) =

(2m + 1)(2s + 1). Then r = s(2m + 1) + m and xpr
= xp(2m+1)s+m

= xp(2m+1)s pm
=

(xp(2m+1)s
)pm

. But since xp2m+1
= xpk

= x, so that xp(2m+1)s
= x, it follows that

xpr
= xpm

. Hence xϑ = xpm
, as required. �
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This gives rise to the following twisted groups:

2An(q2), n ≥ 2
2Dn(q2), n ≥ 4
3D4(q3),
2E6(q2),
2B2(22m+1),
2F4(22m+1),
2G2(32m+1).

The fact that automorphisms of groups of Lie type are the product of an inner
automorphism, a so-called diagonal automorphism, a graph automorphism, and a
field automorphism, shows that these groups are uniquely determined in the case
where F is a finite field, for then the field automorphism is unique up to conjuga-
tion. (In the case where F is not finite this procedure may produce non-isomorphic
groups for different choices of the field automorphism.) Note also that these twisted
groups are isomorphic to certain classical groups: 2An(q2) is isomorphic to the uni-
tary group PSUn+1(GF(q2), f ) for some Hermitian form f , and 2Dn(q2) is isomor-
phic to the orthogonal group PΩ2n(GF(q), f ), for some quadratic form f (cf. [Car72,
Theorems 14.5.1, 14.5.2]).

In Chapter 6 we consider the twisted group of type 2A7, but in a special setting
where it is inside the group of type E7. In this chapter we concentrate on 2B2, 2F4,
and 2G2, for the following reason. Recall from the above that τ is an automorphism
of the algebraic group, so that there exists an endomorphism dτ of Lie(G). It
turns out that dτ is bijective in the case of 2An, 2Dn, 3D4, and 2E6, but dτ has a
substantial kernel in the case of 2B2, 2F4, and 2G2. However, in Proposition 2.10
we will show that the automorphism τ of G corresponds to an endomorphism of
Aut(L). Moreover, τ induces a duality on the Lie incidence geometry related to G
(cf. Corollary 2.12).

2.2 Definition of 2B2, 2F4, and 2G2

In this section we will consider the diagram automorphisms of B2, F4, and G2 and
show (in Proposition 2.5) that they extend to endomorphisms of the corresponding
groups of Lie type.

Let Φ be a root system of type B2, F4, or G2, and take δ : Φ → Φ to be the
Dynkin diagram automorphism. For Φ = B2 and Φ = G2 this automorphism is
obtained by reflecting in the line bisecting α and β, as shown in Figure 2.3, followed
by the appropriate scaling to ensure that the image is again a root. For Φ = F4 the
procedure is similar and naturally extends the automorphism construction for B2.

For Φ = B2 (taking as fundamental roots α1, α2, such that α1 is long and α2 is
short) the automorphism δ acts as follows:

α1 ↔ α2, −α1 ↔ −α2,
α1 + 2α2 ↔ α1 + α2, −α1 − 2α2 ↔ −α1 − α2.
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α1

α2

α2

α1

Figure 2.3: Automorphisms inducing 2B2 and 2G2

For Φ = G2 (taking as fundamental roots α1, α2, such that α1 is short and α2 is
long) the automorphism δ acts as follows:

α1 ↔ α2,
α1 + α2 ↔ 3α1 + α2,

2α1 + α2 ↔ 3α1 + 2α2,

and the equivalent action on the negative roots.
For Φ = F4 (taking as fundamental roots α1, . . . , α4, such that α1 and α2 are long

and α3 and α4 are short) the automorphism δ acts as follows:

α1 ↔ α4,
α2 ↔ α3,

α1 + α2 ↔ α3 + α4,
α2 + α3 ↔ α2 + 2α3,

α1 + α2 + α3 ↔ α2 + 2α3 + 2α4,
α2 + α3 + α4 ↔ α1 + α2 + 2α3,

α1 + α2 + α3 + α4 ↔ α1 + α2 + 2α3 + 2α4,
α2 + 2α3 + α4 ↔ α1 + 2α2 + 2α3,

α1 + α2 + 2α3 + α4 ↔ α1 + 2α2 + 2α3 + 2α4,
α1 + 2α2 + 2α3 + α4 ↔ α1 + 2α2 + 4α3 + 2α4,
α1 + 2α2 + 3α3 + α4 ↔ α1 + 3α2 + 4α3 + 2α4,

α1 + 2α2 + 3α3 + 2α4 ↔ 2α1 + 3α2 + 4α3 + 2α4,

and the equivalent action on the negative roots.
Note that in each case δ interchanges the long and the short roots, but leaves the

set of positive roots (and the set of negative roots) invariant. We let δ act on Φ∨ in
correspondence with the way it acts on Φ, by taking δ(α∨) = (δα)∨. We introduce
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signs ε : Φ → {1,−1}, needed in order to be able to extend δ to an automorphism
of G. If Φ = B2 or Φ = F4 we take ε ≡ 1. For Φ = G2, we fix extraspecial signs
ε1, . . . , ε4 in advance (cf. Example 1.52) and let

εα =

 η1 if α = ±α1 or α = ±α2,
η2 if α = ±(α1 + α2) or α = ±(3α1 + α2),
η3 if α = ±(2α1 + α2) or α = ±(3α1 + 2α2),

where we demand η1, η2, η3 be such that

η2 = −ε2ε3 and η1η3 = ε3ε4.

Classical choices here are (ε1, ε2, ε3, ε4) = (1, 1, 1, 1) and (η1, η2, η3) = (1,−1, 1) (due
to Steinberg [Ste67, Section 11]) and (ε1, ε2, ε3, ε4) = (−1,−1, 1, 1) and (η1, η2, η3) =
(1, 1, 1) (due to Carter [Car72, Section 12.4]).

We write Φshort for the set of short roots and Φlong for the set of long roots in Φ,
and we prove various properties of δ and ε.

Lemma 2.4. Let δ : Φ→ Φ and ε : Φ→ {−1, 1} be as defined above.

(i) ε−α = εα and εα = εδα, for all α ∈ Φ.

(ii) For α, β ∈ Φshort such that α + β ∈ Φshort, we have εαεβNδα,δβ = εα+βNα,β.

(iii) If α, β ∈ Φ such that α + β 6∈ Φ then either δ(α) + δ(β) 6∈ Φ, or Nδ(α),δ(β) ≡ 0
mod p (where p = 2 if Φ = B2 or Φ = F4, and p = 3 if Φ = G2).

(iv) For α, β ∈ Φshort, α 6= ±β, we have:

(a) If α + β ∈ Φshort, then δ(α) + δ(β) = δ(α + β) ∈ Φlong.

(b) If α + β ∈ Φlong, then δ(α) + δ(β) /∈ Φ.

(v) For α, β ∈ Φlong such that α + β ∈ Φ we have α + β ∈ Φlong, δ(α + β) = δ(α) +
δ(β), 2α + β 6∈ Φ, and 3α + β 6∈ Φ.

(vi) For α ∈ Φshort and β ∈ Φlong such that α + β ∈ Φ, we have

(a) If Φ = B2 or Φ = F4 and α + β ∈ Φ then α + β ∈ Φshort, 2α + β ∈ Φlong,
and 3α + β 6∈ Φ.

(b) If Φ = G2 then α + β ∈ Φshort, 2α + β ∈ Φshort, and 3α + β ∈ Φlong.

Proof (i) follows immediately from the definition of ε, and (ii) is easily verified. For
example, for Φ = G2, α = α1 and β = α1 + α2 we see:

εαεβNδα,δβ = εα1 εα1+α2 Nα2,3α1+α2 = η1η2ε4 = η3 · 2ε2

= ε2α1+α2 Nα1,α1+α2 = εα+βNα,β,

using η1η2η3 = −ε2ε2
3ε4 = −ε2ε4 and the fact that char(F) = 3. Properties (iii) –

(vi) are straightforward to check. �
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Now to extend the automorphism δ of the root system to an endomorphism of
the group of Lie type let R = (X, Φ, Y, Φ∨) be a root datum of type B2

ad, F4, or
G2, let F be a perfect field of size 22m+1 for some m ∈ N (for B2 and F4) or of size
32m+1 for some m ∈ N (for G2), and let G be the corresponding group of Lie type.
Furthermore, we write p = char(F) and we let F be an automorphism of F of the
same order as δ.

Proposition 2.5. The automorphism δ of the root system extends to an endomorphism τ of
G determined by

xα(t) 7→
{

xδ(α)(εαt) if α is a long root,
xδ(α)(εαtp) if α is a short root,

y⊗ t 7→
{

δ(y)⊗ t if y is a long coroot,
δ(y)⊗ tp if y is a short coroot,

and τ2 = F. If ω ∈ Aut(F) satisfies ω2 = F, then the endomorphism τ∗ = τω−1 is an
involution.

Proof To see that τ is indeed an endomorphism of G we verify that τ preserves the
Steinberg relations (ST1)–(ST7) defined in Section 1.10. Throughout the proof, we
let y, z ∈ Φ∨, t, u ∈ F∗, α, β ∈ Φ such that α 6= ±β, and a, b ∈ F. Moreover, we let

λ : Φ→ F, λ(α) =

{
p if α ∈ Φshort,
1 if α ∈ Φlong,

and λ(α∨) = λ(α), so that τ(xα(t)) = xδ(α)(εαtλ(α)) and τ(y⊗ t) = δ(y)⊗ tλ(y). We
abbreviate δ(α) to δα and λ(α) to λα for ease of reading.

Observe first that the action of τ on nα(t) follows from the action on xα(t):

τ(nα(t)) = τxα(t)τx−α(−t−1)τxα(t)

= xδα(εαtλα)xδ(−α)(εα(−t−1)λα)xδα(εαtλα)

= xδα(εαtλα)x−δα(−
(
(εαt)λα

)−1
)xδα(εαtλα)

= nδα(εαtλα),

using the fact that δ(−α) = −δ(α). We will now deal with each of the relations
(ST1)–(ST7) (see Section 1.10) separately.

For (ST1), observe

τ(y⊗ t)τ(y⊗ u) = (δy⊗ tλy)(δy⊗ uλy) = δy⊗ (tu)λy = τ(y⊗ (tu)).

The invariance of (ST2) follows immediately from the definition of τ(y⊗ t).
For (ST3), observe

τ(α∨ ⊗ t) = (δα)∨ ⊗ tλα = nδα(−1)nδα(tλα)

= nδα(−εα)nδα(εαtλα) = τnα(−1)τnα(t),
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where we use (ST11) to introduce the two εα.

For (ST4), observe

τ((y⊗ t)nα) = τ(nα(−1))τ(y⊗ t)τ(nα(1))

= nδα(−εα)(δy⊗ tλy)nδα(εα)

= nδα(−1)(δy⊗ tλy)nδα(1)

= (δy)⊗ tλy)nδα

= sα∨(δy)⊗ tλy

= δ(sα∨(y))⊗ tλ(s∨α (y))

= τ(sα∨(y)⊗ t),

where we use the fact that δ is an automorphism of the root system, sα∨ is a reflec-
tion, so it maps y to a coroot of equal length, and again (ST11).

Relation (ST5) is trivially verified:

τxα(a)τxα(b) = xδα(εαaλα)xδα(εαbλα)

= xδα(εαaλα + εαbλα)

= xδα(εα(a + b)λα) = τxα(a + b),

where we explicitly need the fact that λα is either 1 or char(F).

Before considering (ST6), which is the most involved case, we deal with (ST7).

τ
(

xα(a)x−α(b)
)
= xδα(εαaλα)xδ(−α)(ε−αbλα)

= xδα(εαaλα)x−δα(εαbλα)

= x−δα(−ε2
α(b

λα)2εαaλα)xδα((εαbλα)−1)

= x−δα(−εα(b2a)λα)xδα(εαb−λα)

= xδ(−α)(−ε−α(b2a)λ(−α))xδα(εαb−λα)

= τ
(

x−α(−b2a)xα(b−1)
)

.

For (ST6) we distinguish five cases, depending on the type of subsystem α and
β generate: A subsystem of type A2 (then α and β are of equal length and inclined
at 2π/3), a subsystem of type B2 (only if Φ = B2 or Φ = F4, then either α and β
are both short and inclined at π/2, or α is short, β is long, and they are inclined
at 3π/4), or a subsystem of type G2 (only if Φ = G2, then either α and β are both
short and inclined at π/3, or α is short, β is long, and they are inclined at 5π/6).
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If α and β are of equal length and inclined at 2π/3, observe

τ[xα(a), xβ(b)] = [xδα(εαtλα), xδβ(εβtλβ)]

= xδα+δβ(−εαεβNδα,δβaλαbλβ)

= xδ(α+β)(−εα+βNαβ(ab)λ(α+β))

= τxα+β(−Nαβab)

= τxα+β(C11αβab),

using Lemma 2.4(ii), (iv), and (v), the fact that α, β, α + β are all of the same length,
and the fact that Nαβ = ±1, and therefore non-zero mod p.

If Φ = B2 or F4 and α and β are both short and inclined at π/2, we are in the case
that char(F) = 2 so we ignore the εα. Moreover, α + β ∈ Φlong, so δ(α) + δ(β) /∈ Φ
by Lemma 2.4(iv). Also, since −α + β is a root and −2α + β is not, we have pαβ = 1
and therefore Nαβ = ±2 ≡ 0 mod p, so that

τ([xα(a), xβ(b)]) = [xδα(a2), xδβ(b2)] = id = xδ(α+β)(−Nαβab) = τxα+β(C11αβab).

If Φ = B2 or F4 and α is short, β is long, and they are inclined at 3π/4, we have
Nαβ = ±1, Mαβ2 = ±1, and also Nδα,δβ = ±1, Mδα,δβ,2 = ±1. It follows that

τ([xα(a), xβ(b)]) = [xδα(a2), xδβ(b2)]

= xδα+δβ(−Nδα,δβa2b)xδα+2δβ(Mδβ,δα,2a2b2)

= xδα+δβ(a2b)xδα+2δβ(a2b2)

= xδα+2δβ(a2b2)xδα+δβ(a2b)

= xδα+2δβ(−Nαβa2b2)xδα+δβ(Mα,β,2a2b)

= xδ(α+β)(−Nαβ(ab)2)xδ(2α+β)(Mα,β,2a2b)

= τxα+β(−Nαβab)τx2α+β(Mα,β,2a2b),

using the observation that δ(α + β) = δα + 2δβ and δ(2α + β) = δα + δβ. Moreover,
xδα+δβ(a2b) and xδα+2δβ(a2b2) commute since (δα + δβ) + (δα + 2δβ) is not a root.

If Φ = G2 and α and β are both short and inclined at π/3, we are in the case
that char(F) = 3 and α + β ∈ Φlong so that δα + δβ /∈ Φ (cf. Lemma 2.4(iv)).
Furthermore, since −2α + β is a root and −3α + β is not, we have pαβ = 2 and
therefore Nαβ = ±3 ≡ 0 mod p, so that

τ([xα(a), xβ(b)]) = [xεαδα(a3), xεβδβ(b3)] = id

= xδ(α+β)(−Nαβεα+βab) = τxα+β(C11αβab).

If Φ = G2 and α is short, β is long, and they are inclined at 5π/6, then δα = β
and δβ = α. We compute, using Table 1.51, C11αβ = −ε1, C21αβ = −ε1ε2, C31αβ =
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−ε1ε2ε3, C32αβ = ε1ε2ε3ε4. This means

[xα(a), xβ(b)] = xα+β(−ε1ab) · x2α+β(−ε1ε2a2b)

· x3α+β(−ε1ε2ε3a3b) · x3α+2β(ε1ε2ε3ε4a3b2).

Furthermore, we observe that x3α+β(·) and x3α+2β(·) commute since (3α + β) +
(3α + 2β) is not a root, and xα+β(·) and x2α+β(·) commute since −2(α + β) + (2α +
β) = −β is a root and therefore Nα+β,2α+β = ±3 ≡ 0 mod p. Now observe

τ[xα(a), xβ(b)] = [xδα(εαa3), xδβ(εβb)] = [xβ(η1a3), xα(η1b)]

=
(
[xα(η1b), xβ(η1a3)]

)−1

= x3α+2β(−η5
1ε1ε2ε3ε4b3a6) · x3α+β(η

4
1ε1ε2ε3b3a3)

· x2α+β(η
3
1ε1ε2b2a3) · xα+β(η

2
1ε1ba3)

= x3α+β(ε1ε2ε3b3a3) · x3α+2β(−η1ε1ε2ε3ε4b3a6)

· xα+β(ε1ba3) · x2α+β(η1ε1ε2b2a3)

= xδ(α+β)(−η2ε1b3a3) · xδ(2α+β)(−η3ε1ε2b3a6)

· xδ(3α+β)(−η2ε1ε2ε3ba3) · xδ(3α+2β)(η3ε1ε2ε3ε4b2a3)

= τxα+β(C11αβab) · τx2α+β(C21αβa2b)

· τx3α+β(C31αβa3b) · τx3α+2β(C32αβa3b2),

where we explicitly used the requirements that η1η3 = ε3ε4 and η2 = −ε2ε3. This
proves that τ is indeed an endomorphism of G.

To see that, for ω ∈ Aut(F) such that ω2 = F, the composition τω−1 is an
involution observe that ω and τ commute:

ωτ(xα(t)) = ω(xδα(tλ(α))) = xδα(ω(t)λ(α)) = τ(xα(ω(t))) = τω(xα(t)).

This implies (τ∗)2 = τ2ω−2 = F ω−2 = id, proving the claim. �

Consequently, the automorphism σ = τF, as in the definition of twisted group,
behaves as follows on the Steinberg presentation of G:

xα(t) 7→
{

xδ(α)(εαtp) if α is a long root,
xδ(α)(εαtp2

) if α is a short root.

y⊗ t 7→
{

δ(y)⊗ tp if y is a long coroot,
δ(y)⊗ tp2

if y is a short coroot.

2.3 The Clifford algebra

In this section, we introduce a procedure for creating a Lie algebra from a Clif-
ford algebra. Let V be a vector space over an arbitrary field F. The tensor algebra
(denoted T(V)) consists of all tensor powers of V, including the one-dimensional



64 2. TWISTED GROUPS OF LIE TYPE

zeroth power, which is defined to be F. The algebra multiplication is simply tensor
composition. T(V) is an associative non-commutative algebra over F, with unit
1 ∈ F. The Clifford algebra, denoted Cl(V), of the vector space V supplied with a
quadratic form κ is the quotient of T(V) by the two-sided ideal generated by all
x2 − κ(x) for x ∈ V.

Let B denote the bilinear form on V associated with κ:

B(x, y) = κ(x + y)− κ(x) + κ(y).

This immediately implies B(x, y) = (x+ y)2− x2− y2 = xy+ yx for all x, y ∈ Cl(V).
Now let e1, . . . , em be a basis of V. Then the products eJ := ∏j∈J ej, with the order
of the factors given by increasing index, for J running over all subsets of {1, . . . , m},
is a basis of Cl(V). In particular, dim(Cl(V)) = 2m.

Now let L be the Lie algebra of Cl(V) (in the sense of Example 1.9): The elements
of L are the elements of Cl(V) and the Lie multiplication is given by [x, y] = xy− yx.
Let M ⊆ L be given by M =

〈
eJ | |J| ∈ {0, 2}

〉
F

. We claim M is a subalgebra of L.
Let x, y ∈ M. If either x or y corresponds to e∅ the assertion that [x, y] ∈ M is trivial,
so assume x = ab and y = cd, for some a, b, c, d ∈ V. Then

[x, y] = [ab, cd] = abcd− cdab
= −acbd + aB(b, c)d + cadb− cB(d, a)b
= acdb− acB(b, d) + cadb + B(b, c)ad− B(d, a)cb
= B(a, c)db− B(b, d)ac + B(b, c)ad− B(a, d)cb ∈ M.

So indeed M is a subalgebra of L. Clearly, dim(M) = 1 + (m
2 ). Consider the linear

functional Tr on M given by Tr(1) = 2 and Tr(xy) = B(x, y). It is well defined since

Tr(x2 − κ(x)) = Tr(x2)− Tr(κ(x)) = B(x, x)− Tr(κ(x)) = 2κ(x)− 2κ(x) = 0,

for all x ∈ V. The kernel of Tr on M is a codimension 1 subspace, which we denote
by P(V, κ). Observe that

Tr([ab, cd]) = B(a, c)Tr(db)− B(b, d)Tr(ac) + B(b, c)Tr(ad)− B(a, d)Tr(cb)
= B(a, c)B(d, b)− B(b, d)B(a, c) + B(b, c)B(a, d)− B(a, d)B(b, c) = 0,

so that every commutator of elements of M is in the kernel of Tr, and hence in
P(V, κ).

Example 2.6. We explicitly compute P = P(V, κ), for V = F5, with F a field of
characteristic 2 and κ(v) = v1 + v2v4 + v3v5. We claim P is a Lie algebra of type
B2, and a suitable Chevalley basis is given by

Xα1 = e4e5, Xα2 = e1e3, Xα1+α2 = e1e4, Xα1+2α2 = e3e4,
X−α1 = e2e3, X−α2 = e1e5, X−(α1+α2)

= e1e2, Xα1+2α2 = e2e5,

h1 = e2e4 + e3e5 + 1, h2 = 1.

To see this, the multiplication rules (CB1)–(CB4) should be verified. For ex-



2.4. IDENTIFYING AUT(L) AND AUT(LSHORT)κ 65

ample,

[Xα1 , Xα2 ] = [e4e5, e1e3]

= B(e4, e1)e3e1 − B(e5, e3)e4e1 + B(e5, e1)e4e3 − B(e4, e3)e1e5

= 0 ∗ e3e1 − (−1) ∗ e4e1 + 0 ∗ e4e3 − 0 ∗ e1e5

= e4e1 = −e1e4 + B(e1, e4) = Xα1+α2 ,

as required.

2.4 Identifying Aut(L) and Aut(Lshort)κ

So far, we have seen the automorphism σ = τF (the product of a diagram automor-
phism and a field automorphism) merely as an automorphism of the group of Lie
type in its Steinberg presentation. In the remainder of this chapter we show how
to see δ as an endomorphism of Aut(L), the main result being Proposition 2.10. To
that end, we first identify Aut(L) and Aut(Lshort)κ (this section), then show that
Lshort and L/Lshort are isomorphic (Section 2.5), and finally come to the proof of
Proposition 2.10 in Section 2.6.

So, for the remainder of this chapter, let R = (X, Φ, Y, Φ∨) be a root datum of
type B2

sc, F4, or G2, let F be a perfect field of characteristic 2, 2, or 3, respectively,
and let L be the corresponding Lie algebra. Observe that for the B2 case we let
the Lie algebra be of type B2

sc (in order for Lshort below to be generated by root
elements), but we let the corresponding group be of type B2

ad (because its action
on the Lie algebra is more natural).

The Lie algebra L has an ideal generated by the short roots:

Lshort =
(

Xα

∣∣∣ α ∈ Φshort
)

L
,

and dim(Lshort) = 1
2 dim(L) (i.e., 5, 26, or 7, for B2, F4, G2, respectively), because

α∨ = [X−α, Xα] ∈ Lshort whenever α ∈ Φshort. The verification that Lshort is in fact an
ideal is straightforward, but needs the fact that F has the appropriate characteristic.
For example, for the case where Φ = B2,

[Xα2 , Xα1+α2 ] = ±(pα2,α1+α2 + 1)Xα1+2α2 = ±2Xα1+2α2 ,

which is only in Lshort if 2 = 0. (So Lshort is not even a subalgebra otherwise).

Example 2.7. To appreciate the difficulties of various Lie algebras over fields
of characteristic 2, consider the Lie algebra L = sl2(F), where char(F) = 2. This
algebra can also be constructed as the Chevalley Lie algebra of type A

sc

1 over F

(cf. Section 1.9).
The Lie algebra structure on L = Fe + F f + Fh is determined by a symmetric

bilinear form B on L with radical h that satisfies [x, y] = B(x, y)h (for all x, y ∈ L).
An interesting consequence of this observation is that apparently the automor-
phism group of L coincides with the symplectic group on the vector space L.
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Here Z(L) = Fh and L/Z(L) is an abelian Lie algebra of dimension 2, so that
Aut(L/Z(L)) ∼= GL(F2).

However, the image of Aut(L) in Aut(L/Z(L)) is isomorphic to SL(F2). The
kernel of the natural map Aut(L) → Aut(L/Z(L)) consists of linear transforma-
tions g of L mapping h to νh and x ∈ Fe + F f to x + λ(x)h, where ν ∈ F, ν 6= 0
and λ is an arbitrary linear functional on Fe +F f . A natural way to rid ourselves
of this kernel is to impose that automorphisms preserve the quadratic form κ on
L given by

κ : L→ F, λee + λ f f + λhh 7→ λeλ f + λ2
h.

Note that B is the bilinear form associated to κ, via B(x, y) = κ(x + y)− κ(x)−
κ(y). Indeed, the generating long root transformations leave κ invariant and, if
x ∈ Fe + F f , then

κ(gx) = κ(x + λ(x)h) = κ(x) + λ(x)2κ(h) = κ(x) + λ(x)2,

so that λ(x) = 0, and
κ(gh) = κ(νh) = ν2,

so that ν = 0. Hence, an element g of the kernel fixes κ if and only if it is the
identity. In other words, Aut(L/Z(L))κ is isomorphic to SL(F2) and hence to
Aut(L).

We finish this example by pointing out that the choice for κ we made is a
natural one. The quadratic form arising from the Killing form of sl2(Z) is given
by

λee + λ f f + λhh 7→ 8(λe + λ f + λ2
h),

so that 1
8 of this form is still integral and hence still defined after tensoring with

GF(2), giving the quadratic form κ.

The same phenomenon occurs for B2, so it is natural to consider Aut(Lshort)κ ,
albeit for a different κ. We define κ = 0 if Φ = F4 or Φ = G2 and let κL be the
quadratic form on L defined in Example 2.6, and κ the restriction of κL to Lshort, if
Φ = B2.

We claim that the action of Aut(L) can actually be seen on Lshort.

Lemma 2.8. Restriction to Lshort is a group isomorphism ρ : Aut(L)→ Aut(Lshort)κ .

Proof Let g ∈ Aut(L). Then g preserves the quadratic form κL and κ is its restriction
to Lshort, so the restriction of g to Lshort lies in Aut(Lshort)κ . This shows that the
homomorphism ρ is well defined, so it remains to prove that ρ is an isomorphism.

To see that ρ is injective, suppose that the restriction of some g ∈ G to Lshort is
the identity. Then, for all x ∈ L and y ∈ Lshort we have (since [x, y] ∈ Lshort)

[x, y] = g[x, y] = [gx, gy] = [gx, y],

so gx− x is centralized by each element of Lshort. Therefore, gx = x + λxz for some
λx ∈ F, where z ∈ Lshort spans the center. But now

κ(x) = κ(gx) = κ(x + λxz) = κ(x) + (λx)
2κ(z),
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forcing λx = 0. This means gx = x and thus g is the identity, and ρ is injective.
To see that ρ is surjective, take h ∈ Aut(Lshort)κ . The automorphism h in-

duces a unique automorphism d(h) of Der(Lshort), given by d(h)D = h−1Dh. Let
InnDer(Lshort) be the inner derivations of Lshort, i.e., those elements of Der(Lshort)
that are elements of Lshort. Clearly, InnDer(Lshort) embeds into Der(Lshort), and d(h)
respects this embedding. Since κ is invariant under h, the bilinear form B is as well.
In particular, the Lie algebra

Der(Lshort)κ = o(Lshort, B) ∩Der(Lshort)B

of elements D ∈ Der(Lshort) with B(Dx, x) ≡ 0 is preserved by h. Indeed, for
D ∈ Der(Lshort)κ we have, for all x ∈ Lshort,

B(d(h)Dx, x) = B(h−1Dhx, x) = B(Dhx, hx) = 0,

so that d(h)D ∈ Der(Lshort)κ . Also, the zeros of B in this algebra are h-invariant,
because it is the only codimension one ideal in Der(Lshort)κ . Hence d(h) leaves
invariant a subalgebra of Der(Lshort)κ isomorphic to L/Z(L).

Now d(h) pulls back to a unique automorphism of L by a similar argument to
the above: the homomorphism assigning to ϑ ∈ Aut(L) the automorphism ϑ ∈
Aut(L/Z(L)) induced by ϑ is faithful. Indeed, if ϑ is the identity on L/Z(L) then
for each x ∈ L there is a λx ∈ F such that ϑ(x) = x + λxz. But then

κL(x) = κL(ϑx) = κL(x + λxz) = κL(x) + λ2
xκL(z) + λxB(x, z) = κL(x) + λ2

x,

so that λx = 0, proving ϑ is the identity on L.
This shows that h ∈ Aut(Lshort) induces a unique automorphism of Der(Lshort),

which we will denote by d(h). Now d(h) induces an automorphism of L/Z(L),
and this corresponds to a unique automorphism of L. This proves ρ is surjective on
Aut(Lshort)κ , and thus finishing the proof of the lemma. �

2.5 Two isomorphic Lie algebras

We define Llong = L/Lshort, so that dim(Llong) = 5, 26, 7 for Φ = B2, F4, G2, respec-
tively. In this section we prove that Llong and Lshort are isomorphic.

To that end, we define a map π from Lshort to Llong, which acts on the basis
elements of Lshort as follows:

π : Lshort → Llong,
{

Xα 7→ εαXδα + Lshort

α∨ 7→ δα∨ + Lshort ,

and is linearly extended to act on the whole of Lshort. Note that π is the inverse of
the map dτ : Lie(G) → Lie(G), in the sense that Im(dτ) = Lshort and Ker(dτ) =
Lshort, so that dτ induces a bijection Llong → Lshort.

Lemma 2.9. The map π is bijective.

Proof It is immediate that π is injective and surjective, but it is less clear that it is a
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valid morphism of Lie algebras. So we verify, for α, β short roots:

[πα∨, πXβ] = εβ[(δα∨), Xδβ] + Lshort

= εβ〈δβ, δα∨〉Xδβ + Lshort

= εβ〈β, α∨〉Xδβ + Lshort

= π(〈β, α∨〉Xβ)

= π[α∨, Xβ].

If α + β is not a root then, by Lemma 2.4(iii), neither is δ(α) + δ(β), so that

[πXα, πXβ] = εαεβ[Xδα, Xδβ] + Lshort = 0 + Lshort = π(0) = π([Xα, Xβ]).

If on the other hand α + β ∈ Φlong then δ(α + β) ∈ Φshort and δ(α) + δ(β) is no root
by Lemma 2.4(iv), so that

[πXα, πXβ] = εαεβ[Xδα, Xδβ] + Lshort = 0 + Lshort

= εα+βNα,βXδ(α+β) + Lshort = π([Xα, Xβ]).

Finally, if α + β ∈ Φshort then δ(α) + δ(β) = δ(α + β) by Lemma 2.4(iv) and

[πXα, πXβ] = εαεβ[Xδα, Xδβ] + Lshort

= εαεβNδα,δβXδα+δβ + Lshort

= εα+βNα,βXδ(α+β) + Lshort

= π(Nα,βXα+β)

= π([Xα, Xβ]),

using Lemma 2.4(ii). So indeed π is an isomorphism between Lshort and Llong. �

2.6 Viewing τ as endomorphism of Aut(L)

The main result of this chapter is the following proposition, which shows that the
automorphism τ of G corresponds to an endomorphism of Aut(L). Moreover, τ
induces a duality on the Lie incidence geometry related to G. The existence of this
duality is well known, but we show how it can be understood in terms of the Lie
algebra of G (cf. Corollary 2.12).

Proposition 2.10. Let Φ be a root system of type B2, F4, or G2, and let F be a perfect
field of characteristic 2, 2, or 3, respectively. Let G be the group of Lie type of type B2

ad,
F4, G2, resp., over F, and let L be the Lie algebra of type B2

sc, F4, G2, resp., over F, so
that G < Aut(L). Recall the automorphism τ : G → G introduced in Proposition 2.5, the
restriction map ρ : Aut(L) → Aut(Lshort)κ proved to be a group isomorphism in Lemma
2.8, and the homomorphism π : Lshort → Llong = L/Lshort proved to be bijective in Lemma
2.9.
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The automorphism τ coincides with the endomorphism g 7→ ρ−1(π−1gπ) of G, where
g denotes the element of Aut(L/Lshort) induced by g.

Proof Let g ∈ G. We prove that ρ(τ(g)) = π−1gπ.

Let α be an arbitrary root and β a short root. We verify that π−1xα(t)πXβ =

τ(xα(t))Xβ. This suffices to prove the proposition since Lshort is generated by such
Xβ by definition and g ∈ G is determined by its action on Lshort by Lemma 2.8.

First, we rule out the case where α = ±δβ. If α = δβ then

π−1xα(t)πXβ = π−1xα(t)(εβXα + Lshort)

= π−1(εβXα + Lshort)

= εβεαXβ

= Xβ

= xβ(εαt)Xβ = τxα(t)Xβ,

where we use the fact that εβεα = εβεδβ = 1 (see Lemma 2.4(i)). If α = −δβ then

π−1xα(t)πXβ = π−1xα(t)(εβX−α + Lshort)

= εβπ−1(X−α − tα∨ − t2Xα + Lshort)

= εβ(ε−αXβ + tβ∨ − t2εαXδα)

= Xβ + (εβt)β∨ − t2X−β

= Xβ + (εαt)β∨ − (εαt)2X−β

= x−β(εαt)Xβ

= τxα(t)Xβ,

where we use ε2
α = ε2

β = 1 and the fact that εβ = ε−δβ = ε−α = εα, again by
repeatedly applying Lemma 2.4(i).

So assume for the remainder of the proof that α 6= ±δβ and observe

π−1xα(t)πXβ = π−1xα(t)πεβXδβ

= π−1εβ

(
Xδβ + tM#

α,δβ,1Xα+δβ + t2M#
α,δβ,2X2α+δβ

+ t3M#
α,δβ,3X3α+δβ + Lshort

)
= Xβ + εβεα+δβtM#

α,δβ,1Xδ(α+δβ) + εβε2α+δβt2M#
α,δβ,2Xδ(2α+δβ)

+ εβε3α+δβt3M#
α,δβ,3Xδ(3α+δβ), (2.11)

where we take M#
α,β,j = Mα,β,j if jα + β is a short root, and 0 otherwise, so that

in the last expression the contribution of a term to the sum is only counted if the
subscripted root γ of the root element Xγ exists and is short.

We first cover the case where α + δβ is not a root. Firstly, note that if δα + β is
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not a root either then (2.11) reduces to

π−1xα(t)πXβ = Xβ = τxα(t)Xβ,

since xδα(t) acts trivially on Xβ. If on the other hand δα + β is a root, then Nδα,β ≡ 0
mod char(F) by Lemma 2.4(iii), so that

π−1xα(t)πXβ = Xβ

= Xβ + Nδα,βtXδα+β

= xδα(t)Xβ = τxα(t)Xβ,

finishing the case where α + δβ is not a root.
Thus the only remaining cases are those where α + δβ ∈ Φ. We finish the proof

by case distinction on char(F) and on the length of α.
If char(F) = 2 (implying ε ≡ 1) and α is short then α + δβ is short (so that

M#
α,δβ,1 = 0), 2α + δβ is long, and 3α + δβ is never a root (see Lemma 2.4(vi)).

Without loss of generality we reduce to the case where β = α2 and α is either α2 or
−(α1 + α2), which shows that Mα,δβ,2 = 1 = Nδα,β and δ(2α + δβ) = δ(2α2 + α1) =
α1 + α2 = δα + β. Now (2.11) reduces to

π−1xα(t)πXβ = Xβ + 0 + t2Mα,δβ,2Xδ(2α+δβ)

= Xβ + t2Nδα,βXδα+β

= xδα(t2)Xβ = τxα(t)Xβ,

as required.
If char(F) = 2 and α is long then (2.11) implies

π−1xα(t)πXβ = Xβ + tNα,δβXδ(α+δβ)

= Xβ + tNδα,βXδα+β)

= xδα(t)Xβ = τxα(t)Xβ,

by Lemma 2.4(v). This concludes the proof for the case where char(F) = 2.
If char(F) = 3 and α is short then α + δβ ∈ Φshort, 2α + δβ ∈ Φshort, and

3α + δβ ∈ Φlong (see Lemma 2.4(vi)). Without loss of generality, fix β = α1. Then
α = α1 or α = −(α1 + α2). For the case where α = β = α1, observe

εβε3α+δβ Mα,δβ,3 = εα1 ε3α1+α2 ·
1
6

Nα1,α2 Nα1,α1+α2 Nα1,2α1+α2

= η1η2 ·
1
6

ε1 · 2ε2 · 3ε3

= η1(−ε2ε3) · ε1ε2ε3

= η1 · −ε1

= εαNα2,α1 = εαNδα,β.

(See Table 1.51 for the values of N.) For the case where β = α1 and α = −α1 − α2,
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we similarly observe that

εβε3α+δβ Mα,δβ,3 = εα1 ε−α1−α2 ·
1
6

N−α1−α2,α2 N−α1−α2,−α1 N−α1−α2,−2α1−α2

= η1η3 ·
1
6
− ε1 · 2ε2 · 3ε1ε3ε4

= ε3ε4 · −ε2ε3ε4

= −ε2ε3ε3

= η2ε3 = εαNα2,α1 = εαNδα,β.

So both for α = α1 and α = −α1 − α2 we find that (2.11) reduces to

π−1xα(t)πXβ = Xβ + 0 + 0 + εβε3α+δβt3Mα,δβ,3Xδ(3α+δβ)

= Xβ + εαt3Nδα,βXδ(3α+δβ)

= xδα(εαt3)Xβ = τxα(t)Xβ,

finishing the case where char(F) = 3 and α is short.

If char(F) = 3 and α is long then first assume α + δβ is not a root. Then both
π−1xα(t)π and xδα(t) fix Xβ. So assume α + δβ is a root. Then it is a long root,
and 2α + δβ and 3α + δβ are not roots by Lemma 2.4(v). Without loss of generality
we may assume β = α1, so that α = 3α1 + α2 or α = −3α1 − 2α2. If α = 3α1 + α2,
observe

εβεα+δβ Mα,δβ,1 = εα1 ε3α1+2α2 N3α1+α2,α2

= η1η3 · −ε4

= −ε2ε3 · ε2

= η2 · −
1
2

Nα1+α2,α1

= εαNδα,β,

where the last equation uses that char(F) = 3. Similarly, if α = −3α1− 2α2, observe

εβεα+δβ Mα,δβ,1 = εα1 ε−3α1−α2 N−3α1−2α2,α2

= η1 · η2 · ε4

= η3ε3ε4 · −ε2ε3 · ε4

= η3 · 2ε2

= εα · N−2α1−α2,α1 = εα · Nδα,β,

again explicitly using that char(F) = 3.
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So both for α = 3α1 + α2 and α = −3α1 − 2α2 this implies that (2.11) reduces to

π−1xα(t)πXβ = Xβ + εβεα+δβtMα,δβ,1Xδ(α+δβ)

= Xβ + εαtNδα,βXδα+β

= xδα(εαt)Xβ = τxα(t)Xβ,

concluding the case where char(F) = 3 and α is long, and therefore the proof of the
proposition. �

We conclude from this proposition that the following sequence is exact:

0 −→ Lshort −→ L −→ Lshort −→ 0,

where the second arrow is simply the embedding of Lshort into L, and the third
arrow is dτ.

Finally, we observe that the elements of L form a geometry in the following
manner. We define P = {FXα | α ∈ Φshort}G and L = {FXβ | β ∈ Φlong}G. (In the
case where Φ = B2 or Φ = G2, the elements of P correspond to points and those
of L to lines.) For pα = FXα ∈ P and lβ = FXβ ∈ L, we take pα incident with lβ

(denoted by pα ∗ lβ) if and only if Xα ∈ [Xβ, Lshort].

Corollary 2.12. The automorphism τ of G induces a duality of (P ,L).

Proof In Proposition 2.10 we have established that τ acts on the entirety of P and
L. The fact that the incidence is invariant under τ follows easily by inspection of
the appropriate root systems. �
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3Split Toral Subalgebras

Recall from Section 1.7.1 that a toral subalgebra of a Lie algebra over a field F is an
abelian subalgebra containing only semisimple elements, and it is called split if the
characteristic roots of all its elements are in F. Furthermore, a subalgebra H of a
Lie algebra L is called a Cartan subalgebra if it is nilpotent and H = NL(H). Recall
from Lemma 1.40 that toral subalgebras and Cartan subalgebras are very closely
related. In this chapter we study the problem of computing split toral subalgebras
of Lie algebras of split simple algebraic groups over a finite field F.

In the case that F is not of characteristic 2 or 3 a Las Vegas algorithm exists, due
to Cohen and Murray [CM09, Lemma 5.7]. Independently, Ryba developed a Las
Vegas algorithm for computing split Cartan subalgebras [Ryb07]. Unfortunately,
Ryba also excludes characteristic 2 and, if the Lie algebra is of type A2 or G2,
characteristic 3. It is, however, claimed that the algorithm may work in some cases in
characteristic 2, but not in all cases (cf. [Ryb07, Section 9.3]). These two algorithms
employ a similar recursive procedure: they descend into Lie algebras of type A1
and lift split toral subalgebras of those Lie algebras to the original Lie algebra.

We first remark that the troublesome characteristic 3 cases that Ryba excludes are
precisely those occurring in Table 4.4 in the next chapter. The problems arising there
may be remedied by some minor modifications to his algorithms. This modification
is based on the observation that the product of two random elements of opposite
3-dimensional eigenspaces is often a split semisimple element. We will not go into
this problem any further.

In this chapter we consider the problem of finding split toral subalgebras over
fields of characteristic 2. In Section 3.1 we investigate a special instance where a split
toral subalgebra is not contained in a split toral subalgebra of maximal dimension.
In Section 3.2 we study the presence of regular semisimple elements in Lie algebras
over fields of characteristic 2, showing that the Las Vegas algorithm by Cohen and
Murray cannot easily be applied in those cases. In Sections 3.3 and 3.4 we describe
a heuristic algorithm to find split maximal toral subalgebras in Lie algebras over
fields of characteristic 2, inspired by the algorithm by Cohen and Murray.

3.1 A characteristic 2 curiosity

For the development of a recursive algorithm for finding split maximal toral subal-
gebras it would be very useful to know that every split toral subalgebra is contained
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in a split maximal toral subalgebra (i.e., a toral subalgebra of maximal dimension
that is split). The algorithm by Cohen and Murray relies on a similar (but weaker)
assertion (cf. [CM09, Proposition 5.8]). This is, however, not in general true in char-
acteristic 2, as we will show in the following example.

We consider the Chevalley Lie algebra L of type C4
sc over GF(2), with root da-

tum R = (X, Φ, Y, Φ∨) and Chevalley basis elements {Xα, hi | α ∈ Φ, i ∈ {1, . . . , 4}}.
Furthermore, we denote the simple roots of Φ by α1, . . . , α4, so that its non-simple
positive roots are

α5 = (1, 1, 0, 0), α6 = (0, 1, 1, 0), α7 = (0, 0, 1, 1), α8 = (1, 1, 1, 0),
α9 = (0, 1, 1, 1), α10 = (0, 0, 2, 1), α11 = (1, 1, 1, 1), α12 = (0, 1, 2, 1),

α13 = (1, 1, 2, 1), α14 = (0, 2, 2, 1), α15 = (1, 2, 2, 1), α16 = (2, 2, 2, 1),

where (c1, c2, c3, c4) denotes c1α1 + c2α2 + c3α3 + c4α4 and the negative roots are
defined accordingly. Now let

y1 = h1 + h3 ∈ Z(L),
y2 = h1 + Xα12 + X−α8 ,
y3 = h2 + Xα3 + X−α3 + Xα15 + X−α15 ,

and H = 〈y1, y2, y3〉L.

Proposition 3.1. The subalgebra H is a 3-dimensional split toral subalgebra of L. However,
there does not exist a split toral subalgebra H′ of L of dimension 4 such that H ⊆ H′.

Proof It is straightforward to verify that H is a split toral subalgebra of L: on diag-
onalization of H in the adjoint representation we obtain 3 eigenspaces of dimension
8 (corresponding to roots (0, 1, 0), (0, 0, 1), and (0, 1, 1)) and an eigenspace L0 of
dimension 12 (corresponding to the root (0, 0, 0) and H itself).

Now suppose there exists a split toral subalgebra H′ of dimension 4 containing
H. This would imply the existence of a y ∈ H′ such that y 6∈ H and [y, H] =
0. Furthermore, by the structure of the root spaces of L (proved in Proposition
4.2 in the next Chapter, see Table 4.4), diagonalization with respect to H′ would
give 6 eigenspaces of dimension 4, and one eigenspace L′0 of dimension 12 (where
H′ ⊆ L′0). This means in particular that L0 = L′0 and that y should have a unique
eigenvalue on L0. Since [y, H] = 0 and H ⊆ L0, the eigenvalue of y on L0 must be
0, and thus y ∈ CH′(L0), implying y ∈ CL(L0).

However, CL(L0) is 4-dimensional and y1, y2, y3 ∈ CL(L0), so that (modulo linear
combinations of y1, y2, y3, and up to scalar multiples) there is only one choice for y:

y = h3 + h4 + Xα3 + Xα9 + Xα12 + X−α3 + X−α5 .

Because the characteristic polynomial of ady is equal to x16(x + 1)4(x2 + x + 1)8,
we see that y is not split, and that therefore H′ is not a split toral subalgebra: a
contradiction. �

In the standard representation of L in terms of 8× 8 matrices in sp8(GF(2)), we
have (the entries equal to 0 have been omitted in order to expose the structure of
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the matrices more clearly):

y1 =



1
1

1
1

1
1

1
1


, y2 =



1 1
1

1
1

1 1
1


,

y3 =



1
1 1

1 1
1

1
1 1

1 1
1


.

Their characteristic polynomials are (x + 1)8, x4(x + 1)4, and (x2 + x + 1)4, respec-
tively. In the adjoint representation, however, their characteristic polynomials are
x36, x20(x + 1)16, and x20(x + 1)16, respectively. This leaves us in the interesting
situation where no field extension is needed to diagonalize H in the adjoint repre-
sentation, but a quadratic field extension is needed to diagonalize H in sp8.

We note that H is inside a 4-dimensional split toral subalgebra of L over a
quadratic extension of F. Let ξ be a primitive element of GF(22), and take H′ =
〈y1, y2, y3, y〉L (where y is as in the proof of Proposition 3.1). Now H′ is a split toral
subalgebra of L, so that we can compute a Chevalley basis with respect to H′. Fur-
thermore, we can find (using generalized row reduction [CMT04]) an element τ of
the corresponding group of Lie type that maps the original Chevalley basis to this
new one:

τ = x4(ξ)x7(ξ)x9(ξ
2)x12(1)x15(ξ

2)x3(ξ
2) · (1, 1, 1, ξ2)·

n1n2n3n2n1n4n3n2n1n4n3n2n4n3 · x9(ξ
2)x11(1)x13(1)x1(ξ

2).

3.2 Regular semisimple elements

In [CM09] Cohen and Murray describe an algorithm for Lang’s theorem, which
needs an algorithm to find split maximal toral subalgebras of Lie algebras. Al-
though they do not claim their algorithm is valid in the characteristic 2 case, some
propositions are. We shall first introduce the concept of regular semisimple ele-
ments in order to expose some of the difficulties in characteristic 2.

An element x of a Lie algebra L is called regular semisimple if its centralizer CL(x)
is a maximal toral subalgebra. We denote the set of regular semisimple elements of
L by Lrss. Moreover, if L is the Lie algebra of a group of Lie type with root datum
R we let Lrss,w be the set of elements x ∈ Lrss for which there exists a g ∈ G such
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GF(2) GF(22) GF(23) GF(3) GF(5) GF(7)
|H| |Hrss| |H| |Hrss| |H| |Hrss| |H| |Hrss| |H| |Hrss| |H| |Hrss|

A1
sc 2 0 4 0 8 0 3 2 5 4 7 6

A1
ad 2 1 4 3 8 7 3 2 5 4 7 6

A2
sc 4 0 16 6 64 42 9 6 25 12 49 30

A2
ad 4 0 16 6 64 42 9 2 25 12 49 30

A3
sc 8 0 64 24 512 336 27 0 125 24 343 120

A(2)
3 8 0 64 24 512 336 27 0 125 24 343 120

A3
ad 8 0 64 6 512 210 27 0 125 24 343 120

A4
sc 16 0 256 0 4096 840 81 0 625 120 2401 360

A4
ad 16 0 256 0 4096 840 81 0 625 24 2401 360

B2
sc 4 0 16 0 64 0 9 0 25 8 49 24

B2
ad 4 0 16 6 64 42 9 0 25 8 49 24

B3
sc 8 0 64 24 512 336 27 0 125 0 343 48

B3
ad 8 0 64 6 512 210 27 0 125 0 343 48

B4
sc 16 0 256 0 4096 1344 81 0 625 0 2401 0

B4
ad 16 0 256 0 4096 840 81 0 625 0 2401 0

C3
sc 8 0 64 0 512 0 27 0 125 0 343 48

C3
ad 8 0 64 0 512 168 27 0 125 0 343 48

C4
sc 16 0 256 0 4096 0 81 0 625 0 2401 0

C4
ad 16 0 256 0 4096 336 81 0 625 0 2401 0

D4
ad 16 0 256 6 4096 546 81 0 625 0 2401 192

D4
sc 16 0 256 96 4096 2688 81 0 625 0 2401 192

F4
ad 16 0 256 0 4096 0 81 0 625 0 2401 0

G2
ad 4 0 16 6 64 42 9 0 25 0 49 12

Table 3.2: Counting regular semisimple elements in split maximal toral subalgebras
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that CL(x) = Hg
0 and gFg−1 ∈ T0ẇ, where T0 is the standard split maximal torus

and H0 = Lie(T0) the corresponding split maximal toral subalgebra. In this section
we are primarily interested in split toral subalgebras, hence in Lrss,id.

The time analysis in [CM09] uses the fact that a significant fraction of the el-
ements in the Lie algebra is regular semisimple. In the following proposition we
show that this is not always true over fields of characteristic 2.

Proposition 3.3. Let F be a field of characteristic 2, let R be a root datum of type A1
sc,

B2
sc, or Cn

sc (where n ≥ 3), and let L be the Lie algebra of type R over F. There exist no
regular semisimple elements in L.

Proof We refer to Proposition 4.2 and Table 4.4 in the next chapter, were it is shown
that in the cases mentioned the 0-eigenspace of a split toral subalgebra contains
some of the root spaces. This in particular implies that if H is a split maximal toral
subalgebra of L then H ( CL(H).

So suppose x ∈ Lrss,id, so that CL(x) = H, for some split maximal toral subal-
gebra H of L. However, x ∈ H since x ∈ CL(x), so that CL(x) ⊇ CL(H) ) H, a
contradiction. �

This shows that in some cases in characteristic 2 there is a complete absence
of regular semisimple elements. In other cases in characteristic 2, however, regular
semisimple elements are scarce as well. In Table 3.2 we show the results of explicitly
counting regular semisimple elements. For each of 23 Chevalley Lie algebras L, and
each of 6 fields F, this table shows in the first column the number of elements in a
split maximal toral subalgebra H, and in the second column the number of those
that are regular semisimple.

From Table 3.2 we conclude that over the field with 2 elements there are almost
no semisimple elements, regardless of the type of the Lie algebra. Moreover, even
over small fields of odd characteristic the number of regular semisimple elements
with a split centralizer may be small, or even 0.

3.3 A heuristic algorithm

Proposition 3.3 indicates that the approach for finding split maximal toral subalge-
bras described by Cohen and Murray [CM09, Section 5] will not in general work in
the cases covered by the proposition: there do not exist enough regular semisimple
elements in the Lie algebra. Moreover, that algorithm strongly relies on the fact
that root spaces are 1-dimensional, something that is not true over characteristic 2
as shown in Proposition 4.2 (in Section 4.2).

Ryba explicitly notes [Ryb07, Section 9] that the algorithm he describes is not
easily extended to work over fields of characteristic 2, largely because of similar
problems. Finally, the counterexample in Section 3.1 suggests that algorithms for
finding split maximal toral subalgebras run the risk of descending into a split toral
subalgebra that is not in a split toral subalgebra of maximal dimension.

In this section we describe a heuristic Las Vegas type algorithm for finding split
maximal toral subalgebras in characteristic 2. Unfortunately, we have no bound
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FindSplitSemisimpleElt

in: An eigenspace V of a semisimple element of the Lie algebra M ⊆ L,
out: A split semisimple element h ∈ M, or fail.
begin
1 let S = 〈V〉M be the subalgebra of M generated by V,
2 let I = (V)M be the ideal of M generated by V,
3 if dim([S, S]) = 1 then

/* Case (A) */
4 let h ∈ [S, S] be such that [S, S] = 〈h〉F.
5 else if [I, I] = I and dim([S, S]) ∈ {2, 3} then

/* Case (B) */
6 let h be a random non-zero element of [S, S].
7 else if dim(I) 6= 0 and dim(I) is even and dim([I, I]) = 0

and dim([S, S]) = 0 then
/* Case (C) */

8 find an h ∈ M such that [h, e] = e for all e ∈ I.
9 else if dim(S) = 6 and [I, I] = S and dim([S, S]) = 2 then

/* Case (D) */
10 let h be a random non-zero element of [S, S].
11 else if dim(I) 6= 0 and dim(I) is even and dim([I, I]) 6= 0

and dim([S, S]) = 0 then
/* Case (E) */

12 find an h ∈ I such that [h, e] = e for all e ∈ S.
13 else if dim(V) is even and dim([S, S]) 6= 0 then

/* Case (F) */
14 let h be a random non-zero element of [S, S]
15 end if,
16 if h is defined and h pulls back to split semisimple elements in L then
17 return h.
18 else
19 return fail.
20 end if.

end

Algorithm 3.4: Finding a split semisimple element in an eigenspace
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SplitMaximalToralSubalgebra

in: A Lie algebra L over a finite field F of characteristic 2,
out: A split maximal toral subalgebra H of L.
begin
1 let M = L, H = 0,
2 while M 6= 0 do
3 if dim(Z(M)) > 0 then

/* Take out the center */
4 if Z(M) is split semisimple then let H = H ∪ Z(M).
5 let M = M/Z(M).
6 else

/* Try to find a new element of H */
7 let h′ be a random non-zero semisimple element of M,
8 if h′ is split semisimple in L then
9 let h = h′.
10 else

/* Use this h′ as input for FindSSElt */
11 for each eigenvalue v of h′ do
12 let V be the v-eigenspace of h′,
13 let h = FindSplitSemisimpleElt(V, M, L),
14 if h 6= fail then break.
15 end for,
16 end if,
17 if h 6= fail then
18 let H = H ∪ h,
19 let M = CM(h)/(h)M.
20 end if.
21 end if.
22 end while.

end

Algorithm 3.5: Finding a split maximal toral subalgebra
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on the probability that it completes successfully, and therefore no estimate of the
runtime. However, we do provide the intuition behind the design of the algorithm
(in the remainder of this section) and we show that the implementation is successful
(we give timings in Section 3.4).

For the remainder of this section we let L be the Lie algebra of a split simple
algebraic group defined over a finite field F of characteristic 2, and we assume L to
be given as a structure constant algebra. The goal of the algorithm described is to
find a split maximal toral subalgebra H of L.

The general principle is given in Algorithm 3.5. This algorithm repeatedly tries
to find a split semisimple element h ∈ M (initially M = L), and then recursively
continues the search in CM(h)/(h)M. It attempts to find such split semisimple
elements by taking a random non-zero semisimple element h′, and producing a
random split semisimple element using suitable eigenspaces of h′. The latter process
is described in Algorithm 3.4.

In order to clarify Algorithm 3.4 we let R be an irreducible root datum, F a field
of characteristic 2, and L the Lie algebra of type R over F. Furthermore, we let H be
the standard split maximal toral subalgebra of L, and recall the definition of roots
of H on L from Section 1.9.1. Observe first of all that, since char(F) = 2, the root
spaces Lα and L−α coincide for all α ∈ Φ. This implies that α∨ ∈ [Lα, Lα], prompting
us to consider [S, S] in line 4 of Algorithm 3.4.

We justify the choices for the various other cases in this algorithm using the data
in Table 3.6. In the first column that table contains the root data R that we will prove
have multidimensional root spaces over fields of characteristic 2 (see Proposition 4.2
in the following chapter). For each of these the dimensions and multiplicities, in the
same notation used in Table 4.4, are shown in the second column labeled Mult. To
clarify the other columns we let V be one of the eigenspaces mentioned (e.g., for the
eighth line of the table L = Bn

ad(F) and V is one of the 4-dimensional (long) root
spaces). Then we let S = 〈V〉L be the subalgebra generated by V and I = (V)L the
ideal generated by V. Now the third column contains the dimension of S, the fourth
column the dimension of [S, S] and the fifth the dimension of [S, S] ∩ H. The sixth
column contains the dimension of I, or “L” if I = L, or “L− 1” if I is a codimension
one ideal of L, and the seventh column contains the dimension of [I, I], or “I” if
[I, I] = I. Finally, the eighth column shows which of the cases of Algorithm 3.4 is
based on this type of root space.

The case distinction in Algorithm 3.4 is based on the observations in Table 3.6 in
the following manner.

(A) In each of the cases where dim([S, S]) = 1 we have [S, S] ⊆ H, prompting us
to take h to be a basis element of [S, S]. Note that this case also applies if V
corresponds to the direct sum of several Lie algebras of type A1

sc.

(B) In the cases where [I, I] = I and dim([S, S]) ∈ {2, 3} we also have [S, S] ⊆ H,
so that a random non-zero element of [S, S] seems a good candidate.

(C) In the cases where dim([I, I]) = dim([S, S]) = 0 the best candidate we can
find is an element h ∈ M that acts on I as a split semisimple element should.
Note that this case also applies if V corresponds to the direct sum of several
Lie algebras of type A1

ad.
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R Mult S [S, S] [S, S] ∩ H I [I, I] Soln

A1
ad 2 2 0 0 2 2 (C)

A1
sc 2 3 1 1 3 1 (A)

A3
sc 43 6 2 2 L I (B)

A(2)
3 43 5 1 1 L− 1 I (A)

B2
ad 22 2 0 0 4 0 (C)

b 4 5 1 1 9 5 (A)

Bn
ad (n ≥ 3) 2n 2 0 0 2n 0 (C)

b 4(
n
2) 5 1 1 L− 1 I (A)

B2
sc 4 6 2 2 L 6 (D)

b 4 5 1 1 5 1 (A)

B3
sc 63 8 2 2 L I (B)

B4
sc 24 3 1 1 9 1 (A)

b 83 11 3 3 L I (B)

Bn
sc (n ≥ 5) 2n 3 1 1 2n + 1 1 (A)

b 4(
n
2) 6 2 2 L I (B)

Cn
ad (n ≥ 3) 2n 3n− 1 n− 1 n− 1 L (F)

b 2n(n−1) 3 1 1 I (A)

Cn
sc (n ≥ 3) 2n 3n n n L (F)

b 4(
n
2) 5 1 1 I (A)

D4
sc 83 11 3 3 L I (B)

D(1),(n),(n−1)
4 46 5 1 1 L− 1 I (A)

Dn
sc (n ≥ 5) 4(

n
2) 6 2 2 L I (B)

D(1)
n (n ≥ 5) 4(

n
2) 5 1 1 L− 1 I (A)

F4 212 3 1 1 26 I (A)

b 83 11 3 3 L I (B)

G2 43 5 1 1 L I (A)

Table 3.6: Eigenspaces, their subalgebras, and their ideals in characteristic 2
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(D) In the cases where dim(S) = 6 (prime example being the long roots in B2
sc)

we also pick a random non-zero element of [S, S] as candidate.

(E) This case is special since it does not occur in Table 3.6. It is however needed
to successfully complete the search for a split maximal toral subalgebra if L is
of type Cn

sc. The solution is similar to that of case (C).

(F) This case is needed for Lie algebras of type Cn, where again [S, S] ⊆ H, but
the dimension of [S, S] can be as large as dim(H). Again, we pick a random
non-zero element of [S, S] as candidate.

3.4 Notes on the implementation

From the manner in which Algorithm 3.5 is specified we can conclude that Split-
MaximalToralSubalgebra may run for an infinite time. Indeed, M only decreases
in dimension if a new split semisimple element is found and such an element does
not always exist, as shown in Section 3.1. Also, in many cases the algorithm Find-
SplitSemisimpleElt, used by SplitMaximalToralSubalgebra, will fail to return
a split semisimple h, due to the simple fact that S is not of a suitable type or the
candidate h turns out not to be split. In the implementation of this algorithm these
problems are remedied by limiting the number of random tries allowed for each
M in line 7 of SplitMaximalToralSubalgebra to some finite number. If after that
number of tries no new H was found, the algorithm terminates and reports failure.

The influence of the size of the field on the performance of the algorithm is
twofold. Firstly, the smaller the field, the higher the probability of finding split
semisimple elements in Algorithm 3.4. On the other hand, the bigger the field, the
higher the probability that the random semisimple elements picked in Algorithm
3.5 have eigenspaces of small dimension. This dichotomy yields an algorithm whose
performance is acceptable both over small and over larger fields.

We present timings of runs of the SplitMaximalToralSubalgebra algorithm
on Lie algebras of split simple algebraic groups over fields of characteristic 2. In
every case the algorithm was run repeatedly until successful completion. In Table
3.7 and in Figure 3.8, the algorithm was run for Lie algebras up to rank 8, over fields
of size 2, 26, and 210. In Figure 3.9 the algorithm was run for the Lie algebras of 7
different root data, varying the size of the field between 2 and 220. All timings are
in seconds and were created using Magma 2.15 [BC08] on a Quad-Core Intel Xeon
running at 3 GHz with 16GB of memory available, although only one core and less
than 2GB of memory were used.
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R GF(2) GF(26) GF(210)

ASC
1 0.1 0.0 0.0

AAd
1 0.0 0.0 0.0

ASC
2 0.0 0.0 0.0

AAd
2 0.0 0.0 0.0

ASC
3 0.0 0.1 0.1

A(2)
3 0.0 0.1 0.1

AAd
3 0.0 0.1 0.1

ASC
4 0.2 0.6 0.3

AAd
4 0.4 0.4 0.4

ASC
5 0.9 2.0 5.2

A(3)
5 0.7 1.8 2.2

A(2)
5 1.3 5.1 2.5

AAd
5 0.9 1.9 2.5

ASC
6 3.6 10 8.9

AAd
6 4.0 12 10

ASC
7 22 109 52

A(4)
7 19 45 88

A(2)
7 19 82 86

AAd
7 18 38 53

ASC
8 67 278 390

A(3)
8 68 134 163

AAd
8 69 151 227

BSC
2 0.1 0.1 0.1

BAd
2 0.0 0.0 0.0

BSC
3 0.1 0.2 0.1

BAd
3 0.2 0.2 0.2

BSC
4 0.8 1.2 2.0

BAd
4 1.2 1.4 1.0

BSC
5 8.3 8.4 8.5

BAd
5 3.1 8.8 8.4

BSC
6 85 39 67

BAd
6 17 55 81

BSC
7 120 212 272

BAd
7 93 206 203

BSC
8 772 991 1123

BAd
8 544 1060 1631

CSC
3 0.6 1.1 1.4

CAd
3 0.1 0.1 0.2

R GF(2) GF(26) GF(210)

CSC
4 8.6 9.3 11

CAd
4 2.7 2.9 1.8

CSC
5 37 70 137

CAd
5 10 12 30

CSC
6 221 386 682

CAd
6 63 84 152

CSC
7 890 7630 12201

CAd
7 170 327 722

CAd
8 765 1626 23109

CSC
8 3907 23383 34536

DSC
4 0.3 0.6 0.6

D(2a)
4 0.3 0.6 0.6

D(2b)
4 6.7 0.6 0.7

D(2c)
4 0.9 1.0 0.7

DAd
4 1.7 0.5 0.9

DSC
5 1.9 4.7 5.0

D(2)
5 2.8 4.0 4.4

DAd
5 8.1 5.1 15

DSC
6 16 37 68

D(2a)
6 12 28 36

D(2b)
6 14 102 126

D(2c)
6 19 27 59

DAd
6 13 29 48

DSC
7 64 125 165

D(2)
7 105 129 175

DAd
7 1217 299 464

DSC
8 607 577 2036

D(2a)
8 367 719 958

D(2b)
8 5067 2162 7613

D(2c)
8 3055 1364 3192

DAd
8 1716 2700 1305

ESC
6 34 52 80

EAd
6 36 43 66

ESC
7 985 6523 3212

EAd
7 254 1609 1663

E8 2511 81835 17628
F4 2.4 9.7 6.2
G2 0.0 0.0 0.0

Table 3.7: Runtimes for SplitMaximalToralSubalgebra
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0.01
8

rnk AnAd BnAd CnSC DnAd O(n^G2)
1
2
3
4
5

1 0.010 0.010 0.050 0.010 0.01
2 0.010 0.020 0.140 0.010 2.56
3 0.050 0.150 1.140 0.110 65.61
4 0.430 1.390 9.270 0.510 655.36
5 1.910 8.800 69.810 5.140 3906.25

0.01
8

rnk AnAd BnAd CnSC DnAd O(n^G2)
6
7
8

6 11.540 55.280 386.100 28.950 16796.16
7 37.540 205.750 7630 299.170 57648.01
8 151.440 1060.08 23382.8 2699.68 167772.16

O(n8)
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Figure 3.8: Runtimes for SplitMaximalToralSubalgebra for F = GF(26)

j
0.07

A5Ad B5Ad C5SC D5Ad E6 F4 G2 O(j)
1
2
3
4
5
6

1.097 5.060 31.558 2.620 22.210 3.915 0.025 0.07
1.123 5.143 46.375 9.918 35.602 3.442 0.032 0.14
1.470 6.783 49.285 12.465 32.300 5.587 0.038 0.21
1.665 6.628 73.407 5.600 39.815 9.072 0.037 0.28
2.072 7.508 69.935 11.737 59.253 9.392 0.035 0.35
2.220 7.698 84.915 12.025 44.978 6.893 0.043 0.42

j
0.07

A5Ad B5Ad C5SC D5Ad E6 F4 G2 O(j)
7
8
9
10
11
12
13
14
15
16
17
18
19
20

2.460 8.923 99.880 9.747 39.800 5.413 0.043 0.49
2.582 8.280 88.867 9.802 51.380 7.315 0.037 0.56
2.212 10.600 106.678 7.677 102.568 6.732 0.035 0.63
2.047 12.685 107.930 6.373 74.115 7.507 0.035 0.7
3.315 9.855 104.888 8.230 84.880 6.915 0.032 0.77
2.295 11.150 108.665 5.705 62.810 8.125 0.037 0.84
2.590 12.007 91.825 6.180 79.270 6.780 0.037 0.91
3.503 8.965 120.237 7.852 48.712 8.265 0.035 0.98
2.210 12.175 109.690 6.790 118.927 7.442 0.032 1.05
3.267 10.540 118.660 9.035 71.028 10.745 0.045 1.12
2.752 10.360 128.510 11.243 95.140 9.858 0.042 1.19
3.505 12.502 118.867 11.655 126.105 7.565 0.055 1.26
3.875 11.957 166.295 7.858 119.753 10.302 0.052 1.33
6.163 27.397 321.773 18.852 363.613 21.268 0.073 1.4
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Figure 3.9: Runtimes for SplitMaximalToralSubalgebra for F = GF(2j)
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4Computing Chevalley Bases

In this chapter we show how to compute a Chevalley basis for a Lie algebra of a split
simple algebraic group. For the definition of Chevalley basis we refer to Section 1.9,
where in particular the theorem due to Chevalley is mentioned: The Lie algebra of
a split simple algebraic group has a Chevalley basis. Existing algorithms (due to
De Graaf [dG00, Section 5.11] and Cohen and Murray [CM09, Section 5]) assume
that the field of definition of the Lie algebra under consideration has characteristic
distinct from 2 and 3.

We discuss the considerably difficulties encountered in these excluded charac-
teristics in Section 4.1. The main difficulty, namely roots with a multiplicity greater
than 1, is described in Proposition 4.2 (see Section 4.2). The proof of this proposition
is Section 4.4. We give an outline of our algorithm in Section 4.3, and describe the
algorithm in more detail in Sections 4.5 and 4.6. In Section 4.7, we finish the proof
of Theorem 4.1 and discuss some further problems for which our algorithm may
be of use. Finally, in Section 4.8 we analyse the performance of our algorithm in
practice.

This chapter is based on the paper titled Computing Chevalley bases in small char-
acteristics by Arjeh M. Cohen and the author of this thesis [CR09]. The main result
of this chapter is the following theorem:

Theorem 4.1. Let L be the Lie algebra of a split simple algebraic group with root datum
R of rank n defined over an effective field F. Suppose that H is an F-split maximal toral
subalgebra of L. If L is given as a structure constant Lie algebra and H is given by means
of a spanning set, then there is a Las Vegas algorithm that finds a Chevalley basis of L
with respect to H and R. If F = GF(q), this algorithm needs at most O∼(n10(log q)4)
elementary operations.

Better estimates than those of the theorem are conceivable. However, our pri-
mary goal will be to establish that the algorithm is polynomial in n log(q). More-
over, in comparison to the dimension O(n2) of L or the estimate O(n6) for arithmetic
operations needed for multiplying two elements of L, the high exponent of n in the
timing looks more reasonable than it may seem at first sight.

The proof of Theorem 4.1 rests on Algorithm 4.3, which is really an outline
of an algorithm further specified in the course of this chapter. The algorithm is
implemented in Magma [BC08].

The algorithm is mostly deterministic. However, in some instances where F is
of characteristic 2 (such as Method [B2

sc] and the case where L is of type D4; see
Sections 4.5.3, 4.5.5, and 4.5.6) we use the Meat-axe (see Section 1.13) for finding



90 4. COMPUTING CHEVALLEY BASES

a particular submodule of a given module. We will apply the Meat-axe only to
modules of bounded dimension, so that the factor dim(L)3 = O(n6) in the estimate
for the Meat-axe running time when F = GF(q) plays no role in the asymptotic
time analysis.

Algorithm 4.3 assumes that besides L and H the root datum R of the underlying
group is known. However, in Section 5.1 we show that this root datum can be
determined by running the algorithm a small number of times.

4.1 Some difficulties

Thanks to the characterization of Lie algebras of split reductive algebraic groups
described in Theorem 1.44 (see Section 1.9) we can view the Lie algebras in Theorem
4.1 as Chevalley Lie algebras.

So we will deal with the construction of a Chevalley basis for a Chevalley Lie
algebra L over a field F, given only a split maximal toral subalgebra H and a root
datum R. The output of our algorithm is an ordered basis {Xα, hi | α ∈ Φ, i ∈
{1, . . . , n}} of L (based on some ordering of the elements of Φ) satisfying (CB1)–
(CB4).

If we consider Lie algebras of simple algebraic groups over a field F of character-
istic 2 or 3, the current algorithms (mostly designed for characteristic 0; see Section
1.13) break down in several places. Firstly, the root spaces (joint eigenspaces) of
the split maximal toral subalgebra H acting on L are no longer necessarily one-
dimensional. This means that we will have to take extra measures in order to iden-
tify which vectors in these root spaces are root elements. This problem will be dealt
with in Section 4.5. Secondly, we can no longer always use root chains to compute
Cartan integers 〈α, β∨〉, which are the most important piece of information for the
root identification algorithm in the general case. We will deal with this problem in
Section 4.6. Thirdly, when computing the Chevalley basis elements for non-simple
roots, we cannot always obtain Xα+β from (CB4) by Xα+β = 1

Nα,β
[Xα, Xβ] as Nα,β

may be a multiple of char(F). This problem, however, is easily dealt with by using
a different order in which we fix the scalar multiplies of the roots, so we will not
discuss this any further.

4.2 Roots

Recall from Section 1.9.1 that a root of H on L is a function

α : h 7→
n

∑
i=1
〈α, yi〉ti, where h =

n

∑
i=1

yi ⊗ ti =
n

∑
i=1

tihi,

for some α ∈ Φ, where 〈α, yi〉 is interpreted in Z (if p = 0) or Z/pZ (if p 6= 0), and
that the multiplicity of α in L is the number of β ∈ Φ such that α = β.

If each root has multiplicity 1, there is a bijection between Φ and Φ. Our first
order of business is to decide in which cases higher multiplicities occur. Observe
that α = 0 if and only if −α = 0 so the multiplicity of the 0-root space is never 1.
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ChevalleyBasis

in: The Lie algebra L over a field F of a split reductive algebraic group,
a split maximal toral subalgebra H of L, and
a root datum R = (X, Φ, Y, Φ∨).

out: A Chevalley basis B for L with respect to H and R.
begin
1 let E, Φ = FindRootSpaces(L, H),
2 let X = FindFrame(L, H, R, Φ, E),
3 let ι = IdentifyRoots(L, H, R, Φ, X ),
4 let X0, H0 = ScaleToBasis(L, H, R, X , ι),
5 return X0, H0.

end

Algorithm 4.3: Finding a Chevalley Basis

If char(F) = 2, then all non-zero multiplicities are at least 2 as α and −α coincide.
Steinberg [Ste61, Proposition 7.4] studied part of the classification of Chevalley Lie
algebras L for which higher multiplicities occur (namely the simply connected case
with Dynkin type An, Dn, E6,7,8) in a search for all Lie algebras L with Aut(L/ Z(L))
strictly larger than G. In Section 4.4 of this paper we prove the following propo-
sition, which generalizes Steinberg’s result to arbitrary root data. The study of
multiplicities of roots can easily be reduced to the case where G is simple, since
the multiplicity of a root of H on the Lie algebra L of a central product of split
reductive linear algebraic groups is equal to the minimum over all multiplicities of
its restrictions to summands of the corresponding central sum decomposition of L.

Proposition 4.2. Let L be the Lie algebra of a split simple algebraic group over a field F of
characteristic p with root datum R = (X, Φ, Y, Φ∨). Then the multiplicities of the roots in
Φ are either all 1 or as indicated in Table 4.4.

In Table 4.4, the Dynkin type R of L and the characteristic p of F are indicated by
R(p) in the first column. The isogeny type of R appearing as a superscript on R(p)
is explained in the beginning of Section 4.4. The multiplicities of the root spaces
appear in the second column under Mults. Those shown in bold correspond to the
root 0. For instance, for B2

sc(2) we have dim(CL(H)) = 6, so the multiplicity equals
6− 2 = 4. The third column, with header Soln, indicates the method chosen by our
algorithm. Further details appear later, in Section 4.5.

4.3 Outline of the algorithm

In this section we give a brief overview of the inner workings of Algorithm 4.3. It is
assumed that L is isomorphic to LF(R). The FindRootSpaces algorithm consists of
simultaneous diagonalization of L with respect to adh1 , . . . , adhn , where {h1, . . . , hn}
is a basis of H. Its output is a basis E of H-eigenvectors of L and the set Φ of roots
of H on L. This is feasible over F because the elements are semisimple and H is
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R(p) Mults Soln

A2
sc(3) 32 [Der]

G2(3) 16, 32 [C]

A1
sc(2) 2 [A1

sc]

Asc,(2)
3 (2) 43 [Der]

B2
ad(2) 22, 4 [C]

Bn
ad(2) (n ≥ 3) 2n, 4(

n
2) [C]

B2
sc(2) 4, 4 [B2

sc]

B3
sc(2) 63 [Der]

B4
sc(2) 24, 83 [Der]

Bn
sc(2) (n ≥ 5) 2n, 4(

n
2) [C]

R(p) Mults Soln

Cn
ad(2) (n ≥ 3) 2n, 2n(n−1) [C]

Cn
sc(2) (n ≥ 3) 2n, 4(

n
2) [B2

sc]

D(1),(n−1),(n)
4 (2) 46 [Der]

D4
sc(2) 83 [Der]

D(1)
n (2) (n ≥ 5) 4(

n
2) [Der]

Dn
sc(2) (n ≥ 5) 4(

n
2) [Der]

F4(2) 212, 83 [C]

G2(2) 43 [Der]

all remaining(2) 2|Φ
+ | [A2]

Table 4.4: Multidimensional root spaces

split. As dim(L) = O(n2), these operations need time O∼(n6 log q) for each basis
element of H, so the total cost is O∼(n7 log q) elementary operations.

The algorithm called FindFrame is more involved, and solves the difficulties
mentioned in Section 4.1 by various methods. The output X is a Chevalley frame, that
is, a set of the form {FXα | α ∈ Φ}, where Xα (α ∈ Φ) belong to a Chevalley basis
of L with respect to H and R. If all multiplicities are 1 then FindFrame is trivial,
meaning that X = {Fx | x ∈ E \ H} is the required result. The remaining cases
are identified by Proposition 4.2, and the algorithms for these cases are indicated
by [A2], [C], [Der], [B2

sc] in Table 4.4 and explained in Section 4.5.
In IdentifyRoots we compute Cartan integers and use these to make the iden-

tification ι between the root system Φ of R and the Chevalley frame X computed
previously. This identification is again made on a case-by-case basis depending on
the root datum R. See Section 4.6 for details.

The algorithm ends with ScaleToBasis where the vectors Xα (α ∈ Φ) belonging
to members of the Chevalley frame X are picked in such a way that X0 = (Xα)α∈Φ
is part of a Chevalley basis with respect to H and R, and a suitable basis H0 =
{h1, . . . , hn} of H is computed, so that they satisfy the Chevalley basis multiplication
rules. This step involves the solving of several systems of linear equations, similar
to the procedure explained in [CM09, Algorithm 9], which takes time O∼(n8 log q).

4.4 Multidimensional root spaces

In this section we prove Proposition 4.2, but first we explain the notation in Table
4.4. As already mentioned, the first column contains the root datum R specified
by means of the Dynkin type with a superscript for the isogeny type, as well as
(between parentheses) the characteristic p. A root datum of type A3 can have any
of three isogeny types: adjoint, simply connected, or an intermediate one, corre-
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sponding to the subgroup of order 1, 4, and 2 of its fundamental group Z/4Z,
respectively (see Section 1.1.3). We denote the intermediate type by A(2)

3 . For com-
putations we fix root and coroot matrices for each isomorphism class of root data,
as indicated in Section 1.3. For A3, for example, the Cartan matrix is

C =

 2 −1 0
−1 2 −1
0 −1 2

 .

For the adjoint isogeny type A3
ad we take the root matrix A to be equal to the

identity matrix I and the coroot matrix B to be equal to C. Similarly, for A3
sc we

have A = C and B = I. For the intermediate case A(2)
3 for instance, we take

A =

1 0 0
0 1 0
1 0 2

 and B =

 2 −1 −1
−1 2 0
0 −1 1

 .

It is straightforward to check that indeed det(A) = 2 = det(B) and AB> = C. We
refer to Section 1.3 for the possible isogeny types of irreducible root data and their
notation.

Assume the setting of Proposition 4.2. By Theorem 1.44 there is an irreducible
root datum R = (X, Φ, Y, Φ∨) such that L = Lie(G) satisfies L ∼= LF(R). Also, all
split maximal toral subalgebras H of L are conjugate under G, so the multiplicities
of LF(R) do not depend on the choice of H. For the proof of the proposition, there
is no harm in identifying L with LF(R) and H with the Lie algebra of a given split
maximal torus of G.

As all multiplicities are known to be 1 if char(F) = 0, we will assume that
p = char(F) is a prime. We will write ≡ for equality mod p. (To prevent confusion
we will sometimes add: mod p.) We begin with two lemmas.

Lemma 4.5. Let α, β ∈ Φ. Then α = β if and only if (cα − cβ)A ≡ 0.

Proof For h ∈ H, by definition, 〈α, h〉 = 〈cα A, h〉 = cα Ah>. This implies that α = β
if and only if cα Ah> ≡ cβ Ah> for all h ∈ H, which is equivalent to (cα − cβ)A ≡ 0.
�

Lemma 4.6. Let R1, R2 be irreducible root data of the same rank and with the same Cartan
matrix C and denote their root matrices by A1 and A2, respectively.

(i) If det(A2) strictly divides det(A1), then the multiplicities in LF(R1) are greater
than or equal to those in LF(R2).

(ii) If p 6 |det(C), then the multiplicities of LF(R1) and LF(R2) are the same.

Proof (i). Without loss of generality, we identify the ambient lattices X and Y with
Zn and choose the same bilinear pairing (as in Section 1.3) for each of the two root
data R1 and R2. The condition that det(A2) strictly divides det(A1) then implies
that the columns of A1 belong to the lattice spanned by the columns of A2. Hence
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A1 = A2M for a certain integral n × n matrix M. Thus (cα − cβ)A2 ≡ 0 implies
(cα − cβ)A1 ≡ (cα − cβ)A2M ≡ 0, proving the lemma in view of Lemma 4.5.

(ii). As det(C) 6≡ 0, the determinants of the coroot matrices B1 and B2 are non-zero
modulo p, and A1 = A2(B2B−1

1 ) and A2 = A1(B1B−1
2 ). It follows that (cα− cβ)A2 ≡

0 is equivalent to (cα − cβ)A1 ≡ 0. �

A typical case where part (i) of this lemma can be applied is when the adjoint
and simply connected case have the same multiplicities, for then every intermediate
type will have those multiplicities as well. It immediately follows from Lemma 4.6
that the root space dimensions are biggest in the simply connected case, and least
in the adjoint case. Thus considering root data of the adjoint and simply connected
isogeny types often suffices to understand the intermediate cases. Part (ii) indicates
that in many cases even one isogeny type will do.

The proof of Proposition 4.2 follows a division of cases according to the different
Dynkin types of the root datum R. For each type, we need to determine when
distinct roots α, β exist in Φ such that α = β. By Lemma 4.6(ii), there are deviations
from the adjoint case only if p divides det(C).

As the Weyl group W embeds in NG(H)/T, and acts equivariantly on Φ and
Φ = Φ(L, H), the multiplicity of a root α ∈ Φ only depends on the W-orbit of
α ∈ Φ. By transitivity of the Weyl group on roots of the same length in Φ, it suffices
to consider only α = α1 in the cases where all roots in Φ have the same length
(An, Dn, E6,7,8) and α = α1 or αn if there are multiple root lengths (Bn, Cn, F4, G2).

In the adjoint cases, the simple roots α1, . . . , αn are the standard basis vectors
e1, . . . , en, since then the root matrix A and the coroot matrix B are I and C>, re-
spectively. Similarly, in the simply connected cases, the simple roots α1, . . . , αn are
the rows of the Cartan matrix C, since then A = C and B = I. We write c = cβ so
β = cA and either all ci ∈N or all ci ∈ −N.

4.4.1 An (n ≥ 1)

The root datum of type An has Cartan matrix

C =


2 −1 0 . . . 0
−1 2 −1 . . . 0

...
. . . . . . . . .

...
0 . . . −1 2 −1
0 . . . 0 −1 2

 ,

and the roots are
±(αj + · · ·+ αk), 1 ≤ j ≤ k ≤ n,

where {α1, . . . , αn} are the simple roots, thus giving a total of 2 · 1
2 n(n + 1) roots.

For the adjoint case, suppose α1 = β. Observe that all ci ∈ {0,±1}. Since A = I,
we must have c1 ≡ 1 and cj ≡ 0 (j = 2, . . . , n), which implies either p 6= 2, c1 = 1,
and c2 = · · · = cn = 0, or p = 2, c1 = ±1, and c2 = · · · = cn = 0. Since we assumed
β 6= α1 we find p = 2 and β = −α1, giving n2+n

2 root spaces of dimension 2.
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In the simply connected case the simple roots are equal to the rows of C, so
that α1 = β implies 2c1 − c2 ≡ 2, −c1 + 2c2 − c3 ≡ −1, −cj−2 + 2cj−1 − cj ≡ 0 for
j = 4, . . . , n, and −cn−1 + 2cn ≡ 0. We will deal with the case n = 1 separately
below.

We distinguish three possibilities: c1 = 1, c1 = 0, and c1 = −1. If c1 = 1, then
c2 ≡ 0, so c2 = 0. As c1α1 + · · ·+ cnαn must be a root, this implies c3 = · · · = cn = 0,
forcing β = α1, a contradiction.

If c1 = 0, then −c2 ≡ 2, so that either p = 2 and c2 = 0, or p = 3 and c2 = 1.
In the first case, we find c3 ≡ 1, giving a contradiction if n ≥ 5 (because then
c4 ≡ 0 and c5 ≡ 1), a contradiction if n = 4 (because then the last relation becomes
0 = −c3 + 2c4, which is not satisfied). Consequently, n = 3 and p = 2; the resulting
case is discussed below. In the second case, where p = 3 and c2 = 1, we find
−1 ≡ 2− c3, so that c3 ≡ 0, giving a contradiction if n ≥ 4 (because then c4 ≡ 1), a
contradiction if n = 3 (because then the last relation becomes 0 = −c2 + 2c3, which
is not satisfied). It follows that n = 2 and p = 3; this case is also discussed below.

If c1 = −1, then −c2 ≡ 4, so that either p = 2 and c2 = 0, or p = 3 and c2 = −1.
In the first case, we find c3 = · · · = cn = 0, so β = −α1. In the second case, we find
that either n = 2 (the special case below), or c3 = 0, which leads to a contradiction
if n ≥ 4 (because then c3 = 0 but c4 6= 0), and also if n = 3 (because then the last
equation becomes 0 = −c2 + 2c3).

We next determine the multiplicities in the three cases found to occur for An
sc.

For n = 1 we have
A = C =

(
2
)

,

so that multiple roots can only occur if −α1 = α1, i.e., if p = 2. Note that if that is
the case −α1 = α1 ≡ 0, giving the bold-faced 2 in the entry corresponding to A1

sc

in Table 4.4.

For n = 3 and p = 2 we have

A = C =

 2 −1 0
−1 2 −1
0 −1 2

 ≡
0 1 0

1 0 1
0 1 0

 mod 2.

This gives α1 = α3, as well as α1 + α2 = α2 + α3 and α2 = α1 + α2 + α3, accounting
for 3 root spaces of dimension 4.

For n = 2 and p = 3 we have

A = C =

(
2 −1
−1 2

)
≡
(
−1 −1
−1 −1

)
mod 3,

which implies α1 = α2 and α1 = −(α1 + α2). Similarly, −α1 = −α2 = α1 + α2,
giving 2 root spaces of dimension 3.

For the intermediate cases observe that by Lemma 4.6(i) we need only consider
(n, p) = (2, 3) and (3, 2). But the former case has no intermediate isogeny types,
and the latter case is readily checked to be as stated. This finishes the proof for the
An case.
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4.4.2 Bn (n ≥ 2)

The root datum of type Bn has Cartan matrix

C =


2 −1 0 . . . 0
−1 2 −1 . . . 0

...
. . . . . . . . .

...
0 . . . −1 2 −2
0 . . . 0 −1 2

 ,

and the roots are

±(αj + · · ·+ αl), 1 ≤ j ≤ l ≤ n,
±(αj + · · ·+ αl−1 + 2αl + · · ·+ 2αn), 1 ≤ j < l ≤ n,

giving a total of 2 · 1
2 n(n + 1) + 2 · 1

2 n(n− 1) = 2n2 roots.
In the adjoint case we have A = I. For the long roots, suppose α1 = β, so c1 ≡ 1

and c2 ≡ · · · ≡ cn ≡ 0. If c1 = 1, then c2 6= 0 (for otherwise β = α1), which implies
p = 2 and β = α1 + 2α2 + · · · + 2αn. If c1 = −1, then p = 2, and either c2 = 0,
which gives β = −α1, or c2 6= 0, which implies β = −α1 − 2α2 − · · · − 2αn. In this
case the long roots have multiplicities 4.

In the adjoint case, for the short roots, suppose αn = β, so cn ≡ 1 and c1 ≡ · · · ≡
cn−1 ≡ 0. This yields three possibilities for cn: If cn = −2, then p = 3, implying
cn−1 is either 0 or −3, neither of which give rise to roots. If cn = −1, then p = 2;
now either cn−1 = 0 (yielding β = −αn), or cn−1 = −2 (not giving any roots). If
cn = 1 we must have cn−1 = · · · = c1 = 0, giving the contradiction β = αn. This
shows that p = 2 and all multiplicities are 2.

In the simply connected case we have A = C. By Lemma 4.6(ii), we may assume
p = 2. We will consider n ≥ 5 first, and then treat n = 2, 3, 4 separately.

For the long roots, suppose α1 = β, so c2 ≡ 0, c1 + c3 ≡ 1, and cj−2 + cj ≡ 0
(j = 4, . . . , n). This forces c4 ≡ 0. If c1 ≡ 0 then c1 = 0 and hence c2 = 0, so c3 = ±1.
replacing β by β if needed, we may assume c3 = 1. As c4 ≡ 0 and c5 ≡ 1, we must
have c4 = 2 and c + 5 = 1, which is never satisfied by a root. If on the other hand
c1 ≡ 1 then c3 ≡ c4 ≡ · · · ≡ cn ≡ 0, so β = −α1 or β = ±(α1 + 2α2 + · · ·+ 2αn).
This shows that, for n ≥ 5, the multiplicities of β for β a long root are 4.

For the short roots, suppose αn = β, so c2 ≡ 0, cj−2 + cj ≡ 0 (j = 3, . . . , n− 1),
and cn−2 + cn ≡ 1. If c1 ≡ 1 then c3 ≡ 1, but since c2 ≡ 0 this contradicts that β is a
root. If on the other hand c1 ≡ 0, then c2 ≡ c3 ≡ · · · ≡ cn−1 ≡ 0, so cn ≡ 1 and we
find β = −αn. Hence, for n ≥ 5, the multiplicities of β for β a short root are 2.

If n = 2 then

C =

(
2 −2
−1 2

)
≡
(

0 0
1 0

)
If α1 = β we have c2 ≡ 0. Since −2 ≤ c2 ≤ 2 we must have either c2 = 0 (hence
β = −α1), or c2 = ±2 (hence c1 = ±1), giving β = ±α1 or β = ±(α1 + 2α2). If
on the other hand α2 = β we find c2 ≡ 1 hence β = ±α2 or β = ±(α1 + α2). This
shows that B2

sc has 2 root spaces of dimension 4 if p = 2.
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If n = 3 then

C =

 2 −1 0
−1 2 −2
0 −1 2

 ≡
0 1 0

1 0 0
0 1 0


From a straightforward case distinction on the roots of B3 and the fact that α1 = α3
we immediately see that α1 = α3 = α1 + 2α2 + 2α3, α2 = α1 + α2 + α3 = α2 + 2α3,
and α1 + α2 = α2 + α3 = α1 + α2 + 2α3. This gives the 3 required root spaces of
dimension 6.

If n = 4 then

C =


2 −1 0 0
−1 2 −1 0
0 −1 2 −2
0 0 −1 2

 ≡


0 1 0 0
1 0 1 0
0 1 0 0
0 0 1 0

 .

From a straightforward case distinction on the roots of B4 and the fact that α1 = α3,
we find α1 = α3 = α3 + 2α4 = α1 + 2α2 + 2α3 + 2α4, as well as α2 = α1 + α2 + α3 =
α1 + α2 + α3 + 2α4 = α2 + 2α3 + 2α4 and α1 + α2 = α2 + α3 = α2 + 2α3 + 2α4 =
α1 + α2 + 2α3 + 2α4. The remaining 32− 24 = 8 roots (±(αj + · · ·+ αn), j = 1, . . . , 4)
are in 2-dimensional spaces, giving 24, 83, as required.

4.4.3 Cn (n ≥ 3)

The root datum of type Cn has Cartan matrix

C =


2 −1 0 . . . 0
−1 2 −1 . . . 0

...
...

0 . . . −1 2 −1
0 . . . 0 −2 2

 ,

and the roots are

(a) ±(αj + · · ·+ αl), 1 ≤ j ≤ l ≤ n,
(b) ±(αj + · · ·+ αl−1 + 2αl + · · ·+ 2αn−1 + αn), 1 ≤ j ≤ l ≤ n− 1,

giving a total of 2 · 1
2 n(n + 1) + 2 · 1

2 n(n− 1) = 2n2 roots.
In the adjoint case, for the short roots, suppose α1 = β, so c1 ≡ 1 and c2 ≡

· · · ≡ cn ≡ 0. If c1 = 1, then either c2 = 0, giving β = α1 or p = 2 and c2 = 2,
implying c3 = · · · = cn−1 = 2 and cn = 1, which is a contradiction with cn ≡ 0. If
c1 = −1, then p = 2, similarly giving either c2 = 0 (hence β = −α1) or c2 = −2 and
c3 = · · · = cn−1 = 2, cn = 1, which is a contradiction. If c1 = −2 then p = 3, but
this does not give rise to any roots. This shows that the multiplicities of β for β a
short root are 2.

For the long roots, suppose αn = β, so c1 ≡ 1 and c2 ≡ · · · ≡ cn ≡ 0. If
cn = 1, we find either cn−1 = 0 (hence β = αn) or cn−2 = 2 and p = 2, giving β =
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2αj + . . .+ 2αn−1, for any j ∈ {1, . . . , n− 1}. If cn = −1, we must have p = 2, and we
find either cn−1 = 0 (hence β = −αn) or cn−2 = −2, giving β = −(2αj + . . .+ 2αn−1),
for any j ∈ {1, . . . , n− 1}. This shows that the long roots are in one eigenspace of
dimension 2n.

In the simply connected case we have A = C. By Lemma 4.6(ii), we may assume
p = 2. For the short roots, suppose α1 = β, so c2 ≡ 0, c1 + c3 ≡ 1, cj−2 + cj ≡ 0
(j = 4, . . . , n− 1), cn−2 ≡ 0, and cn−1 ≡ 0.

If c1 = 2, we must have c1 = · · · = cn−1 = 2, cn = 1, but this is not a solution
to the equations. If c1 = 1 then either c2 = 0 (hence β = α1) or c2 = 2 (hence
c3 = · · · = cn−1 = 2, cn = 1, giving β = α1 + 2α2 + · · ·+ 2αn−1 + αn). If c1 = 0 we
have c3 ≡ 1, but this never gives a solution to the equations. If c1 = −1 then either
c2 = 0 (hence β = −α1) or c2 = −2 (hence β = −(α1 + 2α2 + · · ·+ 2αn−1 + αn). If
c1 = −2 we must have c3 = −2 but this contradicts c1 + c3 ≡ 1. In conclusion, the
cases where c1 = ±1 give the 4-dimensional eigenspaces mentioned in Table 4.4.

For the long roots, suppose αn = β so c2 ≡ 0, cj−2 + cj ≡ 0 (j = 3, . . . , n− 2),
cn−2 ≡ 0, and cn−1 ≡ 0. If cn = 1 either cn−1 = 0 (giving β = αn) or cn−1 = 2
(giving β = 2αj + · · ·+ 2αn−1 + αn, for any j ∈ {1, . . . , n− 1}). If cn = 0 we must
have cn−1 = 0 (otherwise β would not be a root), but it follows from the relations
that cj = 0 for j = 1, . . . , n− 2, which does not give a root either. If cn = −1 either
cn−1 = 0 (giving β = −αn) or cn−1 = −2 (giving β = −(2αj + · · ·+ 2αn−1 + αn),
for any j ∈ {1, . . . , n − 1}). In conclusion, the cases where cn = ±1 give one 2n-
dimensional eigenspaces containing all the long roots.

This completes the proof for Cn, giving multiplicities not equal to 1 in charac-
teristic 2 only. In that case, the multiplicities are either 2n, 2n(n−1) (for the adjoint
isogeny type) or 2n, 4(

n
2) (for the simply connected isogeny type).

4.4.4 Dn (n ≥ 4)

The root datum of type Dn has Cartan matrix

C =



2 −1 0 . . . 0
−1 2 −1 . . . 0

...
...

0 . . . 2 −1 −1
0 . . . −1 2 0
0 . . . −1 0 2


,

and the roots are

(a) ±(αj + · · ·+ αl), 1 ≤ j ≤ l ≤ n− 2,
(b) ±αn−1,±αn
(c) ±(αj + · · ·+ αn−2 + αn−1), 1 ≤ j ≤ n− 2,
(d) ±(αj + · · ·+ αn−2 + αn), 1 ≤ j ≤ n− 2,
(e) ±(αj + · · ·+ αn−2 + αn−1 + αn), 1 ≤ j ≤ n− 2,
(f) ±(αj + · · ·+ αl−1 + 2αl + · · ·+ 2αn−2 + αn−1 + αn), 1 ≤ j < l ≤ n− 2,
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giving a total of 1
2 (n− 1)(n− 2) + 2 + 3(n− 1) + 1

2 (n− 2)(n− 3) = n2 − n positive
roots, so 2n2 − 2n = 4(n

2) roots in total.

In the adjoint case, suppose α1 = β. If β is of type (a), we find p = 2 and
β = −α1. It is easy to see that if β is not of type (a), α1 6= β unless α1 = β. This
yields 2(n

2) eigenspaces of dimension 2.
For the simply connected case we may assume p = 2 by Lemma 4.6(ii), since

det(C) = 4. We first consider n = 4.

A = C =


2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2

 ≡


0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0


giving α1 = α3 = α4 = 2α1 + 2α2 + α3 + α4, i.e., an 8-dimensional eigenspace. Sim-
ilarly, α2 = α1 + α2 + α3 = α1 + α2 + α4 = α2 + α3 + α4 and α1 + α2 = α2 + α3 =
α2 + α4 = α1 + α2 + α3 + α4, yielding 3 eigenspaces of dimension 8 in total. For
n > 4, suppose α1 = β, so that c2 ≡ 0, c1 + c3 ≡ 1, cj−2 + cj ≡ 0, (j = 4, . . . , n− 2),
cn−3 + cn−1 + cn ≡ 0, cn−2 ≡ 0, and cn−2 ≡ 0.

If c1 = 1 then either c2 = 0 (giving β = −α1), or c2 = −2 (giving β =
−α1 − 2α2 − · · · − 2αn−2 − αn−1 − αn). If c1 = 0 then c3 ≡ 1 and c4 ≡ 0, giving
a contradiction as well. If c1 = 1 then either c2 = 0 (hence β = α1) or c2 = 2 (hence
β = α1 + 2α2 + · · ·+ 2αn−2 + αn−1 + αn). This shows that we find (n

2) eigenspaces
of dimension 4 if n ≥ 5.

For the intermediate case, recall that the fundamental group for type Dn is
Z/2Z×Z/2Z (if n is even) or Z/4Z (if n is odd). We again assume p = 2 and first
consider n = 4. Note that, due to the threefold symmetry of the Dynkin diagram
the three intermediate isogenies are all equivalent, so that we only need to consider
one:

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 2

 ,

giving α1 = α1 + 2α2 + α3 + α4. It is not hard to see that if β is not of type (f) then
α1 6= β unless α1 = ±β, proving that we indeed find 6 eigenspaces of dimension 4.

For n > 4, we can always choose

A =


0

I
...
0

0 · · · 0 1 2

 ,

where I denotes the (n− 1)× (n− 1) identity matrix. If n is odd this corresponds
to the only intermediate isogeny, if n is even this corresponds to one of the in-
termediate isogenies. Following the same reasoning as in the n = 4 case, we see
α1 = α1 + 2α2 + · · · 2αn−2 + αn−1 + αn, accounting for (n

2) eigenspaces of dimension
4.
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Finally, if n > 4 and n is even there are two intermediate isogenies left but, again,
they are equivalent due to the symmetry of the Dynkin diagram. We consider

A =


0

I
...
0

1 0 · · · 1 0 0 2

 ,

where the omitted entries of the last row alternate between 0 and 1 and I again
denotes the (n− 1)× (n− 1) identity matrix. Again assume α1 = β, so that c1 + cn ≡
1, c2i ≡ 0 (for i = 1, . . . , n

2 − 1), c2i+1 + cn ≡ 0 (for i = 1, . . . , n
2 − 1), and 2cn ≡ 0. If

c1 ≡ 1 then cn ≡ 0 and cn−1 ≡ 0, forcing c2 = · · · = cn = 0 and hence α1 = ±β. If on
the other hand c1 ≡ 0 then c2 ≡ 0 and cn ≡ 1 and therefore c3 ≡ 1, a contradiction.
This proves that in this case all eigenspaces are of dimension 2.

4.4.5 En (n = 6, 7, 8)

We first prove the theorem for E8, from which the cases E6 and E7 of adjoint type fol-
low since they are subsystems of E8. Then we prove E6 and E7 of simply connected
type separately.

Note that for the E8 case we have to consider only the adjoint type, since the
simply connected type is equal to the adjoint type. So suppose α1 = β, so that
c1 ≡ 1 and cj ≡ 0, j = 2, . . . , 8.

If p ≥ 5, we have c1 = 1, which means c2 = 0, and we find β = α1. If p = 3 then
c1 ∈ {1,−2}. If c1 = 1 then c2 must be either 0 (giving β = α1) or 3 (where the root
system implies c3 = 3 and c4 = 5, a contradiction). If on the other hand c1 = −2,
then c2 = −3 and c3 = −4, which is a contradiction as well. Finally, if p = 2 then
c1 ∈ {1,−1}. If c1 = 1 then either c2 = 0 (giving β = α1) or c2 = 2 (giving no roots
satisfying the equations). If c1 = −1 then either c2 = 0 (giving β = −α1) or c2 = −2
(again giving no roots satisfying the equations).

This shows that multidimensional eigenspaces occur in adjoint E6, E7, E8 only if
p = 2, and then all eigenspaces are of dimension 2.

We consider E6 of simply connected type.

A = C =


2 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 −1 0 0
0 −1 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2


If p 6= 3 the situation is as in the adjoint case by Lemma 4.6(ii) because det(C) =
3. So we assume p = 3 and suppose α1 = β. Now c1 + c3 ≡ 1, c2 + c4 ≡ 0,
c1 + c3 + c4 ≡ 1, c2 + c3 + c4 + c5 ≡ 0, c4 + c5 + c6 ≡ 0, and c5 + c6 ≡ 0.

If c1 = 1 we have c3 ≡ 0, implying β = α1. If c1 = 0 we find c3 ≡ 1 so that
c3 = 1 (implying c4 = 0, c2 = 0, c5 = 2, a contradiction). If c1 = −1 we find c3 ≡ −1
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so that c3 = −1 which implies c4 ≡ 0, giving a contradiction for both c4 = 0 and
c4 = −3.

This shows that the root multiplicities for E6 of simply connected type are equal
to those for E6 of adjoint type: All roots have multiplicity 2.

We consider E7 of simply connected type.

A = C =



2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


Since det(C) = 2 we assume p = 2 (again by Lemma 4.6(ii)). In this case it is more
convenient to consider α7 = β, which is allowed by the action of the Weyl group.
So c3 ≡ 0, c4 ≡ 0, c1 + c4 ≡ 0, c2 + c3 + c5 ≡ 0, c4 + c6 ≡ 0, c5 + c7 ≡ 1, and c6 ≡ 0.

If c7 = ±1 we find c6 ≡ · · · ≡ c1 ≡ 0, which only gives β = ±α7. If c7 = 0 we
have c6 = 0 and c5 ≡ 1, c4 ≡ c3 ≡ c1 ≡ 0 and c2 ≡ 1. Observing all the roots of E7,
however, shows that this can never be a root.

This shows that the root multiplicities for E7 of simply connected type are equal
to those for E7 of adjoint type: All roots have multiplicity 2.

4.4.6 F4

The root datum of type F4 has Cartan matrix

C =


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

 ,

and the roots are

(a) ±(αj + · · ·+ αl), 1 ≤ j ≤ l ≤ 4,
(b) ±(α2 + 2α3),±(α1 + α2 + 2α3),±(α2 + 2α3 + α4),±(α1 + α2 + 2α3 + α4),
(c) ±(α1 + 2α2 + 2α3),±(α2 + 2α3 + 2α4),±(α1 + 2α2 + 2α3 + α4),

±(α1 + α2 + 2α3 + 2α4),
(d) ±(α1 + 2α2 + 2α3 + 2α4),
(e) ±(α1 + 2α2 + 3α3 + α4),
(f) ±(α1 + 2α2 + 3α3 + 2α4),
(g) ±(α1 + 2α2 + 4α3 + 2α4),
(h) ±(α1 + 3α2 + 4α3 + 2α4),
(i) ±(2α1 + 3α2 + 4α3 + 2α4),

giving a total of 2(10 + 4 + 4 + 6 · 1) = 48 roots.
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We consider the case where A = I, since for F4 the adjoint and simply connected
case are identical. We first consider the case where p = 2. Then:

α1 + 2α2 + 4α3 + 2α4
(g)

= α1
(a) = α1 + 2α2 + 2α3

(c)
= α1 + 2α2 + 2α3 + 2α4

(d),

α1 + 3α2 + 4α3 + 2α4
(h)

= α1 + α2
(a) = α1 + α2 + 2α3

(b)
= α1 + α2 + 2α3 + 2α4

(c),

2α1 + 3α2 + 4α3 + 2α4
(i)

= α2
(a) = α2 + 2α3 + 2α4

(c)
= α2 + 2α3

(b),

giving 3 eigenspaces of dimension 8. The remaining 7 positive roots of type (a), 2
of type (b), and 1 each of type (c), (e) and (f) give 12 eigenspaces of dimension 2.
This shows the 212, 83 given in Table 4.4 for F4 and p = 2.

Now suppose p 6= 2 and α1 = β, giving c1 ≡ 1 and c2 ≡ c3 ≡ c4 ≡ 0. Since
c1 ∈ {−2,−1, 0, 1, 2} and p 6= 2 we must have c1 = −2 and p = 3, but the only
root satisfying this is −2α1 − 3α2 − 4α3 − 2α4, which does not satisfy the equations.
Next, suppose p 6= 2 and α4 = β, giving c4 ≡ 1 and c1 ≡ c2 ≡ c3 ≡ 0. Since
c4 ∈ {−2,−1, 0, 1, 2} and p 6= 2 we must have c4 = −2 and p = 3, but then no roots
satisfying the equations exist. This shows that F4 has multidimensional eigenspaces
only if p = 2.

4.4.7 G2

The root datum of type G2 has Cartan matrix

C =

(
2 −1
−3 2

)
,

and the roots are

±α1,±(α1 + α2),±(2α1 + α2), (6 short roots)
±α2,±(3α1 + α2),±(3α1 + 2α2), (6 long roots)

giving a total of 12 roots. As det(C) = 1 we take A = I. All components of c
are in {−3, . . . , 3}, so all components of the differences α1 − β and α2 − β are in
{−4, . . . , 4}. Hence, if multidimensional root spaces occur, we must have p ≤ 3.

If p = 3 we see 3α1 + α2 = α2 = −(3α1 + 2α2) and −(3α1 + α2) = −α2 =
3α1 + 2α2, and the remaining 6 roots all have distinct root spaces. If p = 2 we
find α1 + α2 = 3α1 + α2, α1 = 3α1 + 2α2 and α2 = 2α1 + α2, giving 3 root spaces of
dimension 4.

This finishes the proof of Proposition 4.2.

4.5 Finding frames

Let L be a Chevalley Lie algebra over an effective field F with root datum R, a fixed
split maximal toral subalgebra H, and given decomposition E into root spaces with
respect to the set Φ = Φ(L, H) of roots of H on L. In this section we discuss the
procedure of Algorithm 4.3 referred to as FindFrame. It determines the set X =
{FXα | α ∈ Φ}, i.e., the one-dimensional root spaces with respect to Φ, to which we
refer as the Chevalley frame. Note that we do not yet identify the root spaces: finding
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a suitable bijection between Φ and the Chevalley frame X is discussed in the next
section. We set p = char(F).

We require that R be given, since we execute different algorithms depending on
R, for example B2

ad needs [C] whereas B2
sc needs [B2

sc].
For p = 2, we use the procedure described in Section 4.5.1 to find the frame once

we have computed all spaces FXα +FX−α for α ∈ Φ. We call this algorithm [A2]. As
an auxiliary result, this procedure stores the unordered pairs {{α,−α} | α ∈ Φ+},
to be used in the IdentifyRoots procedure discussed in Section 4.6 (notably, the
proof of Lemma 4.12). The general method in characteristic 2 is to partition the root
spaces of dimension greater than 2 into such 2-dimensional root spaces, and apply
[A2].

For this purpose, and for the two cases of characteristic 3, we distinguish three
general methods:

• [C]: Given two root spaces M, M′ compute CM(M′) to break down M. Often,
but not always, dim(M′) = 2. An example of this method is given in Section
4.5.2.

• [Der]: Compute the Lie algebra Der(L) of derivations of L, and calculate in
there. This is a useful approach if Der(L) is strictly larger than L, for then we
can often extend H to a larger split maximal toral subalgebra, so we find new
semisimple elements acting on the root spaces. Examples of this method are
given in Sections 4.5.3 and 4.5.4.

• [B2
sc]: The case where R(p) = B2

sc(2) is slightly more involved than the other
cases because α = 0 for some α ∈ Φ. We use the Meat-axe to split the action
of the long roots on the short roots. Examples of this method are given in
Sections 4.5.5 and 4.5.6.

The case where R = A1
sc and p = 2 is dealt with separately:

• [A1
sc]: Here, as in the case where R(p) = B2

sc(2), α = 0 for some (in fact all)
α ∈ Φ, but we will show that in this case there is enough freedom of choice.
We clarify this method in Section 4.5.7.

The method chosen depends on the root datum R and the characteristic p, as
indicated in the third column of Table 4.4.

4.5.1 A2 in characteristic 2

First, we consider the Lie algebras L with R(p) = A2(2), as this procedure is used
inside various other cases. It will become clear that we do not need to know the
isogeny type of the root datum in order to carry out this procedure. For clarity, we
write α, β for the two simple roots of the root system of type A2 (so that α 6= ±β).

As indicated in Table 4.4, we have 3 root spaces of dimension 2. They correspond
to 〈Xγ, X−γ〉F for γ ∈ {α, β, α + β}. Without loss of generality we consider Lα =

〈Xα, X−α〉F and Lβ = 〈Xβ, X−β〉F. Observe that the squared adjoint action ad2
Xα

of Xα sends any element of Lβ to zero: [Xα, [Xα, Xβ]] = [Xα, Nα,βXα+β] = 0 as

2α + β 6∈ Φ, and [Xα, X−β] = 0 since α− β 6∈ Φ. Similarly, ad2
X−α

(Lβ) = 0.
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However, the quadratic action ad2
x of a general element x = t1Xα + t2X−α

(t1, t2 ∈ F, both non-zero) of Lα does not centralize Lβ. Indeed:

[x, [x, Xβ]] = t1t2
(
[X−α, [Xα, Xβ]] + [Xα, [X−α, Xβ]]

)
= t1t2N−α,α+βNα,βXβ,

which is non-zero since N−α,α+β and Nα,β are both equal to 1 modulo 2.
Recall that we are given Lα and Lβ. Fix a basis r1, r2 of Lα and consider the

element x = r1 + tr2, where t ∈ F. It follows from the above observations that
ad2

x(Lβ) = 0 if and only if x is a scalar multiple of Xα or X−α, so in order to find
the frame elements among the Fx for t ∈ F we have to solve 0 = [x, [x, y]] for all
y ∈ Lβ. This reduces to the following system of equations in the unknown t:

0 = [x, [x, y]] = [r1 + tr2, [r1 + tr2, y]]

= [r1, [r1, y]] + t ([r1, [r2, y]] + [r2, [r1, y]]) + t2[r2, [r2, y]].

This system consists of at most 2 · 3 = 6 quadratic equations over F in t, since
dim(Lβ) = 2 (which gives 2 independent choices for y) and [ri, [rj, y]] are in 〈Lβ〉L,
which is at most 3-dimensional. We know there is a solution as H is split. If F =
GF(q), solving such a quadratic equation is equivalent to solving log(q) equations
in log(q) variables over GF(2) (as p = 2 is fixed), requiring O∼((log q)3) arithmetic
operations, or O∼((log q)4) elementary operations.

For more general Lie algebras L, the solutions for Lie subalgebras of type A2
normalized by H will be part of a Chevalley frame. These parts can be found inside
any two-dimensional root space V ∈ E, provided there is at least one other two-
dimensional root space V′ ∈ E such that 〈V, V′〉L is of type A2. So, if all root
spaces in E are 2-dimensional and F = GF(q), this method needs O(n2) root spaces
V to be analysed (at a cost of O∼(n8(log q)4) each), so that X will be found in
O∼(n10(log q)4) elementary operations.

4.5.2 G2 in characteristic 3

Secondly, we consider the Lie algebra L = LF(G2) of the root datum of type G2 over
an effective field F of characteristic 3. By Proposition 4.2 there are 8 root spaces. It
is readily verified that dim(Lα) = 1 if α is a short root and dim(Lα) = 3 if α is a
long root of Φ. In particular, the short root spaces belong to X and it remains to
split the two long root spaces.

Consider one of the two three-dimensional root spaces in E, say V = FXα2 +
FX3α1+α2 + FX−3α1−2α2 . The left multiplications on V by the short roots are easily
obtained from (CB1)–(CB4); these are given in Table 4.7.

Although we have not yet identified the roots, we can identify the three pairs
of one-dimensional root spaces {FXα, FX−α}, for α ∈ Φ short, since L−α is the
unique one-dimensional root space with root −α. From this observation and Table
4.7 it follows that we can obtain the triple FXβ (β ∈ {α2, 3α1 + α2,−3α1 + 2α2}) as
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Xα2 X3α1+α2 X−3α1−2α2
Xα1 Xα1+α2 0 0
X−α1 0 X2α1+α2 0
Xα1+α2 0 0 X−2α1−α2
X−α1−α2 −Xα1 0 0
X2α1+α2 0 0 −X−α1
X−2α1−α2 0 −Xα1 0

Table 4.7: Part of the G2 multiplication table

follows:

FXα2 = CV(L2α1+α2
+ L−2α1−α2

),

FX3α1+α2 = CV(Lα1+α2
+ L−α1−α2

),

FX−3α1−2α2 = CV(Lα1 + L−α1
).

For the other three-dimensional space, the same approach is used. This completes
the search for the Chevalley frame X .

4.5.3 D4 in characteristic 2

Thirdly, we consider the Lie algebras with Dynkin diagram of type D4 over an
effective field F of characteristic 2. As mentioned in Section 4.4, there are three
cases:

Lad: the adjoint root datum (12 two-dimensional root spaces);

Lsc: the simply connected root datum (3 eight-dimensional root spaces);

L(1), L(3), L(4): the intermediate root data (6 four-dimensional root spaces).

The three intermediate root data all give rise to the same Lie algebra up to iso-
morphism (by triality), so we will restrict ourselves to the study of Lad, Lsc, and
L(1). It is straightforward to verify that Lad has a 26-dimensional ideal Iad (see
[Hog82, Theorem 2.1], or [Hog78] for more details), linearly spanned by Xα (α ∈ Φ),
(α∨1 + α∨3 + α∨4 )⊗ 1, and α∨2 ⊗ 1. This ideal can be found, for example, by use of the
Meat-axe.

Similarly, Lsc has a 2-dimensional ideal I (spanned by (α∨1 + α∨4 )⊗ 1 and (α∨3 +
α∨4 )⊗ 1). Let Isc = Lsc/I be the 26-dimensional Lie algebra obtained by computing
in Lsc modulo I. Finally, L(1) has a 1-dimensional ideal I (spanned by α4 ⊗ 1), and
a 27-dimensional ideal I′ (spanned by α4 ⊗ 1 and Xα, α ∈ Φ). We let I(a) = I′/I.
Again, the 26-dimensional ideal is easily found by means of the Meat-axe.

Thus we have constructed three 26-dimensional Lie algebras: Iad, Isc, and I(a).
By results of Chevalley (cf. [Jan03, Part 2, Cor. 2.7]) they are isomorphic, so from
now on we let I be one of these 26-dimensional Lie algebras. The Lie algebra I is
simple. Its derivation algebra Der(I) is a Lie algebra of type F4, and thus has 12
two-dimensional root spaces and 3 eight-dimensional root spaces.
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Using a procedure similar to the one for G2 over characteristic 3 described in Sec-
tion 4.5.2, we can break up the eight-dimensional spaces of E into two-dimensional
spaces, giving us 24 two-dimensional spaces. These two-dimensional spaces may
then be broken up into one-dimensional spaces by the procedure [A2]. The last step
in the process is “pulling back” the relevant one-dimensional spaces from Der(I) to
I. But this is straightforward, since I is an ideal of Der(I) by construction.

4.5.4 G2 in characteristic 2

As noted in [Ste61, Section 2.6], in the exceptional case R(p) = G2(2), the Lie
algebra L is isomorphic to the unique 14-dimensional ideal of the Chevalley Lie
algebra LA of adjoint type A3 over F. In particular, Der(L) contains a copy of LA.
We use this fact by finding a split maximal toral subalgebra H′ inside CDer(L)(H)

so that H ⊆ H′. For then we can calculate the Chevalley frame XA inside the Lie
subalgebra 〈L, H′〉Der(L) of Der(L) with respect to H′, which is of type A3 by the
above observation.

The Chevalley frame X of L is now simply the part of XA that lies inside L.

4.5.5 B2
sc in characteristic 2

We consider the Chevalley Lie algebra L of type B2
sc over an effective field F of

characteristic 2 with split maximal toral subalgebra H = Fh1 + Fh2. This is a
particularly difficult case, as the automorphism group of L is quite big: Aut(L) =
G n (F+)4 [Hog78, Theorem 14.1], where G is the Chevalley group of adjoint type
B2 over F and F+ refers to the additive group of F. As a consequence, there is more
choice in finding the frame than in the previous cases.

To begin, we take L0 to be the (0, 0)-root space of H on L, and L1 to be the (1, 0)-
root space of H on L. It is easily verified that L0 = 〈H, X±α1 , X±(α1+2α2)

〉F (that is,
the linear span of H and the long root elements) and L1 = 〈X±α2 , X±(α1+α2)

〉F (the
linear span of the short root elements). We proceed in three steps.
[B2

sc.1]. The subalgebra L0 has Dynkin type A1 ⊕ A1. We may split it (non-
uniquely) into two subalgebras of type A1 using a direct sum decomposition pro-
cedure. This is a procedure that can be carried out with standard linear algebra
arithmetic for a fixed dimension (6, in this case); see e.g., [dG00, Section 1.15].
[B2

sc.2]. Let A be one of these subalgebras of L0 of type A1. Assume for the sake
of reasoning that A = 〈X±α1〉L, the Lie subalgebra of L generated by Xα1 and X−α1 .
Since [A, L1] = L1 we may view L1 as a four-dimensional A-module, and hence
apply the Meat-axe [Hol98, HEO05] to find a proper irreducible A-submodule M
of L1. This will be a submodule of the form

M = 〈t1Xα2 + t2X−α1−α2 , t1Xα1+α2 + t2X−α2〉F, t1, t2 ∈ F.

We take b1, b2 to be a basis of M, and add CA(b2) and CA(b1) to X . These two
spaces are indeed one-dimensional and coincide with the original FX±α1 if b1 ∈
F(t1Xα2 + t2X−α1−α2) and b2 ∈ F(t1Xα1+α2 + t2X−α2). This exhibits part of the
freedom of choice induced by the factor (F+)4 in Aut(L).
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We repeat this procedure for both subalgebras of type A1 found in the first
step. The result is the part of the Chevalley frame X inside L0. In fact, due to our
method, we can make an identification of the long roots ±α1, ±(α1 + 2α2) with the
four elements of X found. In what follows we will work with such a choice so
that we have the elements FXα1 , FX−α1 , FXα1+2α2 , FX−α1−2α2 in X as well as the
correspondence with the roots in Φ suggested by the subscripts.
[B2

sc.3]. We find the part of X inside L1 as follows. FXα1+α2 coincides with
CL1(FXα1 , FXα1+2α2). Having computed this element of X , we finish by taking

FXα2 = [FXα1+α2 , FX−α1 ],
FX−α1−α2 = [FXα2 , FX−α1−2α2 ],

FX−α2 = [FXα1−α2 , FXα1 ].

This completes the search for X in the case B2
sc(2) and establishes that its running

time is O∼(log q).

4.5.6 Cn
sc in characteristic 2

We consider the Chevalley Lie algebra L of type Cn
sc over an effective field F of

characteristic 2. Here n ≥ 3, so that the multiplicity of 0 is strictly larger than 4.
Let hz be a basis of the 1-dimensional center of L, inside the split maximal toral
subalgebra H of L. This case is a generalisation of the B2

sc case described in Section
4.5.5. We again take L0 to be the 0-root space of H on L, so that L0 is 3n-dimensional
and consists of H and the root spaces corresponding to the long roots. Similar to
the previous case, L0 ∼= A1⊕ · · · ⊕A1 (n constituents), and again the decomposition
is not unique. We describe how to find such a decomposition.

We let F be the set of (n
2) four-dimensional root spaces (cf. Table 4.4). In the

root system of type Cn each of these corresponds to the four roots ±εi ± ε j for some
i, j ∈ {1, . . . , n} with i 6= j. Our first task is to split L0 into subalgebras of type A1
in a way compatible with F . To this end, we let Γ be the graph with vertex set F ,
and edges f ∼ g whenever f 6= g and [ f , g] 6= 0.

Let ∆ be a maximal coclique of Γ of size n − 1, so that ∆ consists of n − 1
elements of F such that [ f , g] = 0 for all f , g ∈ ∆. This means that, for a particular
i ∈ {1, . . . , n}, the set ∆ ⊆ F corresponds to those four-spaces in F that arise from
the roots ±εi ± ε j, where j ∈ {1, . . . , n} \ {i}. Let ∆ = Γ − ∆, so that ∆ contains
precisely the four-dimensional spaces corresponding to ±εk ± ε l with k, l 6= i.

Now compute the centralizer A in L0 of all spaces in ∆. Then A coincides with
〈X±γ, γ∨ ⊗ 1, hz〉F for the long root γ = 2εi. Using a direct sum decomposition
procedure we find the Lie subalgebra A′ of A such that A = A′ ⊕ Fhz, where
A′ = 〈X±γ, γ∨ ⊗ 1〉F. The subalgebra A′ is one of the type A1 constituents of L0
we are after. Thus, by repeating this procedure for each maximal coclique of Γ of
size n− 1, we obtain a decomposition of L0 into n subalgebras of type A1. We will
denote by A the set of these n subalgebras.

Now we continue as in the B2
sc case: For each element ofAwe use the procedure

labelled [B2
sc.2] to find suitable elements FX±γ for X . For each four-dimensional

space K ∈ F we then use distinct S1, S2 ∈ A satisfying [K, S1] 6= 0, [K, S2] 6= 0 and
these FX±γ to execute a [B2

sc.3] procedure. Thus, we find the part of the frame
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inside K.
If n = 3 splitting L0 has to be done in a slightly different way, but as this is only a

slight modification of the algorithm we will not go into details here. This completes
the Chevalley frame finding in the case Cn

sc(2). Its running time involves O(n2)
executions of parts of the algorithm of Section 4.5.5, which is however dominated
by the time O∼(n10(log q)4) needed for method [A2].

4.5.7 A1
sc in characteristic 2

We consider the Chevalley Lie algebra L of type A1
sc over an effective field F of

characteristic 2, consisting of basis elements Xα, X−α, and h, where 〈h〉F = H. It
follows immediately from the structure of the root datum of type A1

sc that [Xα, h] =
[X−α, h] = 0 and [Xα, X−α] = h (see also Section 1.9.3).

Now let x, y be two elements of L, so x = x1Xα + x2X−α + x3h and y = y1Xα +
y2X−α + y3h (where xi, yi ∈ F) and observe:

[x, y] = [x1Xα + x2X−α + x3h, y1Xα + y2X−α + y3] = (x1y2 + x2y1)h,

so that X = {x, y} satisfies the requirements for a Chevalley frame as long as
〈x, y, h〉F = L and [x, y] 6= 0. However, this is equivalent to demanding that

det
(

x1 x2
y1 y2

)
6= 0,

which happens for a random choice of x and y in a fraction of (q2 − 1)(q2 − q)/q4

of the cases. Observe that, for q = 2, this fraction is equal to 3
8 . This implies

via straightforward calculation in particular that in order to have a failure prob-
ability smaller than ε, the required number Nε of random choices satisfies Nε >
− log(ε)/ log( 3

8 ).
If on the other hand q > 2 the probability of success is equal to

(q2 − 1)(q2 − q)
q4 >

(q2 − q)2

q4 =
q2 − 2q + 1

q2 > 1− 2
q

.

This straightforwardly reduces to the requirement that Nε > − log(ε)/ log( q
2 ).

We summarize the results of this section.

Proposition 4.8. Given L, H, R, the set Φ of roots of H on L, and the root spaces E, the
Las Vegas procedure FindFrame finds a Chevalley frame. For F = GF(q), it runs in time
O∼(n10(log q)4).

Proof As mentioned in Section 4.3 this procedure is trivial in all cases except those
mentioned in Table 4.4, and for each of the cases in Table 4.4 we have presented a
solution. Recall that |Φ| ≤ dim(L) = O(n2).

The timing of method [A2] is dealt with in Section 4.5.1, which produces the
bound stated in the proposition.
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IdentifyRoots

in: The Lie algebra L over an effective field F of a split reductive algebraic
group, a split maximal toral subalgebra H of L,
a root datum R = (X, Φ, Y, Φ∨), and a Chevalley frame X .

out: A bijection ι : Φ→ X .
begin
1 if R(p) ∈ {Bn(2), Cn(2), F4(2), G2(2), G2(3)} then
2 find ι using a specialized procedure.
3 else

/* Find fundamental roots */
4 let ζ : X ×X → Z be the Cartan integers computing using Lemma 4.12,
5 let X F = FindFundamentals(L, Φ,X , ζ),
6 let ι = IdentifyByFundamentals(L, Φ,X , ζ,X F).
7 end if,
8 return ι.

end

Algorithm 4.9: Identifying the roots

Method [C] concerns O(n2) instances of standard linear algebra arithmetic on
spaces of bounded dimension, and so its running time is dominated again by the
time spent on the [A2] method.

Method [Der] involves the computation of parts of the Lie algebra of deriva-
tions. Computing the full Lie algebra of derivations in instances like Dn

sc(2) would
take running time O∼(n12 log q). However, we only carry out this procedure for
Lie algebras of bounded dimension (the bound being 28, which occurs for type
D4) or compute the part of Der(L) that leaves invariant H and the corresponding
decomposition into root spaces (which reduces the running time to O∼(n8 log q)).
Therefore, the stated bound suffices.

The timing of method [A1
sc] is dealt with in Section 4.5.7.

Finally, according to Table 4.4, Method [B2
sc] with unbounded n only occurs in

the cases treated in Section 4.5.6, where the time analysis is already given. �

4.6 Root identification

In this section we clarify Step 3 of the ChevalleyBasis algorithm 4.3. We first de-
scribe the general principle to compute the Cartan integers in Lemmas 4.11 and
4.12, and describe how the roots may be identified using these integers in Algo-
rithms 4.13–4.20. The cases not covered by Lemma 4.12 are dealt with in Section
4.6.3.

The routine IdentifyRoots takes as input a Chevalley Lie algebra L, a split
maximal toral subalgebra H of L, the root datum R, the set of roots Φ = Φ(L, H),
and the Chevalley frame X found in the previous step (Section 4.5). It returns a
bijection ι : Φ→ X so that, up to scaling, (ι(α))α∈Φ will be the root element part of
a Chevalley basis.
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An important tool to make this identification are the Cartan integers 〈α, β∨〉.
Cartan integers may be computed using root chains.

Lemma 4.10 ([Car72, Section 3.3]). Let α, β ∈ Φ. Suppose p and q are the largest
non-negative integers such that −pα + β ∈ Φ and qα + β ∈ Φ. Then 〈β, α∨〉 = p− q.

We use this lemma by computing such a chain in the set of roots Φ correspond-
ing to the Chevalley frame X = {FXα | α ∈ Φ}. However, as these roots are
computed from the Lie algebra L over F itself, they are elements of Fn rather than
Zn.

A straightforward verification of cases for Chevalley Lie algebras arising from
root systems of rank 2 shows that the chain can simply be computed in terms of the
root spaces (which are defined over Fn), except if the characteristic is 2 or 3. So in
those cases, a different method for computing 〈α, β∨〉 is needed.

Lemma 4.11. Suppose that L = LF(R) is a Chevalley Lie algebra with respect to an irre-
ducible root datum R = (X, Φ, Y, Φ∨) over the field F of characteristic 2 or 3. Let H be the
standard split maximal toral subalgebra of L. Suppose furthermore that Xα, X−α, Xβ, X−β

are four vectors spanning root spaces corresponding to α,−α, β,−β ∈ Φ, respectively, and
α 6= ±β.

If Φ is simply laced, then 〈β, α∨〉 = P−Q, where

P =

{
0 if [X−α, Xβ] = 0
1 if [X−α, Xβ] 6= 0 , Q =

{
0 if [Xα, Xβ] = 0
1 if [Xα, Xβ] 6= 0 .

If Φ is doubly laced and char(F) 6= 2, then 〈β, α∨〉 = P−Q, where

P =


0 if [X−α, Xβ] = 0
1 if [X−α, Xβ] 6= 0, [X−α, [X−α, Xβ]] = 0
2 if [X−α, [X−α, Xβ]] 6= 0

Q =


0 if [Xα, Xβ] = 0
1 if [Xα, Xβ] 6= 0, [Xα, [Xα, Xβ]] = 0
2 if [Xα, [Xα, Xβ]] 6= 0

Proof For any γ, δ ∈ Φ, let pγδ and qγδ be the biggest non-negative integers such
that −pγδγ + δ ∈ Φ and qγδγ + δ ∈ Φ. Recall from (CB4) that, if γ + δ ∈ Φ, then
[Xγ, Xδ] = Nγ,δXγ+δ, where Nγ,δ = ±(pγδ + 1).

If Φ is simply laced, the subsystem of Φ generated by ±α,±β is of type A1A1
or of type A2. Then α + β ∈ Φ implies α− β 6∈ Φ, so Nα,β = ±1 and Nβ,α = ±1.
This means that, regardless of the characteristic, we can reconstruct pαβ and qαβ by
the procedure described in the lemma, and thus compute 〈β, α∨〉 = pαβ − qαβ by
Lemma 4.10.

If Φ is doubly laced and char(F) 6= 2, the subsystem of Φ generated by ±α,±β
is of type A1A1, A2, or B2. (Note that G2 never occurs inside a bigger root system.)
In the first two cases the previous argument applies, so assume ±α,±β generate
a subsystem of Φ of type B2. Similarly to the previous case, if α + β ∈ Φ then
α − 2β 6∈ Φ, so that Nα,β, Nβ,α ∈ {±1,±2}. In particular, since char(F) 6= 2, we
find that both Nα,β and Nβ,α are non-zero, so that we can reconstruct pαβ and qαβ by
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the procedure described in the theorem, and thus compute 〈β, α∨〉 = pαβ − qαβ by
Lemma 4.10. �

Lemma 4.12. Suppose that L is a Chevalley Lie algebra over F with respect to an irreducible
root datum R = (X, Φ, Y, Φ∨), H the split maximal toral subalgebra of L, and Xα and Xβ

are two root elements whose roots with respect to H are α and β for certain α, β ∈ Φ.
Suppose, furthermore, that at least one of the following statements holds.

(i) char(F) 6∈ {2, 3};

(ii) Φ is simply laced;

(iii) Φ is doubly laced and char(F) 6= 2.

The Cartan integer 〈α, β∨〉 can be computed from the available data in O∼(n10 log q) ele-
mentary operations.

Proof Observe first of all that the case where α = β is easily caught, for example by
computing dim(〈FXα, FXβ〉F). Obviously then 〈α, β∨〉 = 2.

Moreover, we can distinguish the case where α = −β as follows. If char(F) 6= 2
we may simply test whether α = −β. If on the other hand char(F) = 2, we find
the sets {{γ,−γ} | γ ∈ Φ+} as an auxiliary result of the algorithm FindFrame

described in introduction of Section 4.5.1. If α = −β, then of course 〈α, β∨〉 = −2.
So assume α 6= ±β. Now if (i) holds we compute 〈α, β∨〉 from the roots α and β

using Lemma 4.10, as mentioned earlier. Suppose, therefore, (ii) or (iii) holds. We
can find FX−α and FX−β either simply by considering {γ | γ ∈ Φ} (if char(F) 6= 2)
or as an auxiliary result of FindFrame (if char(F) = 2). This leaves us in a position
where we may apply Lemma 4.11, and thus find 〈α, β∨〉.

Finally, the time needed does not exceed the time needed for standard linear
algebra arithmetic for each pair of roots, that is, O∼(n4 · n6 log q). �

4.6.1 Selecting a set of fundamental roots

We restrict to the cases assumed in Lemma 4.12, so that we obtain Cartan integers
as a map ζ : X ×X → Z. (The other cases are dealt with in Section 4.6.3.) We claim
that ζ provides a root system structure of X . Indeed, if we let N = |X | and we fix
any order of elements of X , i.e., X = {x1, . . . , xN}, we find a new map ζ : X → ZN

defined by
ζ(x) = (ζ(x, x1), . . . , ζ(x, xN)).

Since the Cartan integers are elements of Z rather than F, the vectors ζ(x) ∈ ZN

reflect the structure of the root system Φ that exists in X much better than X itself
does. We may now first find a set of positive roots, and then a set of fundamental
roots, using the procedure described in Algorithm 4.13. See [Car72, Section 2.1] for
the justification of this procedure.

4.6.2 Identifying the roots

The previous section, in particular Algorithm 4.13, gives us a set of fundamental
roots. In Algorithm 4.14 we map these onto the standard fundamental roots of Φ,
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FindFundamentals

in: L, Φ,X as in Algorithm 4.9, Cartan integers ζ : X ×X → Z,
out: A set X F ⊆ X of fundamental roots.
begin
1 fix an ordering on X , so that X = {x1, . . . , xN},
2 let ζ : X → ZN be defined by ζ(x) = (ζ(x, x1), . . . , ζ(x, xN)),

/* Identify a positive half */
3 let p(x), for x ∈ X , be the assertion that

ζ(x)i > 0, where i = min{j ∈ {1, . . . , N} | ζ(x)j 6= 0}

i.e., the first non-zero entry of ζ(x) is positive,
4 let X+ = {x ∈ X | p(x)},

/* Exclude non-fundamentals */
5 let N = {x ∈ X+ | ∃y, z ∈ X+ such that ζ(x) = ζ(y) + ζ(z)},
6 return X+\N.

end

Algorithm 4.13: Finding a set of fundamental roots

using algorithms depending on the type of root datum, and subsequently extend
this identification to the other elements of the Chevalley frame.

4.6.3 The remaining cases

Lemma 4.12 enables us to compute Cartan integers and obtain an identification ι
in many cases. For the cases not covered by this lemma we proceed as follows to
construct ι directly.

• Bn(2): The short root spaces generate an ideal, I say, of L found by the Meat-
axe, and the root eigenspaces of H that do not lie in I belong to long roots. The
latter root spaces generate a subalgebra of type Dn. This Lie algebra is simply
laced, so the root identification problem can be solved within this subalgebra.
This identifies the long root spaces. Now, for i = 1, . . . , n, let the short root γi
be αi + αi+1 + · · ·+ αn and let α0 = α1 + 2α2 + 2α3 + · · ·+ 2αn be the (long)
highest root. Observe then that [Xα0 , X−γ1 ] = Xγ2 and [Xα0 , X−γ2 ] = Xγ1 , and
X−γ1 and X−γ2 are the only short root elements that do not commute with
Xα0 . This fact, together with the set of pairs {{γ,−γ} | γ ∈ Φ+} obtained in
FindFrame, allows us to find X±γ1 and X±γ2 . Note that we have to execute
this procedure at most twice, since there are only elements of X that could be
identified with X−γ1 , and the other short root elements are fixed once X−γ1
is fixed. The other short root elements can now be found by using relations
such as [Xγi , X−αi ] = Xγi+1 .

• Cn(2): The short root spaces generate an ideal of L of type Dn, so we execute
a similar procedure as in the previous case.
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IdentifyByFundamentals

in: L, Φ,X as in Algorithm 4.9, a set of fundamental roots ∆ ⊆ Φ,
Cartan integers ζ : X ×X → Z, and
a set X F ⊆ X of fundamental roots.

out: A bijection ι : Φ→ X such that ζ(ι(α), ι(β)) = 〈α, β∨〉 for all α, β ∈ Φ,
begin
1 recall the ordering on X and ζ : X → ZN from Algorithm 4.13,

/* Identify fundamental roots */
2 find ι : ∆→ X F using one of Algorithms 4.15-4.20,

/* Extend to the non-fundamental roots */
3 for γ ∈ Φ\∆ do
4 let cα, for α ∈ ∆, be such that γ = ∑α∈∆ cαα,
5 find x ∈ X satisfying ζ(x) = ∑α∈∆ cαζ(ι(α)),
6 set ι(γ) = x.
7 end for,
8 return ι.

end

Algorithm 4.14: Identifying the roots given the fundamentals

IdentifyRootsAn

in: all input of Algorithm 4.14,
out: A map ι : ∆→ X F such that ζ(ι(α), ι(β)) = 〈α, β∨〉 for all α, β ∈ ∆,

provided Φ is of type An,
begin
1 let α1, . . . , αrk(Φ) be the fundamental roots, numbered as in Figure 1.4,

/* Find one of the endpoints */
2 find x ∈ X F such that

∣∣{y ∈ X F | ζ(x, y) = −1}
∣∣ = 1,

3 set ι(α1) = x,
/* Find the intermediate points, and the other endpoint */

4 for i = 2, . . . , rk(Φ) do
5 find y ∈ X F\{ι(α1), . . . , ι(αi−1)} such that ζ(ι(αi−1), y) = −1,
6 set ι(αi) = y.
7 end for,
8 return ι.

end

Algorithm 4.15: Identifying the fundamental roots (An case)
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IdentifyRootsDn

in: all input of Algorithm 4.14,
out: A map ι : ∆→ X F such that ζ(ι(α), ι(β)) = 〈α, β∨〉 for all α, β ∈ ∆,

provided Φ is of type Dn,
begin
1 let α1, . . . , αrk(Φ) be the fundamental roots, numbered as in Figure 1.4,

/* Find the point of degree 3 */
2 find t ∈ X F such that

∣∣{y ∈ X F | ζ(t, y) = −1}
∣∣ = 3,

3 let ι(αrk(Φ)−2) = t,
/* Find the two endpoints */

4 find distinct x1, x2 ∈ X F satisfying∣∣{y ∈ X F | ζ(xi, y) = −1}
∣∣ = 1 and ζ(xi, t) = −1,

5 set ι(αrk(Φ)−1) = x1 and ι(αrk(Φ)) = x2,
/* Find the other points */

6 for i = rk(Φ)− 3, . . . , 1 do
7 find y ∈ X F\{ι(αi+1), . . . , ι(αrk(Φ))} such that ζ(ι(αi+1), y) = −1,
8 set ι(αi) = y.
9 end for,
10 return ι.

end

Algorithm 4.16: Identifying the fundamental roots (Dn case)

• F4(2): The short roots generate generate an ideal of L of dimension 26 which
together with the maximal toral subalgebra H gives a 28-dimensional subal-
gebra of type D4, allowing the same procedure as before.

• G2(3): Similarly to the previous cases, we use the fact that the short roots
generate an ideal of L of type A2, which is again simply laced.

• G2(2): As described in Section 4.5.4, the manner in which the root spaces
in LA correspond to those in L is fixed. Therefore, we may use the roots
identified in LA, which is simply laced, to identify the roots in L.

4.6.4 Runtime analysis

The methods described lead to the following conclusion.

Proposition 4.21. Given L over F, H, R = (X, Φ, Y, Φ∨), the set Φ of roots of H on L,
and a Chevalley frame X , the routine IdentifyRoots finds a bijection ι : Φ → X such
that for all α, β ∈ Φ, α 6= ±β,

[ι(α), ι(β)] =

{
ι(α + β) if α + β ∈ Φ and Nα,β 6≡ 0 (mod p),
{0} otherwise.

For F = GF(q), the routine needs O∼(n10 log q) elementary operations.
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IdentifyRootsEn

in: all input of Algorithm 4.14,
out: A map ι : ∆→ X F such that ζ(ι(α), ι(β)) = 〈α, β∨〉 for all α, β ∈ ∆,

provided Φ is of type E6, E7, or E8,
begin
1 let α1, . . . , αrk(Φ) be the fundamental roots, numbered as in Figure 1.4,

/* Find the point of degree 3 */
2 find t ∈ X F such that

∣∣{y ∈ X F | ζ(t, y) = −1}
∣∣ = 3,

3 set ι(α4) = t,
/* Find endpoint */

4 find u ∈ X F such that
∣∣{y ∈ X F | ζ(x, y) = −1}

∣∣ = 1 and ζ(x, t) = −1,
5 set ι(α2) = u,

/* Identify chains in two directions */
6 find distinct x1, x2 ∈ X F such that x1, x2 6= u, and ζ(x1, t) = ζ(x2, t) = −1,
7 for i = 1, 2 do
8 set the sequence Si = [t, xi], the boolean b = true, m = 2,
9 while b do
10 if y ∈ X F\Si exists such that ζ(Si[m], y) = −1 then
11 set Si[m + 1] = y and m = m + 1.
12 else
13 let b = false.
14 end if.
15 end while.
16 end for,

/* Map these chains onto the root system */
17 if |S1| > |S2| then swap S1 and S2.
18 set ι(α1) = S1[2], ι(α3) = S1[3],
19 for i = 5, . . . , rk(Φ) set ι(αi) = S2[i− 3],
20 return ι.

end

Algorithm 4.17: Identifying the fundamental roots (En case)
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IdentifyRootsBCn

in: all input of Algorithm 4.14,
out: A map ι : ∆→ X F such that ζ(ι(α), ι(β)) = 〈α, β∨〉 for all α, β ∈ ∆,

provided Φ is of type Bn or of type Cn,
begin
1 let α1, . . . , αrk(Φ) be the fundamental roots, numbered as in Figure 1.4,

/* Find the double bond */
2 find x, y ∈ X F such that ζ(x, y) = −2,
3 if R is of type B then
4 set ι(αrk(Φ)−1) = x, ι(αrk(Φ)) = y,
5 let t = x.
6 else if R is of type C then
7 let ι(αrk(Φ)−1) = y, ι(αrk(Φ)) = x,
8 let t = y.
9 end if,

/* Find the other points */
10 for i = rk(Φ)− 2, . . . , 1 do
11 find z ∈ X F\{ι(αi+1), . . . , ι(αrk(Φ))} such that ζ(ι(αi+1), z) = −1,
12 set ι(αi) = z.
13 end for,
14 return ι.

end

Algorithm 4.18: Identifying the fundamental roots (Bn / Cn case)

IdentifyRootsF4
in: all input of Algorithm 4.14,
out: A map ι : ∆→ X F such that ζ(ι(α), ι(β)) = 〈α, β∨〉 for all α, β ∈ ∆,

provided Φ is of type F4,
begin
1 let α1, . . . , αrk(Φ) be the fundamental roots, numbered as in Figure 1.4,

/* Find the double bond */
2 find x, y ∈ X F such that ζ(x, y) = −2,
3 set ι(α2) = x, ι(α3) = y,

/* Find the other two points */
4 find z ∈ X F such that ζ(z, x) = −1, and set ι(α1) = z,
5 find z ∈ X F such that ζ(z, y) = −1, and set ι(α4) = z,
6 return ι.

end

Algorithm 4.19: Identifying the fundamental roots (F4 case)
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IdentifyRootsG2
in: all input of Algorithm 4.14,
out: A map ι : ∆→ X F such that ζ(ι(α), ι(β)) = 〈α, β∨〉 for all α, β ∈ ∆,

provided Φ is of type G2,
begin
1 let α1, . . . , αrk(Φ) be the fundamental roots, numbered as in Figure 1.4,

/* Find the triple bond */
2 find x, y ∈ X F such that ζ(x, y) = −3,
3 set ι(α1) = x, ι(α2) = y,
4 return ι.

end

Algorithm 4.20: Identifying the fundamental roots (G2 case)

Proof (of Proposition 4.21) Lemma 4.12 shows that in many cases we can compute
Cartan integers. To this end, we need to compute 〈α, β∨〉 for all O(n4) pairs of roots,
and every computation of this type involves at most 6 multiplications in L, requiring
a total of O∼(n4+6 log q) elementary operations. Once these numbers are computed,
it takes O(n4) steps to select a set of simple roots and subsequently complete the
bijection between Φ and X using Algorithms 4.13 and 4.14. This proves that we can
make the required bijection in O∼(n10 log q) time for the cases covered by Lemma
4.12.

For the remainder of the proof, we can restrict ourselves to the cases not covered
by Lemma 4.12. Here the procedure described provides ι directly, so we only need
prove the last assertion of the proposition. As G2(2) is directly reduced to a case
already treated, it needs no further consideration. In each of the remaining cases,
we need to compute a subalgebra or an ideal of L. Although this is hard in general,
the fact that we have already found the Chevalley frame X and the fact that the
subalgebra or ideal is a sum of elements from X imply that the computations take
O∼(n10 log q) elementary operations. A bijection ι′ from the relevant subsystem of
Φ to the subset of X of root spaces lying in the ideal may then be identified in time
O∼(n10 log q). Finally, extending ι′ to the entirety of Φ is a straightforward task,
requiring only standard linear algebra in L.

This shows that we can find the required bijection in the time stated for all cases.
�

4.7 Conclusion

As discussed in Section 4.3 the more difficult steps of Algorithm 4.3 are FindFrame

and IdentifyRoots. In Sections 4.5 (Proposition 4.8) and 4.6 (Proposition 4.21)
we established that these steps can be dealt with in time O∼(n10(log q)4). This
proves Theorem 4.1. We emphasize that this estimate is only asymptotic and refer
to Section 4.8 for timings.

A primary goal in writing the Chevalley basis algorithm is to use it for conju-
gacy questions in simple algebraic groups G or finite groups G(GF(q)) of rational
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points over GF(q). One of the complications in this application is the fact that the
group Aut(L) may be larger than G(GF(q)) (cf. [Hog78, Section 14]). To deal with
this complication, a method is needed to write an arbitrary automorphism of L as
a product of an element from G(GF(q)) and a particular coset representative of
G(GF(q)) in Aut(L). Such a method is in [CMT04] and is also used in [CM09].

4.8 Notes on the implementation

The timings in Table 4.22 were created using Magma 2.15 [BC08] on an Intel Core
2 Quad CPU running at 2.4 GHz with 8GB of memory available, although only one
core and 2.7GB of memory were used. The values in the table denote the time (in
seconds) it takes to compute a Chevalley basis for a Lie algebra L, given a maximal
toral subalgebra H and the corresponding root datum R. The Lie algebra L and its
subalgebra H are given as structure constant algebras, and a homomorphism from
H into L is given as well. Although L is initially constructed as a Chevalley Lie
algebra, a basis transformation τ has been applied, where τ keeps the eigenspaces
of L with respect to H invariant but acts randomly within those eigenspaces.

In addition to the theoretical analysis leading to the O∼(n10(log q)4) bound on
the runtime of the ChevalleyBasis algorithm, Figures 4.23 – 4.27 provide some
insight in the performance of the implementation in practice. In Figure 4.23 we
fix a particular root datum (one of the intermediate isogenies for type D6), chosen
because it is one of the more difficult cases in characteristic 2, and run the algorithm
for varying sizes of the underlying field. In figures 4.24 – 4.27 we fix the field, but
let the Lie algebra vary over each of the four classical series, for rank up to 9.

Figure 4.23 indicates that the size of the field has a much smaller influence than
O∼((log q)4). For smaller fields, this could be explained by the fact that many com-
puter algebra systems, Magma among them, cache field operations when creating
finite fields. Even for bigger fields, however, O∼((log q)4) seems to be an overesti-
mate.

On the other hand Figure 4.24 indicates that in characteristic 2 the O∼(n10)
estimate on the runtime is appropriate for root data of type Bn, Cn, and Dn, but for
root data of type An the runtime seems closer to O∼(n6). Surprisingly, in the cases
where the characteristic is not 2 (Figures 4.25, 4.26, and 4.27) a runtime estimate of
O∼(n8) seems more appropriate.
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R Q GF(17) GF(33) GF(26)

ASC
1 0.0 0.0 0.0 0.0

AAd
1 0.0 0.0 0.0 0.0

ASC
2 0.0 0.0 0.0 0.0

AAd
2 0.0 0.0 0.0 0.0

ASC
3 0.0 0.0 0.0 0.1

A(2)
3 0.0 0.0 0.0 0.7

AAd
3 0.0 0.0 0.0 0.0

ASC
4 0.1 0.0 0.1 0.1

AAd
4 0.1 0.0 0.1 0.1

ASC
5 0.1 0.1 0.1 0.2

A(3)
5 0.1 0.1 0.1 0.2

A(2)
5 0.1 0.1 0.1 0.2

AAd
5 0.1 0.1 0.1 0.2

ASC
6 0.3 0.2 0.3 0.6

AAd
6 0.3 0.2 0.4 0.6

ASC
7 0.6 0.5 0.9 1.2

A(4)
7 0.6 0.5 0.9 1.3

A(2)
7 0.6 0.5 0.9 1.3

AAd
7 0.6 0.5 0.9 1.5

ASC
8 1.4 1.0 1.4 3.5

A(3)
8 1.4 1.0 1.4 3.5

AAd
8 1.4 1.0 2.0 3.6

BSC
2 0.0 0.0 0.0 0.0

BAd
2 0.0 0.0 0.0 0.0

BSC
3 0.0 0.0 0.1 0.4

BAd
3 0.0 0.0 0.0 0.1

BSC
4 0.1 0.1 0.2 1.8

BAd
4 0.1 0.1 0.2 0.8

BSC
5 0.3 0.2 0.9 4.8

BAd
5 0.3 0.2 0.9 4.5

BSC
6 0.9 0.6 3.2 20

BAd
6 0.9 0.6 3.2 12

BSC
7 2.2 1.6 10 50

BAd
7 2.2 1.6 10 54

BSC
8 5.1 3.9 27 144

BAd
8 5.2 3.9 27 142

CSC
3 0.0 0.0 0.0 0.1

CAd
3 0.0 0.0 0.0 0.1

R Q GF(17) GF(33) GF(26)

CSC
4 0.1 0.1 0.2 0.9

CAd
4 0.1 0.1 0.2 1.0

CSC
5 0.3 0.2 0.9 5.8

CAd
5 0.3 0.2 0.9 10

CSC
6 0.8 0.6 3.2 33

CAd
6 0.9 0.6 3.2 40

CSC
7 2.2 1.6 10 111

CAd
7 2.2 1.6 10 148

CSC
8 5.2 3.9 27 423

CAd
8 5.2 3.9 27 646

DSC
4 0.1 0.0 0.1 1.0

D(2a)
4 0.1 0.1 0.1 3.2

D(2b)
4 0.1 0.1 0.1 2.8

D(2c)
4 0.1 0.0 0.1 2.9

DAd
4 0.1 0.1 0.1 0.1

DSC
5 0.2 0.1 0.3 1.9

D(2)
5 0.2 0.1 0.3 22

DAd
5 0.2 0.1 0.3 0.5

DSC
6 0.6 0.4 0.9 6.8

D(2a)
6 0.6 0.4 0.9 121

D(2b)
6 0.6 0.4 0.9 1.7

D(2c)
6 0.6 0.4 0.9 1.8

DAd
6 0.6 0.4 0.9 1.7

DSC
7 1.5 1.1 2.8 21

D(2)
7 1.5 1.1 2.8 545

DAd
7 1.5 1.1 2.8 5.7

DSC
8 3.7 2.8 7.7 57

D(2a)
8 3.7 2.8 7.7 1994

D(2b)
8 3.8 2.8 7.7 16

D(2c)
8 3.8 2.8 7.7 16

DAd
8 3.8 2.8 7.7 17

ESC
6 0.9 0.6 1.3 3.2

EAd
6 0.9 0.6 1.6 3.3

ESC
7 4.1 3.0 11 25

EAd
7 4.1 3.0 11 27

E8 28 21 112 397
F4 0.2 0.2 0.7 2.8
G2 0.0 0.0 0.0 0.3

Table 4.22: Runtimes of ChevalleyBasis
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j j GF(2^j) GF(3^j) GF(5^j) GF(59^j) O(Log(q)) O(Log(q)^4)
1 1.2 10.476 0.544 0.226 0.304 40 0.01

j j GF(2^j) GF(3^j) GF(5^j) GF(59^j) O(Log(q)) O(Log(q)^4)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

9.6 18.756 0.656 0.280 0.266 80 0.16
32.4 29.942 0.646 0.270 0.262 120 0.81
76.8 29.358 0.656 0.274 0.464 160 2.56
150 140.968 0.676 0.252 0.628 200 6.25

259.2 145.010 0.602 0.274 0.532 240 12.96
411.6 149.502 0.606 0.258 0.762 280 24.01
614.4 152.864 0.598 0.262 0.666 320 40.96
874.8 149.794 0.605 0.478 0.672 360 65.61
1200 149.670 0.606 0.456 0.890 400 100

1597.2 152.274 0.612 0.776 1.372 440 146.41
2073.6 154.490 0.612 0.478 0.888 480 207.36
2636.4 160.858 1.270 0.916 1.668 520 285.61
3292.8 155.144 0.956 0.516 1.404 560 384.16

4050 153.662 1.036 0.544 1.184 600 506.25
4915.2 156.768 0.964 0.562 1.900 640 655.36
5895.6 196.812 1.394 1.270 2.572 680 835.21
6998.4 214.476 1.010 0.598 1.596 720 1049.76
8230.8 246.770 1.512 1.474 3.302 760 1303.21

9600 255.868 1.030 0.680 2.870 800 1600
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Figure 4.23: Runtimes of ChevalleyBasis for L = D(2a)
6

x Rank An Bn Cn Dn O(n^6) O(n^10)
3
4
10.8 0.7 0.4 0.1 0.3 0.0243 0.59049
19.2 0.1 1.9 1.1 3.2 0.13653 10.48576

x Rank An Bn Cn Dn O(n^6) O(n^10)
5
6
7
8
9

30 0.2 4.8 10 22 0.52083 97.65625
43.2 0.6 20 40 121 1.5552 604.66176
58.8 1.5 54 172 545 3.92163 2824.75249
76.8 3.6 172 693 1994 8.73813 10737.4182
97.2 7.9 493 2212 6396 17.7147 34867.844
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Figure 4.24: Runtimes of ChevalleyBasis for F = GF(26)



4.8. NOTES ON THE IMPLEMENTATION 121

x Rank An Bn Cn Dn O(n^8) O(n^10)
3
4
10.8 0 0.1 0.1 0 0.02187 0.0059049
19.2 0.1 0.2 0.2 0.1 0.21845 0.1048576

x Rank An Bn Cn Dn O(n^8) O(n^10)
5
6
7
8
9

30 0.1 0.9 0.9 0.3 1.30208 0.9765625
43.2 0.4 3.2 3.2 0.9 5.59872 6.0466176
58.8 0.9 10 10 2.8 19.216 28.2475249
76.8 2 27 27 7.7 55.9241 107.374182
97.2 4.2 68 69 19 143.489 348.67844
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Figure 4.25: Runtimes of ChevalleyBasis for F = GF(33)

x Rank An Bn Cn Dn O(n^8) O(n^10)
3
4
10.8 0 0 0 0 0.0243 0.00059049
19.2 0 0.1 0.1 0.1 0.13653 0.01048576

x Rank An Bn Cn Dn O(n^8) O(n^10)
5
6
7
8
9

30 0.1 0.2 0.2 0.1 0.52083 0.09765625
43.2 0.2 0.6 0.6 0.4 1.5552 0.60466176
58.8 0.5 1.6 1.6 1.1 3.92163 2.82475249
76.8 1 3.9 3.9 2.8 8.73813 10.7374182
97.2 2 8.8 8.8 6.4 17.7147 34.867844
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Figure 4.26: Runtimes of ChevalleyBasis for F = GF(17)
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x Rank An Bn Cn Dn O(n^8) O(n^10)
3
4
10.8 0 0 0 0 0.0243 0.00059049
19.2 0.1 0.1 0.1 0.1 0.13653 0.01048576

x Rank An Bn Cn Dn O(n^8) O(n^10)
5
6
7
8
9

30 0.1 0.3 0.3 0.2 0.52083 0.09765625
43.2 0.3 0.9 0.9 0.6 1.5552 0.60466176
58.8 0.6 2.2 2.2 1.6 3.92163 2.82475249
76.8 1.4 5.3 5.2 3.8 8.73813 10.7374182
97.2 2.8 12 12 8.6 17.7147 34.867844
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Figure 4.27: Runtimes of ChevalleyBasis for F = Q
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5Recognition of Lie Algebras

In this chapter we apply the results of Chapters 3 and 4 to create an algorithm that
recognizes certain Lie algebras. First, in Section 5.1 we show how to recognize Lie
algebras of split simple algebraic groups. Second, in Section 5.2 we show how to
recognize certain simple Lie algebras that occur inside Lie algebras of split simple
algebraic groups. Third, in Section 5.3 we investigate the problem of recognizing
twisted Lie algebras, as defined in Section 2.1. Finally, in Section 5.4 we briefly
comment on the implementation of the algorithms presented in this chapter.

5.1 Lie algebras of simple algebraic groups

In this section we consider the problem of recognizing the Lie algebra of a simple
algebraic group. These Lie algebras are precisely the ones we dealt with in Chapter
4. We assume we are given a Lie algebra L as a structure constant algebra.

If the characteristic is distinct from 2, we may use the algorithm described by
Cohen and Murray in [CM09, Section 5] to produce a split maximal toral subalgebra
H; if the characteristic is equal to 2 we use the procedure described in Chapter 3.
This means that in order to be able to run the ChevalleyBasis algorithm we only
need to find a suitable root datum R.

We claim such a root datum can easily be found. Note first that, because we
have found H, and the underlying algebraic group is assumed to be simple, we
may use dim(H) = rk(R), the dimension of L, and the classification of simple Lie
algebras to narrow down the root system to one or two possibilities (or three, but
only if dim(L) = 78 and dim(H) = 6).

Second, given a root system, the number of possible root data is small as well. If
the root system is not of type An or Dn, the number of possible isogeny types is at
most 2. If the root system is of type Dn the number of possible isogeny types is at
most 5, as explained in Section 1.3. So suppose Φ is of type An, and fix p = char(F).
Note that the fundamental group is Z/(n + 1)Z. Since two root data for An lead
to isomorphic Lie algebras if both have the same exponent p in X/ZΦ, we need
consider at most logp(n + 1) + 1 = O(log n) different isogeny types. Thus, in order
to recognize the correct root datum, we run Algorithm 4.3 a sufficient but small
number of times for the bound given in Theorem 4.1 to remain intact.

We formalize this algorithm as Algorithm 5.1 and provide timings in Section
5.4. An important observation is that once the algorithm completes successfully we
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RecognizeLieAlgebraOfSimpleAlgebraicGroup

in: A structure constant Lie algebra L over an effective field F,
and a split maximal toral subalgebra H of L.

out: A root datum R and a Chevalley basis B for L with respect to H and R
if L is the Lie algebra of a split reductive algebraic group,
fail otherwise.

begin
/* Find candidate root data */

1 let n = dim(H),
2 let R0 = {},
3 if dim(L) = (n + 1)2 − 1 then let R0 = R0 ∪ {An},
4 if dim(L) = 2n2 + n then let R0 = R0 ∪ {Bn, Cn},
5 if dim(L) = 2n2 − n then let R0 = R0 ∪ {Dn},
6 if n = 6 and dim(L) = 78 then let R0 = R0 ∪ {E6},
7 if n = 7 and dim(L) = 133 then let R0 = R0 ∪ {E7},
8 if n = 8 and dim(L) = 248 then let R0 = R0 ∪ {E8},
9 if n = 4 and dim(L) = 52 then let R0 = R0 ∪ {F4},
10 if n = 2 and dim(L) = 14 then let R0 = R0 ∪ {G2},
11 let R =

⋃
Φ∈R0{Φι | ι is a possible isogeny type for Φ},

/* Compute Chevalley bases */
12 for R ∈ R do
13 try
14 let B = ChevalleyBasis(L, H, R),
15 return R, B.
16 end try.
17 end for,
18 return fail.

end

Algorithm 5.1: Recognizing the Lie algebra of a simple algebraic group



5.2. SIMPLE LIE ALGEBRAS OF ALGEBRAIC GROUPS 127

Φ(p) dim(L) dim(H)

An(p) (n ≥ 3, p | n + 1) (n + 1)2 − 2 n− 1

Dn(2) (n ≥ 4, n even) 2n2 − n− 2 n− 2

Dn(2) (n ≥ 4, n odd) 2n2 − n− 1 n− 1

E6(3) 77 5

E7(2) 132 6

Table 5.2: Some simple Lie algebras

have a certificate for a Lie algebra to be of type R: when presented with a candidate
Chevalley basis X0, H0, we only need to carry out the straightforward and quick
task of verifying that X0, H0 is indeed a Chevalley basis for L with respect to H and
R.

5.2 Simple Lie algebras of algebraic groups

The class of Lie algebras considered in the previous section is to some extent ar-
tificial since, if the characteristic of the field is not 0, the Lie algebra of a simple
algebraic group is not necessarily simple. In particular, simple algebraic groups
and their Lie algebras over fields of characteristic 2 provide a large number of ex-
amples where the Lie algebra is non-simple.

Prime examples for this are the 80-dimensional Lie algebras of type A8 over a
field F of characteristic 3. Namely, for A8

ad, there is a unique 79-dimensional ideal I
such that I contains Xα for all α ∈ Φ, and dim(H ∩ I) = 7; for A8

sc, the Lie algebra
has a 1-dimensional center; and for L = LF(A

(3)
8 ) we have L ∼= L′ ⊕ K, where

L′ is 79-dimensional and K is the one-dimensional trivial Lie algebra. One could
therefore argue that in characteristic 3 the 80-dimensional Lie algebra occurring in
all three situations is “the” simple Lie algebra of type A8 over fields of characteristic
3.

We investigate for which root data phenomena of this type occur. These observa-
tions are well known, and for example described by Hogeweij in [Hog82, Theorem
2.1], and in more detail in [Hog78].

• For root data R of type An, where n ≥ 3, the Lie algebra L = LF(R) is non-
simple whenever char(F) divides n + 1. If that is the case, we see behaviour
similar to the A8 example described above: For the adjoint isogeny type there
exists a unique ideal of codimension 1, and for the simply connected isogeny
type there is a 1-dimensional center. Moreover, if p2|(n+ 1), for the intermedi-
ate isogeny type, we have L = L′ ⊕ K, where K is the one-dimensional trivial
Lie algebra and L′ has dimension dim(L)− 1.

• For root data R of type Bn and fields F of characteristic 2, the Lie algebra
L = LF(R) has an ideal I generated by the short root elements. If R is Bn

ad,
we have dim(I) = 2n and I is abelian; if R is Bn

sc, the dimension of I is 2n+ 1,
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it has a 1-dimensional center 〈h〉F, and I/〈h〉F is abelian. Consequently, the
quotient L/I is of dimension 2n2 − n, 2n2 − n− 1, respectively, and is equal
to or is contained in a Lie algebra of type Dn.

• For root data R of type Cn and fields F of characteristic 2, the situation is
dual to that of Bn. The Lie algebra L = LF(R) contains an ideal I of type Dn
generated by the short roots, and L/I (whose dimension is 2n + 1) either has
a 1-dimensional center 〈h〉F (and (L/I)/〈h〉F is abelian) or a 2n-dimensional
abelian ideal.

• For root data R of type D4 over a field of characteristic 2 there are three distinct
cases for L = LF(R). Either there is a 26-dimensional ideal (for D4

ad), there
is a 2-dimensional center Z, yielding a 26-dimensional component as L/Z
(for D4

sc), or there is a 1-dimensional center Z and a codimension 1 ideal I,
yielding a 26-dimensional Lie algebra I/Z (for the three intermediate isogeny
types). We will call this 26-dimensional component “the” simple Lie algebra
of type D4 for fields of characteristic 2.

For root data R of type Dn (n ≥ 5) over a field F of characteristic 2 there are
three distinct cases, but the details depend on whether n is odd or even. If
n is odd, L = LF(R) has a 1-dimensional center (for Dn

sc), a codimension
1 ideal (for Dn

ad), or L = L′ ⊕ 〈h〉F (for D(1)
n ). If n is even, L = LF(R) has

a 2-dimensional center (for Dn
sc), a codimension 1 ideal (for Dn

ad), or a 1-
dimensional center Z and a codimension 1 ideal I. In conclusion, there always
is a 2n2 − n− 1-dimensional (if n is odd) or 2n2 − n− 2-dimensional (if n is
even) simple Lie algebra inside L. We will call this component “the” simple
Lie algebra of type Dn for fields of characteristic 2.

• For root data R of type E6 over fields F of characteristic 3, we find that
L = LF(R) either has a 1-dimensional center 〈h〉F (for E6

sc) or a codimension 1
ideal I (for E6

ad). The simple Lie algebra, L/〈h〉F or I, is 77-dimensional. Sim-
ilarly, for root data R of type E7 over fields F of characteristic 2, we find that
L = LF(R) either has a 1-dimensional center 〈h〉F (for E7

sc) or a codimension
1 ideal I (for E7

ad). The simple Lie algebra, L/〈h〉F or I, is 132-dimensional.

• For the root datum R of type F4 and a field F of characteristic 2, L = LF(R) has
a 26-dimensional ideal I generated by the short root elements; it is the same
26-dimensional Lie algebra as “the” simple Lie algebra of type D4. Moreover,
I ∼= L/I (see Section 2.5).

• For the root datum R of type G2 and a field F of characteristic 3, L = LF(R)
has a 7-dimensional ideal I generated by the short root elements; it is the same
7-dimensional Lie algebra as “the” simple Lie algebra of type A2. Moreover,
I ∼= L/I (see Section 2.5).

In this manner, we have found several simple Lie algebras that are not the Lie
algebra of a simple algebraic group. They are shown in Table 5.2. Here the Dynkin
type Φ of the Lie algebra L and the characteristic p of F are indicated by Φ(p) in
the first column. The second column indicates the dimension of L and the third
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RecognizeSimpleLieAlgebraOfAlgebraicGroup

in: A structure constant Lie algebra L over an effective field F,
and a split maximal toral subalgebra H of L.

out: A root datum R, a Lie algebra L′ ⊆ Der(L)
and a split maximal toral subalgebra H′ of L′ such that H ⊆ H′,
and a Chevalley basis B for L′ with respect to H′ and R
if L is one of the Lie algebras occurring in Table 5.2,
fail otherwise.

begin
/* Find candidate root data */

1 let m = dim(H),
2 let P = {},
3 if m ≥ 1, p | m + 2, and dim(L) = (m + 2)2 − 2 then
4 let P = P ∪ {(Am+1, 1)}.
5 end if,
6 if m ≥ 2, m is even, p = 2, and dim(L) = 2(m + 2)2 −m− 4 then
7 let P = P ∪ {(Dm+2, 2)}.
8 end if,
9 if m ≥ 3, m is even, p = 2, and dim(L) = 2(m + 1)2 −m− 2 then
10 let P = P ∪ {(Dm+1, 1)}.
11 end if,
12 if m = 5, p = 3, and dim(L) = 77 then let P = P ∪ {(E6, 1)}.
13 if m = 6, p = 2, and dim(L) = 132 then let P = P ∪ {(E7, 1)}.

/* Compute Chevalley bases */
14 compute the composition series of Der(L) using the Meat-Axe,
15 for (Φ, d) ∈ P do
16 try
17 let L′ be a (dim(L) + d)-dimensional ideal of Der(L),
18 let H′ ⊆ CL′(H) be a split maximal toral subalgebra of L′,
19 let B = ChevalleyBasis(L′, H′, Φad),
20 return Φad, H, L′, H′, B.
21 end try.
22 end for,
23 return fail.

end

Algorithm 5.3: Recognizing the simple Lie algebra of an algebraic group
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column contains the dimension of a maximal toral subalgebra H of L. These last
two columns will be useful for identification purposes.

We may recognize the Lie algebras shown in Table 5.2 in the following manner,
formalized in Algorithm 5.3. Suppose we encounter a Lie algebra L over a field
of characteristic p, and we have computed a split maximal toral subalgebra H.
Suppose Φ is a root system for which a suitable relation holds, e.g.,

dim(L) = (dim(H) + 2)2 − 2 and p | dim(H) + 2

for Φ(p) = An(p). We then compute the Lie algebra of derivations Der(L) and
use the Meat-axe in an attempt to obtain a (dim(L) + d)-dimensional ideal L′ of
Der(L), where d = 2 if Φ(p) = Dn(2) and n is even, and d = 1 otherwise. We let
H′ = CL′(H), which should yield a split maximal toral subalgebra of L′, such that
dim(H′) = rk(Φ).

If this procedure succeeds and gives a Lie algebra L′ and a split maximal toral
subalgebra H′ ⊆ L′ of the required dimensions, these may serve (with a root datum
R = Φad) as input for the ChevalleyBasis algorithm, and thus recognize L. If
on the other hand something fails (e.g., L′ cannot be extended as required), L was
apparently not the simple Lie algebra of an algebraic group.

5.3 Twisted Lie algebras

In order to recognize twisted Lie algebras we introduce the notion of twisted bases.
Suppose we are given a twisted Lie algebra L over the field F of type nR, where
R = (X, Φ, Y, Φ∨), and δ is a degree n diagram automorphism of Φ. Fix an arbitrary
basis b1, . . . , bk of L.

Let F′ be a degree n field extension of F, and F a degree n Frobenius automor-
phism of F such that tF = t for all t ∈ F. Furthermore, let L′ = L⊗ F′ be the Lie
algebra L with base field F′ instead of F (this is well-defined since F′ ⊇ F and Lie
multiplication is linear). The basis b1, . . . , bk of L is clearly also a basis of L′.

Since L′ is defined over a suitable extension field of F, it is a split Lie algebra,
and therefore has a Chevalley basis. Suppose B = {Xα, hi | α ∈ Φ, i = 1, . . . , rk(R)}
is such a basis. We may now write elements of L′ (and thus also elements of L)
as F′ linear combinations of these basis elements: for all x ∈ L′ there exist tα ∈ F′

(α ∈ Φ) and ti ∈ F′ (i = 1, . . . , rk(R)) such that

x = ∑
α∈Φ

tαXα +
rk(R)

∑
i=1

tihi.

We let the diagram automorphism δ act on L′ in the usual manner, i.e., Xδ
α = Xδα

for all α ∈ Φ and hδ
i = Xδi (where δi = j precisely if δ(αi) = αj; here αk denotes the

k-th fundamental root of Φ).
The field automorphism F now acts on L′ in two distinct ways, corresponding

to two canonical ways the elements of L′ can be written in. First, with respect to the



5.3. TWISTED LIE ALGEBRAS 131

basis of L:

FL : L′ → L′, x = t1b1 + · · ·+ tkbk 7→ tF
1 b1 + · · ·+ tF

k bk =: xFL ,

so that xFL = x for all x ∈ L. Second, with respect to the Chevalley basis of L′:

FB : L′ → L′, x = ∑
α∈Φ

tαXα +
rk(R)

∑
i=1

tihi 7→ ∑
α∈Φ

tF
α Xα +

rk(R)

∑
i=1

tF
i hi =: xFB ,

so that XFB
α = Xα for all α ∈ Φ. The two actions of the field automorphism on L′

are related in the following sense.

Lemma 5.4. xδFB = x for all x ∈ L if and only if (Xα)FL = Xδα for all α ∈ Φ and
(hi)

FL = hδi for i = 1, . . . , rk(R).

Proof First observe that it follows immediately from the definition of FL and FB
that (tx)FL = tFxFL and (tx)FB = tFxFB for all t ∈ F′ and all x ∈ L′. Now suppose
that (Xα)FL = Xδα for all α ∈ Φ and (hi)

FL = hδi for i = 1, . . . , rk(R). Let x ∈ L, and
let tα ∈ F′ (where α ∈ Φ) and ti ∈ F′ (where i = 1, . . . , rk(R)) be such that

x = ∑
α∈Φ

tαXα +
rk(R)

∑
i=1

tihi,

so that

x = xFL = ∑
α∈Φ

tF
α(Xα)

FL +
rk(R)

∑
i=1

tF
i (hi)

FL = ∑
α∈Φ

tF
α Xδα +

rk(R)

∑
i=1

tF
i hδi = xδFB .

This proves the “if”-direction. Suppose on the other hand that xδFB = x for all
x ∈ L. Let α ∈ Φ and t1, . . . , tk ∈ F′ be such that

Xα = t1b1 + . . . + tkbk.

We calculate, similarly to the above,

Xδα = XFB
δα = XδFB

α = tF
1 (b1)

δFB + · · ·+ tF
k (bk)

δFB = tF
1 b1 + · · ·+ tF

k bk = XFL
α .

The assertion that (hi)
FL = hδi follows in precisely the same manner, finishing the

proof of the lemma. �

Note that both the action of the diagram automorphism δ and that of the field
automorphism FB depend on the choice of a Chevalley basis B. We call a Chevalley
basis B a twisted basis for L if xδFB = x for all x ∈ L. It follows from the definition
of twisted Lie algebras that such a twisted basis exists. Moreover, for an arbitrary
Lie algebra L over F the existence of a twisted basis with respect to a certain root
datum R and diagram automorphism of degree n proves that it is isomorphic to the
twisted Lie algebra of type nR.

In Algorithm 5.5 we present an algorithm for computing twisted bases.
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TwistedBasis

in: A structure constant Lie algebra L over an effective field F,
a suitable split toral subalgebra H of L,
an irreducible root datum R = (X, Φ, Y, Φ∨), and n ∈ {2, 3}.

out: A twisted basis for L if L is of type nR; fail otherwise.
begin
1 let δ be the order n automorphism of Φ, and ∆ a set of fundamental roots of Φ,
2 let F′ a degree n extension of F, L′ = L⊗F′, and H′0 = H ⊗F′,
3 try
4 let H′ ⊇ H′0 be a split maximal toral subalgebra of L′,
5 let B = {Xα, hi | α ∈ Φ, i = 1, . . . , rk(R)} = ChevalleyBasis(L′, H′, R),
6 let w ∈W(Φ) such that F′

(
XFL

w(α)

)
= F′

(
Xδ(w(α))

)
for all α ∈ Φ,

7 let tw(α) ∈ (F′)∗ such that
(

tw(α)Xw(α)

)FL
= tδ(w(α))Xδ(w(α)) for all α ∈ Φ,

8 find h′i such that B′ = {tw(α)Xw(α), h′i | α ∈ Φ, i = 1, . . . , rk(R)} is
a Chevalley basis for L′ with respect to H′ and R,

9 return B′.
10 end try,
11 return fail.

end

Algorithm 5.5: Computing a twisted basis

Proposition 5.6. Let L′ be the Chevalley Lie algebra with irreducible root datum R =
(X, Φ, Y, Φ∨) over the field F, where Φ admits a degree n automorphism δ and F admits a
degree n automorphism F (where n ∈ {2, 3}). Let H′ be a split maximal toral subalgebra of
L′. Let L (resp. H) be the fixed points of L′ (resp. H′) under the composition δF (such an
H we call suitable). Upon input of L, H, R, and n, the algorithm TwistedBasis returns a
twisted basis for L.

Proof It follows immediately from Lemma 5.4 that if Algorithm 5.5 completes suc-
cessfully it indeeds returns the required twisted basis. Now let F′ be a degree n
extension of F, let G be the group of Lie type R over F′, let W be the Weyl group
of G, and let T be its split torus. Since by construction L⊗ F′ is isomorphic to the
split Chevalley Lie algebra of type R and since NG(H′) ∼= WT, the Weyl group
element w in line 6 and the scalars tα in line 7 must exist. Finally, the existence of
the required h′i is immediate; they may for instance be found from the tw(α)Xw(α) by
elementary linear algebra. �

Note that in Proposition 5.6 we require the split toral subalgebra H that is input
to the TwistedBasis algorithm to be of a special form. The question now naturally
arises whether we can find such split toral subalgebras. Unfortunately, the existing
algorithms [CM09, Ryb07] as discussed in Chapter 3 consider split toral subalge-
bras of split Chevalley Lie algebras: a class that the twisted Lie algebras do not fall
into. Experiments with Magma, however, show that these algorithms find appro-
priate split toral subalgebras in many cases. Moreover, the heuristic algorithm for
finding split maximal toral subalgebras in characteristic 2, described in Section 3.3,
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RecognizeTwistedLieAlgebra

in: A structure constant Lie algebra L over an effective field F,
and a suitable split toral subalgebra H.

out: An irreducible root datum R = (X, Φ, Y, Φ∨), an n ∈ Z,
and a twisted basis for L if L is of type nR for some irreducible
root datum R and some n ∈ {2, 3}; fail otherwise.

begin
/* Find candidate root data */

1 let P0 = {},
2 if dim(L) = (k + 1)2 − 1 for some k ∈ Z then let P0 = P0 ∪ {(Ak, 2)},
3 if dim(L) = 2 ∗ k2 − k for some k ∈ Z then let P0 = P0 ∪ {(Dk, 2)},
4 if dim(L) = 28 then let P0 = P0 ∪ {(D4, 3)},
5 if dim(L) = 78 then let P0 = P0 ∪ {(E6, 2)},
6 let P =

⋃
(Φ,n)∈P0{(Φι, n) | ι is a possible isogeny type for Φ},

/* Compute twisted bases */
7 for (R, n) ∈ P do
8 try
9 let B = TwistedBasis(L, H, R, n),
10 return R, n, B.
11 end try.
12 end for,
13 return fail.

end

Algorithm 5.7: Recognizing a twisted Lie algebra

performs quite well. There is, however, one notable exception to the rule. Consider
a twisted Lie algebra of type 2Al over a field F of characteristic 2, and adopt the
notation from Proposition 5.6. It follows from the analysis of the twisted groups
(cf. [GLS98, Proposition 2.3.2(d), Theorem 2.4.7(a)]) that dim(H′) is 1

2 l (if l is even)
or 1

2 (l + 1) (if l is odd). In this particular case, however, −δ is an element of the
Weyl group W and the (in odd characteristic non-split) maximal toral subalgebra
of L corresponding to −δ, is F-split. Experiments show that in these cases our
heuristic algorithm always returns such an F-split toral subalgebra of dimension l.

The algorithm TwistedBasis for computing a twisted basis and the select set of
root systems with a non-trivial automorphism immediately suggest a recognition
algorithm for twisted Lie algebras arising from irreducible root data. This algo-
rithm functions in a manner similar to Algorithms 5.1 and 5.3, and is presented in
Algorithm 5.7. Note that we require the split toral subalgebra that is given as input
to this algorithm to be suitable, as defined in Proposition 5.6.

5.4 Notes on the implementation

We have implemented the algorithms 5.1, 5.3, 5.5, and 5.7 in Magma, with one
significant modification: instead of stopping as soon as the given Lie algebra has
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been identified, the implemented algorithm tests all candidates and returns all pos-
sible matches. Moreover, the three algorithms are combined into one algorithm that
recognizes all three types of Lie algebras (Lie algebras of simple algebraic groups,
the simple Lie algebras presented in Table 5.2, and twisted Lie algebras of simple
algebraic groups). In particular, this means that for a Lie algebra L over Q, the al-
gorithm returns at least as many possibilities as there are isogeny types of the root
datum of L.

In Tables 5.8a and 5.8b we give three values for every irreducible root datum
of rank at most 8, and for each of four fields F (namely Q, GF(17), GF(33), and
GF(26)). First, under “#” the number of matches, i.e., k1 + k2 + k3, where k1 is the
number of root data R such that the Lie algebra under consideration is isomorphic
to LF(R), and k2 is 1 if L is isomorphic to one of the Lie algebras shown in Table 5.2,
and k2 = 0 otherwise. Finally, k3 is the number of pairs (R, n), for a root datum R
and an integer n, such that L is isomorphic to nR(F). The second value is the time
in seconds it takes to find the first match (labeled “t0”), and third the time it takes
to find all matches (labeled “t”).

In Table 5.8c the same values are given for each of the simple Lie algebras pre-
sented in Table 5.2, for the same fields, and again up to rank 8. In Tables 5.8d
and 5.8e the same values are given for twisted Lie algebras of rank up to 8. Since
the construction of twisted Lie algebras requires a finite field and the GF(2)-case
is somewhat harder than the general characteristic 2 case, we ran the tests over
GF(59), GF(17), GF(33), and GF(2). Furthermore, in some cases “n/a” is displayed
in the table, indicating that the twisted Lie algebra of that particular type does not
exist over that particular field. All timings are in seconds and were created using
Magma 2.15 [BC08] on a Quad-Core Intel Xeon running at 3 GHz with 16GB of
memory available, although only one core and less than 2GB of memory were used.

As in the timings produced for the ChevalleyBasis algorithm, the Lie algebra L
and its subalgebra H are given as structure constant algebras, and a homomorphism
from H into L is given as well. For the cases where L is split (Tables 5.8a–5.8c) we
constructed L and H as a Chevalley Lie algebra, and have subsequently applied a
random basis transformation τ, where τ is such that it keeps the eigenspaces of L
with respect to H invariant but acts randomly within those eigenspaces. For the
cases where L is twisted (Tables 5.8d–5.8e) we constructed L and H from their split
counterparts, and then apply a fully random basis transformation. This ensures, by
construction, that H is a suitable split toral subalgebra of L.

As expected, the timings in Tables 5.8a and 5.8b are of the same order of magni-
tude as the timings for computing Chevalley bases given in Section 4.8. The same
is true for those in Table 5.8c. For Tables 5.8d and 5.8e, on the other hand, the algo-
rithm performs significantly worse than might be expected from the corresponding
Chevalley basis timings. This may largely be attributed to the computation of an
additional split maximal toral subalgebra. Moreover, in this case we applied a
fully random basis transformation, which significantly slows down the Lie algebra
arithmetic, and we have not yet optimized the implementation for the computation
of twisted bases or of split maximal toral subalgebras, whereas we have invested
significant time and effort in the optimization of the code for the computation of
Chevalley bases.



5.4. NOTES ON THE IMPLEMENTATION 135

Q GF(17) GF(33) GF(26)
R # t0 t # t0 t # t0 t # t0 t

ASC
1 2 0.0 0.0 2 0.0 0.0 2 0.0 0.0 1 0.0 0.0

AAd
1 2 0.0 0.0 2 0.0 0.0 2 0.0 0.0 1 0.0 0.0

ASC
2 2 0.0 0.0 2 0.0 0.0 1 0.0 0.0 2 0.0 0.0

AAd
2 2 0.0 0.0 2 0.0 0.0 1 0.0 0.0 2 0.0 0.0

ASC
3 3 0.0 0.1 3 0.0 0.0 3 0.0 0.1 1 0.1 0.2

A(2)
3 3 0.0 0.0 3 0.0 0.0 3 0.0 0.1 1 0.3 0.3

AAd
3 3 0.0 0.1 3 0.0 0.0 3 0.0 0.1 1 0.0 0.1

ASC
4 2 0.0 0.1 2 0.0 0.1 2 0.1 0.2 2 0.1 0.2

AAd
4 2 0.1 0.1 2 0.0 0.1 2 0.1 0.1 2 0.1 0.2

ASC
5 4 0.1 0.4 4 0.1 0.4 2 0.2 0.5 2 0.3 0.6

A(3)
5 4 0.1 0.5 4 0.1 0.4 2 0.2 0.5 2 0.2 0.7

A(2)
5 4 0.1 0.4 4 0.1 0.4 2 0.2 0.6 2 0.3 0.6

AAd
5 4 0.1 0.4 4 0.1 0.4 2 0.2 0.6 2 0.2 0.7

ASC
6 2 0.2 0.4 2 0.2 0.4 2 0.3 0.6 2 0.3 0.7

AAd
6 2 0.2 0.4 2 0.2 0.3 2 0.3 0.6 2 0.4 0.7

ASC
7 4 0.4 1.6 4 0.3 1.3 4 0.5 2.2 1 1.0 1.8

A(4)
7 4 0.4 1.6 4 0.3 1.3 4 0.6 2.2 2 1.4 2.0

A(2)
7 4 0.4 1.6 4 0.3 1.3 4 0.6 2.2 2 1.4 2.0

AAd
7 4 0.4 1.6 4 0.3 1.3 4 0.6 2.2 1 0.6 2.2

ASC
8 3 0.7 2.1 3 0.5 1.4 1 1.3 1.9 3 1.0 3.2

A(3)
8 3 0.7 2.2 3 0.5 1.4 1 1.9 2.0 3 1.0 3.1

AAd
8 3 0.8 2.2 3 0.5 1.6 1 0.9 2.5 3 1.0 3.1

BSC
2 2 0.0 0.0 2 0.0 0.0 2 0.0 0.0 1 0.0 0.0

BAd
2 2 0.0 0.0 2 0.0 0.0 2 0.0 0.0 1 0.0 0.1

BSC
3 2 0.0 0.1 2 0.0 0.1 2 0.1 0.2 1 0.3 0.4

BAd
3 2 0.0 0.1 2 0.0 0.1 2 0.1 0.2 1 0.1 0.2

BSC
4 2 0.1 0.3 2 0.1 0.3 2 0.2 0.5 1 1.1 1.2

BAd
4 2 0.1 0.3 2 0.1 0.3 2 0.2 0.5 1 0.3 0.8

BSC
5 2 0.3 0.7 2 0.2 0.6 2 0.4 1.3 1 2.2 2.5

BAd
5 2 0.3 0.7 2 0.2 0.6 2 0.4 1.3 1 0.6 2.5

BSC
6 2 0.5 2.1 2 0.5 1.9 2 0.9 3.3 1 6.1 7.1

BAd
6 2 0.6 2.5 2 0.4 1.6 2 0.9 3.3 1 1.5 7.2

BSC
7 2 1.1 3.6 2 0.8 2.3 2 1.6 4.8 1 15 16

BAd
7 2 1.2 3.7 2 0.8 2.3 2 1.6 4.9 1 2.6 17

BSC
8 2 2.2 7.3 2 1.4 4.1 2 2.8 8.6 1 36 38

BAd
8 2 2.1 6.6 2 1.3 4.0 2 2.8 8.6 1 4.5 39

CSC
3 2 0.1 0.1 2 0.1 0.1 2 0.1 0.2 1 0.2 0.2

CAd
3 2 0.1 0.1 2 0.1 0.1 2 0.1 0.2 1 0.2 0.2

Table 5.8a: Recognition Timings (1/5)
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Q GF(17) GF(33) GF(26)
R # t0 t # t0 t # t0 t # t0 t

CSC
4 2 0.2 0.3 2 0.2 0.3 2 0.3 0.5 1 0.6 0.6

CAd
4 2 0.2 0.3 2 0.2 0.3 2 0.3 0.5 1 0.8 0.8

CSC
5 2 0.5 0.8 2 0.4 0.6 2 0.8 1.3 1 1.2 1.2

CAd
5 2 0.5 0.8 2 0.4 0.6 2 0.8 1.3 1 2.5 2.6

CSC
6 2 1.3 2.5 2 0.9 1.8 2 1.9 3.3 1 2.8 3.3

CAd
6 2 1.3 2.5 2 0.9 1.9 2 1.9 3.2 1 6.7 7.4

CSC
7 2 2.5 3.6 2 1.4 2.3 2 3.2 4.8 1 6.3 6.4

CAd
7 2 2.5 3.7 2 1.5 2.3 2 3.2 4.9 1 17 18

CSC
8 2 5.0 7.2 2 2.6 4.0 2 5.8 8.6 1 14 14

CAd
8 2 4.8 6.9 2 2.5 3.9 2 5.7 8.5 1 41 42

DSC
4 5 0.1 0.4 5 0.1 0.3 5 0.1 0.5 1 0.7 0.8

D(2a)
4 5 0.1 0.3 5 0.1 0.3 5 0.1 0.5 3 2.7 7.5

D(2b)
4 5 0.1 0.3 5 0.1 0.3 5 0.1 0.5 3 2.6 7.6

D(2c)
4 5 0.1 0.3 5 0.1 0.3 5 0.1 0.5 3 2.6 7.2

DAd
4 5 0.1 0.3 5 0.1 0.3 5 0.1 0.5 1 0.1 0.6

DSC
5 3 0.2 0.5 3 0.1 0.4 3 0.3 0.8 1 1.3 7.4

D(2)
5 3 0.2 0.5 3 0.1 0.4 3 0.3 0.8 1 21 21

DAd
5 3 0.2 0.5 3 0.1 0.4 3 0.3 0.8 1 0.3 0.8

DSC
6 5 0.4 2.0 5 0.3 1.7 5 0.6 2.9 1 3.5 116

D(2a)
6 5 0.4 2.2 5 0.3 1.7 5 0.6 2.9 1 106 310

D(2b)
6 5 0.5 2.3 5 0.4 1.9 5 0.6 3.2 2 2.3 3.2

D(2c)
6 5 0.5 2.2 5 0.4 1.8 5 0.7 3.3 2 2.3 3.2

DAd
6 5 0.4 2.2 5 0.4 1.9 5 0.7 3.3 1 0.8 3.5

DSC
7 3 0.9 2.6 3 0.6 1.8 3 1.1 3.3 1 9.6 209

D(2)
7 3 0.9 2.6 3 0.6 1.8 3 1.1 3.3 1 488 488

DAd
7 3 0.9 2.8 3 0.7 1.9 3 1.1 3.5 1 1.3 3.7

DSC
8 5 1.7 8.3 5 1.0 5.2 5 2.0 9.9 1 23 2286

D(2a)
8 5 1.8 8.9 5 1.0 5.2 5 2.0 10.0 1 1766 5359

D(2b)
8 5 1.7 8.4 5 1.0 5.3 5 2.0 9.9 2 7.7 10

D(2c)
8 5 1.6 8.2 5 1.0 5.2 5 2.0 9.9 2 7.6 10

DAd
8 5 1.6 7.9 5 1.0 5.2 5 2.0 9.9 1 2.5 12

ESC
6 2 1.8 2.4 2 1.2 1.6 1 3.2 3.2 2 2.8 3.8

EAd
6 2 1.8 2.4 2 1.4 1.9 1 2.6 3.3 2 2.7 3.7

ESC
7 2 1.9 3.8 2 1.3 2.6 2 2.4 5.0 1 5.3 5.4

EAd
7 2 1.9 3.9 2 1.2 2.6 2 2.4 5.0 1 3.2 5.9

E8 1 8.0 8.0 1 5.0 5.2 1 10 11 1 14 14
F4 1 0.2 0.2 1 0.2 0.2 1 0.4 0.4 1 0.9 0.9
G2 1 0.0 0.0 1 0.0 0.0 1 0.1 0.1 2 0.2 0.3

Table 5.8b: Recognition Timings (2/5)
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L F # t0 t
7-dim simple Lie algebra in A2 GF(33) 1 0.2 0.3
14-dim simple Lie algebra in A3 GF(26) 2 0.2 0.3
34-dim simple Lie algebra in A5 GF(26) 1 0.4 0.4
34-dim simple Lie algebra in A5 GF(33) 1 0.5 0.5
62-dim simple Lie algebra in A7 GF(26) 1 2.4 2.4
79-dim simple Lie algebra in A8 GF(33) 1 4.9 4.9
26-dim simple Lie algebra in D4 GF(26) 1 0.6 0.6
44-dim simple Lie algebra in D5 GF(26) 1 1.2 1.2
64-dim simple Lie algebra in D6 GF(26) 1 3.3 3.3
90-dim simple Lie algebra in D7 GF(26) 1 9.9 9.9
118-dim simple Lie algebra in D8 GF(26) 1 24 24
77-dim simple Lie algebra in E6 GF(33) 1 4.2 4.2
132-dim simple Lie algebra in E7 GF(26) 1 29 29

Table 5.8c: Recognition Timings (3/5)

GF(59) GF(17) GF(33) GF(2)
R # t0 t # t0 t # t0 t # t0 t

2ASC
2 2 0 0 2 0 0 1 0 0 1 0 0

2AAd
2 2 0 0 2 0 0 1 0 0 2 0 0

2ASC
3 3 0.1 0.1 3 0.1 0.1 3 0.1 0.2 1 0.2 0.3

2A(2)
3 3 0 0.1 3 0 0.1 3 0.1 0.2 1 0.2 0.5

2AAd
3 3 0 0.1 3 0 0.1 3 0.1 0.2 1 0.1 0.2

2ASC
4 2 0.2 0.4 2 0.2 0.4 2 0.3 0.5 2 0.2 0.4

2AAd
4 2 0.1 0.2 2 0.2 0.3 2 0.2 0.5 2 0.2 0.4

2ASC
5 4 0.8 2.9 4 0.8 3 2 1.4 2.8 2 1.2 2.3

2AAd
5 4 0.5 1.8 4 0.8 3 2 1.1 3.2 2 1 3.4

2A(3)
5 4 0.7 2.9 4 0.8 3.1 2 1.4 2.8 2 1 3.4

2A(2)
5 4 0.8 2.9 4 0.8 3 2 1 3.1 2 1.2 2.3

2ASC
6 2 2.7 5.4 2 2.8 5.5 2 3.8 7.5 2 2.3 4.3

2AAd
6 2 2.7 5.5 2 2.8 5.7 2 3.7 7.4 2 2.3 4.3

2ASC
7 4 10 40 4 9.9 39 4 13 53 1 16 30

2A(4)
7 4 9.9 39 4 10 40 4 13 52 2 34 46

2A(2)
7 4 9.6 38 4 10 41 4 13 53 2 34 46

2AAd
7 4 9.7 39 4 10 40 4 14 54 1 14 50

Table 5.8d: Recognition Timings (4/5)
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GF(59) GF(17) GF(33) GF(2)
R # t0 t # t0 t # t0 t # t0 t

2ASC
8 3 30 90 3 31 91 1 52 65 3 29 84

2A(3)
8 3 30 89 3 30 90 1 65 65 3 30 87

2AAd
8 3 30 89 3 31 91 1 40 73 2 80 232

2DSC
4 5 0.2 1 5 0.3 1.5 5 0.4 2.2 1 1.2 2.6

2D(2a)
4 5 0.3 1.5 5 0.3 1.5 5 0.5 2.2 n/a

2D(2b)
4 5 0.3 1.5 5 0.3 1.5 5 0.5 2.2 n/a

2D(2c)
4 5 0.3 1.5 5 0.3 1.5 5 0.5 2.2 3 0.8 7.7

2DAd
4 5 0.3 1.5 5 0.3 1.5 5 0.3 1.6 1 0.4 1.5

2DSC
5 3 2.2 6.3 3 2.2 6.4 3 3 8.9 1 4.3 6.1

2D(2)
5 3 1.3 3.7 3 2.2 6.5 3 3 8.8 1 3.1 8.9

2DAd
5 3 2.1 6.2 3 2.2 6.4 3 3 8.9 1 1.7 4.4

2DSC
6 5 12 57 5 12 58 5 16 79 1 26 54

2D(2a)
6 5 6.8 32 5 7.1 34 5 16 80 1 11 86

2D(2b)
6 5 11 56 5 12 58 5 16 79 n/a

2D(2c)
6 5 12 57 5 12 58 5 16 79 n/a

2DAd
6 5 12 57 5 12 57 5 16 80 1 8 33

2DSC
7 3 30 88 3 57 166 3 75 222 1 74 115

2D(2)
7 3 57 165 3 32 92 3 77 225 2 34 153

2DAd
7 3 54 161 3 30 89 3 76 224 1 33 91

2DSC
8 5 258 1244 5 259 1247 5 336 1631 1 354 868

2D(2a)
8 5 260 1250 5 263 1269 5 339 1641 2 117 1423

2D(2b)
8 5 259 1238 5 264 1260 5 338 1634 n/a

2D(2c)
8 5 259 1231 5 121 562 5 340 1638 n/a

2DAd
8 5 246 1211 5 257 1253 5 327 1603 1 130 612

3DSC
4 5 0.5 2.4 5 0.3 1.6 5 0.5 2.2 1 2.1 2.6

3D(2a)
4 5 0.5 2.4 5 0.3 1.5 5 0.5 2.3 n/a

3D(2b)
4 5 0.5 2.4 5 0.3 1.5 5 0.5 2.3 n/a

3D(2c)
4 5 0.5 2.4 5 0.3 1.5 5 0.5 2.3 n/a

3DAd
4 5 0.5 2.4 5 0.3 1.5 5 0.3 1.7 1 0.4 1.7

2ESC
6 2 24 48 2 26 50 1 34 34 2 15 30

2EAd
6 2 25 49 2 26 50 1 34 48 2 15 30

Table 5.8e: Recognition Timings (5/5)
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6.32A7(q2) < E7(q)

6.1Distance transitivity

6.2From groups to graphs



6Distance-Transitive Graphs

In this chapter we apply the algorithms developed in Chapters 3 and 4 to prove the
following theorem.

Theorem 6.1. Let G be the group of Lie type E7
ad(2) and let H be a maximal subgroup

of G isomorphic to 2A7(22). The permutation character of the G-action on H\\G is not
multiplicity free.

This theorem, combined with Proposition 6.8, implies the following corollary.

Corollary 6.2. Let G be the group of Lie type E7
ad(2) and let H be a maximal subgroup of

G isomorphic to 2A7(22). There is no graph structure on the G-set H\\G such that G acts
distance transitively on it.

This result fits in the effort by Cohen, Lawther, Liebeck, and Saxl to classify
the graphs on which an almost simple group of exceptional Lie type acts distance
transitively [CLS02]. Most general results regarding distance transitivity in this
chapter have been taken from [BCN89, Chapters 4, 7] and [Coh04]. The structure
of the proof of Theorem 6.1 is similar to [Kro03, Chapter 5], where it is proved
that no distance-transitive graph exists with automorphism group E7(q) and vertex
stabilizer subgroup A7(q).2, for q = 2 or q = 4.

In Sections 6.1 and 6.2 the relevant notions are introduced and some of the el-
ementary theorems we use are proved. In Section 6.3 we first explain how the
subgroups required for the proof of Theorem 6.1 can be constructed on the com-
puter, using the algorithms developed in the previous chapters. We finally explain
why the 6 orbits depicted in Table 6.22 are sufficient to prove the theorem.

To increase legibility we will mostly use action from the right in this chapter,
e.g., x 7→ xδ.

6.1 Distance transitivity

We assume graphs to be without loops and without multiple bonds. Let Γ1 =
(V1, E1) and Γ2 = (V2, E2) be two graphs, and denote adjacency of two vertices v and
w by v ∼ w. They are said to be isomorphic if there exists some bijection ϕ : V1 → V2
such that ϕ(v) ∼ ϕ(w) if and only if v ∼ w. The bijection ϕ is called a graph
isomorphism. An isomorphism from a graph to itself is called an automorphism. The
set of all automorphisms of a graph Γ forms a group with respect to composition
of maps. This group is called the automorphism group of Γ, denoted by Aut(Γ).
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Let Γ = (V, E) be a graph and let G ≤ Aut(Γ) be a group acting truthfully on
Γ. The image of a vertex v ∈ V under the action of g ∈ G will be denoted by
vg, and the G-orbit of v will be denoted by vG. Similarly, the image of an edge
e = {v, w} ∈ E under the action of g ∈ G will be denoted by eg = {vg, wg}, and its
G-orbit by eG. By Gv we denote the subgroup of G of elements that stabilize v:

Gv := {g ∈ G | vg = v}.

The group G is called vertex transitive on Γ if vG = V for all v ∈ V (i.e., if every
vertex is mapped to every other vertex by G), and it is called edge transitive if all
eG = E for all e ∈ E (i.e., if every edge of Γ is mapped to every other edge by G).

We adopt the convention that d(v, w) := ∞ if the vertices v and w are in different
components of Γ. We define a partition of the set V ×V into distance sets:

Γi := {(v, w) ∈ V ×V | d(v, w) = i}.

Fixing a vertex v ∈ V we can define a partition of V by

Γi(v) := {w ∈ V | d(v, w) = i}.

The group G is called distance transitive on Γ if it acts transitively on all distance
sets of Γ, i.e., if for all x, y, v, w ∈ V such that d(v, w) = d(x, y), there exists a g ∈ G
such that vg = x and wg = y. The graph Γ is called a distance-transitive graph if its
automorphism group acts distance transitively on it.

We prove the following elementary lemma.

Lemma 6.3. Let Γ = (V, E) be a connected graph with diameter d and let G be a group of
automorphisms of Γ. Then G is distance transitive on Γ if and only if G is vertex transitive
on V and Gv is transitive on the set Γi(v) for each i = 1, . . . , d and for all v ∈ V.

Proof Suppose Γ is distance transitive. If |V| = 1 the claim is trivially true, so
we assume |V| > 1. To see that G is vertex transitive pick v, w ∈ V, and take
v′, w′ ∈ V such that d(v, v′) = 1 = d(w, w′) (which is possible since |V| > 1 and
Γ is connected). By distance-transitivity there exists a g ∈ G such that vg = w
and (v′)g = w′, hence G is vertex transitive. Now pick v ∈ V, i ∈ {1, . . . , d}, and
w, u ∈ Γi(v), so that d(v, w) = d(v, u) = i. By distance-transitivity of Γ there exists
a g ∈ G such that vg = v and wg = u, proving Gv is transitive on Γi(v).

Now suppose G is vertex transitive and Gv is transitive on the set Γi(v) for each
i = 0, . . . , d and for all v ∈ V. Take v, w, x, y ∈ V such that d(v, w) = d(x, y) = i.
Since G is vertex transitive there exists a g ∈ G such that vg = x, and since G ≤
Aut(Γ) we have d(x, wg) = d(vg, wg) = i. Because Gx is transitive on Γi(x) there is
an h ∈ Gx such that (wg)h = y. Consequently, vgh = xh = x and wgh = y, proving
Γ is distance transitive. �

Before proceeding, we give two examples.

Example 6.5. The automorphism group G of the graph ∆1 depicted in Figure
6.4 has order 12 and is generated by the permutations (1, 2, 3)(4, 5, 6), (1, 4)(2, 5)(3, 6),
and (2, 3)(5, 6). ∆1 is not distance transitive: even though d(1, 2) = d(1, 4) = 1,
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Figure 6.4: Examples of (non)-distance-transitive graphs

the edge {1, 2} will never be sent to the edge {1, 4} since the former is in a three-
cycle and the latter is not.

It is on the other hand easy to see that G is vertex transitive. By Lemma 6.3
there should be a vertex stabilizer subgroup that does not act distance transitively.
Indeed, consider the vertex stabilizer G1 of 1. It does not act transitively on for
example (∆1)1(1): vertex 4 is never moved by G1.

Example 6.6. The automorphism group G of the graph ∆2 depicted in Fig-
ure 6.4 has order 48 and is generated by the permutations (1, 2)(3, 4)(5, 6)(7, 8),
(2, 4)(6, 8), and (3, 6)(4, 5).

We use Lemma 6.3 to see that ∆2 is distance transitive. Firstly, it is imme-
diately clear that G is vertex transitive, so that we only need to verify that G1 is
transitive on the set Γi(1) for each i = 0, . . . , 3. Now indeed G1 acts transitively on
(∆2)0(1) = {1}, (∆2)1(1) = {2, 4, 5}, (∆2)2(1) = {3, 8, 6}, and on (∆2)3(1) = {7}
(observe the symmetries along the axis through vertices 1 and 7).

The following lemma and the proposition it implies will play an important role
in our proof of Theorem 6.1.

Lemma 6.7 ([BCN89, 4.1B]). The adjacency matrix of a distance-transitive graph Γ has
precisely d + 1 real distinct eigenvalues.

The following proposition is straightforward, given this lemma.

Proposition 6.8 ([BCN89, Proposition 4.1.11]). Let Γ be a distance-transitive graph with
vertex set V and automorphism group G, and let π be the permutation character of the
G-action on V. Firstly, 〈π, π〉 = d + 1, where d is the diameter of Γ. Secondly, the
permutation character π of the G-action on V is multiplicity free.

Proof Let d be the diameter of Γ and fix a vertex v ∈ V. There exists a partitioning
of V into d + 1 distance sets with respect to v. Since Γ is assumed to be distance
transitive, the point stabilizer H in G of v acts transitively on each of the distance
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sets, hence they correspond to d + 1 distinct H-orbits on V. Thus, using Frobenius
reciprocity (cf. [Gor80, Theorem 4.5]), we see that

〈π, π〉 = 〈π, (1H)
G〉 = 〈π|H , 1H〉 = d + 1,

proving the first claim. For the second claim, let ϑ0, . . . , ϑd be the eigenvalues of
the adjacency matrix of Γ, which exist by Lemma 6.7. Since they are distinct, the
corresponding d + 1 eigenspaces in RΓ are G-invariant, so that the (not necessarily
distinct) characters χ0, . . . , χd corresponding to these spaces are well defined. From
π = ∑d

i=0 χi it follows that

d + 1 = 〈π, π〉 =
d

∑
i=0

d

∑
j=0
〈χi, χj〉 ≥

d

∑
i=0
〈χi, χi〉 ≥ d + 1,

showing that all characters χ0, . . . , χd are distinct and irreducible. �

6.2 From groups to graphs

We have seen that for every graph we can construct a group that canonically belongs
to it: its automorphism group. The question then arises whether we can reverse this
process: given a group G, construct a graph Γ such that Aut(Γ) = G.

Let G be a group, H a subgroup of G, and r ∈ G, r /∈ H. We define Γ(G, H, r) to
be the graph whose vertex set is the set of left-cosets of H in G, denoted by H\\G,
and whose adjacency is defined by Hx ∼ Hy⇔ y ∈ HrHx.

Lemma 6.9 ([Coh04, Theorem 3.1]). Let Γ = (V, E) be a distance-transitive graph and
G its automorphism group. Fix a vertex v ∈ V, let H = Gv, and let r ∈ G such that
vr ∈ Γ1(v). The graphs Γ and Γ′ = Γ(G, H, r) are isomorphic.

Proof Recall that the vertex set of Γ′ is V′ = H\\G, and Hx, Hy ∈ V′ are connected
if and only if y ∈ HrHx. First, every w ∈ V is equal to vg for some g ∈ G, giving a
bijection between V and V′ = H\\G via vg ↔ Hg. (The fact that this is a bijection
follows immediately from the definition of H: indeed, suppose w = vg = vh for
some g, h ∈ G, g 6= h. Then vgh−1

= v, so that gh−1 ∈ Gv = H and therefore
Hg = Hh. The reverse direction is easily proved along the same lines.)

Second, the set of neighbours of v is {vrh | h ∈ H}, because H acts transitively
on Γ1(v). For Hx ∈ H\\G, the set of neighbours of vHx is {vrhHx | h ∈ H} = vrHx.
Therefore, vHx ∼ vHy if and only if Hy = rHx, which occurs if and only if y ∈
HrHx. This proves that vx ↔ Hx is indeed an isomorphism. �

Example 6.11. We consider the graph ∆3 shown in Figure 6.10. Its automor-
phism group G has order 8 and is generated by (1, 2, 3, 4) and (1, 3), and ∆3 is
easily seen to be distance transitive.

We let H = G1 = 〈(2, 4)〉 and r = (1, 2, 3, 4) (so that d(1, 1r) = d(1, 2) = 1) and
follow the procedure described above to construct Γ(G, H, r). First, the vertex set
is H\\G, so that there are 4 vertices:
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4

1 2

3

H Hr

H(4,3,2,1) H(1,3)

∆3 Γ(G, G1, (1, 2, 3, 4))

Figure 6.10: A graph from a group

• H = {id, (2, 4)},

• Hr = {r = (1, 2, 3, 4), (1, 4)(2, 3)},

• H(1, 3) = {(1, 3), (1, 3)(2, 4)}, and

• H(4, 3, 2, 1) = {(4, 3, 2, 1), (1, 2)(3, 4)}.

Then, to find the edges, we compute

HrH = {(1, 2, 3, 4), (1, 4)(2, 3), (1, 2)(3, 4), (4, 3, 2, 1)} = Hr ∪ H(4, 3, 2, 1),

so that H is adjacent to Hr and H(4, 3, 2, 1). In the same fashion we find

• HrHr = H(1, 3) ∪ H,

• HrH(1, 3) = Hr ∪ H(4, 3, 2, 1), and

• HrH(4, 3, 2, 1) = H ∪ H(1, 3).

All in all, this gives the second graph in Figure 6.10.

Example 6.13. We investigate where the construction described above fails if
the graph we start with is not vertex transitive or not edge transitive. So again
consider ∆1, depicted in Figure 6.4, and recall that G = 〈(1, 2, 3)(4, 5, 6), (2, 3)(5, 6),
(1, 4)(2, 5)(3, 6)〉 and G1 = 〈(2, 3)(5, 6)〉. We take r1 = (1, 2, 3)(4, 5, 6) and r2 =
(1, 4)(2, 5)(3, 6), so that ri ∈ G but ri /∈ H and we construct Γ(G, G1, ri) (where
i = 1, 2).

The resulting graphs, shown in Figure 6.12, are clearly different from the
graph ∆1 we started with. This is a direct consequence of the fact that ∆1 is not
distance transitive, in particular of the fact that Aut(∆1) does not act transitively
on the edges. This is exposed by the different choices for r: indeed, r1 corresponds
to the edge {1, 1r1} = {1, 2}, whereas r2 corresponds to the edge {1, 4}.
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Γ(G, G1, (1, 2, 3)(4, 5, 6)) Γ(G, G1, (1, 4)(2, 5)(3, 6))

Figure 6.12: Two graphs from Aut(∆1)

Now the question that naturally arises is the following: “given a group G with
a subgroup H, what are the conditions on G and H such that G acts distance tran-
sitively on Γ(G, H, r) (for some r ∈ G)?” The following lemma limits the groups we
need to consider in order to answer this question:

Lemma 6.14 ([Coh04, Theorem 3.2]). Let G be a group, H a subgroup of G, and fix some
r ∈ G. Consider Γ = Γ(G, H, r).

• Γ is connected if and only if 〈H, r〉 = G.

• Γ is undirected if and only if HrH = Hr−1H.

Proof The subgroup 〈H, r〉 is strictly smaller than G if and only if it does not work
transitively on the set of right cosets of H in G. Thus if and only if it stabilizes some
subset of H\\G. But that means that no vertex in this subset is connected to a vertex
outside of the subset, hence that Γ is not connected. The second claim immediately
follows from the observation that x ∼ y by definition if y ∈ HrHx, or equivalently
if x ∈ Hr−1Hy. �

In order to further limit the graphs under consideration, we introduce the notion
of (im)primitivity. Let Γ be a graph of diameter d, let V be its vertices, and recall
the partition of V × V into distance sets Γi = {(v, w) ∈ V × V | d(v, w) = i}. The
graph Γ is called primitive if Γi is connected for all i, and imprimitive otherwise. Two
obvious examples of imprimitive graphs are the ones that are bipartite (where Γ2 is
disconnected) and the ones that are antipodal (where Γd is disconnected).

This notion is closely related to (im)primitivity in groups: A permutation group
G on a set X is called primitive if the only G-invariant relations ≡ on X are those
defined by x ≡ y if x = y and by x ≡ y for all x, y ∈ X. The permutation group
G is called imprimitive otherwise. The following result is originally due to Smith
[Smi71] (in fact, this result holds for the more general class of distance-regular
graphs [BCN89, Theorems 4.1.10, 4.2.1], but we restrict to distance-transitive ones
here).
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Figure 6.16: The groups involved

Lemma 6.15 ([Coh04, Corollary 5.2, Theorem 5.3]). Suppose G acts distance-transitively
on the connected graph Γ with diameter d. Then G is imprimitive if and only if Γ is; if this
is the case then at least one of the following holds:

(i) Γ is antipodal and G acts distance-transitively on the graph whose vertices are the
equivalence classes Γ0 ∪ Γd, and where two vertices are adjacent if and only if they
contain adjacent vertices in Γ.

(ii) Γ is bipartite and G acts distance-transitively on each of the two graphs obtained from
Γ by taking the bipartite classes, where two vertices are adjacent if and only if they are
at distance 2 in Γ.

This result prompts us to narrow the search for distance-transitive graphs to
those that are primitive. Furthermore, if a group G acts transitively on the vertex
set of a graph Γ, then Γ is primitive if and only if the vertex stabilizer subgroup Gv
is a maximal subgroup of G for each vertex v of Γ (cf. [Rot95, Theorem 9.15]). So
we restrict our study of distance transitivity to groups G and maximal subgroups
H < G.

For example, A7(q).2 is a maximal subgroup of E7(q). In [Kro03] it is proved
that no distance-transitive graph exists with automorphism group E7(q) and vertex
stabilizer subgroup A7(q).2, for q = 2 or q = 4. An overview of the progress
in the case where G is a finite exceptional group of Lie type is available online
[CLS02]. Only a small number of cases is still open, due to bounds on the size of
the subgroup H in relation to the overgroup G, general arguments on odd q, and
explicit computations. In the next section we prove that no graph exists on which
E7

ad(2) acts distance transitively with vertex stabilizer subgroup 2A7(22).

6.3 2A7(22) < E7(2)

The remainder of this section is devoted to the proof of Theorem 6.1. We let
R = (X, Φ, Y, Φ∨) be the adjoint root datum of type E7, and we let E7(4) be the
corresponding group of Lie type over the field with 4 elements. This group is at the
top of Figure 6.16. A subgroup of type E7(2) is easy to construct on the computer:
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0 31 4 5 6 7

2

Figure 6.17: Extended Dynkin diagram of E7 and the graph automorphism of A7

we take the subgroup generated by xα(a) (for α ∈ Φ and a ∈ GF(2)) and y⊗ t (for
y ∈ Y and t ∈ GF(2)∗). This group is denoted by E7(2) in Figure 6.16.

To make the other three subgroups featured in Figure 6.16 we explicitly follow
the construction of 2A7(22) as described in Section 2.1. We introduce two involu-
tions of E7(4). The first involution originates from the field automorphism of GF(4),
the Frobenius automorphism i 7→ i2 denoted by F. It extends to an automorphism
of E7(4) by sending xα(t) to xα(t2) and y⊗ t to y⊗ t2. The second involution is the
nontrivial automorphism of the extended Dynkin diagram of E7, sending α0 to α7,
α1 to α6, etc. This involution will be denoted by δ. Since δ ∈W(E7) it corresponds to
a δ̇ ∈ E7(4) (see Section 1.10) and therefore it acts on E7(4) by conjugation: g 7→ gδ̇.
Since it is clear from the context when we mean δ and when we mean δ̇, we will
always write δ for ease of reading.

Now E7(4)δF is by definition the subgroup of E7(4) consisting of the elements
that are left invariant by δF. By Lang’s theorem (cf. Theorem 1.54) it is isomorphic
to the group E7(2) we constructed above. This subgroup E7(4)δF is denoted by

Ẽ7(2) in Figure 6.16.
Observe that there exists a closed subsystem of type A7 of extended E7 that is

left invariant by δ, thus inducing a subgroup A7(4) of E7(4). This implies that inside

Ẽ7(2) lives 2A7(22): those elements of the subgroup A7(4) < E7(4) that are invariant
under δF. This group is generated by (α0⊗ ξ)(α0⊗ ξ)δF and xα0(1)xα0(1)

δFẇ, where
ξ is a generator of GF(4)∗ and w = sα0 sα7 sα1 sα6 sα3 sα5 sα4 (see [Ste62]).

By Lang’s theorem there exists an isomorphism τ ∈ E7(4) that sends Ẽ7(2) to

E7(2), and τ sends 2A7(22) to an isomorphic subgroup ˜2A7(22) < E7(2).

In the remainder of this section we show how Ẽ7(2) and τ can be constructed as
matrix groups in a computer algebra system. To that end, we let L be the Lie algebra
E7(4) and let b1, . . . , b133 be a basis for L. Now we consider L as a Lie algebra over
the smaller field GF(2). A basis is then b1, . . . , b133, ξb1, . . . , ξb133, where ξ is chosen
such that ξ ∈ GF(4) but ξ 6∈ GF(2). We then compute the subalgebra M of L that
is invariant under δF. Note that this is possible since F is a field automorphism
and therefore acts on the Lie algebra just like it acts on the group and δ is an
inner automorphism of E7(4), and therefore acts on the Lie algebra via the adjoint
representation.

It is straightforward to see that M is defined over GF(2) (in the sense that the
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structure constants that determine the multiplication are all in GF(2)). For suppose
a, b ∈ M and [a, b] = (tξ + u)c, with c ∈ M and t, u ∈ GF(2). Then (tξ + u)c =
[a, b] = [aδF, bδF] = [a, b]δF = ((tξ + u)c)δF = (tξ2 + u)c, so that t must be equal to
0.

This means that Ẽ7(2) acts on M: To see this, suppose g ∈ Ẽ7(2) (so that then
gδF = g by definition) and x ∈ M (so that xδF = x, again by definition). For clarity,
we let ρ be the adjoint representation of E7(4) acting on L. Since δF = (δF)−1 we see
that (xg)δF = x · ρ(g) · ρ(δF) = x · ρ(δF)) · ρ((δF)−1) · ρ(g) · ρ(δF) = x · ρ(gδF) = xg.

As mentioned earlier, because E7(2) ∼= Ẽ7(2) there exists an isomorphism τ
between the two, which can be found by computing a split maximal toral subalgebra

and a Chevalley basis for Ẽ7(2). The isomorphism can then be determined by
solving a system of linear equations, and we can verify that τ ∈ E7(4) using the
“generalized row reduction” algorithm described in [CMT04]. This is the algorithm
for Lang’s theorem described in [CM09], but we need the algorithms developed in
Chapters 3 and 4 since we are working over characteristic 2. We found the following
expression for τ:

τ = x7(1)x13(ξ
2)x19(1)x25(ξ

2)x31(1)x36(ξ
2)x45(1)x49(ξ)x39(1)x44(1)x48(ξ

2)x52(1)
x51(ξ

2)x54(ξ)x57(1)x56(1)x60(ξ
2)x61(ξ)x62(ξ

2)x63(ξ
2)x6(ξ

2)x12(ξ
2)x18(1)x24(1)

x23(ξ)x33(ξ
2)x35(ξ

2)x38(ξ
2)x40(ξ

2)x43(ξ
2)x42(1)x50(1)x53(ξ

2)x16(1)x21(1)x26(ξ)
x28(1)x32(1)x9(ξ)x15(ξ)x14(1)x20(ξ

2)x3(1)x2(1)x1(ξ) (ξ2, ξ2, ξ2, ξ, ξ2, 1, 1) n1n3n1
n4n2n3n1n4n3n5n4n2n3n1n4n3n5n4n2n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5n4
n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5n4n2n3n4n5n6x25(ξ

2)x31(1)x30(ξ
2)x36(1)x41(ξ)

x45(ξ)x49(ξ
2)x34(1)x39(ξ)x44(1)x48(ξ)x47(ξ

2)x51(ξ)x54(1)x56(1)x58(ξ)x59(1)x60(ξ)
x61(ξ

2)x62(ξ)x63(ξ)x12(1)x18(ξ)x24(ξ
2)x27(1)x23(1)x29(ξ

2)x33(ξ
2)x35(ξ

2)x38(ξ
2)

x40(ξ
2)x43(ξ)x42(1)x46(ξ)x50(ξ)x53(ξ)x5(ξ

2)x11(ξ
2)x17(ξ)x22(1)x21(ξ)x28(ξ

2)
x32(ξ

2)x37(ξ)x4(ξ)x10(ξ
2)x9(1)x15(ξ

2)x14(1)x20(1)x3(ξ)x8(1)x1(ξ
2),

where ξ is a generator of GF(4) satisfying ξ2 + ξ + 1 = 0.

6.3.1 Towards the proof

We let F = GF(2) and R the adjoint root datum of type E7 with root system Φ.
Moreover, we take L = LR(F) to be the corresponding Lie algebra, whose Chevalley
basis is {Xα, hi | α ∈ Φ, i ∈ {1, . . . , 7} and we take v = h2.

We define X = {Fvg | g ∈ H\\G} and claim that as a G-set X is equal to H\\G.
Indeed, G is transitive on X by construction and the stabilizer of Fv in G contains
H, and H is maximal in G. The elements of X can be expressed as elements of the
Chevalley basis of L.

Now we define a second G-set Y = {F(Xα0)
g | g ∈ G}, let P = CG(FXα0) (so

that Y ∼= P\\G as G-sets). We let ρ be the permutation character of the action of G
on Y, so that ρ = 1G

P . (We will study Y in more detail in Section 6.3.3 and show that
it consists of extremal elements.)

Lemma 6.18. ρ is multiplicity free of rank 5.

Proof Let n be the number of P-orbits on Y. By Frobenius reciprocity we have

n = 〈ρ|P, 1P〉 = 〈ρ, (1P)
G〉 = 〈ρ, ρ〉.
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Clearly, Y is in one-to-one correspondence to the set of right cosets {Pg | g ∈ G}
via F(Xα0)

g ↔ Pg, so that the number of P-orbits on Y is equal to the number of
double cosets P\\G/P.

Since G is a Chevalley group, it has a (B, N) pair and, using the Bruhat decom-
position, we have G = BNB. Because P is a parabolic subgroup of G of type D6, we
have P = BND6 B for some subgroup ND6 of N, so that

P\\G/P = BND6 B\\BNB/BND6 B ∼= WD6\\W/WD6 ,

where W is the Weyl group of type E7 and WD6 < W the subgroup of type D6.
With a computer algebra system it is easy to verify that |WD6\\W/WD6 | = 5

and that the coset representatives, g1, . . . , g5 say, are all involutions, so that g−1
i ∈

WD6\\W/WD6 for all i = 1, . . . , 5. Using the isomorphism of Y and P\\G, and the
bijective correspondence between the G-orbits on Y× Y and P\\G/P, we find that
this is equivalent to the fact that the G-orbits on Y×Y are all self-paired, by Lemma
6.14. But this implies that the permutation character ρ consists of 5 irreducible
characters, hence it is multiplicity free. �

The following lemma hints at our strategy for the proof of Theorem 6.1.

Lemma 6.19. If Γ(G, H, r) is distance transitive then then number of H-orbits on Y is at
most 5.

Proof We let π be the permutation character of the action of G on X. Since X is
equal to H\\G its permutation character on X is 1H , so that π = 1G

H . It follows from
Lemma 6.18 that there are 5 irreducible characters ρ1, . . . , ρ5 such that ρ = ∑5

i=1 ρi.
We extend ρ1, . . . , ρ5 to an orthonormal basis of irreducible characters ρ1, . . . , ρk for
the space of class functions, and we let ci ∈N be such that π = ∑k

i=1 ciρi. We find

〈π, ρ〉 =
k

∑
i=1

5

∑
j=1

ci〈ρi, ρj〉 =
5

∑
i=1

ci.

On the other hand, by applying Frobenius reciprocity, we find

〈π, ρ〉 = 〈(1H)
G, ρ〉 = 〈1H , ρ|H〉 = n,

where n is the number of H-orbits on Y. If Γ(G, H, r) is distance transitive then π is
multiplicity free by Proposition 6.8, so that the number of H-orbits on Y is at most
5. �

6.3.2 Distinguishing H-orbits

In this section we develop some tools to help us differentiate between different H-
orbits on Y. Firstly, it is easily verified by computer calculations that the action of
H on L decomposes into 3 irreducible modules: the 1-dimensional space Fv, which
we will call S1, a 62-dimensional subalgebra S62, and a 70-dimensional subalgebra
S70. This is to be expected since H, a group of type 2A7, naturally acts on a Lie
algebra M of type 2A7. The dimension of M is equal to 63, and it turns out that
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(because char(F) = 2) the Lie algebra M is a direct sum of Z(M) and [M, M],
similar to the behaviour described for split Lie algebras of type A7 in Section 5.2.
This leaves dim(L)− 63 = 70 dimensions for the third module, which is irreducible
by maximality of H in G.

Lemma 6.20. Let S ∈ {S1, S62, S70} and y1, y2 ∈ Y. If CS(y1) 6∼= CS(y2) then y1 and y2
are in different H-orbits.

Proof Observe that for y ∈ Y and g ∈ G

CS(yg) = {s ∈ S | [s, yg] = 0}

= {s ∈ S | [sg−1
, y]g = 0}

= {s ∈ S | [sg−1
, y] = 0}

= {(sg−1
)g ∈ S | [sg−1

, y] = 0}

=
(

C
Sg−1 (y)

)g
.

If g ∈ H then Sg = S so that the last line simplifies to CS(y)g, showing that the
structure of CS(y) is an invariant for the action of H. �

6.3.3 Extremal Elements

In order to find suitable representatives of the orbits of H on L we introduce the
concept of extremal elements.

Let L be a Lie algebra over a field F. A non-zero element x ∈ L is called extremal
if there exists a linear map gx : L → F that satisfies the following extremal identities
for all y, z ∈ L:

[x, [x, y]] = 2gx(y)x,
[x, [y, [x, z]]] = gx([y, z])x− gx(z)[x, y]− gx(y)[x, z].

These identities go back to Premet, and they are also commonly called the Premet
identities. We denote the set of extremal elements of L by E(L), or by E if no
confusion is imminent. An extremal element x is called a sandwich element if gx is
identically zero.

Extremal elements were originally introduced by Chernousov [Che89] in his
proof of the Hasse principle for E8. Zel’manov and Kostrikin proved that, for every
n, the universal Lie algebra Ln generated by a finite number of sandwich elements
x1, . . . , xn is finite-dimensional [ZK90]. Cohen, Steinbach, Ushirobira, and Wales
generalized this result and proved that, provided char(F) 6= 2, a Lie algebra gen-
erated by a finite number of extremal elements is finite dimensional. Moreover,
they give an explicit lower bound on the number of extremal elements required
to generate each of the classical Lie algebras [CSUW01]. Recently, In ’t Panhuis,
Postma, and the author of this thesis gave explicit presentations for Lie algebras of
type An, Bn, Cn, and Dn, by means of minimal sets of extremal generators [itpPR09]
(again excluding the case where char(F) = 2). Moreover, Draisma and In ’t pan-
huis considered finite graphs and corresponding algebraic varieties whose points
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dim(CS62(x) x ∈ L
29 x−63
30 x−61
33 x−53
38 x−59 + x−12
45 x3 + x5 + x6 + x8 + x13 + x14 + x16 + x17 + x19 + x20 + x22 +

x23 + x24 + x26 + x27 + x29 + x33 + x34 + x36 + x38 + x39 + x40 +
x41 + x45 + x46 + x47 + x52 + x54 + x55 + x56 + x57 + x58 + x59 +
x61 + x63 + x−1 + x−5 + x−6 + x−7 + x−10 + x−11 + x−14 + x−16 +
x−21 + x−23 + x−25 + x−27 + x−28 + x−30 + x−31 + x−32 + x−35 +
x−38 + x−41 + x−43 + x−44 + x−45 + x−48 + x−49 + x−50 + x−57 +
x−59 + h1 + h3 + h4 + h6

48 x3 + x4 + x5 + x9 + x11 + x13 + x14 + x15 + x16 + x18 + x19 + x20 +
x21 + x22 + x23 + x25 + x26 + x27 + x30 + x31 + x33 + x34 + x38 +
x39 + x40 + x41 + x43 + x44 + x46 + x47 + x48 + x49 + x50 + x52 +
x54 + x55 + x58 + x59 + x60 + x61 + x62 + x63 + x−1 + x−2 + x−6 +
x−10 + x−12 + x−13 + x−15 + x−17 + x−18 + x−19 + x−22 + x−23 +
x−25 + x−27 + x−30 + x−33 + x−34 + x−38 + x−39 + x−43 + x−57 +
x−58 + x−59 + x−60 + h2 + h5

Table 6.22: 6 different H-orbits on Y

parametrize Lie algebras generated by extremal elements. They proved in partic-
ular that if the graph is a simply laced Dynkin diagram of affine type, all points
in an open dense subset of the affine variety parametrize Lie algebras isomorphic
to the split finite-dimensional simple Lie algebra corresponding to the associated
Dynkin diagram of finite type [Ditp08]. Furthermore, Cohen, Ivanyos, and the au-
thor of this thesis proved that if L is a Lie algebra over a field F (of characteristic
distinct from 2 and 3) that has an extremal element that is not a sandwich, then L
is generated by extremal elements, with one exception in characteristic 5 [CIR08].
The strong connection between extremal elements and geometries is further inves-
tigated in two papers by Cohen and Ivanyos [CI06, CI07], and in the Ph.D. theses
by Postma and In ’t panhuis [Pos07, itp09].

For the proof of Theorem 6.1 we will use the following lemma.

Lemma 6.21. The group G acts transitively on the set E(L) of extremal elements of L.

Proof An equivalent statement is that E(L) is equal to XG
α0

, since Xα0 is a long
root element and therefore extremal. But by [CI06, Theorem 28] extremal elements
correspond to abstract root subgroups, and Timmesfeld’s study of abstract root
subgroups forbids two distinct orbits in this case [Tim01, Theorem 2.14]. �

6.3.4 Γ(E7(2), 2A7(22), r) is not multiplicity free

Recall we defined G to be the group of Lie type E7(2) and H a subgroup of G of
type 2A7(22). Furthermore, we defined L to be the Chevalley Lie algebra of type E7
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over F = GF(2), we let Xα0 ∈ L be the root element corresponding to the longest
negative root, and we defined Y = {F(Xα0)

g | g ∈ G}.
In Table 6.22 we list 6 different orbits of H on Y, using the invariants defined

in Section 6.3.2. The first column contains the dimension of CS62(x), where x is
the element of L shown in the second column. These orbits were found using the
computer algebra system Magma 2.15 [BC08], on a Quad-Core Intel Xeon running
at 3 GHz, taking roughly 12 CPU hours.

Since the table contains 6 different values of CS62(x), this shows that the elements
of L are in different H-orbits. It remains to show that they are in the same G-
orbit, i.e., that they are elements of Y. For the first three rows it is immediate that
Fx = FXt

α0
for some t ∈ G, since both x and Xα0 are long root elements and G acts

transitively on long root elements. For the last three rows it is easily checked by
machine that each of the given elements is extremal, so that it is in the G-orbit of
FXt

α0
by Lemma 6.21.

This shows that there are more than 5 different H-orbits on Y, thus complet-
ing the proof of Theorem 6.1 by Lemma 6.19, and the proof of Corollary 6.2 by
Proposition 6.8.

We have tried to apply the method described in this section to various other
open cases, such as 2A7(42) < E7(4) and 2E6(q2) < E7(q) for q = 2, 4. Unfortunately,
although the groups relevant to these cases are easily constructed in Magma, the
methods we used to find orbit representatives proved to be insufficient.
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Samenvatting

Algoritmen voor Lie algebra’s van algebraïsche groepen

In dit proefschrift beschrijven we verschillende nieuwe algoritmen voor het werken
met enkelvoudige algebraïsche groepen en de Lie algebra’s die daarmee samen-
hangen. Er is al veel onderzocht aan deze groepen en algebra’s, in eerste instantie
vanuit een meer theoretische invalshoek en later met als doel berekeningen met
deze objecten op de computer mogelijk te maken. Dit heeft geleid tot implemen-
taties in computeralgebrasystemen zoals GAP en Magma. De resultaten in dit
proefschrift bouwen in het bijzonder voort op werk van Arjeh Cohen, Willem de
Graaf, Sergei Haller, Scott Murray en Don Taylor. Dit werk wordt gedeeltelijk ges-
timuleerd door het “matrix group recognition project”: een internationaal project
waarin talloze wetenschappers werken aan de algoritmische analyse van allerlei
problemen met matrixgroepen over eindige lichamen.

Een nadeel van veel algoritmen die in deze tak van onderzoek zijn ontwikkeld
is dat ze alleen toepasbaar zijn op groepen en algebra’s gedefiniëerd over lichamen
van karakteristiek 0 of tenminste 5. Recente algoritmes van Cohen en Murray, en
onafhankelijk daarvan Ryba, voor het berekenen van gespleten maximale torale
deelalgebra’s van een Lie algebra werken bijvoorbeeld in alle karakteristieken be-
halve 2 en (tot op zekere hoogte) 3. Evenzo is het bepalen van een Chevalley basis
van een Lie algebra (gegeven een gespleten maximale torale deelalgebra) eenvoudig
in vrijwel alle karakteristieken, en is dan ook geïmplementeerd in GAP en Magma.
In karakteristiek 2 en 3 is het probleem echter veel moeilijker.

Het eerste deel van dit proefschrift is gewijd aan een uitgebreide introductie van
de relevante wiskundige objecten, zoals root data, algebraïsche groepen, en Lie alge-
bra’s. De nieuwe resultaten zijn een heuristisch algoritme voor het vinden van ges-
pleten maximale torale deelalgebra’s van Lie algebra’s van gespleten enkelvoudige
algebraïsche groepen over lichamen van karakteristiek 2, en een algoritme voor het
vinden van Chevalley bases van Lie algebra’s van gespleten enkelvoudige alge-
braïsche groepen over willekeurige lichamen. Van het laatste algoritme bewijzen
we dat het polynomiaal is wanneer het betreffende lichaam eindig is. Deze algorit-
men worden toegepast bij het herkennen van dit type Lie algebra’s en ze helpen bij
de analyse van de bijbehorende algebraïsche groepen. Bovendien passen we deze
algoritmen toe bij het bewijzen, met behulp van de computer, dat er geen graaf is
waarop een bepaalde groep afstands-transitief werkt.

Alle in dit proefschrift beschreven algoritmen zijn geïmplementeerd in het com-
puteralgebrasysteem Magma.
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Abstract

Algorithms for Lie Algebras of Algebraic Groups

In this thesis we present several new algorithms for dealing with simple algebraic
groups and their Lie algebras. These groups and algebras have been studied for a
long time, first in a theoretical sense and later with regards to effective calculations
on the computer, including implementations in the GAP and Magma computer
algebra systems. We build in particular on work by Arjeh Cohen, Willem de Graaf,
Sergei Haller, Scott Murray, and Don Taylor. The work is partly stimulated by the
matrix group recognition project: an international project which is aimed at the
algorithmic analysis of problems with matrix groups over finite fields.

Many algorithms that have been previously developed in this branch of research,
however, apply only to groups and algebras over fields of characteristic 0 or at least
5. For instance, Cohen and Murray, and, independently, Ryba recently gave an
algorithm for computing a split maximal toral subalgebra of a Lie algebra in all
characteristics except 2 and (to a certain extent) 3. Unfortunately, not only their
proofs but also their algorithms do not work in the excluded cases. Similarly, the
algorithm for computing a Chevalley basis of a Lie algebra, when given a split toral
subalgebra, is straightforward in almost all characteristics, and has consequently
been implemented in major computer algebra systems such as GAP and Magma.
In characteristics 2 and 3, however, the algorithm is much more involved.

This thesis starts with an extensive introduction to the mathematical objects
occurring in this thesis, such as root data, algebraic groups, and Lie algebras. The
new results in this thesis are a heuristic algorithm for computing split maximal
toral subalgebras of Lie algebras of split simple algebraic groups over fields of
characteristic 2, and an algorithm for computing Chevalley bases of Lie algebras of
split simple algebraic groups over any field. The latter algorithm is proved to be
polynomial in the case where the field is finite. These algorithms are applied to the
problem of recognizing these Lie algebras among all Lie algebras, and they help
in the analysis of the associated algebraic groups. We also apply these algorithms
in the computer aided proof that there is no graph on which a certain group acts
distance transitively.

All of the algorithms presented in this thesis have been implemented in the
Magma computer algebra system.
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