On the L_{p} dual Minkowski problem

Taehun Lee
KIAS

Asia-Pacific Analysis and PDE Seminar
October 17, 2022
(joint work with K. Choi and M. Kim)

- $K \mapsto \mu_{K}$
- For example, surface area or cone volume.
- Can we characterize geometric measures μ_{K} ? (Equivalently, what is the image of the mapping $K \mapsto \mu_{K}$)

Surface area measure

- Let K be a convex body in \mathbb{R}^{n+1} (compact convex set with nonempty interior), and let $\nu_{K}: \partial K \rightarrow \mathbb{S}^{n}$ be the outward unit normal vector.
- Any convex body defines the so called surface area measure on \mathbb{S}^{n} : The surface area measure $S(K, \cdot)$ of K is defined on a Borel set $\omega \subset \mathbb{S}^{n}$ by

$$
S(K, \omega)=\left|\nu_{K}^{-1}(\omega)\right|,
$$

where $|\cdot|$ denotes the surface area.

- Total measure: $S\left(K, \mathbb{S}^{n}\right)=\left|\nu_{K}^{-1}\left(\mathbb{S}^{n}\right)\right|=|\partial K|$.
- Observation: if μ is a surface area measure, then

1. Surface area measure has centroid at origin:

$$
\int_{\mathbb{S}^{n}} z \mathrm{~d} \mu(z)=\int_{\partial K} \nu(x) d \mathcal{H}^{n}(x)=0
$$

2. Surface area measure is not concentrated on a great subsphere:

$$
\mu(E) \neq \mu\left(\mathbb{S}^{n}\right) \quad \text { for all great subsphere } E \subset \mathbb{S}^{n}
$$

- Can we characterize the surface area measure?
- Observation: if μ is a surface area measure, then

1. Surface area measure has centroid at origin:

$$
\int_{\mathbb{S}^{n}} z \mathrm{~d} \mu(z)=\int_{\partial K} \nu(x) d \mathcal{H}^{n}(x)=0 .
$$

2. Surface area measure is not concentrated on a great subsphere:

$$
\mu(E) \neq \mu\left(\mathbb{S}^{n}\right) \quad \text { for all great subsphere } E \subset \mathbb{S}^{n} .
$$

- Can we characterize the surface area measure?
- Minkowski problem: For a given nonzero finite Borel measure μ on \mathbb{S}^{n}, what are the necessary and sufficient conditions for $\mu=S(K, \cdot)$ for some convex body K? (Minkowski, 1903)
- Minkowski problem is completely solved by Minkowski (discrete case) and Alexandrov (general case).
- Observation: if μ is a surface area measure, then

1. Surface area measure has centroid at origin:

$$
\int_{\mathbb{S}^{n}} z \mathrm{~d} \mu(z)=\int_{\partial K} \nu(x) d \mathcal{H}^{n}(x)=0 .
$$

2. Surface area measure is not concentrated on a great subsphere:

$$
\mu(E) \neq \mu\left(\mathbb{S}^{n}\right) \quad \text { for all great subsphere } E \subset \mathbb{S}^{n} .
$$

- Can we characterize the surface area measure?
- Minkowski problem: For a given nonzero finite Borel measure μ on \mathbb{S}^{n}, what are the necessary and sufficient conditions for $\mu=S(K, \cdot)$ for some convex body K? (Minkowski, 1903)
- Minkowski problem is completely solved by Minkowski (discrete case) and Alexandrov (general case).
- $\mu=S(K, \cdot)$ for a convex body $K \Longleftrightarrow 1$. and 2. hold for μ.
- In smooth category ($\mu=f \mathrm{~d} \sigma_{\mathbb{S}^{n}}$), the Minkowski problem becomes solving the following Monge-Ampère type PDE on \mathbb{S}^{n} :

$$
\operatorname{det}\left(\nabla_{i} \nabla_{j} u+u \delta_{i j}\right)=\frac{1}{\mathcal{K}}=f \quad \text { on } \mathbb{S}^{n},
$$

where \mathcal{K} is the Gauss curvature and u is the support function of K.

- In smooth category ($\mu=f \mathrm{~d} \sigma_{\mathbb{S}^{n}}$), the Minkowski problem becomes solving the following Monge-Ampère type PDE on \mathbb{S}^{n} :

$$
\operatorname{det}\left(\nabla_{i} \nabla_{j} u+u \delta_{i j}\right)=\frac{1}{\mathcal{K}}=f \quad \text { on } \mathbb{S}^{n},
$$

where \mathcal{K} is the Gauss curvature and u is the support function of K.

- Uniqueness: The convex body is unique up to translation.
- In smooth category ($\mu=f \mathrm{~d} \sigma_{\mathbb{S}^{n}}$), the Minkowski problem becomes solving the following Monge-Ampère type PDE on \mathbb{S}^{n} :

$$
\operatorname{det}\left(\nabla_{i} \nabla_{j} u+u \delta_{i j}\right)=\frac{1}{\mathcal{K}}=f \quad \text { on } \mathbb{S}^{n},
$$

where \mathcal{K} is the Gauss curvature and u is the support function of K.

- Uniqueness: The convex body is unique up to translation.
- Regularity: If $f \in C^{\alpha}$, then $\partial K \in C^{2, \alpha}$. (C^{∞} regularity by Pogorelov, Nirenberg, Cheng-Yau, and $C^{2, \alpha}$ regularity by Caffarelli)
- Therefore, the surface area measures are characterized by 1. and 2. In which case, the solution convex body is well understood.

Variational point of view

- Let $h_{L}: \mathbb{S}^{n} \rightarrow \mathbb{R}$ be the support function of L defined by

$$
h_{L}(z)=\max \{z \cdot x: x \in L\},
$$

and let $K+L=\{x+y: x \in K, y \in L\}$ be the Minkowski sum.

- Aleksandrov variational formula:

$$
\left.\frac{\mathrm{d} \operatorname{Vol}(K+t L)}{\mathrm{d} t}\right|_{t=0^{+}}=\int_{\mathbb{S}^{n}} h_{L}(z) \mathrm{d} S(K, z)
$$

- Firey's p-linear combination $K+{ }_{p} L$ of K and $L(p \geq 1)$:

$$
h_{K+p L}=\left(h_{K}^{p}+h_{L}^{p}\right)^{1 / p}, \quad h_{t \cdot p L}=t^{1 / p} h_{K}
$$

- There exists a Borel measure $S_{p}(K, \cdot)$ on \mathbb{S}^{n} such that

$$
\left.\frac{\mathrm{d} \operatorname{Vol}\left(K+_{p} t \cdot{ }_{p} L\right)}{\mathrm{d} t}\right|_{t=0^{+}}=\frac{1}{p} \int_{\mathbb{S}^{n-1}} h_{L}^{p}(z) \mathrm{d} S_{p}(K, z) .
$$

L_{p} surface area measure

- The measure $S_{p}(K, \cdot)$ is called as the L_{p} surface area measure.
- It turns out that for $p \geq 1$,

$$
\mathrm{d} S_{p}(K, \cdot)=h_{K}^{1-p} \mathrm{~d} S(K, \cdot) .
$$

- The L_{p} surface area measure can be defined for all $p \in \mathbb{R}$ through the relation above.
- L_{p} Minkowski problem: For a given nonzero finite Borel measure μ on \mathbb{S}^{n}, what are the necessary and sufficient conditions for $\mu=S_{p}(K, \cdot)$ for some convex body K? (Lutwak '93)
- PDE: for a density function f,

$$
\operatorname{det}\left(\nabla_{i} \nabla_{j} u+u \delta_{i j}\right)=\frac{1}{\mathcal{K}}=u^{p-1} f \quad \text { on } \mathbb{S}^{n} .
$$

- Examples: classical case $(p=1)$, logarithmic case ($p=0$), affine case ($p=-n-1$),

Dual curvature measure

- Let r_{K} be the radial function of K defined by

$$
r_{K}(\xi)=\max \{\lambda: \lambda \xi \in K\} .
$$

- The q-th dual volume of K is

$$
\widetilde{\operatorname{Vol}_{q}}(K)=\frac{1}{n+1} \int_{\mathbb{S}^{n}} r_{K}^{q}(\xi) \mathrm{d} \xi .
$$

- The q-th dual curvature measure is determined by $(q \neq 0)$

$$
\left.\frac{\mathrm{d} \widetilde{\mathrm{Vol}}_{q}(K+t L)}{\mathrm{d} t}\right|_{t=0^{+}}=q \int_{\mathbb{S}^{n-1}} h_{L} h_{K}^{-1} \mathrm{~d} \tilde{C}_{q}(K, \cdot)
$$

- For any $\omega \subset \mathbb{S}^{n}$,

$$
\widetilde{C}_{q}(K, \omega)=\int_{\mathcal{A}^{*}(\omega)} r_{K}^{q}(\xi) \mathrm{d} \sigma_{\mathbb{S}^{n}}(\xi)
$$

where \mathcal{A}^{*} is the reverse radial Gauss mapping defined as

$$
\mathcal{A}^{*}(\omega)=\left\{\xi \in \mathbb{S}^{n}: \nu_{K}\left(r_{K}(\xi) \xi\right) \in \omega\right\} .
$$

Dual Minkowski problem

- Dual Minkowski problem: For a given nonzero finite Borel measure μ on \mathbb{S}^{n}, what are the necessary and sufficient conditions for $\mu=\widetilde{C}_{q}(K, \cdot)$ for some convex body K ? (Huang-Lutwak-Yang-Zhang '16).
- PDE: for $r=\sqrt{u^{2}+|\nabla u|^{2}}$,

$$
\operatorname{det}\left(\nabla_{i} \nabla_{j} u+u \delta_{i j}\right)=\frac{r^{n+1-q}}{u} f \quad \text { on } \mathbb{S}^{n},
$$

- Examples: the logarithmic Minkowski problem $(q=n+1)$ and the Alexandrov problem ($q=0$)
- The logarithmic case appears not only in the L_{p} Minkowski problem but also in the dual Minkowski problem.
- What is next?

L_{p} Dual Minkowski problem

- The L_{p} dual curvature measure $\widetilde{C}_{p, q}(K, \cdot)$ is produced by

$$
\left.\frac{\mathrm{d} \widetilde{\operatorname{Vol}}_{q}\left(K+{ }_{p} t \cdot{ }_{p} L\right)}{\mathrm{d} t}\right|_{t=0^{+}}=q \int_{\mathbb{S}^{n}} h_{L}^{p}(z) \mathrm{d} \tilde{C}_{p, q}(K, z)
$$

- L_{p} Dual Minkowski problem: For a given nonzero finite Borel measure μ on \mathbb{S}^{n}, what are the necessary and sufficient conditions for $\mu=\widetilde{C}_{p, q}(K, \cdot)$ for some convex body K? (Lutwak-Yang-Zhang '18).
- Relation with the dual curvature measure is given by

$$
\widetilde{C}_{p, q}(K, \cdot)=h_{K}^{-p} \widetilde{C}_{q}(K, \cdot)
$$

- PDE: for $r=\sqrt{u^{2}+|\nabla u|^{2}}$,

$$
\operatorname{det}\left(\nabla_{i} \nabla_{j} u+u \delta_{i j}\right)=\frac{r^{n+1-q}}{u^{1-p}} f \quad \text { on } \mathbb{S}^{n}
$$

- Examples: the L_{p} Minkowski problem $(q=n+1)$, the dual Minkowski problem ($p=0$).

Logarithmic Minkowski problem $(p=0, q=n+1)$

- We first consider L_{p} Minkowski problem.
- In particular, $p=0$, corresponds to the logarithmic Minkowski problem. This is related to the cone volume:

$$
\frac{1}{n+1} \mathrm{~d} S_{0}(K, \cdot)=\frac{1}{n+1} h_{K} \mathrm{~d} S(K, \cdot), \quad \frac{1}{n+1} S_{0}\left(K, \mathbb{S}^{n}\right)=\operatorname{Vol}(K)
$$

- In 2013, Böröczky-Lutwak-Yang-Zhang solved the logarithmic case under even assumption $(\mu(E)=\mu(-E))$:

$$
\mu=S_{0}(K, \cdot) \Longleftrightarrow 1 . \quad \frac{\mu\left(\xi \cap \mathbb{S}^{n}\right)}{\mu\left(\mathbb{S}^{n}\right)} \leq \frac{\operatorname{dim}(\xi)}{n+1}, \quad \xi \leq \mathbb{R}^{n+1}
$$

2. some extra condition when equality holds

- Non-symmetric case is open.
- For other $p \neq 0,1$, some sufficient conditions have been provided, but the L_{p} Minkowski problem is still open for symmetric or non-symmetric, except for the lower dimensional case $(n=1)$.
- Finding necessary and sufficient conditions are widely open.

Measure with density

- Recall the PDE: for a density function f,

$$
u^{1-p} \operatorname{det}\left(\nabla_{i} \nabla_{j} u+u \delta_{i j}\right)=\frac{u^{1-p}}{\mathcal{K}}=f \quad \text { on } \mathbb{S}^{n}
$$

- Existence of solutions is guaranteed for sufficiently smooth, positive f. We mainly focus on the uniqueness and regularity (or existence of regular solutions).
- Soliton of (anisotropic) α-Gauss curvature flow through the relation $\alpha=1 /(1-p)$.
- C^{0} estimate or diameter estimate is important.

Blaschke selection theorem (compactness): Let $\left\{K_{n}\right\}$ be a sequence of convex bodies contained in fixed bounded set. Then there is convex body K such that (up to subsequence)

$$
K_{i} \rightarrow K \quad \text { in Hausdorff distance. }
$$

- Positive lower bound on u is crucial for regularity. (whether the origin lies in the interior or not)

Overview for various range of p

- $p>n+1$: Existence, uniqueness, regularity

At the maximum point of u, it follows from the PDE that

$$
u_{\max }^{1-p+n} \geq f_{\min }, \quad u_{\max } \leq \frac{1}{f_{\min }^{1 /(p-n-1)}}, \quad u_{\min } \geq \frac{1}{f_{\max }^{1 /(p-n-1)}}
$$

- $1<p<n+1$: Example of a convex body with the origin on its boundary. Weak solution and uniqueness. Regularity for even case.
- $-n-1<p<0$: No diameter estimate, but existence of weak solutions. No uniqueness. If $-n-1<p \leq-n+1$, then solution is positive.
- $p<-n-1$: Existence (Guang-Li-Wang 22, arxiv) and ...?
- $p=0$: If $n=1$, then diameter estimate and positiveness of solutions hold (Chen-Li 18). Therefore existence, uniqueness, regularity follows when $n=1$. If $n=2$, then diameter estimate holds (Chen-Feng-Liu 22, arxiv). Diameter estimate for $n \geq 3$ is open.
- $0<p<1$: Does the diameter estimate hold?

Result 1. Diameter estimate when $n=1$

Theorem (Kim-L. 22, arxiv)
Let $p \in(0,1)$, and let f be a bounded, positive function on \mathbb{S}^{1}. If K is a convex body such that

$$
\begin{equation*}
h_{K}^{1-p}\left(\left(h_{K}\right)_{\theta \theta}+h_{K}\right)=f \quad \text { on } \mathbb{S}^{1}, \tag{*}
\end{equation*}
$$

then $\left\|h_{K}\right\|_{L^{\infty}} \leq C$ for some $C=C(p, \Lambda)$.
Remark 1. Diameter estimate for $n \geq 2$ is open.
Remark 2. If $p=0$ or $p=1$, then the LHS of (*) is cone volume or surface area measure, respectively. In these case, one can use monotone property of volume or surface area (of convex bodies). However, $S_{p}(K, \cdot)$ does not have such monotone properties.

Idea of proof.

1. Key estimate on the L_{p} surface area:

$$
S_{p}\left(K, \mathbb{S}^{1}\right) \simeq \operatorname{Vol}(K)^{1-p}|\partial K|^{p}(\simeq C)
$$

2. Consider a sequence of convex bodies $\left\{K_{i}\right\}$ with $\operatorname{diam}\left(K_{i}\right) \rightarrow \infty$.
3. Case I: The origin lies near the tip. Near the tip (denoted by ω),

$$
\int_{\omega} f \simeq C, \quad S_{p}(K, \omega) \leq \operatorname{Vol}^{1-p} \text { Area }^{p} \lesssim \epsilon \operatorname{Vol}^{1-p}(K)|\partial K|^{p} \lesssim \epsilon S_{p}\left(K, \mathbb{S}^{1}\right) \lesssim \epsilon
$$

4. Case II: the origin lies far from tips. On the complement of neighborhoods of tips (denoted by ω),

$$
\int_{\omega} f \simeq 0, \quad \text { but } \quad S_{p}(K, \omega) \gtrsim S_{p}\left(K, \mathbb{S}^{1}\right) \gtrsim 1
$$

Uniqueness

- The L_{p} Brunn-Minkowski inequality holds for $p \geq 1$:

$$
\operatorname{Vol}\left((1-t) \cdot{ }_{p} K+{ }_{p} t \cdot{ }_{p} L\right) \geq \operatorname{Vol}(K)^{1-t} \operatorname{Vol}(L)^{t}
$$

This will give the uniqueness for $p \geq 1$.

- For $p<1$, there exists f that admits more than two solutions.
- When $f \equiv 1$, the uniqueness for $-n-1<p<1$ has been established by Chow ' $85(p=-n+1)$. Andrews '99 ($p=0, n=2$), Brendle-Choi-Daskalopoulos '17 c.f. Guan-Ni, Andrews-Guan-Ni, Kim-Lee for convergence of flow.
- More generally, the uniqueness holds when f is even (Bryan-Ivaki-Scheuer '19).

Corollary

Let $p \in(0,1)$ and $f \in C^{\alpha}\left(\mathbb{S}^{1}\right)$. Then there exists a constant $\varepsilon_{0}=\varepsilon_{0}(p)>0$ such that if $\|f-1\|_{C^{\alpha}\left(\mathbb{S}^{1}\right)} \leq \varepsilon_{0}$, then the equation $\left({ }^{*}\right)$ has a unique solution. Moreover, the solution is positive and of $C^{2, \alpha}\left(\mathbb{S}^{1}\right)$.

Return to the logarithmic case

- Existence of weak solution is known, but the origin may lie on the boundary.
- There are examples of f such that the origin touches the boundary of the solution convex bodies: for $n=2$, parts of the body is described by ($r=\sqrt{x^{2}+y^{2}}$)

$$
z=r^{4} \quad \text { or } \quad z=(r-1)_{+}^{2} \quad\left(\text { at } \operatorname{most} C^{1,1}\right) .
$$

- Can we find a regular solution for any $f>0$?

Result 2. Existence of regular solution

Theorem (Choi-Kim-L. in preperation)
Let $f>0$ be a function in $C^{2}\left(\mathbb{S}^{n}\right)$. Then the logarithmic Minkowski problem admits a regular $\left(C^{1,1}\right)$ solution.

Sketch of proof.

1. Consider the following normalized anisotropic Gauss curvature flow

$$
X_{t}=X-f(\nu) K^{\alpha} \nu
$$

2. Prove diameter estimate $|X| \leq C$ and existence of inner ball
3. Principal curvature estimate $0<\lambda_{1} \leq \lambda_{2} \leq C$.

Dual Minkowski problem

- Rewrite the PDE with $\tilde{q}=n+1-q: \ln \mathbb{S}^{n},\left(r=\sqrt{u^{2}+|\nabla u|^{2}}\right)$

$$
\operatorname{det}\left(\nabla_{i} \nabla_{j} u+u \delta_{i j}\right)=\frac{r \tilde{q}}{u} f .
$$

- $\tilde{q}>n+1$: Existence, uniqueness, regularity (Li-Sheng-Wang '20)
- $\tilde{q}<n+1$: When $f(z)=f(-z)$, existence, uniqueness, and regularity follows.
- If $n=1$ and $0<\tilde{q}<n+1=2$, then smooth, positive solution exists for general f (Chen-Li ‘18).

L_{p} dual Minkowski problem

- Recall the PDE: $\operatorname{In} \mathbb{S}^{n},\left(r=\sqrt{u^{2}+|\nabla u|^{2}}\right)$

$$
\operatorname{det}\left(\nabla_{i} \nabla_{j} u+u \delta_{i j}\right)=\frac{r^{\tilde{q}}}{u^{1-p}} f .
$$

- $p>q(p+\tilde{q}>n+1)$: Existence, uniqueness, regularity (Huang-Zhao '18)
- Results for even case when $p>0, q>0 ; p<0, q<0 ; p>0, q<0$.
- Results for general case when $p<q$?

Theorem (Kim-L. 22, arxiv)
Let $p \in(0,1), q \geq 2$ and let f be a bounded, positive function on \mathbb{S}^{1}. If K is a convex body such that

$$
\begin{equation*}
r_{K}^{q-2} h_{K}^{1-p}\left(\left(h_{K}\right)_{\theta \theta}+h_{K}\right)=f \quad \text { on } \mathbb{S}^{1} \tag{*}
\end{equation*}
$$

then $\left\|h_{K}\right\|_{L^{\infty}} \leq C$ for some $C=C(p, q, \Lambda)$.

Thank you!

