
1. Introduction

The course focuses on polynomial equations. The general problem, to understand solution sets
of simultaneous polynomial equations in several variables (things like x1x2 + 5x2

3 − x1x3
3 = 2), is

enormously difficult. We shall only consider the one-variable case.

(1) The degree 1 (linear) case ax + b = 0 is trivial.
(2) The degree 2 (quadratic) case ax2 + bx + c = 0 was solved in ancient times. The trick is to

complete the square:
ax2 + bx + c = a(x + b

2a )2 + (c − b2

4a )

giving the well-known formula x = −(b/2a)±
√

(b2/4a2)− (c/a) for the roots.
(3) The degree 3 and 4 (cubic and quartic) cases were not solved until the 16th century, when

several Italian mathematicians made the decisive breakthroughs.
(5) Abel (1824) showed that it is impossible to produce a formula for the solutions of a quintic

equation of the kind that had been found for the lower degrees. Specifically, there is no such
formula built up from operations of addition, subtraction, multiplication, division and nth root
extraction. That is to say, quintic and higher degree polynomial equations are generally not
soluble by radicals.

(6) Galois (1830) (who, coincidentally, was a radical in the political sense) found necessary and
sufficient conditions for any given polynomial equation to be soluble by radicals.

Our primary objective in this course is to develop the modern algebraic machinery which is now
used to express and prove Galois’ results, as well as to facilitate analysis of many other algebraic
problems. In particular, we shall demonstrate the insolubility of the quintic.

2. Solving the cubic without any theory

Our aim is to find a formula for the solutions of

x3 − S1x2 + S2x − S3 = 0.

Let the solutions be t1, t2 and t3. Then

x3 − S1x2 + S2x − S3 = (x − t1)(x − t2)(x − t3)

and equating coefficients gives
S1 = t1 + t2 + t3

S2 = t1t2 + t1t3 + t2t3

S3 = t1t2t3.
(1)

Ideally, we would like to find expressions

t1 = f1(S1, S2, S3)

t2 = f2(S1, S2, S3)

t3 = f3(S1, S2, S3).

However, if the fi are to be functions in the normal sense, this seems to be impossible. The equations
(1) are symmetrical in t1, t2 and t3. For example, swapping t1 and t2 does not change S1, S2 and S3,
and so cannot change f1(S1, S2, S3), which is meant to equal t1. Since swapping t1 and t2 changes
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t1 to t2, the only way out of this is for t1 and t2 to be equal, and it is easy to find examples of cubic
equations for which the roots are not coincident. The most convenient way round this difficulty
is to look for a deliberately ambiguous, or many-valued, expression f (S1, S2, S3), whose different
values give the different roots ti. To facilitate this we shall allow n

√
D to denote any of the solutions

of xn = D, so that n
√

D is an n-valued expression. With this convention the formula for the roots of
the quadratic equation x2 − px + q = 0 is the two-valued expression x = 1

2 (p +
√

p2 − 4q).
Polynomial expressions in S1, S2 and S3—that is, expressions built up from the Si using only

addition, multiplication and multiplication by constants—are also polynomials in t1, t2 and t3, and
since S1, S2 and S3 are completely symmetrical, in the sense that all permutations of ti leave them
unchanged, it follows that every polynomial in the Si will also be completely symmetrical in the ti.
Conversely, it turns out that every polynomial in the ti which is symmetrical in these variables can
be expressed as a polynomial in the Si. For the time being there is no need for us to prove this,
but merely be able to express a few given symmetrical polynomials in the ti in terms of the Si. For
example,

t2
1 + t2

2 + t2
3 = (t1 + t2 + t3)2 − 2(t1t2 + t1t3 + t2t3)

= S2
1 − 2S2

and similarly

t2
1t2 + t2

2t1 + t2
1t3 + t2

3t1 + t2
2t3 + t2

3t2 = (t1 + t2 + t3)(t1t2 + t1t3 + t2t3)− 3t1t2t3

= S1S2 − 3S3.

The clue to solving the cubic is to investigate expressions in the ti which are partially symmet-
rical, in some sense, but not completely symmetrical. In particular, we look at expressions which
are unchanged by the cyclic permutation t1 7→ t2 7→ t3 7→ t1, which we shall denote by ρ, and its
inverse. For example,

α = t1t2
2 + t2t2

3 + t3t2
1

has this property, and interchanging t2 and t3 changes α to

β = t1t2
3 + t3t2

2 + t2t2
1,

which also has the property of invariance under the cyclic permutations. Now α + β and αβ are
completely symmetrical, and, to be specific, if we put α + β = P and αβ = Q then

P = S1S2 − 3S3

Q = S3
1S3 + S3

2 − 6S1S2S3 + 9S2
3.

It follows that
(x −α)(x − β) = x2 − (α + β)x −αβ = x2 − Px + Q.

The significance of this is that α and β are the roots of a quadratic equation whose coefficients are
polynomial expressions in S1, S2 and S3. This demonstrates that it is possible to find formulas in
terms of the Si for expressions which are not completely symmetrical in the ti.

Clearly, however, some further idea will we required to progress from partially symmetrical
quantities to totally unsymmetrical ones. Furthermore, it is clear that cube roots will have to be
involved in some way. Defineω = − 1

2 +
√
−3
2 , a complex cube root of 1. It is reasonable to expect

that this number will have a role to play in any context where cube roots arise, since if C is one of
the cube roots of a number D, the other cube roots areωC andω2C. The trick is to consider

θ = t1 +ωt2 +ω2t3.
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Observe that the cyclic permutation ρ takesθ to t2+ωt3+ω2t1 =ω2θ. Soθ is not partially symmet-
rical in the sense considered above, but is close to being so: a cyclic permutation has the effect of
multiplying θ by a cube root of 1. Applying ρ to θ3 = θθθ will give (ω2θ)(ω2θ)(ω2θ) =ω6θ3 = θ3.
Thus θ3 is partially symmetrical, and it will be susceptible to the same kind of analysis as applied
to α and β above. Indeed, interchanging t2 and t3 takes θ3 to ψ3, where

ψ = t1 +ωt3 +ω2t2,

and A = θ3 +ψ3 and B = θ3ψ3 are both totally symmetrical. We find also that ρ takes ψ to ωψ,
and, as we saw above for θ, it follows that ψ3 is fixed by ρ. With a little calculation we find that in
fact

θ3 = S3
1 − 3S1S2 + 9S3 + 3ω2α + 3ωβ

ψ3 = S3
1 − 3S1S2 + 9S3 + 3ω2β+ 3ωα

and sinceω+ω2 = −1 we obtain that

A = θ3 +ψ3 = 2S3
1 − 6S1S2 + 18S3 − 3(α + β)

= 2S3
1 − 9S1S2 + 27S3.

The calculation of B is simplified by the fact that θψ is completely symmetrical; for example,
interchanging t2 and t3 interchanges θ and ψ, while ρ multiplies θ byω−1 and ψ byω. It is readily
checked that θψ = S2

1 − 3S2, and hence B = (θψ)3 = (S2
1 − 3S2)3. As θ3 and ψ3 are the roots of

x2 − Ax + B = 0, we have
θ3 = 1

2 (A +
√

A2 − 4B)

and thus

θ = 3

√(
1
2 (A +

√
A2 − 4B)

)
.

Having found θ we can use θψ = S2
1−3S2 to determine ψ, and now finding the the roots t1, t2 and

t3 themselves is simply a matter of solving a system of linear equations. Specifically,

( 1 1 1
1 ω ω2

1 ω2 ω

)( t1
t2
t3

)
=

( S1
θ

ψ

)
,

and inverting the coefficient matrix we find that

( t1
t2
t3

)
=

1
3

( 1 1 1
1 ω2 ω

1 ω ω2

)( S1
θ

ψ

)
.

It is somewhat complicated, but it is a formula for the roots of the original cubic in terms of the
coefficients.

It is obvious that symmetry and partial symmetry played key roles in the above analysis. How-
ever, we need to develop more concepts to properly clarify matters. In particular, what properties of
symmetry made the process work, and for what other equations will similar processes be successful?
We can also hope that a deeper understanding will lessen the reliance on algebraic computation.
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3. Ruler and compass problems

The same theory which is used to analyse polynomial equations can also be applied to study three
classical geometrical problems, which were posed by ancient Greek mathematicians. Given only
an unmarked ruler (for drawing straight lines) and compasses (for drawing circles) is it possible to
perform the following geometrical constructions?

1. Trisect any given angle.
2. Construct a line segment whose length is 3

√
2 times the length of a given line segment.

3. Construct a square with area equal to the area of a given circle.
The Greeks were unable to perform these constructions without resort to instruments for drawing
other kinds of curves. However, they were unable to prove the impossibility of ruler-and-compass
constructions. It turns out that these impossibility proofs are greatly simplified by the use of con-
cepts of modern algebra. We shall be able to deal completely with the first two of the three, and
show that the third follows from a famous theorem of Lindemann (1882), that the number π is
not a root of any nontrivial polynomial equation with integer coefficients. We shall not prove
Lindemann’s theorem, as to do so would take us too far afield.

In order to prove that some things cannot be done with ruler and compasses, we need to figure
out what can be done with those tools. Much of what follows may be familiar to you already.

Bisecting an angle

Given straight lines AB and AC intersecting at A the angle BAC can be bisected, as follows. Draw
a circle centred at A, and let X, Y be the points where this circle meets AB, AC. Draw circles of
equal radii centred at X and Y, and let T be a point of intersection of these circles. (The radius
must be chosen large enough so that the circles intersect.) Then AT bisects the given angle BAC.

A

B

C

X

Y

T

Copying an angle

Given lines AB and AC intersecting at A and a line PQ, the angle BAC can be copied at P, as
follows. Draw congruent circles CA, CP centred at A and P. Let CA intersect AB at X and AC at Y,
and let CP intersect PQ at V. Draw a circle with centre V and radius equal to XY, and let T be a
point of intersection of this circle and CP. Then the angle QPT equals the angle BAC.

A B

C
Y

X
CA

P Q
V

CP

T
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Drawing a parallel to a given line through a given point

Given a point A and a line PQ, one can draw a line through A parallel to PQ. Simply draw any
line through A intersecting PQ at some point X, and then copy the angle AXQ at the point A.

P Q
X

A

θ

θ

Multiplying a length by the ratio of two lengths

Given line segments of lengths r, s and t one can construct a line segment of length rt/s, as follows.
Draw distinct lines AP, AQ intersecting at A and draw circles Cr, Cs and Ct of radii r, s and t
centred at A. Let Cr intersect AP at B and let Cs, Ct intersect AQ at X, Y. Draw a line through Y
parallel to XB, and let C be the point at which it intersects AP. Then AC has the required length.

A B C
P

Q

X

Y

Ct Cs Cr

It is easy to construct line segments of lengths equal to the sum and difference of the lengths
of given line segments, and so the above construction also enables one to construct a/n and na,
where a is a given length and n a given positive integer.

Trisecting π

Given a line AB one can construct a point T such that the angle TAB equals π
3 radians (60 degrees).

Simply choose T to be a point of intersection of the circle centred at A and passing through B and
the circle centred at B and passing through A.

Since angles can be bisected, one can also construct angles of π/6, and hence also right-angles
(since one can easily add two angles, by copying one alongside the other).

Squaring a rectangle

Given line segments of lengths a and b, where a ≥ b, it is possible to construct a line segment of
length

√
ab, as follows. First, construct line segments of lengths r1 = 1

2 (a + b) and r2 = 1
2 (a − b),

and draw circles of radii r1 and r2 with the same centre O. Draw a line through O intersecting the
smaller circle at P, and draw a line through P perpendicular to OP. Let this perpendicular meet
the large circle at Q. Then PQ has the required length.
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PO

Q

1
2 (a−b)

1
2 (a+b)

We are now ready to analyse the general question of exactly what can be constructed with ruler
and compasses. Start with two points—let us call them O and P—and consider an orthogonal co-
ordinate system such that O is the origin and P the point (1, 0). Define the notion of constructibility
recursively as follows:
(1) O and P are constructible points;
(2) A straight line is constructible if it passes through two constructible points;
(3) A circle is constructible if its centre is a constructible point and its radius is the distance be-

tween two constructible points.
(4) Points of intersection of two constructible lines, or two constructible circles, or a constructible

line and a constructible circle, are constructible points.
Thus, for example, the x-axis is constructible, since it is the line defined by the constructible points
O and P. The circles x2 + y2 = 1 and (x − 1)2 + y2 = 1 are both constructible, since their centres
are the constructible points O and P and they each have radius 1, which is the distance between
the constructible points O and P. The points of intersection of these two circles give us two more
constructible points, namely (1/2,

√
3/2) and (1/2,−

√
3/2). From here we can go on to construct

more points, lines and circles in a multitude of different ways.
We now start to move away from geometry and towards algebra, by extending the concept of

constructibility to numbers.

Definition (3.1): Let K be the set of all those real numbers which occur as either x-coordinates
or y-coordinates of constructible points. Elements of K are called constructible numbers.

If a point Q is constructible then the points of intersection of the line through O perpendicular
to OQ and the circle centred at O with radius OQ are also constructible. In particular, (a, b) is con-
structible if and only if (b, a) is constructible. Thus a number which occurs as an x-coordinate of a
constructible point also occurs as a y-coordinate of a constructible point, and vice versa. Further-
more, if (a, y) and (x, b) are constructible points then so is (a, b), since it is the point of intersection
of the line through (a, y) parallel to the y-axis and the line through (x, b) parallel to the x-axis
(both of which are constructible lines). Thus a point (a, b) is constructible if and only if both a and
b are constructible numbers.

We can now prove a theorem which gives a characterization of constructible numbers.

Theorem (3.2): A number x is constructible if and only if there exists a sequence x0, x1, . . . , xn such
that
(1) x0 = 0 and x1 = 1,
(2) xn = x, and
(3) each term xi of the sequence is a sum of earlier terms, or a product of earlier terms, or the negative,
reciprocal or square root of an earlier term.

Proof. Let K′ be the set of numbers that appear in sequences of the kind described in the theorem
statement. We must show that K′ = K; let us start by showing that K′ ⊆ K.

Let x ∈ K′. Then there exists a sequence x0, x1, . . . , xn = x of the kind described above. We
use induction on n to show that x ∈ K. This is trivial if n = 0 or n = 1, since this would mean that
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x = 0 or x = 1, and certainly 0, 1 ∈ K. If n > 1 then x has one of the forms a + b, ab, −a, a−1 or√
a, where a, b ∈ {x0, x1, . . . , xn−1}. Our inductive hypothesis yields that a, b ∈ K. So (a, 0) and

(b, 0) are constructible points. It is now an easy matter to use the constructions described above to
show that in each case the point (x, 0) is also constructible, and hence x ∈ K.

It remains to show that K ⊆ K′. Observe that, by definition, K′ is closed with respect to ad-
dition, subtraction, multiplication, division and extraction of square roots. We show, by induction,
that
(a) every constructible line has an equation of the form ax + by + c = 0, with a, b, c ∈ K′;
(b) every constructible circle has an equation of the form x2+y2+ax+by+c = 0, with a, b, c ∈ K′;
(c) every constructible point has the form (a, b), with a, b,∈ K′. (Let us express this more briefly

by saying that all constructible points, lines and circles have coefficients in K′.)
The initial points, O and P, certainly have the form (a, b) with a, b ∈ K′, since 0, 1 ∈ K′.

This starts the induction. Now suppose that at some stage in a ruler and compass construction,
all the points, lines and circles thus far constructed have coefficients in K′. If the next step is to
draw a line, it will be the line L through two points (a1, b1) and (a2, b2) previously constructed. So
a1, a2, b1, b2 ∈ K′. But L has equation

(b2 − b1)x + (a1 − a2)y = a1b2 − a2b1,

and, by the closure properties of K′ mentioned above, we see that all the coefficients involved are
in K′. Similarly, if the next step is to draw a circle, it will be the circle with centre a previously
constructed point (a, b), and radius the distance between two previously constructed points (c, d)
and (e, f ). The equation of this circle is

(x − a)2 + (y − b)2 = (c − e)2 + (d − f )2,

and since a, b, c, d, e, f ∈ K′ it follows that all the coefficients in the equation are in K′. Finally, if
the next step is to mark in a point of intersection, the coordinates of that point will be a solution of
a pair of simultaneous equations, of the form

ax + by + c = 0

dx + ey + f = 0

if it is the point of intersection of two lines, or

x2 + y2 + ax + by + c = 0

x2 + y2 + dx + ey + f = 0

for the case of two circles, or
x2 + y2 + ax + by + c = 0

dx + ey + f = 0

for the case of a circle and a line. In each case the inductive hypothesis tells us that the coefficients
a, b, c, d, e and f are in K′. Since these equations can be solved using only the operations of
addition, subtraction, multiplication, division and square root extraction, it follows that the newly
constructed point has coordinates in K′, as claimed. This completes the induction. But since by
definition elements of K are coordinates of constructible points, it follows that every element of K
is in K′, as required. �
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What this theorem shows us is, essentially, that with ruler and compasses one can add, subtract,
multiply, divide and take square roots, and nothing else. So 3

√
2 could only be constructed if it were

possible to find a formula for 3
√

2 involving only the integers 0 and 1 and the above operations.
It seems rather unlikely that such a formula would exist; however, “seems unlikely” is not good
enough for us. The history of mathematics has no shortage of examples of things that seemed
unlikely once, but nevertheless turned out to be true. Before we can prove the nonexistence of
such a formula, we need to develop rather a lot of algebraic machinery.

4. Commencing the theory

Definition (4.1): A ring is a set equipped with two operations, which we shall call addition (to be
indicated by +) and multiplication (usually indicated by simple juxtaposition of the arguments),
satisfying the following axioms.
(i) Addition is associative. That is, (a + b) + c = a + (b + c) for all a, b, c ∈ R, where R is the set

in question.
(ii) Addition is commutative. That is, a + b = b + a for all a, b ∈ R.

(iii) There is a zero element. That is, there exists an element z ∈ R such that a+z = a for all a ∈ R.
Note immediately that z is uniquely determined, since if z1 and z2 both satisfy this property
then z1 = z2 + z1 = z1 + z2 = z2. The zero element will usually be denoted by 0 (or 0R, if we
wish to specify the ring involved).

(iv) All elements have negatives. That is, for each a ∈ R there exists b ∈ R with a + b = 0. Note
immediately that the negative of a given element a is uniquely determined, since if b1 and b2
both have the given property then

b1 = b1 + 0 = b1 + (a + b2) = (b1 + a) + b2 = b2 + (a + b1) = b2 + 0 = b2.

The negative of a will be written as −a, and x + (−y) will often be abbreviated as x − y.
(v) Multiplication is associative. That is, a(bc) = (ab)c for all a, b, c ∈ R.

(vi) The distributive laws, a(b + c) = ab + ac for all a, b, c ∈ R and (a + b)c = ac + bc for all
a, b, c ∈ R, are both satisfied.

Although the definition as stated above says “A ring is a set . . . ”, this way of stating things
is a little lacking in rigour, since the operations involved are an important part of the definition.
Change the operations and you change the ring, even if you do not change the set. A more formal
treatment might define a ring to be a triple (R, +, ·) such that R is a set and + and · operations
on R satisfying the axioms as listed. The set R would then be called the underlying set of the ring
(R, +, ·). But nobody maintains this level of formality for long, and in due course everyone uses the
same name for the ring as for its underlying set. When it is necessary to say that that a specified pair
of operations on a set R make R into a ring, it is usual to say that R is a ring under the operations
in question.

All axioms in Definition (4.1) resemble standard familiar properties of ordinary addition and
multiplication of numbers. So we can say at once that R, the set of all real numbers, is a ring under
the usual operations of addition and multiplication of real numbers. So also are Z (integers), Q
(rational numbers) and C (complex numbers). (Recall that Q is the set of all real numbers of the
form p/q, where p and q are integers. We shall describe later how one may formally construct Q
from Z, and prove that it is a ring. Giving formal mathematical constructions of the other number
systems mentioned above and proving that they satisfy the ring axioms is a nontrivial task, but it
is not part of this course. We just assume that everyone knows what numbers are, and knows also
that they satisfy the properties which appear in the definition above.) We shall meet several less
familiar examples of rings later on.
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We have not actually said what we mean by an operation on a set. In the sense used in the
above definition, an operation on a set S is a function of two variables from S to itself.† In other
words, it is a rule which takes as input a pair of elements of S and outputs an element of S. For
example, addition of integers is an operation on Z; feeding the pair of integers (5, 10) to this
operation as input yields the integer 5 + 10 = 15 as output. In other contexts a more general
concept of “operation” might be appropriate; for example, the scalar multiplication operation of
vector space theory takes as input a scalar and a vector and yields a vector as output, and sometimes
people consider operations which take a triple of elements as input rather than a pair, and so on.
But these will not arise in this course.

Since an operation is just a function, one could argue that it is silly to use the word “operation”
at all, since we could use “function” instead. The point is, however, that all the functions which
we choose to call “operations” satisfy properties rather like those that appear in the definition of a
ring. So the use of the special word lets people know, in some sense, what kind of function we are
talking about.

Exercise 1. Let R be a ring and a ∈ R. Show that z = 0 is the only solution of the equation
a + z = a.

Exercise 2. Show that if R is a ring and a ∈ R then a0 = 0a = 0. (Hint: consider a(0 + 0), and
make use of the negative −(a0).)

More definitions An identity element in a ring R is an element e ∈ R such that ea = ae = a for
all a ∈ R. It is easily shown that if a ring has an identity element it is unique. When R has an
identity we shall usually denote it by 1. This does not say that the identity element of R is the same
as the real number 1—it is probably a totally different object—but we find it convenient to use the
same symbol for all identity elements as is used for the number 1. Furthermore, saying “Let R be
a ring with 1”, means exactly the same thing as saying “Let R be a ring with an identity element”,
and does not mean that the number 1 is in R. When it is necessary to distinguish notationally
between the identity elements of different rings, we shall write 1R for the identity of R, and 1S for
the identity of S, etc. (just as we do for the zero elements).

Note that if R has an identity element which happens to coincide with the zero element of R
then a = a1 = a0 = 0 for all a ∈ R; so R is the trivial one-element ring. Thus in all interesting
cases it is required that the identity be nonzero.

A commutative ring is a ring R satisfying ab = ba for all a, b ∈ R. Note that the rings R, Q, Z
and C all satisfy this extra property; hence they are examples of commutative rings. Matrices (see
below) provide examples of noncommutative rings.

An integral domain is a commutative ring R which has a nonzero identity element, and has no
zero divisors. That is, the following condition holds: for all a, b ∈ R, if ab = 0 then a = 0 or b = 0.
(The terminology derives from the fact that the set of all integers is an integral domain with respect
to the usual operations of addition and multiplication. We shall meet other examples of integral
domains later.) An important property of integral domains is the cancellation law, which can be
derived readily from the assumption that there are no zero divisors:

Cancellation Law: Let R be an integral domain and a, b, c ∈ R. If ab = ac and a 6= 0 then b = c.

This is such a familiar looking property that one may be tempted to assume that it holds in
arbitrary ring R. However, it is important to realize that it is not true in that generality: there are
many examples of rings (which are not integral domains) in which the cancellation property fails.

† By a function of two variables from S to itself I mean a function whose domain is the set
S × S = { (a, b) | a, b ∈ S } and whose codomain is the set S.

9



Exercise 3. Prove that integral domains satisfy the cancellation law.

Exercise 4. Give an example of a ring in which the cancellation law fails.

(This last exercise may be too hard at this point, since we do not yet have enough examples of
rings at our disposal. It will become easy enough after the subsections on matrix rings and direct
products (see below).)

If R is a ring with an identity element and a ∈ R, an element b ∈ R is called a (multiplicative)
inverse of a if ab = ba = 1. It is not in general true that if ab = 1 then ba = 1, although it is true
that if ab = 1 and ca = 1 then b = c. In particular, if a has an inverse it has only one. In such
circumstances the inverse of a is denoted by a−1.

A field is a commutative ring with a nonzero identity such that every nonzero element has an
inverse. Note that the inverse is required to be an element of the ring in question. The real numbers
and the complex numbers are the most important examples of fields. However, Z is not a field since
(for example) the element 2 ∈ Z does not have an inverse in Z.

Proposition (4.2): Every field is an integral domain.

Proof. Let R be a field, and suppose that a, b ∈ R satisfy ab = 0. If a 6= 0 then a−1 exists (by
definition of a field), and now

b = 1b = (a−1a)b = a−1(ab) = a−10 = 0.

So R has no zero divisors. Since it is also a commutative ring with 1, it is an integral domain. �

The associative and commutative laws for addition mean that in a sum with many terms there
is no harm in permuting and regrouping the terms in any way we please. In particular, it is legit-
imate to use sigma notation: ∑

n
i=1 ai for (· · · ((a1 + a2) + a3) + · · ·) + an. Note that when double

sums arise, the order of summation can be changed as usual. For example, it is true in any ring
that ∑

n
i=1 ∑

i
j=1 ai j = ∑

n
j=1 ∑

n
i= j ai j. Similarly, it is easily shown that the generalized distibutive laws,

x(∑
n
i=1 yi) = ∑

n
i=1 xyi and (∑

n
i=1 yi)x = ∑

n
i=1 yix, are valid in any ring.

If ai = a for all i from 1 to n, then ∑
n
i=1 ai is also written as na. In the case that n is a negative

integer, na is defined to be equal to (−n)(−a) (whenever a is an element of any ring). Since empty
sums (like ∑

0
i=1 ai) are always defined to be zero, na is by definition the zero of R when the integer

n is zero. That is, 0Za = 0R for all a ∈ R. The function Z × R → R given by (n, a) 7→ na can be
termed natural multiplication: the elements na (n ∈ Z) are called the natural multiples of the ring
element a. This natural multiplication is certainly different from the multiplication operation in the
ring R itself, as that is a function R × R → R. However, it is unnecessary to distinguish the two
notationally as there is no possibility of ambiguity ever arising. It is a tiresome but trivial task to
prove the following familiar properties:

na + ma = (n + m)a
na + nb = n(a + b)

(nm)a = n(ma)

n(ab) =(na)b = a(nb)

(where n, m are arbitrary integers and a, b arbitrary ring elements). Note in particular that if R has
an identity then na = (n1)a = a(n1) for all a ∈ R.

The familiar exponent laws are multiplicative analogues of the laws we have just described
for natural multiples. If a ∈ R and n is a positive integer then an is defined to be the arbitrarily
bracketed product aa · · · a, where there are n factors. If R has an identity element then a0 is defined
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to be the identity (in keeping with the universal rule that empty products are defined to be 1). If
R has a 1 and a ∈ R has an inverse then an is defined also for negative integers n, by the rule
an = (a−1)(−n). Note that there is no ambiguity when n = −1. Now whenever n, m ∈ Z and a ∈ R
we have an+m = anam and (an)m = anm, provided that the powers concerned are defined. However,
the property (ab)n = anbn will not usually hold, unless ab = ba.

If R is a ring and X, Y are subsets of R then we define

X + Y = { x + y | x ∈ X and y ∈ Y }.

Thus, the sum of two subsets of R is another subset of R. We also define the product of two subsets
of R, but the definition of XY is not, as you might at first expect, the set of all products xy where
x ∈ X and y ∈ Y. Rather, it is defined to include also every element of R that is expressible as a
sum of an arbitrary number of products of the form xy with x ∈ X and y ∈ Y. That is,

XY = {
n

∑
i=1

xi yi | 0 ≤ n ∈ Z and xi ∈ X, yi ∈ Y for all i }.

Given these definitions it is easy to prove various desirable properties of addition and multiplication
of subsets of an arbitrary ring. Notably,

(X + Y) + Z = X + (Y + Z)

(XY)Z = X(YZ)

X(Y + Z) ⊆ XY + XZ
(Y + Z)X ⊆ YX + ZX

for all X, Y, Z ⊆ R. Equality will hold in these last two if the subsets Y and Z both contain the
zero element of R.

5. Homomorphisms and subrings

Definition (5.1): Let R and S be sets which are both equipped with operations of addition
and multiplication. A function f : R → S is called a homomorphism if f (a + b) = f a + f b and
f (ab) = ( f a)( f b) for all a, b ∈ R.†

In other words, a homomorphism is a function which preserves the operations in question.
More precisely, for each operation in question on the set R there is a corresponding operation on
S, and the function must intertwine them, in the following sense: one can apply the operation on
two given elements of R and then apply the function to move across to S, or else move to S via the
function first, then apply the corresponding operation on S, and the end result will be the same.
This is conveniently illustrated by the following diagram, in which the operation on R is denoted
by ∗ and that on S by �:

R × R S × S
(a, b) 7−−−−−−−−−−−−−−−−−→ ( f a, f b)

- -y
y

a ∗ b 7−−−−−−−−→ f (a ∗ b) = ( f a)� ( f b)

R S

† We shall usually write the value of a function f at an element a as f a rather than f (a). The
primary use of parentheses is for grouping, indicating the order in which various operations are
performed, and we do not wish to clutter up our formulas with unnecessary parentheses.
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This is an example of what is known as a commutative diagram, meaning that the two possible
paths from R × R to S agree.

Although we have formulated the definition of homomorphism for the case when R and S
are equipped with two operations, the same word is also commonly used in the case of algebraic
systems which have only one operation, or three (or even more); it is usually clear from the context
what kind of homomorphism is meant. In this course the sets R and S will almost always be rings,
and so the homomorphisms we encounter will normally be ring homomorphisms.

In the next section we shall describe various examples of rings. Only then, with more rings at
our disposal, shall we be able to give interesting examples of homomorphisms. For the time being,
we investigate some basic theoretical properties of homomorphisms.

The following is trivial (and clearly generalizes to any number of operations):

Theorem (5.2): Let R, S and T be sets equipped with addition and multiplication, and let f : R → S
and g: S → T be homomorphisms. Then g f : R → T, defined by (g f )a = g( f a) for all a ∈ R, is a
homomorphism.

Proof. For all a, b ∈ R,

(g f )(a + b) = g( f (a + b))

= g( f a + f b) (since f preserves addition)

= g( f a) + g( f b) (since g preserves addition)

= (g f )a + (g f )b,

and so g f preserves addition. A similar argument shows that g f preserves multiplication. �

Suppose now that R is a ring and f : R → S a homomorphism, where S is a set equipped with
addition and multiplication operations (but not necessarily a ring). Let T = im f = { f a | a ∈ R },
a subset of S. It is not hard to show that T must be a ring: for each axiom, the fact that the axiom
is satisfied in R combines with the fact that f preserves the operations to ensure that the axiom is
satisfied in T. For example, if x, y and z are arbitrary elements of T, then since T = im f there exist
a, b and c ∈ R with x = f a, y = f b and z = f c, and now

x(y + z) = ( f a)( f b + f c)

= ( f a)( f (b + c)) (since f preserves addition)

= f (a(b + c)) (since f preserves multiplication)

= f (ab + ac) (by the left distributive law in R)

= f (ab) + f (ac) (since f preserves addition)

= ( f a)( f b) + ( f a)( f c) (since f preserves multiplication)

= xy + xz,

and it follows that the left distributive law is satisfied in T. Clearly similar arguments apply for
the other distributive law and for associativity and commutativity of addition and associativity of
multiplication. Similarly also, if 0 is the zero element of R then f 0 ∈ T has the properties required
of a zero element for T. Finally, if x ∈ T is arbitrary then we may choose an element a ∈ R with
f a = x, and if we now define y = f (−a) ∈ T we see that

x + y = f a + f (−a) = f (a + (−a)) = f 0 = f ((−a) + a) = f (−a) + f a = y + x,

showing that y is a negative of x.
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Proposition (5.3): (i) Let R and S be sets equipped with addition and multiplication operations
and let f : R → S be a homomorphism. If R is a ring then im f is a ring.
(ii) If R and S are rings and f : R → S a homomorphism then f (0R) = 0S, and f (−a) = −( f a) for
all a ∈ R.

Proof. Part (i) was proved in the discussion above. Part (ii) was not quite proved above, since
we showed only that f (0R) is a zero element for im f rather than for the whole of S. The situation
for negatives is similar, highlighting a possible ambiguity of notation that we may be forced to
attend to. But the proofs required here are easy. If we put z = f (0R) then

z + z = f (0R) + f (0R) = f (0R + 0R) = f (0R) = z,

and so
z = 0S + z = (−z + z) + z = −z + (z + z) = −z + z = 0S,

proving the first assertion. And now if a ∈ R is arbitrary then

f (−a) + f a = f (−a + a) = f (0R) = 0S,

so that by uniqueness of negatives it follows that f (−a) = −( f a) (in S). �

We remark that if R is a ring with an identity element and φ: R → S is a homomorphism, it is
not necessarily true that φ(1R) is an identity element for S. For this property to be guaranteed, the
homomorphism φ has to be surjective.

Recall that a function f : X → Y is bijective if and only if there is a function g: Y → X (called
the inverse of f and usually denoted by f−1) such that for all x ∈ X and y ∈ Y,

f x = y if and only if gy = x.

The symmetry of these conditions shows that if f is bijective and g = f−1 then g is bijective and
f = g−1. Now suppose that f : X → Y is bijective and that ∗ is an operation on X. Then an
operation � can be defined on Y by the rule

s � t = f (gs ∗ gt) for all s, t ∈ Y. (2)

Since this equation can be rewritten as

g(s � t) = gs ∗ gt for all s, t ∈ Y, (3)

the definition of � guarantees that g intertwines ∗ and �. Conversely, if it is assumed that � is
an operation on Y satisfying Eq.(3), then Eq.(2) must hold too. Hence the operation � is uniquely
determined by the operation ∗ and the condition that g intertwines the two. Furthermore, if a and
b are arbitrary elements of X and we let s = f a and t = f b, so that a = gs and b = gt, Eq.(2)
becomes f a · f b = f (a ∗ b). Thus f also intertwines the operations, and it follows also that ∗ is
determined by � in just the same way as � is determined by ∗.

Definition (5.4): A bijective homomorphism is called an isomorphism. If there is an isomorphism
from R to S then R and S are said to be isomorphic, and we write R ∼= S.

By our discussion above, if f is an isomorphism from R to S then the operations on S are
determined by f and the operations on R. Furthermore, f−1 is an isomorphism from S to R. In
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view of our earlier result (Proposition (5.3)) that the image of a homomorphism is always a ring,
we can say that if R is a ring then S must also be a ring.

Proposition (5.5): (i) If R is a ring and f : R → S is a bijective function then there are uniquely
determined addition and multiplication operations on S that make S into a ring and f an isomorphism.
(ii) If f : R → S is an isomorphism of rings then so is f−1: S → R.

Part (ii) of this proposition shows that ∼= is a symmetric relation on rings: if R ∼= S then
S ∼= R. It is trivially reflexive (R ∼= R for all rings R) since the identity function from R to itself
is bijective and preserves addition and multiplication. Furthermore, if f : R → S and g: S → T are
isomorphisms then g f : R → T is also, since the composite of two bijective functions is necessarily
bijective, and (as shown above) the composite of two homomorphisms is a homomorphism. So
R ∼= S and S ∼= T yield R ∼= T, whence ∼= is transitive. Thus isomorphism of rings is an equivalence
relation. (In case you have not encountered equivalence relations before, there is a discussion of
them in the next section.)

In situations where we have a fixed isomorphism f from the ring R to the ring S, it is often
convenient to regard f as identifying elements of R with elements of S, and actually think of R and
S as being equal. As far as the ring structure is concerned there is no harm in doing this, since all
properties of the addition and multiplication operations in R will be mirrored in S. That is to say,
for every equation that holds in R there is a corresponding equation that holds in S, obtained by
just applying f to everything. Conversely, applying f−1 transform equations in S to equations in R.
In some (admittedly, ill-defined) sense, R and S are realizations of the same abstract ring: all that
changes in passing from R to S are the names of the elements.

Definition (5.6): Let R be a ring. A subring of R is a subset S of R which is also a ring, with
respect to addition and multiplication operations which are the restrictions of the addition and
multiplication operations on R.

Thus, if S is a subring of R and x, y ∈ S, then x + y must have the same value whether
the addition used is S’s addition or R’s, and similarly xy must give the same value whether the
multiplication is S’s or R’s. Since z = 0S is an element of R which is a solution of the equation
0S + z = 0S, it follows from Exercise 1 above that 0S = 0R. So there is no ambiguity in just writing
0 for the zero element. It is also clear by uniqueness of negatives that if x ∈ S then the negative of
x in S coincides with the negative of x in R; so the notation −x will not be ambiguous.

We have already noted that R and Z are rings, and we also know that Z ⊆ R. So to check that
Z is a subring of R it remains to note that addition and multiplication of integers is consistent with
addition and multiplication of real numbers. For example, 2 times 3 is 6, whether you are thinking
of the numbers concerned as integers or as real numbers.

Note that if S is a subring of R then the sum and product in R of two elements of S always
yield elements of S. That is, a subset S of a ring R cannot be a subring unless it is closed under the
operations of R, in the sense of the following definition:

Definition (5.7): If ∗ is an operation on a set R and S is a subset of R, we say that S is closed
under ∗ if x ∗ y ∈ S for all x, y ∈ S.

In this situation (when the subset S is closed under the operation ∗), we can define an opera-
tion � on S by the rule that a � b = a ∗ b for all a, b ∈ S. Normally one would not use different
notations for these two operations: � would simply be written as ∗. We say that S inherits the
operation ∗ from R.

In accordance also with the definition above, if S is a subset of a ring R we shall say that S is
closed under taking negatives if −a ∈ S whenever a ∈ S. If S is a subring of R then uniqueness of
negatives in R and in S combine to show that S necessarily satisfies this closure property also.
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In the converse direction, we have the following theorem.

Theorem (5.8): A subset S of a ring R is a subring of R if S 6= ∅ and S is closed under addition,
multiplication and taking negatives.

We leave the proof of Theorem (5.8) as an exercise.
Let R = Mat3(R), the set of all 3 × 3 matrices over R. We shall prove below (or, at least,

give an indication of the proof) that R is a ring under the usual operations of matrix addition and
multiplication. Let us use the criterion above to show that

S =

{( a b c
0 d e
0 0 f

) ∣∣∣∣∣ a, b, c, d, e, f ∈ R

}
.

is a subring of R.
Observe first that S is nonempty, since the zero matrix is an element of S. Now let A and B be

arbitrary elements of S. Then

A =

( a b c
0 d e
0 0 f

)
and B =

( a′ b′ c′

0 d′ e′

0 0 f ′

)

for some real numbers a, a′, b, b′, c, c′, d, d′, e, e′, f and f ′. We find that

A + B =

( a + a′ b + b′ c + c′

0 d + d′ e + e′

0 0 f + f ′

)

AB =

( aa′ ab′ + bd′ ac′ + be′ + c f ′

0 dd′ de′ + e f ′

0 0 f f ′

)
and

−A =

(−a −b −c
0 −d −e
0 0 − f

)

are all in the set S since the below diagonal entries are zero in each case. Hence the required
closure properties hold, and so S is a subring.

Since a field is just a special kind of ring, it is permissible for fields to have subrings. Indeed,
we have already noted that Z is a subring of R. If a subring of a field happens to itself be a field
(under the inherited operations) then it is called a subfield. Of course, Z is not a subfield of R,
because Z is not a field, but examples of subfields are not hard to find. For example, Q (rational
numbers) is a subfield of R, and R is a subfield of C. Analogous to Theorem (5.8), we have the
following criterion for a subset of a field to be a subfield.

Theorem (5.9): A subset S of a field F is a subfield of F if and only if 0F , 1F ∈ S and the following
closure properties are satisfied:
(i) x + y, xy and −x are in S whenever x, y ∈ S;

(ii) x−1 ∈ S whenever x ∈ S and x 6= 0.

The proof of this is also left as an exercise for the reader. The next result gives a glimpse of
the way in which this theory can be applied to the geometrical problems we discussed in Section 3
above.

15



Theorem (5.10): The set K of all constructible numbers is a subfield of R

Proof. Suppose that a ∈ K. By Theorem (3.2) there exists a sequence 0, 1, a2, a3, . . . , an such
that an = a and each ai in the sequence is the sum, product, negative, inverse or square root of a
term or terms earlier in the sequence. If also b ∈ K then there is a sequence 0, 1, b2, . . . , bm = b
with the same property. And now the sequence 0, 1, a2, . . . , an, b2, . . . , bm, a + b also has this
property, since the final term, a+b, is the sum of the earlier terms an and bm, while each ai or b j can
be obtained from earlier ones in the required way (since this is so for the original two sequences).
Hence by Theorem (3.2) it follows that a + b ∈ K. Similar arguments show that ab, −a ∈ K, and
a−1 ∈ K (if a 6= 0). So K has all the required closure properties, and since Theorem (3.2) also
guarantees that 0, 1 ∈ K, it follows from Theorem (5.9) that K is a subfield of R. �

The next theorem is another for which the reader should be able to provide a proof.

Theorem (5.11): Let R be a ring and S1, S2, . . . , Sn subrings of R. Then S1 ∩ S2 ∩ · · · ∩ Sn is a
subring of R.

The next result is little more than a rephrasing of Proposition (5.3).

Proposition (5.12): If φ: R → S is a ring homomorphism then imφ is a subring of S.

Any function φ: R → S determines another function φ̂: R → imφ by the rule that φ̂x = φx
for all x ∈ R. If φ is surjective then φ and φ̂ are exactly the same as each other. Otherwise, the
only difference between φ and φ̂ is that their codomains are different; in particular, the codomain
of φ̂ is a proper subset of the codomain of φ. In fact, most people would not bother to introduce a
separate name for the function φ̂, instead speaking of “φ regarded as a function from R to imφ”,
or some such phraseology. Strictly speaking, though, they are different functions. And, indeed,
whereas φ need not be surjective, φ̂ is necessarily surjective, since for every y in the codomain of
φ̂ there is an x ∈ R with y = φx (since the codomain of φ̂ is imφ), and this gives y = φ̂x. In
the definition of φ̂ all superfluous elements of the codomain have been excluded, and a surjective
function results.

In the case that the original function φ is injective, the function φ̂ is injective also, and con-
sequently φ̂ is bijective in this case. Furthermore, if R and S are equipped with addition and
multiplication operations, and if φ is a homomorphism, then for all x, y ∈ R,

φ̂(x + y) = φ(x + y) = φx +φy = φ̂x + φ̂y

φ̂(xy) = φ(xy) = (φx)(φy) = (φ̂x)(φ̂y).

It follows readily that imφ is closed under the addition and multiplication of S, so that it inherits
addition and multiplication from S; moreover, φ̂ is a homomorphism from R to imφ. In particular,
if R and S are rings and φ is an injective homomorphism from R to S then R is isomorphic to the
subring imφ of S, the function φ̂ being an isomorphism. Bearing in mind our earlier remarks that
it is sometimes useful to regard two isomorphic rings as actually being equal, it is often convenient
in this context to identify R with imφ, and say that R is a subring of S. A more conservative
terminology would be to say that imφ is a copy of R embedded in S. In this spirit, an injective
homomorphism is often called an embedding.

To illustrate this, consider the fields R and C. Some people define C to be the set of all ordered
pairs of real numbers, with addition and multiplication defined by the rules

(x, y) + (u, v) = (x + u, y + v)

(x, y)(u, v) = (xu − yv, xv + yu)
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for all real numbers x, y, u and v. It is probably more usual to use the notation x + iy, where i is
a so-called imaginary number satisfying i2 = −1, rather than (x, y). The x + iy notation certainly
makes it look as though R is a subset of C, since surely the real number x is the same as the complex
number x+0i. But if the ordered pair notation is used then the question of whether R is a subset of
C becomes more problematic, since it is not clear that we can say that x is the same as the ordered
pair (x, 0). The formal solution to this problem is to say simply that x 7→ x + i0 (or (x, 0)) is an
embedding of R in C. For practical purposes this is good enough to allow us to say that R is a
subring of C.

Suppose that the ring R is embedded in the ring S, as above. If we really felt uneasy about
saying that R is a subring of S, and wanted to find a ring that contains R, rather than an isomorphic
copy of R, we could proceed as follows. First, find a set T which is disjoint from R and in one to
one correspondence with the set { s ∈ S | s /∈ imφ }. This one to one correspondence can then be
extended to a one to one correspondence between T ∪ R and S, so that each x ∈ R corresponds to
φr ∈ imφ. In other words, we now have a set S′ = T ∪ R and a bijective function ψ: S′ → S such
that the restriction ofψ to R is the originally given embeddingφ: R → S. Now by Proposition (5.5)
there is a unique way to define addition and multiplication on S′ so that S′ becomes a ring and the
bijective function ψ a ring isomorphism. It is fairly easy to see that, when this is done, S′ is a ring
having R as a subring.

If φ: R → S is a ring homomorphism we define the kernel of φ to be the set

kerφ = { x ∈ R | φx = 0S }.

Kernels are extremely important in ring theory, and in algebra in general. They are subrings with
an important extra closure property.

Theorem (5.13): Let R and S be rings and φ: R → S a homorphism. Then kerφ is a subring of R;
moreover, if x ∈ kerφ and a is an arbitrary element of R then ax, xa ∈ kerφ.

Proof. Note first that kerφ 6= ∅ since 0R ∈ kerφ. Furthermore, if x, y ∈ kerφ then

φ(x + y) = φx +φy = 0 + 0 = 0,
φ(xy) = (φx)(φy) = 0 0 = 0,

and
φ(−x) = −(φx) = −0 = 0,

whence φ(x + y), φ(xy), φ(−x) ∈ kerφ. So, by Theorem (5.8), kerφ is a subring.
Now suppose that x ∈ kerφ and a ∈ R. Then

φ(ax) = (φa)(φx) = (φa)0 = 0,
φ(xa) = (φx)(φa) = 0(φa) = 0,

whence ax, xa ∈ kerφ, as required. �

The following result provides a convenient way to check whether or not a homomorphism is
one-to-one.

Proposition (5.14): Let φ: R → S be a ring homomorphism. Then φ is injective if and only if
kerφ = {0}.

Proof. We have already shown in Proposition (5.12) (ii) that 0R ∈ kerφ. Hence kerφ = {0R} if
and only if kerφ ⊆ {0R}.
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Suppose first that φ is injective, and let a ∈ kerφ. Then

φa = 0S = φ0R

(by Proposition (5.12) (ii)), and since φ is injective it follows that a = 0R. Thus 0R is the only
element of kerφ, and so kerφ = {0R}, as required.

Conversely, suppose that kerφ = {0R}, and suppose that a, b ∈ R with φa = φb. Since φ is a
homomorphism we have by Proposition (5.12) (ii) that

φ(a − b) = φ(a + (−b)) = φa +φ(−b) = φa + (−φb) = 0S,

and hence a − b ∈ kerφ. By hypothesis 0R is the only element of kerφ; so a − b = 0R, and thus
a = b. We have shown that φa = φb implies a = b; that is, φ is injective, as required. �

6. Constructing new rings from old

Direct products

If R1 and R2 are are rings then

R1 × R2 = { (r1, r2) | r1 ∈ R1, r2 ∈ R2 }

becomes a ring if we define

(r1, r2) + (s1, s2) = (r1 + s1, r2 + s2),
(r1, r2)(s1, s2) = (r1s1, r2s2).

More generally, let (Ri)i∈I be an indexed family of rings. This just means that for each i ∈ I there
is given a ring Ri. Here I can be any set. Define

P = { (ri)i∈I | ri ∈ Ri for all i ∈ I }.

(As an aid to intuition, it may help to think of the case when I is the set of all positive integers;
then (Ri)i∈I is a sequence of rings R1, R2, R3, . . . , and elements of P are sequences (r1, r2, r3, . . .)
such that ri ∈ Ri for each i.) Define addition and multiplication on P by

(ri)i∈I + (si)i∈I = (ri + si)i∈I

(ri)i∈I(si)i∈I = (risi)i∈I .

Then P becomes a ring, called the direct product of the rings Ri. To prove this is a routine exercise
in checking that the ring axioms are satisfied in P, given that they are satisfied in all the rings Ri.
We do one case as an illustration, leaving the others as exercises.

Let x, y, z ∈ P. Then there exist elements ri , si , ti ∈ Ri (for each i ∈ I) such that x = (ri)i∈I ,
y = (si)i∈I and z = (ti)i∈I . Now by the definitions of addition and multiplication in P we find that

x(y + z) = (ri)i∈I((si)i∈I + (ti)i∈I)

= (ri)i∈I((si + ti)i∈I)

= (ri(si + ti))i∈I ,
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and similarly
xy + xz = (ri)i∈I(si)i∈I + (ri)i∈I(ti)i∈I)

= (risi)i∈I + (riti)i∈I

= (risi + riti)i∈I .

Since each of the rings Ri satisfies the distributive law we have that ri(si + ti) = risi + riti for all
i ∈ I, and hence x(y + z) = xy + xz.

Let S be the subset of P consisting of all (ri)i∈I such that ri is nonzero for at most finitely
many values of i. It can be shown readily that S is closed under addition, multiplication and taking
negatives; hence S is a subring of P.

Matrices

Let R be any ring and n a positive integer. Let Matn(R) be the set of all n × n matrices with entries
from R, and define multiplication and addition as usual for matrices. Thus, denoting the (i, j) entry
of a matrix A by Ai j, the definitions of addition and multiplication are as follows:

(X + Y)i j = Xi j + Yi j,

(XY)i j =
n

∑
k=1

XikYk j,

for all X, Y ∈ Matn(R) and i, j ∈ {1, 2, . . . , n}.
It can be shown that Matn(R) is a ring. Again, the proof is simply a matter of verifying that

Matn(R) satisfies the ring axioms, given that R does. We shall do only the associative law for
multiplication (which is the hardest).

Let X, Y, Z ∈ Matn(R). By the definitions of the matrix operations we find that

((XY)Z)i j =
n

∑
k=1

(XY)ikZk j =
n

∑
k=1

( n

∑
l=1

XilYlk

)
Xk j =

n

∑
k=1

n

∑
l=1

(XilYlk)Xk j,

where the last step follows from a generalized distributive law. Similarly,

(X(YZ))i j =
n

∑
l=1

Xil(YZ)l j =
n

∑
l=1

Xil

( n

∑
k=1

YlkXk j

)
=

n

∑
l=1

n

∑
k=1

Xil(YlkXk j).

Now since R satisfies the associative law for multiplication we have that (XilYlk)Xk j = Xil(YlkXk j)
for all i, j, k and l, and hence (XY)Z = X(YZ).

Exercise 5. Show that if R and S are any rings then Mat2(R× S) ∼= Mat2(R)× M2(S) (where ‘×’
means ‘direct product’, and ‘∼=’ means ‘is isomorphic to’).
Exercise 6. Show that Mat2(Mat3(Z)) ∼= Mat6(Z).

Formal power series

Let R be any ring and let R[[x]] = { (r0, r1, r2, . . . ) | ri ∈ R }, the set of all infinite sequences of
elements of R. We have already seen one way of defining addition and multiplication on this set
that produces a ring: the direct product ∏

∞
i=0 Ri, where Ri = R for each i. However, alternative

definitions of the operations are possible, and in particular we can define

(r0, r1, r2, . . . ) + (s0, s1, s2, . . . ) = (r0 + s0, r1 + s1, r2 + s2 . . . )

(r0, r1, r2, . . . )(s0, s1, s2, . . . ) = (r0s0, r0s1 + r1s0, r0s2 + r1s1 + r2s0, . . . ).
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Thus, addition is defined in the same way as it was for the direct product, but multiplication is
given by a formula which may seem rather strange at first. To make it seem more natural, and to
avoid confusion with the direct product, we shall use a different notation. When considered as an
element of R[[x]] the sequence (r0, r1, r2, . . . ) will be written as r0 + r1x + r2x2 + · · ·. The plus
signs and the x’s that appear here are to be regarded as meaningless symbols: r0 + r1x + r2x2 + · · ·
is just a bizarre notation for (r0, r1, r2, . . . ). The point of it is that with this notation the rules for
addition and multiplication in R[[x]] become

(r0 + r1x + r2x2 + · · · ) + (s0 + s1x + s2x2 + · · · ) = (r0 + s0) + (r1 + s1)x + (r2 + s2)x2 + · · ·
(r0 + r1x + r2x2 + · · · )(s0 + s1x + s2x2 + · · · ) = r0s0 + (r0s1 + r1s0)x+

(r0s2 + r1s1 + r2s0)x2 + · · · ;

the right hand side is obtained by expanding the left hand side as one would if the plus signs did
stand for addition and the symbol x did stand for a ring element, and then collecting like terms.
But infinite sums cannot be defined in a general ring; so one must be aware that if the symbol x is
replaced by an element of R the result will probably be nonsense.

Checking that the ring axioms are satisfied is again routine. We call R[[x]] the ring of formal
power series over R in the indeterminate x. It is easy to show that the function ψ: R → R[[x]]
defined by ψa = a + 0x + 0x2 + · · · is a ring homomorphism. It is also injective. The image of ψ
is thus a subring of R[[x]] isomorphic to R. Of course we would normally write the formal power
series a + 0x + 0x2 + · · · simply as a, which has the effect of making imψ indistinguishable from R.
This is no cause for concern, as it is usually desirable to identify R with the image of ψ, and thus
regard R as a subring of R[[x]].

Note that if the ring R is commutative then so is R[[x]], as can be seen readily from the
formula for the product of two elements of R[[x]]. If R has a 1 then so does R[[x]]: it is easily
checked that the series 1 = 1+0x +0x2 + · · · is an identity for the multiplication as defined above,
given that 1 is an identity for multiplication in R. Furthermore, if R has a 1 then the symbol x
can be regarded as an element of R[[x]] by identifying it with the series 0 + 1x + 0x2 + · · ·. (It is
somewhat annoying that R has to have an identity element before this identification can be made.
Formal power series are thus more pleasant to contemplate if R has a 1 than if it does not).

Polynomials

Define R[x] to be the subset of R[[x]] consisting of those formal power series ∑
∞
i=0 rixi such that ri

is nonzero for at most finitely many values of i. Thus each element of R[x] can be written in the
form ∑

n
i=0 rixi, where n is a nonnegative integer. The set R[x] is nonempty (it contains the zero

series ∑
∞
i=1 0xi) and closed under addition, multiplication and taking negatives; hence it is subring

of R[[x]]. It is called the ring of polynomials over R in the indeterminate x.
Polynomials are of central theoretical importance to the study of rings and fields, since, as we

shall see later, they provide a method of constructing extension fields. (A field E is an extension of F
if F is a subfield of E.) Closely tied in with this construction are a class of homomorphisms, known
as evaluation homomorphisms, which we now describe.

Let T be a commutative ring and R a subring of T, and let α be an arbitrary element of T.
Define a function evalα: R[x] → T by the rule that

evalα(r0 + r1x + r2x2 + · · ·+ rdxd = r0 + r1α + r2α
2 + · · ·+ rdα

d

for all nonnegative integers d and r0, r1, . . . , rd ∈ R. In other words, if p is a polynomial then
evalα(p) is what you get by replacing the indeterminate x by the element α. We shall frequently
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find it convenient to use the notation p(x) (rather than just p) for a polynomial, and then write
p(α) for evalα(p(x)).

Theorem (6.1): Let R be a subring of the commutative ring T, and let α ∈ T. Then the function
evalα: R[x] → T is a homomorphism.

The proof of this is an immediate consequence of the way addition and multiplication of poly-
nomials is defined. Thus, suppose that p(x) = r0 + r1x + · · ·+ rdxd and q(x) = s0 + s1x + · · · sexe

are elements of R[x]. Then by the definition of multiplication in R[x],

p(x)q(x) = r0s0 + (r1s0 + r0s1)x + (r2s0 + r1s1 + r0s2)x2 + · · ·+ rdsexd+e,

and thus we see that

evalα(p(x)q(x)) = r0s0 + (r1s0 + r0s1)α + (r2s0 + r1s1 + r0s2)α2 + · · ·+ rdseα
d+e

= (r0 + r1α + · · ·+ rdα
d)(s0 + s1α + · · · seα

e)

= evalα(p(x))evalα(q(x)).

So evalα preserves multiplication. The proof that it preserves addition is similar.
Note that the above theorem is false if the assumption that the ring T is commutative is

dropped. This is because in R[x] the product (axi)(bx j) is defined to be abxi+ j; however, if the
indeterminate x is replaced by the ring element t the resulting equation (ati)(bt j) = abti+ j is false
(probably) unless tb = bt. When dealing with noncommutative rings the best we can say is that an
evaluation map evalt: R[x] → T is a homomorphism if t commutes with all elements of R.

Example
Let φ: Z[x] → R be evaluation at

√
2. That is, φ = eval√2 is the function which takes an

arbitrary integer polynomial f (x) to f (
√

2). Thus φ(x2 − 2x + 1) = 2 − 2
√

2 + 1 = 3 −
√

2.
The function φ is a homomorphism. Recall that this simply means that you get the same answer
whether you replace x by

√
2 before or after performing an addition or multiplication.

Each nonzero a(x) ∈ R[x] can be uniquely written in the form a0 + a1x + · · · + adxd with
ad 6= 0. The integer d is called the degree of the polynomial a(x), and ad is called the leading
coefficient. Note that the zero polynomial does not have a leading coefficient. For a reason to be
explained below, we say that the degree of the zero polynomial is −∞. Polynomials such that the
coefficient of xi is zero for all i ≥ 1 are called scalar polynomials or constant polynomials. Observe
that a polynomial has degree zero if and only if it is a nonzero scalar polynomial.

Degrees and leading coefficients are of most help in the case that the coefficient ring R is an
integral domain. This is because of the following proposition.

Proposition (6.2): Let R be an integral domain and let a, b be nonzero polynomials in R[x]. Then
ab is nonzero, deg(ab) = deg a + deg b, and the leading coefficient of ab is the product of the leading
coefficients of a and b.

Proof. Let a = a0 + a1x + · · ·+ adxd and b = b0 + b1x + · · ·+ bexe where ad and be are nonzero,
so that d and e are the degrees of a and b respectively, and ad and be the leading coefficients.
Expanding and collecting like terms gives

ab = a0b0 + (a1b0 + a0b1)x + · · ·+ adbexd+e

(the coefficient of xn being ∑i+ j=n aib j = ∑
min(n,d)
i=max(n−e,0) aibn−i, which has just one term if n = d + e

and no terms for n > d + e.) Now since ad and be are nonzero adbe must be nonzero, since R has
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no zero divisors. Thus ab is nonzero (since at least one of its coefficients is nonzero), adbe is the
leading coefficient of ab, and the degree of ab is d + e = deg a + deg b, as required. �

Observe that if a is the zero polynomial then ab is zero also, for any polynomial b. So if
deg(ab) = deg a + deg b is to remain valid we require that deg 0 = deg 0 + deg b for all b; hence
we define deg 0 = −∞.

An important corollary of Proposition (6.2) is that if R is an integral domain then so is R[x].

Theorem (6.3): Let R be an integral domain. Then R[x] is an integral domain.

Proof. We must show that R[x] is a commutative ring with 1 having no zero divisors, given that
R itself has these properties. We have already noted in the course of our previous discussions that
R[x] is commutative and has a 1 when R is commutative and has a 1; so all that remains is the
issue of zero divisors. But Proposition (6.2) showed that the product of nonzero elements of R[x]
is nonzero, as required. �

The following exercise is not hard. The result will be used at some point later on in the course.

Exercise 7. Suppose that R and S are rings, and θ: R → S a homomorphism. Show that there is
a homomorphism θ̃: R[x] → S[x] given by

θ̃(a0 + a1x + · · ·+ adxd) = θa0 + (θa1)x + · · ·+ (θad)xd

for all nonnegative integers d and a0, a1, . . . , ad ∈ R. Show also that if θ is injective then so is θ̃,
and if θ is surjective then so is θ̃.

The field of fractions of an integral domain

We shall prove the following theorem.

Theorem (6.4): Let R be an integral domain. Then there exists a field F such that
(a) R is a subring of F, and
(b) every element of F is expressible in the form ab−1 with a, b ∈ R and b 6= 0.

Before starting the proof, let us consider a particular case. If R = Z (the integers) then R is
an integral domain; moreover, it is easily seen that if we put F = Q (the rational numbers) then
properties (a) and (b) are satisfied. But if we are given only Z, and not Q, is there a way that we
can, in some sense, construct Q from Z? Rational numbers are usually written as quotients of pairs
of integers, that is, in the form a/b where a, b ∈ Z and b 6= 0. So our first attempt at constructing Q
might be to define Q = { (a, b) | a, b ∈ Z and b 6= 0 }, and then define addition and multiplication
on this set in such a way that the rules for adding and multiplying ordered pairs correspond to the
familiar rules for adding and multiplying fractions. So, we would define

(a, b) + (c, d) = (ad + bc, bd) and (a, b)(c, d) = (ac, bd).

However, this does not work, and a moment’s thought tells us why: the correspondence between
pairs of integers (a, b) (where b 6= 0) and rational numbers is not one to one. The same rational
number can be written in many ways as a quotient of a pair of integers: 3/4 = 6/8 = 9/12, for in-
stance. The technical mathematical device for dealing with this is to define a notion of equivalence
on the set of pairs (a, b), in such a way that two pairs are equivalent if they correspond to the same
rational number. Rather than attempting to identify a rational number with a pair of integers, we
should identify a rational number with a class of equivalent pairs of integers.
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Definition (6.5): Let ∼ be a relation on a set S, so that for every pair of elements x, y ∈ S either
x ∼ y (x is related to y) or else x 6∼ y (x is not related to y). Then ∼ is called an equivalence
relation if
(1) x ∼ x for all x ∈ S,
(2) for all x, y ∈ S, if x ∼ y then y ∼ x, and
(3) for all x, y, z ∈ S, if x ∼ y and y ∼ z then x ∼ z.

A relation ∼ is said to be reflexive if it satisfies (1), symmetric if it satisfies (2) and transitive if it
satisfies (3). Hence, some books call equivalence relations RST-relations.

It is fairly easy to see that if an equivalence relation ∼ on a set S always partitions S into
non-overlapping subsets, in such a way that elements a, b ∈ S lie in the same subset if and only if
a ∼ b. These subsets are called equivalence classes. For each a ∈ S we define

x = { y ∈ S | x ∼ y },

the equivalence class of the element x. Every element of S lies in some equivalence class (since,
indeed, x ∈ x), and so S is the union of all the equivalence classes. Furthermore, x = y if and only
if x ∼ y, and if x 6∼ y then x and y are disjoint.

The set of all equivalence classes is called the quotient of S by the equivalence relation ∼. That
is, the quotient is the set

S = { x | x ∈ S }.

The notation S/∼ is also commonly used for the quotient of S by ∼, but be aware that despite
the use of the division sign / and the term “quotient”, this business has nothing much to do with
ordinary division of numbers! The terminology seems to stem from the fact that an equivalence
relation on S divides S up into equivalence classes.

There is an obvious function from S onto S given by x 7→ x, and called the canonical surjection
from S to S. Note that since x = y whenever x and y are equivalent, this function from S to S is
not likely to be one to one, although it is always onto. The set S is smaller than S. Intuitively, one
should think of S as what you get from S if you identify equivalent elements.

Incidentally, we have just introduced a set whose elements are themselves sets. Admittedly,
this is a rather abstract notion, and it may take a little getting used to. However, be warned that in
general an algebraist would think nothing of having a set whose elements are sets whose elements
are sets whose elements are sets . . . , to any level you care to mention. So get used to the idea!
Incidentally, the customary approach to the foundations of mathematics is to base everything on
set theory; so, at least in the view of some people, every mathematical object is a set.

It is high time we proved Theorem (6.4). The proof will occupy rather a lot of space.

Proof of Theorem (6.4). We are given that R is an integral domain. Define

S = { (a, b) | a, b ∈ R and b 6= 0 }.

Now let us define a relation on S as follows: if (a, b), (c, d) ∈ S we say that (a, b) is proportional to
(c, d) if and only if ad = bc. Write (a, b) ∼ (c, d) if (a, b) is proportional to (c, d).

It turns out that proportionality is an equivalence relation on S. Firstly,
(i) x ∼ x for all x ∈ S,

since x must have the form (a, b) for some a, b ∈ R with b 6= 0, and the condition that (a, b) ∼ (a, b)
(found by putting c = a and d = b in the definition above) is ab = ba, which is satisfied since R,
being an integral domain, is a commutative ring. So proportionality is reflexive. Next,
(ii) if x, y ∈ S and x ∼ y then y ∼ x.
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For, if x = (a, b) and y = (c, d) then x ∼ y gives ad = bc, whence cb = da, giving (c, d) ∼ (a, b), as
required. Thus proportionality is symmetric. Finally,
(iii) if x, y, z ∈ S and x ∼ y and y ∼ z, then x ∼ z.
To see this, let x = (a, b), y = (c, d) and z = (e, f ). Then x ∼ y and y ∼ z give ad = bc and
c f = de. We multiply the first of these equations by f and the second by b, and deduce (using the
associative law) that

(ad) f = (bc) f = b(c f ) = b(de).

Using the fact that R is commutative and using the associative law again we can rearrange this
equation as d(a f ) = d(be). Now by the cancellation law for integral domains, bearing in mind that
d 6= 0 (since y ∈ S), we deduce that a f = be, and hence (a, b) ∼ (e, f ). Thus proportionality is
transitive.

Having now proved that proportionality is an equivalence relation, let us define F to be the
quotient of F by this equivalence relation. Recall that this means that F is the set of all equivalence
classes; each element of F is an equivalence class. We now introduce some notation which will have
the effect of making some things appear familiar when they actually are not: whenever (a, b) ∈ S
we define

a/b def
= { (c, d) ∈ S | (a, b) ∼ (c, d) }.

In other words, we are using the notation a/b to stand for the equivalence class containing (a, b);
this is the object that would be written as (a, b) if we were to use the conventions we used above in
our discussion of arbitrary equivalence relations. The point of using this notation is that it highlights
the fact that the algebraic properties of these equivalence classes that we are about to investigate
mirror familiar properties of rational numbers. Note, first of all, the following criterion for equality
of these pseudo-fractions:

Fact (6.6): If p, p′, q, q′ ∈ S with q, q′ nonzero, then p/q = p′/q′ if and only if pq′ = qp′.

This follows from the fact, noted in our discussion of equivalence relations, that the equivalence
class containing (p, q) equals that containing (p′, q′) if and only if (p, q) ∼ (p′, q′). That is (by the
definitions), p/q = p′/q′ if and only if pq′ = qp′, as claimed.

The following lemma will permit us to define operations of addition and multiplication on the
set F.
Lemma (6.7): Let p, p′, q, q′ r, r′, s, s′ be elements of R, with q, q′, s, s′ nonzero. If p/q = p′/q′

and r/s = r′/s′ then (ps + qr)/qs = (p′s′ + q′r′)/q′s′ and pr/qs = p′r′/q′s′.

Proof. Assuming p/q = p′/q′ and r′s = r′/s′ gives pq′ = qp′ and rs′ = sr′. Hence we deduce,
successively, that

pq′ss′ = qp′ss′,
qq′rs′ = qq′sr′,

pq′ss′ + qq′rs′ = p′qss′ + qq′sr′,
(ps + qr)q′s′ = (p′s′ + q′r′)qs,

and thus (ps + qr, q′s′) = (p′s′ + q′r′, qs), which in turn gives (ps + qr)/qs = (p′s′ + q′r′)/q′s′. The
other part is similar (and easier). �

In view of the Lemma (6.7), we can make the following definitions: whenever p/q and r/s are
elements of F, define

p/q + r/s def
= (ps + qr)/qs

(p/q)(r/s) def
= pr/qs

(4)
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(which of course are exactly the same as the familiar rules for addition and multiplication of rational
numbers). It would not have been legitimate to make these definitions before proving the lemma.
For, it is quite possible to have p/q = p′/q′ and r/s = r′/s′ without having p = p′, q = q′, r = r′ and

s = s′, and the definition Eq.(4) simultaneously stipulates that p/q + r/s def
= (ps + qr)/qs and that

p′/q′ + r′/s′ def
= (p′s′ + q′r′)/q′s′. In other words, the same object is defined in two different ways.

Lemma (6.7) shows that the two ostensibly different right hand sides are in fact the same, so that
the definition is, after all, not ambiguous. Of course, the same comments apply for the definition of
multiplication of these objects. To use the conventional terminology of mathematicians, the lemma
shows that addition and multiplication of equivalence classes (given by Eq.(4)) is well-defined. (I
do not like this terminology, since it seems to suggest that something can be defined without being
well-defined. Indeed, some misguided authors would state Eq.(4) as a definition before proving
the lemma, and then go on to say “These operations are well defined because of . . . ”, and then
state and prove the lemma. To be rigorous, though, the lemma needs to be done first.)

We still have not completed the proof of the Theorem (6.4). Recall that the first assertion of
the theorem is that the given integral domain is a subring of some field F. So far we have produced
a set F (the quotient of S by the proportionality relation) and defined operations of addition and
multiplication on it. The next step is to show that these operations make F into a field. This has to
be done by checking that all the field axioms are satisfied, and since there are quite a lot of axioms,
this is a somewhat tedious process. However, it is not difficult. For example, to check that the
associative law for addition in F is satisfied we must show that

(p/q + r/s) + t/u = p/q + (r/s + t/u)

whenever p, q, r, s, t, u ∈ R and q, s and u are nonzero. Using the definition Eq.(4) and the
associative and distributive laws in R gives

(p/q + r/s) + t/u = (ps + qr)/qs + t/u = ((ps + qr)u + (qs)t)/(qs)u = (psu + qru + qst)/qsu,

and similarly

p/q + (r/s + t/u) = p/q + (ru + st)/su = (p(su) + q(ru + st))/q(su) = (psu + qru + qst)/qsu,

which is the same thing. The other axioms work in very much the same way. One can see that it
is bound to be OK, since the formal calculations involved are just the same as they would be if the
objects a/b under consideration were ordinary fractions, and in that context we know that all the
axioms are satisfied. So we omit the rest of these calculations, except for mentioning that the zero
element of F is the equivalence class 0/1, and the identity element of F is 1/1 (where, of course, 0
and 1 stand for the zero and identity elements of the integral domain R).

To prove the theorem exactly we should really have constructed a field F which has R as a
subring. The field F that we have in fact constructed does not literally have this property. But we
can produce an injective homomorphism φ: R → F, which is good enough for our purposes since
we may regard this homomorphism as an embedding of R in F (in accordance with our previous
discussion of such matters).

Define φ: R → F by φa = a/1 for all a ∈ R. Then by Eq.(4) we find that for all a, b ∈ R,

φa +φb = (a/1) + (b/1) = (a1 + 1b)/1 = (a + b)/1 = φ(a + b),
(φa)(φb) = (a/1)(b/1) = ab/1 = φ(ab),

so that φ is a homomorphism. If φa = φb then a/1 = b/1, which gives a = b (by the criterion
proved above); hence φ is injective, as required.
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The one assertion of the theorem which still remains to be proved is that every element of F can
be written in the form ab−1, where a, b ∈ R and b 6= 0. Note, however, that identification of R with
the copy of R contained in F is implicit in this statement. What it really means is that every element
of F is expressible in the form (φa)(φb)−1, with a, b ∈ R and b 6= 0. Since (1/b)(b/1) = b/b = 1/1
it follows that (φb)−1 = (b/1)−1 = (1/b), and hence (φa)(φb)−1 = (a/1)(1/b) = a/b. Since, by
the definition of F, every element of F has this form the assertion is correct, and the proof of
Theorem (6.4) is complete (finally). �

The field F that appears in Theorem (6.4) is called the field of fractions of the integral domain R.
Our next result, whose proof is left as an exercise, is that F is unique to within isomorphism.

Theorem (6.8): Suppose that R is an integral domain and F1, F2 fields. Suppose that there exist
embeddings η1: R → F1 and η2: R → F2 such that every element of F1 can be expressed in the form
η1a(η1b)−1 for some a, b ∈ R, and every element of F2 can be expressed in the form η2a(η2b)−1 for
some a, b ∈ R. Then there is an isomorphism φ: F1 → F2 such that φ(η1a) = η2a for all a ∈ R.

Exercise 8. Let R be a commutative ring which is not the trivial ring {0}, and suppose that R has
no zero divisors but does not have a 1. Examine all the steps of the proof of Theorem (6.4) and
check that everything still works: there is still a field of fractions. (Note that the identity element
is the equivalence class a/a, where a is any nonzero element of R.)

7. Ideals and quotient rings

Definition (7.1): A subset I of a ring R is called an ideal if I is a subring of R and, for all a and x,
if a ∈ R and x ∈ I then ax ∈ I and xa ∈ I.

Exercise 9. Show that in any ring R the sets {0} and R are ideals of R.
Exercise 10. Let R be a ring with 1 and I an ideal of R. Prove that if there is an element u ∈ I
which has an inverse in R then I = R. Hence prove that if R is a field then the only ideals of R are
{0} and R.

Theorem (5.13) can be restated as follows:

Theorem (7.2): If φ: R → S is a ring homomorphism then the kernel of φ is an ideal of R.

This result is the basic reason why kernels are important in ring theory.

Exercise 11. Let F and E be fields, andφ: F → E a homomorphism which is not the zero function.
Show that φ is injective. (Use Theorem (7.2) and Exercise 10.) Show also that φ(1F) = 1E. (Hint:
In a field, if t2 = 1 then t = 0 or 1.)

We have already seen that a subset of a ring is a subring if and only if it is nonempty and
closed under addition and multiplication. Combining this with the definition of ideal, we obtain
the following criterion for a subset of a ring to be an ideal.

Theorem (7.3): A subset I of a ring R is an ideal of R if and only if the following conditions all hold:
(i) I 6= ∅,

(ii) x + y ∈ I for all x, y ∈ I,
(iii) −x ∈ I for all x ∈ I, and
(iv) ax, xa ∈ I for all x ∈ I and a ∈ R.

In other words, I is an ideal of the ring R if and only if I is a nonempty subset of R which
is closed under addition ((ii) above), closed under taking negatives ((iii) above) and closed under
multiplication on either side by elements of R ((iv) above). Note also that since I 6= ∅ there exists
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at least one element a ∈ I, and now by closure under taking negatives −a must also be in I, whence
a + (−a) ∈ I by closure under addition. But a − a = 0, and so we have shown that an ideal of R
must always contain the zero element of R. (We knew this anyway, since an ideal is a subring, and
the zero element of a subring must coincide with the zero element of the ring.)

Examples
(i) The set of all even integers is an ideal in Z, the ring of all integers. More generally, for every

integer n the set nZ = { nk | k ∈ Z } (integers which are multiples of n) is an ideal of Z. This
follows easily from Theorem (7.3). Firstly, nZ 6= ∅ since 0 is a multiple of n. Now suppose
that x, y ∈ nZ and a ∈ Z. Then x = nb and y = nc for some integers b and c, and we see that
x+ y = n(b+ c), −x = n(−b) and ax = xa = n(ab) are all elements of nZ. So nZ is nonempty,
closed under addition and closed under multiplication by arbitrary elements of Z, as required.

(ii) (x2 + 1)R[x] = { (x2 + 1)p | p ∈ R[x] }, the set of all polynomials over R which have x2 + 1
as a factor, is an ideal in the ring R[x].

(iii) Let I ⊆ Z[x] consist of those integer polynomials whose constant term is even. That is, I
consists of all polynomials n0 + n1x + n2x2 + · · ·+ ndxd, where the coefficients ni are integers,
and n0 is even. (The nonnegative integer d is allowed to vary.) Then I is an ideal in Z[x].

(iv) Let R be the set of all upper triangular 3× 3 matrices over R:

R =

{( a b c
0 e f
0 0 g

) ∣∣∣∣∣ a, b, c, d, e, f , g ∈ R

}
.

We have seen that R is a subring of the ring Mat3(R). Let us show that

I =

{( 0 b c
0 0 f
0 0 0

) ∣∣∣∣∣ b, c, f ∈ R

}

is an ideal in R.
Clearly I ⊆ R, and I 6= ∅ since the zero matrix is in I. Now let X, Y ∈ I and A ∈ R. Then

we have

A =

( a b c
0 e f
0 0 g

)
, X =

( 0 h i
0 0 j
0 0 0

)
, Y =

( 0 k l
0 0 m
0 0 0

)
for some real numbers a, b etc., and a little calculation yields that

X + Y =

( 0 h + k i + l
0 0 j + m
0 0 0

)

−X =

( 0 −h −i
0 0 − j
0 0 0

)
AX =

( 0 ah ai + b j
0 0 e j
0 0 0

)

XA =

( 0 he h f + ig
0 0 jg
0 0 0

)

all of which are elements of I. This establishes all of the required closure properties, and thus
shows that I is an ideal in R.

(v) Let R be an arbitrary commutative ring, and a any element of R. Then aR = { ax | x ∈ R } is an
ideal in R. This can be proved by reasoning totally analogous to that used in (i) above, dealing
with the case R = Z. Note, however, that the assumption that the ring R is commutative is
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necessary, since in the noncommutative case aR may not be closed under multiplication on the
left by elements of R. (If ax is an element of aR, and r is an element of R, there is no guarantee
that the element r(ax) can be written in the form ay, for any value of y.)

(vi) Let R be a commutative ring and let a, b, c ∈ R. The set aR + bR + cR defined by

aR + bR + cR = { ax + by + cy | x, y, z ∈ R }

is an ideal in R. The proof of this is not hard; for example, the sum of two arbitrary elements
ax + by + cz and ax′ + by′ + cz′ of aR + bR + cR is a(x + x′) + b(y + y′) + c(z + z′), which
is also in aR + bR + cR, which is therefore closed under addition. We leave the other parts of
the proof to the reader.

The ideal of the commutative ring R described in (vi) above is said to be generated by the three
elements a, b and c. It is clear that ideals generated by any number of elements can be defined
similarly. An ideal which is generated by a single element—that is, an ideal of the form aR where
a ∈ R—is called a principal ideal. Remember though that this concept applies only to commutative
rings.

Exercise 12. Suppose that R is a commutative ring that has no ideals other than {0} and R, and
assume that it is not the case that xy = 0 for all x, y ∈ R.
(i) Show that R has no zero divisors. (Hint: Suppose that R has at least one zero divisor. Show

that if r is any zero divisor, then I = { s ∈ R | rs = 0 } is a nonzero ideal of R, and deduce that
rs = 0 for all s ∈ R. Next, show that if J = { r ∈ R | rs = 0 for all s ∈ R } then J is an ideal
of R; furthermore, J is nonzero since it contains all the zero divisors, of which there is at least
one. But J = R contradicts the assumption that multiplication in R is nontrivial.)

(ii) Show that R has a 1. (Hint: Note that R has at least one nonzero element, and make a fixed
choice of one such element, a. Show that aR is a nonzero ideal of R, and deduce that aR = R.
Conclude that every element t ∈ R can be expressed in the form t = ax with x ∈ R, and in
particular let b ∈ R be such that a = ab. Show that ax = (ax)b for all x ∈ R, and deduce that
t = tb for all t ∈ R.)

(iii) Show that every nonzero element of R has an inverse. (Hint: As in Part (ii), if a ∈ R is nonzero
then each element of R is expressible in the form ax with x ∈ R. In particular, the identity
element can be expressed in this way.)

(iii) Show that R is a field.

Theorem (7.4): Every ideal in the ring Z is principal.

Proof. Let I be an ideal in Z; we must show that I = nZ for some integer n. Definition (7.1)
requires ideals to be nonempty, and so I has at least one element. If 0 is the only element of I then
I = {0} = 0Z, since 0 is the only multiple of 0, and so the required conclusion holds with n = 0.
Suppose instead that I contains at least one nonzero element a. Since ideals must be closed under
taking negatives, it follows that −a ∈ I also. Since one of the integers a and −a must be positive,
it follows that I has at least one positive element.

Let n be the least positive integer in I. (Here we are making use of a basic property of the set
of positive integers, known as the “Least Integer Principle”, which asserts that every nonempty set
of positive integers has a least element. The principle of mathematical induction is based upon the
Least Integer Principle, and, conversely, one can easily use induction to show that a set of positive
integers with no least element has to be empty.) Thus if r ∈ I and 0 ≤ r < n then r = 0 (since
otherwise r would be a positive integer in I and less than n, which is supposed to be the least
positive integer in I). Since I must be closed under multiplication by arbitrary elements of Z we
have that qn ∈ I for all integers q.
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Now let m ∈ I be arbitrary. By the well known division of property of integers we can divide
m by the positive integer n and obtain a quotient q and a remainder r. In other words, q and r are
integers which satisfy m = qn + r and 0 ≤ r < n. By hypothesis m ∈ I, and we have already noted
that qn ∈ I. By closure of I under taking negatives, it follows that −qn ∈ I, and hence by closure
of I under addition we obtain that m − qn ∈ I. That is, r ∈ I. But as 0 ≤ r < n it follows that
r = 0, and hence m = qn = nq. So we have shown that an arbitrary element m of I has to be a
multiple of n. As we have already noted that all multiples of n are in I, the conclusion is that I
consists exactly of the multiples of n:

I = { nq | q ∈ Z } = nZ

as required. �

Note: We have shown in the above proof that if I is any nonzero ideal in Z then I is generated
by the least positive integer it contains (in the sense that I = nZ, where n is this least positive
integer). Accordingly, whenever I is an ideal in Z, we define the canonical generator of I to be the
least positive integer in I, or 0 if I = {0}.

Exercise 13. Let S be a subset of the set of positive integers and suppose that S has no least
element. Use induction on k to prove that k /∈ S for all positive integers k, and deduce that S = ∅.

Let I be an ideal in the ring R. We define a relation on R called congruence modulo I, and
denoted by ≡ (mod I), as follows:

a ≡ b (mod I) if and only if a − b ∈ I.

We shall show that this is an equivalence relation on R.
Firstly, for all a ∈ R we have that a − a ∈ I (since the ideal I must contain the zero element

of R), and so a ≡ a (mod I). Hence congruence modulo I is a reflexive relation.
Secondly, suppose that a ≡ b (mod I). Then a − b ∈ I, and by closure under taking negatives,

−(a − b) ∈ I. But −(a − b) = b − a; so b − a ∈ I, and hence b ≡ a (mod I). Thus congruence is
symmetric.

Finally, suppose that a ≡ b (mod I) and b ≡ c (mod I). Then a − b, b − c ∈ I, and by closure
under addition a − c = (a − b) + (b − c) ∈ I. So a ≡ c (mod I), and we deduce that congruence is
transitive.

Recall that the importance of equivalence relations comes from the fact that an equivalence
relation always partitions the set on which it is defined into equivalence classes. The equivalence
classes are disjoint from each other and cover the entire set in question. That is, every element of
the set lies in exactly one equivalence class. For congruence modulo the ideal I of the ring R, the
equivalence classes (or congruence classes) are also called the cosets of I in R. For example, 4Z (the
set of all multiples of 4) is an ideal in Z. It is easy to see that congruence modulo 4Z partitions Z
into exactly four congruence classes:

C0 = {. . . ,−8,−4, 0, 4, 8, 12, . . .}
C1 = {. . . ,−7,−3, 1, 5, 9, 13, . . .}
C2 = {. . . ,−6,−2, 2, 6, 10, 14, . . .}
C3 = {. . . ,−5,−1, 3, 7, 11, 15 . . .}.

Every integer lies in one or other of these four sets, and it is easily seen that any two numbers
which lie in the same set Ci differ by a multiple of 4. The four congruence classes are the cosets of
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the ideal 4Z in the ring Z. Note that the coset C0 is just the ideal 4Z itself, and (more generally)
the coset Ci consists of all the integers that are i greater than a multiple of 4.

Returning to the general situation, observe that if a ∈ R is arbitrary then the coset of I con-
taining a is

{ b ∈ R | b ≡ a (mod I) } = { b ∈ R | b − a ∈ I }
= { a + t | t ∈ I }.

It is natural to denote this coset by a + I. It is important to remember that the coset containing
a is equal to the coset containing b if and only if a ≡ b (mod I). That is, if I is an ideal in R and
a, b ∈ R then

a + I = b + I if and only if a − b ∈ I. (5)

In particular, a + I = b + I does not imply that a = b (unless I happens to be {0}), just as fractions
p/q and p′/q′ can be equal without p equalling p′ and q equalling q′.

Our next objective is to define addition and multiplication on the set R/I = { a + I | a ∈ R }
(which is the quotient of R by the equivalence relation congruence modulo I). The set R/I can
be thought of as the thing that R becomes if congruent elements are regarded as equal. So whole
sets of congruent elements of R are coalesced to form single elements of R/I. We would like to
define the addition and multiplication operations on R/I in a manner that is consistent with this
viewpoint. That is, it should make no difference whether you coalesce elements before adding or
multiplying them, or after. We therefore want addition and multiplication of cosets to satisfy

(a + I) + (b + I) = (a + b) + I
and (6)

(a + I)(b + I) = ab + I

for all a, b ∈ R.† The possible obstruction to this is that since we can have a + I = a′ + I and
b + I = b′ + I without having a = a′ and b = b′, it is conceivable that Eq.(6) might yield more than
one definition of the same object. To prove that there are well defined operations on R/I satisfying
Eq.(6) therefore requires proving the following lemma.

Lemma (7.5): Suppose that I is an ideal in R, and let a, a′, b, b′ ∈ R. If a + I = a′ + I and
b + I = b′ + I then (a + b) + I = (a′ + b′) + I and ab + I = a′b′ + I.

Proof. If a′ + I = a + I and b′ + I = b + I then by Eq.(5) there exist s, t ∈ I such that a′ = a + s
and b′ = b + t. This gives

a′ + b′ = (a + s) + (b + t)
= (a + b) + (s + t),

and since s + t ∈ I (by closure of I under addition) it follows that a′ + b′ ≡ a + b (mod I), and thus
(a′ + b′) + I = (a + b) + I. Similarly we find by the associative and distributive laws that

a′b′ = (a + s)(b + t)
= ab + (at + sb + st).

But now closure of I under left multiplication by elements of R gives at ∈ I (since t ∈ I), closure
of I under right multiplication by elements of R gives sb ∈ I (since s ∈ I), and likewise st ∈ I, so

† Unfortunately, the definition of multiplication of cosets is not consistent with the definition
we gave earlier for the product of two arbitrary subsets of a ring. Since the previous definition is
unlikely to arise again in this course, it can be ignored.
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that closure of I under addition gives at + sb + st ∈ I, hence showing that a′b′ ≡ ab (mod I). So
we also have that a′b′ + I = ab + I, as required. �

Recall that there is a surjective mapping φ: R → R/I (the canonical surjection) given by
φa = a + I for all a ∈ R. We have defined addition and multiplication in R/I so that Eq.(6)
holds; that is, so that φ(a + b) = φa + φb and φ(ab) = (φa)(φb) for all a, b ∈ R. It follows
from Theorem (5.3) that imφ is a ring and φ a ring homomorphism from R to imφ. Since φ is
surjective, imφ = R/I. Thus we have shown that our definitions of addition and multiplication on
R/I make R/I a ring. We call rings constructed in this way quotient rings. (Usually R/I is called
just “R over I”, but if you prefer to be more elaborate then it is the quotient of R by the ideal I.)
The zero element of the ring R/I is φ0, which is the coset 0 + I = { 0 + t | t ∈ I } = I. Note also
that the kernel of the homomorphism φ is the set

{ a ∈ R | φa = 0R/I } = { a ∈ R | a + I = 0 + I }
= { a ∈ R | a ∈ I }
= I

The next theorem is a summary of what we have just done.

Theorem (7.6): Let I be an ideal in the ring R. Then R/I = { a + I | a ∈ R } is a ring under
operations satisfying Eq.(6) above, and the mapping φ: R → R/I given by φa = a + I is a surjective
homomorphism with kernel I.

Example
If R = Z, the ring of integers, and I = 4Z, the principal ideal of R generated by 4, then as we have
seen above there are exactly four cosets of I in R. In the notation we used previously, these cosets
are C0, C1, C2 and C3, where Ci is the set of all numbers congruent to i modulo 4. In the notation
we have introduced since, Ci = i + 4Z. So R/I = Z/4Z = { 4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z }. Addition
and multiplication in this ring are given by the following tables (derived from Eq.(6)).

+ 4Z 1 + 4Z 2 + 4Z 3 + 4Z
4Z 4Z 1 + 4Z 2 + 4Z 3 + 4Z

1 + 4Z 1 + 4Z 2 + 4Z 3 + 4Z 4Z
2 + 4Z 2 + 4Z 3 + 4Z 4Z 1 + 4Z
3 + 4Z 3 + 4Z 4Z 1 + 4Z 2 + 4Z

· 4Z 1 + 4Z 2 + 4Z 3 + 4Z
4Z 4Z 4Z 4Z 4Z

1 + 4Z 4Z 1 + 4Z 2 + 4Z 3 + 4Z
2 + 4Z 4Z 2 + 4Z 4Z 2 + 4Z
3 + 4Z 4Z 3 + 4Z 2 + 4Z 1 + 4Z

For example, using Eq.(6) we find that (2+4Z)(3+4Z) = 6+4Z = 2+4Z (since 6 ≡ 2 (mod 4Z)),
and (2 + 4Z) + (3 + 4Z) = 5 + 4Z = 1 + 4Z (since 5 ≡ 1 (mod 4Z)). The traditional terminology
in number theory is to say 6 ≡ 2 (mod 4), rather than mod 4Z, and we will adopt this convention
in future. The ring Z/4Z is called the ring of integers modulo 4. It will soon become inconvenient
to write the elements of Z/4Z as 4Z, 1 + 4Z, 2 + 4Z and 3 + 4Z: we will want something shorter.
Sometimes we will revert to the notation that we first introduced in our discussion of equivalence
classes, and write the elements as 0, 1, 2 and 3. But in due course even this will become too messy,
and we will omit the bar, using the same notation for elements of Z/4Z as for elements of Z.
When we do this, the reader will have to be aware from the context that the objects in question are
integers modulo 4 rather than ordinary integers, and remember, for example, that 1 = 5 = 9 = −3
in Z/4Z.

Clearly there was nothing special about the integer 4 in the above example. We could have
started with any positive integer n, formed the ideal nZ, and then constructed the quotient ring
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Z/nZ. This ring, which henceforth we will usually denote by Zn, is known as the ring of integers
modulo n. It has exactly n elements, namely 0, 1, 2, . . . , n − 1, where i is the coset of nZ, or
congruence class, consisting of all integers that are congruent to i modulo n—that is, integers
which differ from i by a multiple of n. There is a surjective homomorphism Z → Zn given by i 7→ i,
and i = j if and only if i ≡ j (mod n).

Exercise 14. Show that if the integer n is not prime then Zn has at least one zero divisor.

Exercise 15. Let I be an ideal in the ring R. Show that if R is commutative then so is R/I, and
show that if R has a 1 then so does R/I.

Example

Let F be a field and let R = F[x], the ring of polynomials over F in the indeterminate x. Let
I = xF[x], the principal ideal generated by the polynomial x. That is, I consists of all polynomials
which have x as a factor, and it can be seen that this is just the same as the set of polynomials with
zero constant term. To say that two polynomials a(x) and b(x) are congruent modulo this ideal is
to say that a(x) − b(x) has zero constant term, or equivalently that a(x) and b(x) have the same
constant term. For example, if F were the real field R and a(x) the polynomial 5 − 2x − x2, then
the polynomials in the coset a(x)+ I would be all the polynomials with 5 as their constant term. So
5 + 3x + x2 + x3 and 5 + x71 would be examples of polynomials b(x) with a(x) + I = b(x) + I. So
too would be the constant polynomial 5. In general, if t ∈ F is arbitrary then the set of polynomials

{ b(x) ∈ F[x] | b(x) = t + a1x + a2x2 + · · ·+ adxd for some ai ∈ F } (7)

is a coset of I in R, and every coset has this form for some t ∈ F. We could perhaps write the coset
in Eq.(7) as t + {∗}, meaning the set of polynomials of the form t plus terms in higher powers of x.
Now to add or multiply two cosets you just addor multiply representative elements of the coset,
and it is clear that adding or multiplying two polynomials just involves adding or multiplying their
constant terms. So to continue with the notation as above, for all s, t ∈ F

(s + {∗}) + (t + {∗}) = s + t + {∗}
(s + {∗})(t + {∗}) = st + {∗}

and we see that t + {∗} ↔ t is a one to one correspondence between the elements of R/I (the
cosets) and elements of F, and this correspondence preserves addition and multiplication. Hence
F[x]/xF[x] ∼= F.

8. The First Isomorphism Theorem

A consequence of Theorem (7.6) is that whenever I is an ideal in R one can find a homomorphism
whose kernel is I. We had seen previously (Theorem (7.2)) that the kernel of a homomorphism is
always an ideal. So ideals are the same as kernels. Furthermore, whenever we have an ideal we
can construct a quotient ring. So in particular, if R and S are rings andφ: R → S a homomorphism,
then we can form the quotient ring R/ kerφ. The theorem we are about to state, which is the most
important theorem of introductory ring theory, examines the connection between this quotient ring
and the homomorphism we started with.

The First Isomorphism Theorem Let R and S be rings and φ: R → T a homomorphism. Then
the kernel of φ is an ideal of R, the image of φ is a subring of T, and there is an isomorphism
ψ: R/ kerφ→ imφ such that ψ(a + kerφ) = φa for all a ∈ R.
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Proof. Let K = kerφ and S = im . We have already proved in Proposition (5.12) and Theo-
rem (7.2) that S is a subring of T and K an ideal of R. Our main task now is to prove that there
is a well defined function ψ: R/K → S satisfying ψ(a + K) = φa for all a ∈ R. As always when
discussing cosets it has to be remembered that a + K = a′ + K does not imply that a = a′, and so
to show that ψ is well defined we must show that if a + K = a′ + K then φa = φa′. Once this is
done we will know that the object φa depends only on the coset a + K and not on the choice of
representative element a in that coset.

If a + K = a′ + K then a ≡ a′ (mod K), and so a − a′ ∈ K = kerφ. Hence φ(a − a′) = 0.
But since φ is a homomorphism we have that φ(a − a′) = φa − φa′, and so we conclude that
φa = φa′. The rule which determines the function ψ: R/K → S can now be spelt out as follows.
Given α ∈ R/K we can choose an element a ∈ R such that α = a + K (since the canonical map
R → R/K is surjective); then φa ∈ imφ = S, and we define ψα = φa, noting that all choices of a
lead to the same element of S.

Having established that ψ is well-defined, it follows easily from the fact that φ preserves ad-
dition and multiplication that ψ does also. Indeed, let α, β ∈ R/K; then there exist a, b ∈ R with
α = a + K and β = b + K, and we have

ψ(α + β) = ψ((a + K) + (b + K) = ψ((a + b) + K) = φ(a + b) = φa +φb = ψα +ψβ,

and similarly

ψ(αβ) = ψ((a + K)(b + K) = ψ(ab + K) = φ(ab) = (φa)(φb) = (ψα)(ψβ).

Thus ψ is a homomorphism, and all that remains is to prove that ψ is bijective.
It is clear that ψ is surjective, for if s ∈ S is arbitrary then there exists a ∈ R with s = φa (since

S = imφ), and this gives s = ψ(a + K). Suppose now that α ∈ kerφ. Choose a ∈ R such that
α = a+K; thenφa = ψα = 0, which shows that a ∈ kerφ = K, so thatα = a+K = 0+K, the zero
element of R/K. Hence we have shown that the zero of R/K is the only element of kerψ, whence
by Proposition (5.14) it follows that ψ is injective. So ψ is a bijective homomorphism—that is, an
isomorphism—as required. �

There are two main points to note about the First Isomorphism Theorem, at least as far as this
course is concerned. First of all, it is applicable in every situation in which there is a homomor-
phism. So whenever you encounter a homomorphism you should immediately ask the following
questions:
(a) What is the kernel of this homomorphism?
(b) What is the image of this homomorphism?
(c) What, in this case, is the isomorphism which the First Isomorphism Theorem gives us?
Secondly, remember that the First Isomorphism Theorem provides a method for proving that two
things are isomorphic. So if you are asked to prove an isomorphism, you should ask yourself
whether the First Isomorphism Theorem might be useful. In particular, if you are asked to prove
that some ring S is isomorphic to some quotient ring R/K, then almost certainly the way to do it is
to find a homomorphism from R to S whose kernel is K.

Examples
(i) We shall use the First Homomorphism Theorem to show that if K = (x2 +1)R[x] (the principal

ideal of the ring R[x] generated by the element x2 + 1 ∈ R[x]) then the quotient ring R[x]/K
is isomorphic to the field C (complex numbers).

Since R is a subfield of C and i =
√
−1 is an element of C, there is an evaluation homo-

morphism θ: R[x] → C given by θ(a(x)) = a(i) for all polynomials a(x) ∈ R[x]. Everything
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we are seeking to prove, and more, will be given to us by determining exactly what the First
Isomorphism Theorem says when applied to this homomorphism θ.

The first task is to determine the kernel of θ. To facilitate this we state a result about
division of polynomials, concerning which we will have more to say later: if a(x), b(x) ∈ R[x]
with b(x) nonzero, then there exist q(x), r(x) ∈ R[x], with the degree of r(x) less than the
degree of b(x), satisfying a(x) = q(x)b(x)+r(x). consisting of replacing a(x) by a(x)−cxib(x),
where i and the scalar c are chosen so that the leading terms cancel out (so that the degree is
reduced), and repeating this until the degree is less than that of b(x). We illustrate this with
a(x) = 2x5 − x4 − x3 + 3x2 + x + 7 and b(x) = x2 + 1.

2x3−x2−3x + 4

x2 + 1
)

2x5−x4− x3+3x2+ x+7
2x5 +2x3

−x4−3x3+3x2+ x+7
−x4 − x2

−3x3+4x2+ x+7
−3x3 −3x

4x2+4x+7
4x2 +4

4x+3.

The calculations show that 2x5− x4− x3 + 3x2 + x + 7 = (2x3− x2−3x−4)(x2 + 1) +4x + 3.
In the current context the point is that this allows easy evaluation at x = i: replace x by i
in the above and the answer is 4i + 3 (since x2 + 1 evaluates to 0 at x = i). In general, if
a(x) ∈ R[x] is arbitrary then division by x2 + 1 gives a remainder of degree at most 1, so that
a(x) = q(x) (x2 + 1) + cx + d for some c, d ∈ R, and applying the evaluation map θ = evali we
obtain a(i) = ci + d. This is zero if and only if c = d = 0; hence the kernel of the evaluation
homomorphism is precisely the set of all a(x) ∈ R[x] which yield a zero remainder on division
by x2 + 1. That is, kerθ = (x2 + 1)R[x] = K, the set of all polynomials in R[x] that have
x2 + 1 as a factor. The First Isomorphism Theorem tells us that this is an ideal of R[x]—which
we knew anyway, since it is the principal ideal generated by x2 + 1—and that R[x]/K ∼= imθ.

It remains to check that imθ is the whole of C and not some proper subset. So we must
show that for every complex number α there is a polynomial a(x) ∈ R[x] with a(i) = α. This
is trivial, since α = ci + d for some c, d ∈ R, and then the polynomial a(x) = cx + d has the
required property. We comment that these considerations also show that every coset of K in
R[x] contains a representative of the form cx+d, and indeed that this representative is unique.
The isomorphism C → R[x]/K inverse to the one obtained by the First Isomorphism Theorem
is given by ci + d 7→ (cx + d) + K.

(ii) Let Zn = {1, 2, . . . , n} be the ring of integers modulo n, and letφ: Z → Zn be defined byφi = i
for all i ∈ Z. Addition and multiplication in Zn are defined so that i + j = i + j and i j = i j for
all i, j ∈ Z; so φ is a homomorphism. Since by definition i = j if and only if i ≡ j (mod n) we
see that the kernel of φ is

{ i ∈ Z | i = 0 } = { i ∈ Z | i = nk for some k ∈ Z } = nZ.

It is clear that the image of φ is the whole of Zn. Of course, this homomorphism φ is simply
the canonical surjection Z → Zn.
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Applying the First Isomorphism Theorem we find that Z/ kerφ = Z/nZ ∼= Zn, and that
there is an isomorphism satisfying i + nZ 7→ i. This is reassuring rather than interesting, since
by definition Zn = Z/nZ, and the function i + nZ 7→ i is simply the identity function on Zn.

(iii) Let R be the ring of upper triangular 3 × 3 matrices over R, and let I ⊂ R consist of those
upper triangular matrices that have zeros on the diagonal as well as below. We shall show that
I is an ideal of R and that R/I ∼= R × R × R (the direct product of three copies of R). (In
fact we showed earlier that I is an ideal of R, but we shall do so again by a more sophisticated
means.)

Recall that R × R × R is the set of all ordered triples of real numbers, with addition
and multiplication of triples being performed component by component. Define a function
φ: R → R× R× R by

φ

( a b c
0 e f
0 0 g

)
= (a, e, g).

A little calculation shows that( a b c
0 e f
0 0 g

)( h i j
0 k l
0 0 m

)
=

( ah ∗ ∗
0 ek ∗
0 0 gm

)
where the ∗’s replace entries whose precise value is currently irrelevant to our purposes, and
thus if φA = (a, e, g) and φB = (h, k, m) then

φ(AB) = (ah, ek, gm) = (a, e, g)(h, k, m) = (φA)(φB).

Similarly, adding A and B involves adding their diagonal entries, and soφ(A+ B) = φA+φB.
Thus φ is a homomorphism, and since φA = (0, 0, 0) if and only if A has 0’s on the diagonal,
we see that kerφ = I. The image of φ is the whole of R× R× R, since the arbitrary element
(a, b, c) ∈ R × R × R equals φD, where D is the diagonal matrix with diagonal entries a, b
and c. So the first isomorphism theorem gives R/I ∼= R× R× R, as claimed.

Note that all the matrices in the coset A+I have the same diagonal entries as the matrix A:( a b c
0 e f
0 0 g

)
+ I =

{( a x y
0 e z
0 0 g

) ∣∣∣ x, y, z ∈ R
}

=
{( a ∗ ∗

0 e ∗
0 0 g

)}
to use a fairly natural notation. The isomorphism which the theorem yields is given by{( a ∗ ∗

0 e ∗
0 0 g

)}
7→ (a, e, g).

(iv) Let R be the ring of 5 × 5 lower triangular matrices over the ring Z[x]. (One can prove that
R is a subring of Mat5(Z[x]) in much the same way as we proved that the upper triangular
matrices form a subring of Mat3(R).) The subset I of R consisting of those matrices whose
diagonal entries have even constant term is an ideal of R, and R/I ∼= (Z2)5 (the direct product
of five copies of the ring of integers modulo 2). This is proved by considerations analogous to
those used in (iii) above: it is shown that the map R → (Z2)5 given by

a1(x) ∗ ∗ ∗ ∗
0 a2(x) ∗ ∗ ∗
0 0 a3(x) ∗ ∗
0 0 0 a4(x) ∗
0 0 0 0 a5(x)

 7→ (a1(0), a2(0), a3(0), a4(0), a5(0))
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is a surjective homomorphism whose kernel is I. (Note that if a(x) = n0+n1x+· · · ndxd ∈ Z[x]
then a(0) is the constant term n0, and a(0) = 0, the zero of Z2, if and only if n0 is even.)

(v) The set Q[
√

2]
def
= { a + b

√
2 | a, b ∈ Q } is a subring of R isomorphic to the quotient ring

Q[x]/(x2 − 2)Q[x]. This is another example of the use of evaluation homomorphisms. Noting
that Q is a subring of R (which is a commutative ring), we define θ: Q[x] → R to be evaluation
at
√

2. That is, θ(a(x)) = a(
√

2) for all a(x) ∈ R[x]. The theory we have discussed tells us that
this is a homomorphism. By division of polynomials it can be seen that for every a(x) ∈ Q[x]
there exist q(x) ∈ Q[x] and c, d ∈ Q with a(x) = q(x) (x2 − 2) + cx + d, and we find that
a(
√

2) = c
√

2 + d. In particular this shows that θ(a(x)) ∈ Q[
√

], and so imθ ⊆ Q[
√

2]. On
the other hand, an arbitrary element of Q[

√
2] has the form c

√
2 + d = θ(cx + d) for some

c, d ∈ Q, and so the image of θ is the whole of Q[
√

2].
If a(x) ∈ kerθ and a(x) = q(x) (x2 − 2) + cx + d as above, then c

√
2 + d = a(

√
2) = 0.

Since c and d are rational numbers this forces c = d = 0. (This is a fact that we will prove
later, equivalent to the fact that

√
2 is irrational. For the time being, though, let us just assume

it.) It follows that a(x) ∈ K = (x2 − 2)Q[x]. Conversely, if a(x) ∈ K then a(x) = q(x) (x2 − 2)
for some q(x), and hence θ(a(x)) = 0 (since θ(x2 − 2) = (

√
2)2 − 2 = 0). So kerθ = K.

Having determined the kernel and image of θ, we can apply the First Isomorphism Theo-
rem. The conclusions are that Q[

√
2] (the image of θ) is a subring of R, that K = (x2−2)Q[x]

(the kernel of θ) is an ideal of Q[x], and that there is an isomorphism Q[x]/K → Q[
√

2] such
that (cx + d) + K 7→ c

√
2 + d for all c, d ∈ Q.

(vi) Another reassuring but not particularly interesting example is provided by the identity func-
tion from a ring R to itself: the function id defined by ida = a for all a. It is trivially a
homomorphism—indeed, an isomorphism—from R to itself, and so the First Isomorphism
Theorem applies. The kernel of id is the subset of R consisting of the zero element alone, and
the image of id is the ring R itself. The conclusions of the theorem are that the kernel, {0R}, is
an ideal of R, the image (namely, R) is a subring of R, and R/{0R} ∼= R, with an isomorphism
satisfying a + {0R} 7→ a. Observe that the coset a + {0R} equals { a + t | t ∈ {0R} } = {a}, the
subset of R consisting of the single element a. Since addition and multiplication of cosets are
performed by adding or multiplying representative elements, and in this case there is always
only one choice for the representative, we see that {a} + {b} = {a + b} and {a}{b} = {ab}.
So our isomorphism R/{0R} is the obvious bijective correspondence between singleton subsets
and elements given by {a} 7→ a, the set of singleton subsets having been made into a ring by
the equally obvious definitions of addition and multiplication of singletons.

(vii) Recall that for any ring R there is a natural multiplication function Z × R → R, for which we
use the notation (n, a) 7→ na. Suppose that R has a 1, and define a mapping µ: Z → R by
µn = n1 for all n ∈ Z. By properties of natural multiplication that we have already discussed,
we know that for all n, m ∈ Z,

µ(n + m) = (n + m)1 = n1 + m1 = µn + µm
µ(nm) = (nm)1 = n(m1) = (n1)(m1) = (µn)(µm),

whence µ is a homomorphism. By Theorem (7.4) (and the note following it) the kernel of µ
has the form mZ for some nonnegative integer m. We call m the characteristic of the ring R.
(Thus, the characteristic of R is the canonical generator of the kernel of µ.) The image of
µ is the subset P of R consisting of all the natural multiples of 1. By the First Isomorphism
Theorem P is a subring of R isomorphic to Zm = Z/mZ, and the isomorphism which the
theorem guarantees satisfies n 7→ n1 for all n ∈ Z.
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In the case where the characteristic is 0 then the kernel of µ is {0}, and µ is an embed-
ding of Z in R. When the characteristic is nonzero it is the ring of integers modulo n that is
embedded in R.

Observe that the characteristic of a ring R that has a 1 is the least positive integer m such
that m1 = 0R, or zero if there is no such positive integer. Note that if k ∈ Z satisfies k1 = 0R
then ka = (k1)a = 0Ra = 0R for all a ∈ R. If the ring R does not have a 1 we define the
characteristic of R to be the least positive integer m such that ma = 0R for all a ∈ R, or zero if
there is no such positive integer.

The ring of integers modulo n provides the most obvious example of a ring of nonzero
characteristic. Its characteristic is clearly n. Overfamiliarity with this example sometimes
causes students to say that the characteristic of a ring is the number of elements in it (since
Zn also has n elements). Note, however, that the ring Zn[x] of polynomials over Zn in the
indeterminate x also has characteristic n, yet has infinitely many elements. The reader can
check that the ring Z3[x]/(x2 +1)Z3[x] (the quotient of Z3[x] by the principal ideal generated
by x2 + 1) is a ring of characteristic 3 having nine elements. (Show, by considerations similar
to those used in Example (i) above, that every element of Z3[x]/(x2 + 1)Z3[x] is uniquely
expressible in the form (cx + d) + (x2 + 1)Z3[x] with c, d ∈ Z3).

9. Principal Ideal Domains

Recall that a principal ideal, in a commutative ring R, is a single-generator ideal: an ideal of the
form aR for some a ∈ R.

Definition (9.1): An integral domain in which every ideal is principal is called a principal ideal
domain.

We saw in Theorem (7.4) that Z is a principal ideal domain. The proof made use of the
division property: whenever a, n ∈ Z with n 6= 0 there exist unique q, r ∈ Z with a = qn + r and
0 ≤ r < |n|. We did not prove this, but let us do so now. Define S = { a − kn | k ∈ Z }, and
S′ = { s ∈ S | s ≥ 0 }. It is clear that S′ is nonempty; for example, if we put k = −|a|n then
a− kn = a + |a|n2 ≥ −|a|+ |a|n2 = (n2 − 1)|a| ≥ 0, since n2 ≥ 1 and |a| ≥ 0. By the Least Integer
Principle a nonempty set of nonnegative integers must have a least element, and so S′ must have a
least element. Choose q ∈ Z so that r = a − qn is this least element. Then a = qn + r, and r ≥ 0
since r ∈ S′. Furthermore, since r− n = a− (q + 1)n is not in S′, it must be negative. So r < n. As
for uniqueness, observe that if a = qn + r = q′n + r′ with r and r′ both in {0, 1, . . . , n − 1}, then
|(q − q′)n| = |r′ − r| < n; this forces (q − q′)n = 0, giving q = q′ and hence r = r′.

If F is any field then F[x], the ring of all polynomials over F, has a similar division property,
which can be proved similarly. Since F is an integral domain (by Proposition (4.2)) we know that
F[x] is an integral domain (by Theorem (6.3)), and the division property will enable us to prove
that F[x] is a principal ideal domain (by imitating the proof of Theorem (7.4)).

Lemma (9.2): Let F be a field and f , a ∈ F[x] polynomials, with a nonzero. Then there exist unique
polynomials q, r ∈ F[x] such that f = qa + r and deg r < deg a.

Proof. Recall that we have defined the degree of the zero polynomial to be −∞. For the purposes
of this proof, the term “number” includes −∞, and we adopt the natural conventions that −∞ < n
and −∞ + n = −∞ = −∞ − ∞ whenever n is a nonnegative integer. A trivial extension of the
Least Integer Principle tells us that any nonempty subset of the set {−∞} ∪ { n ∈ Z | n ≥ 0 } must
have a least element.

Define S = { deg( f − ga) | g ∈ F[x] }. That is, S is the set of all numbers that occur as degrees
of polynomials of the form f − ga, as g varies over all elements of F[x]. (Note that f , g and a are
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all polynomials, despite the fact that we have chosen not to write them as f (x), g(x) and a(x), as
we could have done. We are under no compulsion to use the f (x) notation for polynomials if a
single letter will suffice, and in this proof the extra x’s would only clutter the place up.) The set S
is nonempty, containing (for example) the number deg f = deg( f −0a), and so it must have a least
element, m (say). Choose q ∈ F[x] so that r = f − qa has degree m.

Suppose that m ≥ d = deg a, and remember that d ≥ 0 since a is nonzero (by hypothesis).
Write a = a0 + a1x + · · ·+ adxd and r = r0 + r1x + · · ·+ rmxm. Then ad is the leading coefficient of
a, and is therefore nonzero. Since F is a field, a−1

d exists, and we see that

rma−1
d xm−da = rma0a−1

d xm−d + rma1a−1
d xm−d+1 + · · ·+ rmada−1

d xm−d+d

has the same degree m and leading coefficient rm as has r. (Note that if m were less than d the
above expression would not be a legitimate polynomial, since it would involve negative powers
of x). It follows that f − (q + rma−1

d xm−d)a = r − rma−1
d xm−da has degree less than m, since the

terms rmxm cancel. But this contradicts the minimality of m, and so we conclude that m < d; that
is, deg r < deg a.

It remains only to prove that q and r are unique. Accordingly, suppose also that f = q1a + r1,
where deg r1 < deg a. Then it follows that deg(r − r1) < deg a (since both r and r1 have de-
gree less than a), and furthermore r − r1 = (q1 − q)a (since q1a + r1 = f = qa + r). Hence
deg(q − q1) + deg a = deg(r − r1) ≤ deg a, and so deg(q − q1) < 0. But the only polynomial with
negative degree is the zero poynomial; so we conclude that q − q1 = 0, which gives q = q1 and
hence r = r1 also. �

We leave to the reader the proof of the following easy consequence of this division property.

Theorem (9.3): (i) Let f (x) ∈ F[x] and t ∈ F, where F is a field. Then f (x) = (x − t)q(x) + r for
some q(x) ∈ F[x] and r ∈ F; moreover, the remainder r is equal to f (t).

(ii) With f (x) and t as in Part (i), x − t is a factor of f (x) if and only if f (t) = 0.

Part (i) of Theorem (9.3) is sometimes called the “Remainder Theorem”, and Part (ii) the
“Factor Theorem”. However, “Factors-of-degree-one Theorem” would be better, since it only tells
one about factors of degree 1. It is of course quite possible for a polynomial to have a nontrivial
factorization in F[x] without having any factors of degree 1. For example, over the real field R
the polynomial x4 + 5x2 + 4 factorizes as (x2 + 1)(x2 + 4), but has no factors of degree 1, and
hence no roots in R. This is a point worth emphasizing: a polynomial which has a root has a factor
of degree 1 and therefore is not irreducible, but polynomials with no roots are not necessarily
irreducible since they may have nontrivial factors of degree greater than 1. In general, it is not easy
to prove that a polynomial is irreducible, and to do so involves more than merely proving that it
has no roots.

Theorem (9.4): If F is a field then F[x] is a principal ideal domain. Moreover, if I is a nonzero ideal
in F[x] then any nonzero element of I of minimal degree will generate I.

Proof. As explained above, F[x] is an integral domain; so we only have to prove that all the ideals
of F[x] are principal. So let I be an ideal in F[x], and suppose first that I 6= {0}. Since 0 ∈ I,
this assumption yields that the set I ′ = { p ∈ I | p 6= 0 } is nonempty, and so by the Least Integer
Principle we may choose an element p ∈ I ′ of minimal degree.

Since p ∈ I it follows that pq ∈ I for all q ∈ F[x], and hence pF[x] ⊆ I. But if f ∈ I is arbitrary
then since p 6= 0 we may use Lemma (9.2) to deduce that f = pq + r for some q, r ∈ F[x], with
deg r < deg p. Since f , pq ∈ I the closure properties of ideals yield that r = f − pq ∈ I. But r /∈ I ′,
since deg r < deg p, and by definition p is an element of I ′ of minimal degree. This forces r = 0,
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the only element of I that is not in I ′. Hence f = pq ∈ pF[x], and since f was an arbitrary element
of I it follows that I ⊆ pF[x]. Hence I = pF[x], a principal ideal. As the only other possibility is
I = {0} = 0F[x], which is also principal, it follows that all ideals of F[x] are principal, as required.

�

It is a familiar fact that every integer greater than 1 can be factorized uniquely as a product of
primes. The idea of factorizing polynomials is also familiar. If F is a field and p ∈ F[x] a polynomial
of degree greater than 0, we say that p is irreducible if it has no factors other than nonzero scalar
polynomials and nonzero scalar multiples of itself. It turns out that every nonzero polynomial can
be factorized as a product of irreducible polynomials, and the irreducible polynomials that arise are
unique to within scalar factors. These properties of factorization of integers and polynomials are
two examples of a general fact about principal ideal domains, which can be expressed succinctly as
follows: every principal ideal domain is a unique factorization domain. Before embarking on the
proof of this, we need to make a few definitions. Although some of these definitions will be stated
for an arbitrary ring with 1, some for an arbitrary commutative ring, some for a commutative ring
with 1, and some for an integral domain, it is always the case that we are primarily interested in
integral domains. You may, if you wish, assume throughout that R is an integral domain.

Definition (9.5): Let R be a ring with 1. An element u ∈ R is called a unit if it has an inverse.
That is, u is a unit if there exists v ∈ R with uv = vu = 1.

Recall that if u has an inverse then that inverse is unique, and so we may denote it by u−1. It
is clear that if v = u−1 then also v = u−1; so the inverse of a unit is a unit. Furthermore, if u and t
are both units then ut is also a unit, its inverse being t−1u−1. Note that in the ring Z the only units
are 1 and −1, in a field F all nonzero elements are units, and in the ring F[x] (where F is a field)
the units are precisely the polynomials of degree 0.

Exercise 16. Show that if R is a commutative ring with 1 then a ∈ R is a unit if and only if
aR = R.

Definition (9.6): Let R be a commutative ring with 1, and let a, b ∈ R. We say that b is an
associate of a if b = ua for some unit u.

Note that if b = ua where u is a unit, then a = u−1b. Since u−1 is also a unit we conclude that
a is an associate of b.

Exercise 17. Let R be a commutative ring with 1, and define a relation ≈ on R by a ≈ b if and
only if a is an associate of b. Prove that ≈ is an equivalence relation.

Definition (9.7): If R is a commutative ring and a, b ∈ R, we say that a divides b, or that b is
divisible by a, or that a is a factor or divisor of b, if b = ca for some c ∈ R. Alternatively, we could
say that b is a multiple of a.

We use the notation a
∣∣ b to mean that a divides b. Thus, for example, in the ring Z we have

4
∣∣ 20.

There is a mild inconsistency in our terminology at this point. Observe that a
∣∣ 0 is true for all

a ∈ R, since 0 = 0a. So according to Definition (9.7) we can say that a is a divisor of 0. However,
most algebraists would interpret the statement “a is a divisor of zero” as meaning that a is a zero
divisor in the sense that a 6= 0 and ab = 0 for some b 6= 0. In view of this, we will avoid ever saying
“a is a divisor of 0”, although we will still, if the need arises, write “a

∣∣ 0” to mean “0 = ax for some
x” (which will always be true!), and we will continue to use the term “zero divisors” for nonzero
elements whose product is 0.

Exercise 18. Prove that the “divides” relation is transitive: if a
∣∣ b and b

∣∣ c then a
∣∣ c.
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Exercise 19. Prove that if a
∣∣ b and a = 0 then b = 0.

Exercise 20. Let R be a commutative ring with 1, and a, b ∈ R. Prove that a
∣∣ b if and only if

bR ⊆ aR.

Exercise 21. Let R be an integral domain, and a, b ∈ R. Prove that a and b are associates if and
only if a

∣∣ b and b
∣∣ a.

Exercise 22. Prove that if R is an integral domain and a, b ∈ R, then aR = bR if and only if a and
b are associates.

Definition (9.8): Let R be an integral domain. A nonzero element of R is said to be irreducible if
it is not a unit and its only divisors are units and associates of itself.

Thus if a ∈ R is irreducible, and a = bc for some b, c ∈ R, then either b or c must be a unit,
and the other an associate of a.

Exercise 23. Show that an associate of an irreducible element must also be irreducible.

Definition (9.9): We say that an integral domain R is a unique factorization domain if the follow-
ing two conditions are satisfied:
(i) for every non-unit a ∈ R there exists a positive integer n and elements p1, p2, . . . , pn ∈ R

which are irreducible and satisfy a = p1 p2 · · · pn;
(ii) if n, m are nonnegative integers and p1 p2 · · · pn = q1q2 · · · qm for some irreducible elements

p1, p2, . . . , pn and q1, q2, . . . , qm of R, then m = n, and the qi can be renumbered so that qi is
an associate of pi for all i from 1 to n.

Part (ii) of this definition says that factorization into irreducibles is as unique as it could pos-
sibly be, given that multiplication is commutative in an integral domain, and given that there may
be units in R. A factorization can be trivially altered by rearranging the order of the factors, or by
multiplying one factor by a unit and another factor by the inverse of that unit. So in Z, for example,
30 can be factorized as 2×3×5, or as (−5)×2×(−3), and in Q[x] the element x4 +x3−x2 +x−2
can be factorised as (x2 +1)(x+2)(x−1), or as ( 1

2 x− 1
2 )( 1

3 x+ 2
3 )(6x2 +6). Part (ii) of the definition

requires that if R is a unique factorization domain then trivial modifications of this kind produce
the only alternative factorizations that are ever possible.

Let R be an integral domain, and suppose that a is a nonzero element of R which is not a unit.
If it is not irreducible then it has a divisor which is neither a unit nor an associate of itself, and
if that divisor is not irreducible then it in turn has a proper divisor, and so on. Is it guaranteed
that this process must halt, after a finite number of steps, with an irreducible element? Or is it
possible that there might be an infinite sequence of elements, a1, a2, a3, . . . , with the property that
ai+1

∣∣ ai, and ai+1 is not a unit or an associate of ai, for all i ≥ 1? We shall show that this situation
cannot arise in a principal ideal domain. Observe that by Exercise 20 above the condition ai+1

∣∣ ai
is equivalent to aiR ⊆ ai+1R, while combining Exercise 20 and Exercise 21 we see that aiR = ai+1R
if and only if ai and ai+1R are associates. So the question becomes whether it is possible to have an
infinite strictly increasing chain of principal ideals a1R ( a2R ( a3R ( · · · in the domain R.

Definition (9.10): A ring R is said to satisfy the ascending chain condition on ideals if whenever
I1, I2, I3, . . . is an infinite sequence of ideals of R there exists a positive integer n such that Im = In
for all m ≥ n.

Thus the ascending chain condition says that ascending chains cannot go on getting strictly
bigger indefinitely; at some point the sequence effectively terminates.

Lemma (9.11): Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending chain of ideals in the ring R. Then
I =

⋃∞
k=1 Ik is an ideal in R.
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Proof. We use the criterion from Theorem (7.3) for a subset of a ring to be an ideal. Suppose that
a, b ∈ I. Since I is the union of the Ik ’s, this means that a ∈ Ih and b ∈ Ik for some h and k. If we
put m = max{h, k} then since the chain of ideals ascends it follows that Ih ⊆ Im and Ik ⊆ Im, and
therefore a, b ∈ Im. But since Im is an ideal it is closed under addition; so a + b ∈ Im, and hence
a + b ∈ I (since Im ⊆ I). It follows that I is closed under addition.

The rest of the proof of Lemma (9.11) is left to the reader. �

The ideal I in Lemma (9.11) can be termed the limit of the increasing sequence (I j)
∞
j=1; it

clearly is the smallest set containing all the I j.
We are now able to prove that principal ideal domains satisfy the ascending chain condition

on ideals. In fact, since no extra effort is required, we prove a slightly stronger result.

Theorem (9.12): Let R be a commutative ring with 1, and suppose that R has the property that
every ideal of R is finitely generated. Then R satisfies the ascending chain condition on ideals.

Proof. Recall that an in ideal of R is finitely generated if it has the form a1R + a2R + · · · + akR
for some positive integer k; principal ideals satisfy this with k = 1. If I = a1R + a2R + · · · + akR
then I = { a1r1 + a2r2 + · · · + akrk | ri ∈ R }. We call the ai generators of the ideal I; note that the
generators are certainly elements of I, since ai = ∑ j a jr j holds if we put ri = 1 and r j = 0 for all
j 6= i.

Let I1 ⊆ I2 ⊆ I3 · · · be an increasing chain of ideals in R. Put I =
⋃∞

j=1 I j, and note
by Lemma (9.11) that I is an ideal. Since all ideals of R are finitely generated we can find
a1, a2, . . . , ak ∈ R that generate I. Since ai ∈ I =

⋃∞
j=1 I j for each i, we can find a positive in-

teger j(i) such that ai ∈ I j(i), and if we put n = max1≤i≤k{ j(i)} then the fact that the sequence
(I j)

∞
j=1 is increasing ensures that I j(i) ⊆ In, and hence ai ∈ In, for all i ∈ {1, 2, . . . , k}. Now closure

of the ideal In under multiplication by elements of R yields that airi ∈ In for any choice of elements
ri ∈ R, and hence closure of In under addition yields that a1r1 + a2r2 + · · ·+ akrk ∈ In for all ri. But
since I is precisely the set of all elements of the form a1r1 + a2r2 + · · ·+ akrk, we have proved that
I ⊆ In. Now because I is the limit of the increasing sequence (I j)

∞
j=1 we deduce that

I ⊆ In ⊆ Im ⊆
∞⋃

j=1

I j = I

whenever m ≥ n. Thus Im = In for all m ≥ n, as required. �

It is a consequence of Theorem (9.12) that every nonzero non-unit in a principal ideal domain
has an irreducible divisor. (We should note that it is part of Definition (9.8) that an irreducible
element is never a unit. Since a unit of R is a divisor of every element of R, the proposition we are
about to prove would be trivial if there were such a thing as an irreducible unit!)

Proposition (9.13): Let R be a principal ideal domain and a ∈ R a nonzero element which is not a
unit. Then there exists an irreducible element b ∈ R such that b

∣∣ a.

Proof. Suppose to the contrary that a does not have any irreducible factor. We define a1 = a, and,
proceeding inductively, prove that the following condition holds for all positive integers i:

(C)
if i > 1 then there exists a nonzero element ai ∈ R which not a unit, and is a
divisor but not an associate of ai−1.

Observe that (C) holds by default in the case i = 1.
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Suppose that k > 1, and that (C) holds for all i ∈ {1, 2, . . . , k − 1}. Since ak−1

∣∣ ak−2

∣∣ · · · ∣∣ a1,
it follows (by repeated use of Exercise 18) that ak−1

∣∣ a1 = a, and since a has no irreducible factors,
we deduce that ak−1 is not irreducible. Accordingly, since ak−1 is nonzero and not a unit, there
exists an element ak ∈ R such that ak is is a divisor of ak−1 but not a unit or an associate of ak−1.
Obviously ak 6= 0, since ak−1 6= 0 (see Exercise 19). Thus we have shown that (C) also holds for
i = k, and by induction therefore it holds for all positive integers i.

We have thus obtained an infinite sequence a1, a2, a3, . . . such that each a j is a divisor but not
an associate of its predecessor. If we now consider the principal ideals they generate then we have,
in view of Exercise 20, that

a1R ⊆ a2R ⊆ a3R ⊆ · · · ,

and hence by Theorem (9.12) there exists an n such that an+1R = anR. But by Exercise 20 this
implies that an

∣∣ an+1 as well as an+1

∣∣ an, so that by Exercise 21 it follows that an+1 is an associate
of an, contrary to the construction. This contradiction shows that our original assumption must be
false, and therefore a has an irreducible factor. �

A similar kind of argument can now be used to show that every nonzero non-unit in a principal
ideal domain has a factorization as a product of irreducible elements.

Proposition (9.14): Let R be a principal ideal domain and a ∈ R a nonzero element which is not
a unit. Then there exists a positive integer k and irreducible elements p1, p2, . . . , pk ∈ R such that
a = p1 p2 · · · pk.

Proof. Suppose to the contrary that a cannot be expressed as a product of irreducibles. Note in
particular that a is not itself irreducible, or else taking k = 1 and p1 = a would give a = p1 p2 · · · pk
with all pi irreducible. We now define a1 = a, and, proceeding inductively, prove that the following
condition holds for all positive integers i:

(C′)
there exist nonzero elements pi , ai+1 ∈ R such that pi is irreducible and not an
associate of ai, and ai = piai+1.

Remember that pi, being irreducible, cannot be a unit.
Suppose first that i = 1. Since a1 = a is nonzero and not a unit, Lemma (9.13) guarantees the

existence of an irreducible element p1 ∈ R such that a1 = p1a2 for some a2 ∈ R, and in view of
Exercise 23 and the fact that a1 is not irreducible, p1 cannot be an associate of a1. Hence condition
(C′) holds in this case.

Suppose that k > 1, and that (C′) holds for all i ∈ {1, 2, . . . , k − 1}. Observe that we have

a = a1 = p1a2 = p1(p2a3) = p1 p2(p3a4) = · · · = p1 p2 · · · pk−1ak.

If ak were irreducible this would contradict our assumption that a cannot be expressed as a product
of irreducibles. Furthermore, ak is not a unit, for if it were then the fact that ak−1 = pk−1ak would
imply that pk−1 is an associate of ak−1, contrary to (C′) for i = k − 1. Hence Lemma (9.13) yields
that there exists pk ∈ R such that ak = pkak+1 for some ak+1 ∈ R. By Exercise 23 and the fact that
ak is not irreducible, pk is not an associate of ak. Thus we have shown that (C′) also holds for i = k,
and by induction therefore it holds for all positive integers i.

We have thus obtained an infinite sequence a1, a2, a3, . . . such that each a j is a divisor of
its predecessor. If we now consider the principal ideals they generate then we have, in view of
Exercise 20, that

a1R ⊆ a2R ⊆ a3R ⊆ · · · ,
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and hence by Theorem (9.12) there exists an n such that an+1R = anR. But by Exercise 20 this
implies that an+1 = qnan for some qn ∈ R, and combined with an = pnan+1 this gives an = pnqnan.
Since an 6= 0 we can use Exercise 3 to conclude that pnqn = 1. But this shows that pn is a unit,
contrary to the fact that it is an irreducible element. This contradicts the fact that pn is irreducible,
since an irreducible element cannot be a unit. This contradiction shows that our original assump-
tion must be false, and therefore a has an expression as a product of irreducible factors. �

Before we can complete the proof that a principal ideal domain has to be a unique factorization
domain, we need to discuss primes and greatest common divisors. It is a familiar property of Z that
if an integer p is a prime, and if p is a divisor of the product ab of integers a and b, then p must
be a divisor of a or a divisor of b. We use this property as the definition of primality in other
commutative rings.

Definition (9.15): Let R be a commutative ring, and p ∈ R. We say that p is prime if it is nonzero
and not a unit, and the following condition holds: for all a, b ∈ R, if p

∣∣ ab then either p
∣∣ a or p

∣∣ b.

The elements of Z which satisfy this are exactly the prime numbers in the usual sense, together
with their negatives. This is exactly the set of irreducible elements of Z. It is not the case that the
concepts of “prime” and “irreducible” coincide for all integral domains, although it is easily seen
that a prime element of an integral domain has to be irreducible. In the case of principal ideal
domains the converse does hold, as we shall shortly prove: irreducible elements have to be prime.
This is rather convenient, since it means that principal ideal domains are very similar in behaviour
and spirit to the familiar integral domain Z, and the integral domains that are most important in
this course are all principal ideal domains.

Exercise 24. Give an example of integers n, a and b such that n
∣∣ ab but n/

∣∣a and n/
∣∣b.

Exercise 25. Prove that a prime element of an arbitrary integral domain R is necessarily irre-
ducible.

Definition (9.16): Let R be a principal ideal domain and a, b nonzero elements of R. An element
d ∈ R is called a greatest common divisor of a and b if
(i) d

∣∣ a and d
∣∣ b, and

(ii) for all e ∈ R, if e
∣∣ a and e

∣∣ b then e
∣∣ d.

Condition (i) says that d is a common divisor; Condition (ii) says that every other common
divisor is smaller than d, in the sense of being a divisor of d. It is an important property of principal
ideal domains that greatest common divisors always exist.

Theorem (9.17): Let R be a principal ideal domain, and a, b ∈ R nonzero elements. Then
(i) there is an element d ∈ R which is a greatest common divisor of a and b, and every associate of d

is also a greatest common divisor of a and b.
(ii) if d and d′ are both greatest common divisors of a and b then d and d′ are associates of each other;

(iii) an element d ∈ R is a greatest common divisor of a and b if and only if d is a divisor of a and b
such that d = ar + bs for some r, s ∈ R;

(iv) an element d ∈ R is a greatest common divisor of a and b if and only if aR + bR = dR.

Proof. We prove (ii) first. If d is a greatest common divisor of a and b then by Definition (9.16)
we have

(A) d
∣∣ a and d

∣∣ b;
(B) if e

∣∣ a and e
∣∣ b then e

∣∣ d.
If d′ is also a greatest common divisor of a and b then similarly
(A′) d′

∣∣ a and d′
∣∣ b;
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(B′) if e
∣∣ a and e

∣∣ b then e
∣∣ d′.

Now (A) and (B′) together imply that d
∣∣ d′, while (A′) and (B) together imply that d′

∣∣ d. By
Exercise 21 it follows that d and d′ are associates, as claimed.

We saw in an example in Section 7 that aR + bR = { ax + by | x, y ∈ R } is always an ideal
(given that R is a commutative ring). Since we are assuming that R is a principal ideal domain,
aR + bR must be a principal ideal. That is, there exists some d ∈ R such that dR = aR + bR. By
Exercise 22, if d′ is any associate of d then d′R = aR + bR also. If Part (iv) of the theorem is true
then it will follow that d and allits associates are greatest common divisors of a and b. So Part (i)
of the theorem will follow as a consequence of Part (iv). We will prove Parts (iii) and (iv) together.

Suppose that d is a divisor of a and of b, and that d = ax+by for some x, y ∈ R. Then certainly
Condition (i) of Definition (9.16) is satisfied. Furthermore, if e

∣∣ a and e
∣∣ b then we can write a = er

and b = es for some r, s ∈ R, and we obtain

d = ax + by = (er)x + (es)y = e(rx) + e(sy) = e(rx + sy),

which shows that e
∣∣ d. Hence Condition (ii) of Definition (9.16) is also satisfied, and we conclude

that d is a greatest common divisor of a and b. This has proved one of the implications required for
Part (iii).

Suppose next that d is a greatest common divisor of a and b. By Condition (i) of Defini-
tion (9.16) there exist r, s ∈ R with a = dr and b = ds. If now t is an arbitrary element of aR + bR
then we have t = ax + by for some a, b ∈ R, and hence

t = (dr)x + (ds)y = d(rx) + d(sy) = d(rx + sy) ∈ dR,

and so it follows that aR + bR ⊆ dR. On the other hand, since R is a principal ideal domain and
aR + bR is an ideal, we know that aR + bR = eR for some e ∈ R, and since

a = a1 + b0 ∈ { ax + by | x, y ∈ R } = aR + bR = eR,

it follows that a = ez for some z ∈ R. Hence e
∣∣ a. Similarly,

b = a0 + b1 ∈ { ax + by | x, y ∈ R } = aR + bR = eR,

and so e
∣∣ b also. Now by Condition (ii) of Definition (9.16) it follows that e

∣∣ d, and so Exercise 20
yields that dR ⊆ eR = aR + bR. We had proved the reverse inclusion above, and so we have shown
that if d is a greatest common divisor of a and b then dR = aR + bR. This is one of the implications
required for Part (iv).

To complete the proof of Parts (iii) and (iv) it remains to show that if dR = aR + bR then d is
a divisor of a and b such that d = ax + by for some x, y ∈ R. But if dR = aR + bR then

d = d1 ∈ dR = aR + bR = { ax + by | x, y ∈ R },

so that d = ax + by for some x, y ∈ R, and furthermore

a = a1 + b0 ∈ { ax + by | x, y ∈ R } = aR + bR = dR
and

b = a0 + b1 ∈ { ax + by | x, y ∈ R } = aR + bR = eR,

show that d
∣∣ a and d

∣∣ b, as required. �
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Theorem (9.18): Let R be a principal ideal domain, and let r ∈ R be an irreducible element. Then
r is prime. That is, for all a, b ∈ R, if r is a factor of ab then it is a factor of a or of b.

Proof. Let a, b ∈ R be such that r
∣∣ ab. The ab = rt for some t ∈ R. We must show that either r

∣∣ a
or r

∣∣ b, which is the same as showing that if r/
∣∣a then r

∣∣ b. So assume that r/
∣∣a.

Let d be a greatest common divisor of r and a. Then d
∣∣ r, and since r is irreducible it follows

that d is either an associate of r or a unit. If d is an associate of r then we can write d = ru for
some unit u. But since d is a common divisor of r and a we also know that a = ds for some s ∈ R,
and thus a = (ru)s = r(us), contradicting our assumption that r/

∣∣a. So we are forced into the
alternative scenario, in which d is a unit.

Let d′ = d−1. By Theorem (9.17) we have that dR = rR + aR, so that

1 = dd′ ∈ dR = rR + aR = { rx + ay | x, y ∈ R },

and it follows that 1 = rx + ay for some x, y ∈ R. Multiplying through by b and using ab = rt gives

b = (rx + ay)b = rxb + (ab)y = rxb + (rt)y = r(xb + ty),

which shows that r
∣∣ b, as required. �

An easy induction based on Theorem (9.18) yields the following corollary, whose proof we
leave to the reader.

Corollary (9.19): Let R be a principal ideal domain, and let p ∈ R be an irreducible element. If
q1, q2, . . . , ql ∈ R are such that p is a divisor of the product q1q2 · · · ql, then p

∣∣ q j for some j.

We are now able to complete the proof of the main theorem of this section.

Theorem (9.20): Let R be a principal ideal domain. Then R is also a unique factorization domain.

Proof. We have already shown in Theorem (9.14) that every nonzero element of R which is not
a unit can be expressed as a product of irreducible elements, and so all that remains is to prove
the uniqueness property. We will do this somewhat informally, since it would become tedious
otherwise.

Suppose that p1, p2, . . . , pk and q1, q2, . . . , ql are irreducible elements of R having the prop-
erty that p1 p2 · · · pk = q1q2 · · · ql. We see that

p1

∣∣ p1(p2 · · · pk) = q1q2 · · · ql ,

and since p1 is irreducible we have by Corollary (9.19) that p1

∣∣ q j for some j. As q j is also irre-
ducible, its only divisors are units and associates of itself, and therefore p1 is an associate of q j
(since p1, being irreducible, is not a unit).

Renumbering the qi if necessary, we may assume that j = 1. We now have that q1 = p1u for
some unit u, and therefore

p1 p2 · · · pk = q1q2 · · · ql = (p1u)q2 · · · ql .

By Exercise 3 we deduce that p2 p3 · · · pk = q′2q3 · · · ql, where q′2 = q2u is an associate of q2 (which
is still irreducible, by Exercise 23). We now repeat the argument. At each stage we find that one of
the q’s is an associate of one of the p’s, and after possibly renumbering the factors and/or replacing
them by associates, this pair can cancelled away, reducing the number of factors on both sides.
Eventually there will be no factors left one one side. If there were then any factors left on the other
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side we would have a product of irreducible elements equalling 1, which is contrary to the fact that
an irreducible element cannot have an inverse. So when the last factor disappears from one side,
the last factor simultaneously disappears from the other side. So the p’s and q’s match up exactly,
as required. �

Exercise 26. Prove that the real numbers
√

2 and 3
√

2 are not rational. (Hint: Suppose that√
2 = p/q with p, q ∈ Z. Then p2 = 2q2; now if we express p and q as products of primes we find

that the multiplicity with which 2 occurs in the prime factorization of p2 is even (being twice its
multiplicity in p), whereas its multiplicity as a factor of 2q2 is odd (twice its multiplicity in q plus
one). This contradicts the uniqueness of prime factorizations in Z.)

Calculating greatest common divisors: the Euclidean algorithm

Since every associate of a greatest common divisor of two elements is also a greatest common
divisor of those two element, it is rare for greatest common divisors to be unique. Indeed, if the
domain in question has any units other than the identity element, then greatest common divisors
cannot be unique. However, it would certainly be nicer if we could talk of the greatest common
divisor, rather than a greatest common divisor.

In Z there are exactly two units, 1 and −1. So for every pair of nonzero integers there are
two gcd’s, one positive and the other negative. In this case it is customary to call the positive
one the gcd. In the case of F[x], where F is a field, the units are the nonzero scalar polynomials,
and it can be seen that every nonzero polynomial has a unique associate whose leading coefficient
is 1 (obtained by multiplying through by the unit which is the inverse of the leading coefficient).
A polynomial is said to be monic if its leading coefficient is 1, and it is customary to define the
gcd of two nonzero polynomials to be the monic polynomial that satisfies Definition (9.16). For
other principal ideal domains there may be no particularly natural way to choose a preferred gcd.
Nevertheless, we will still find it convenient to say things like “let d = gcd(a, b)” to mean “let d be
one of the gcd’s of a and b”, remembering that d is only unique up to multiplication by a unit.

Some integral domains, notably Z and F[x] for any field F, have the property that if a and
b are arbitrary elements, with b nonzero, then one can find elements q (the quotient) and r (the
remainder) such that a = qb + r, and r is in some sense smaller than b. More precisely, it should
be possible to assign a nonnegative integer deg t to each nonzero element t of the domain, and the
remainder t should either be zero or else satisfy deg r < deg b. Observe that Z has this property if
we define deg n = |n| for all integers n, while for F[x] we can let deg p be the degree, in the usual
sense, of the polynomial p. Integral domains with this property are called Euclidean domains.† The
same argument used to prove Theorems (7.4) and (9.4) can be applied to show that a Euclidean
domain is necessarily a principal ideal domain.

In any Euclidean domain there is a procedure, known as the Euclidean algorithm, which can be
used to calculate gcd’s. Assume that R is a Euclidean domain, and for each pair of elements (a, b)
that are not both zero define

D(a, b)
def
= { e ∈ R | e

∣∣ a and e
∣∣ b },

the set of all common divisors of a and b. Observe that since e
∣∣ 0 is true for all e ∈ R, if one of

a or b is zero then D(a, b) is just the set of divisors of the other. Rephrasing Definition (9.16), we
see that d = gcd(a, b) if and only if d ∈ D(a, b) and e

∣∣ d for all e ∈ D(a, b). Note that, obviously,
D(b, a) = D(a, b).

† If R is a Euclidean domain then deg 0 may or may not be defined. If it is not otherwise defined,
we may put deg 0 = −∞, as we did for polynomials.
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The key to the Euclidean algorithm is the following lemma.

Lemma (9.21): Let a, b, m ∈ R with b 6= 0. Then
(i) D(a, b) = D(b, a + mb), and

(ii) gcd(a, b) = gcd(b, a + mb).

Proof. Let e ∈ D(a, b). Then a = re and b = se for some r, s ∈ R, giving a + mb = (r + ms)e.
Thus e

∣∣ b and e
∣∣ (a + mb); so e ∈ D(b, a + mb). Hence D(a, b) ⊆ D(b, a + mb). Since this

argument works for all a and m we can replace a by a + mb and m by −m, to conclude that
D(a + mb, b) ⊆ D(b, (a + mb)− mb) = D(b, a). Since we now have both inclusions, it follows that
D(a, b) = D(b, a + mb).

As remarked above, d = gcd(a, b) is an element of D(a, b) that is divisible by all elements of
D(a, b). So, by the first part, d is an element of D(b, a+mb) divisible by all elements of D(b, a+mb);
hence d = gcd(b, a + md). �

If a 6= 0 the D(a, 0) is the set of all divisors of a, and so it makes sense to define gcd(a, 0) = a
(or any associate of a). The Euclidean algorithm is a trivial recursive procedure which starts with
an arbitrary pair of elements of R which are not both zero, and replaces them with another pair
which have the same gcd, while reducing the value of the deg function. The algorithm terminates
when one of the pair of elements it yields is zero; the gcd is then the nonzero element of the pair.

Since R is a Euclidean domain, if b ∈ R is nonzero then for any a ∈ R there exists q ∈ R
such that r = a − qb, the remainder on division of a by b, satisfies deg r < deg b. Furthermore,
Lemma (9.21) shows that gcd(a, b) = gcd(b, r). Writing Rem(a, b) for the remainder on division of
a by b, we can state the Euclidean algorithm as follows.

Euclidean Algorithm.

while b 6= 0 do

[a, b] := [b, Rem(a, b)]

enddo
return a

Examples

(i) We calculate gcd(132, 102) by the Euclidean algorithm:

132 = 1× 102 + 30 (8)

102 = 3× 30 + 12 (9)

30 = 2× 12 + 6 (10)

12 = 2× 6.

This shows that gcd(132, 102) = gcd(102, 30) = gcd(30, 12) = gcd(12, 6) = gcd(6, 0) = 6.
Note also that using Eq’s (8), (9) and (10) in reverse order enables us to express 6 in the form
132r + 102s for some integers r and s:

6 = 30− 2× 12

= 30− 2× (102− 3× 30) = 7× 30− 2× 102

= 7× (132− 102)− 2× 102 = 7× 132− 9× 102.
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In other words, r = 7 and s = −9 is a solution. Note that it is not the only solution. In fact,
r = 7 + 17n and s = −9− 22n is a solution for each integer n. Check this!

(ii) Let F = Z3, the ring of integers modulo 3. It happens to be true that Zp is a field whenever p
is a prime number; so, in particular, F is a field. In this example we shall represent elements
of F by integers, remembering that integers which are congruent modulo 3 represent the same
element of F. (Thus 2 = −1 = 8 in F, 4 = 1, and so on.) Let us use the Euclidean algorithm
to find the gcd of the elements x6 + 2x5 + x4 + 2x3 + 1 and x4 + 2x3 + 2x of F[x]:

x6 + 2x5 + x4 + 2x3 + 1 = (x2 + 1)(x4 + 2x3 + 2x) + (x3 + x + 1) (11)

x4 + 2x3 + 2x = (x + 2)(x3 + x + 1) + (2x2 + 2x + 1) (12)

x3 + x + 1 = (2x + 1)(2x2 + 2x + 1).

The last nonzero remainder is the gcd. However, it is conventional to multiply through by
a scalar factor chosen so that the leading coefficient becomes 1; if we do this, the gcd is
2(2x2 + 2x + 1) = x2 + x + 2.
Each one of the steps above involves a polynomial division. Here are the calculations for the
first of these:

x2 +1

x4 + 2x3 + 2x
)

x6+2x5+x4+2x3 +1

x6+2x5 +2x3

x4 +1
x4+2x3+2x

x3+ x+1.

Doing arithmetic modulo 3 takes a little getting used to! However, after a small amount of
practice things like 1−2 = 2 and 2×2 = 1 become quite routine. Please check the calculations
above.
Again, the gcd can be written as (x6 + 2x5 + x4 + 2x3 + 1)r(x) + (x4 + 2x3 + 2x)s(x) for some
polynomials r(x), s(x) ∈ F[x], and suitable r(x) and s(x) can be found by utilizing Eq.(12)
and Eq.(11):

2x2+2x + 1 = (x4 + 2x3 + 2x)− (x + 2)(x3 + x + 1)

= (x4 + 2x3 + 2x)− (x + 2)((x6 + 2x5 + x4 + 2x3 + 1)− (x2 + 1)(x4 + 2x3 + 2x))

= (x3 + 2x2 + x)(x4 + 2x3 + 2x)− (x + 2)(x6 + 2x5 + x4 + 2x3 + 1),

whence x2 + x + 1 = (x + 2)(x6 + 2x5 + x4 + 2x3 + 1) + (2x3 + x2 + 2x)(x4 + 2x3 + 2x).

Exercise 27. Let R be a principal ideal domain and a, b ∈ R nonzero elements. An element m ∈ R
is called a least common multiple of a and b if
(i) a

∣∣m and b
∣∣m, and

(ii) for all c ∈ R, if a
∣∣ c and b

∣∣ c then m
∣∣ c.

Prove that any two lcm’s of a and b have to be associates of each other. Prove also that if
d = gcd(a, b) then ab/d is a lcm of a and b. (Note: whenever x, y are elements of an integral
domain such that x

∣∣ y there is an element z such that y = xz, and, provided x is nonzero, z is
unique. Under these circumstances, we define y/x to be z.)
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Exercise 28. Let a, b be nonzero elements of the principal ideal domain R, and let d = gcd(a, b).
Show that if r, s ∈ R satisfy d = ra + sb, then then most general solution of d = xa + yb, with
x, y ∈ R, is given by

x = r + (b/d)t
y = s − (a/d)t

where t ∈ R is arbitrary. (You must show that this is a solution for all choices of t, and that every
solution has this form for some value of t.)

In the following sequence of exercises we investigate properties of the ring of Gaussian integers,
which is the subset G of the complex field C defined by

G = { n + mi | n, m ∈ Z }

(where i =
√
−1).

Exercise 29. Prove that G is a subring of C. Show also that G is an integral domain (so that G is,
in fact, a subdomain of C).
Exercise 30. Let a ∈ G be nonzero. Using the Argand diagram identification of complex numbers
with points in the Euclidean plane, check that 0, a, ia and (1 + i)a are the vertices of a square,
the diagonal of which has length

√
2|a|. Check furthermore that the square lattice generated by a

and ia—that is, the points of the plane that can obtained by adding an integer multiple of a and an
integer multiple of ia—consists precisely of the multiples of a in G (in the sense of Definition (9.7)).
Conclude that for every b ∈ G there is a multiple of a whose distance from b is at most |a|/

√
2.

Exercise 31. For each a ∈ G define the norm of a to be N(a) = |a|2. That is, if a = n + mi
then N(a) = n2 + m2. Use Exercise 30 to show that G is a Euclidean domain. (The function deg
appearing in the definition of a Euclidean domain can be defined by deg a = N(a) for all a ∈ G.)
Note that it is a consequence of Exercise 31 that G is a principal ideal domain.
Exercise 32. Show that if a, b ∈ G then N(ab) = N(a)N(b). Deduce that if a is a unit of G then
N(a) = 1. Show that the only elements a ∈ G with N(a) = 1 are ±1 and ±i, and deduce that
these are the only units of G.

Observe that Z is a subdomain of G, and note that it is possible for an integer to be irreducible
in Z yet reducible in G. (For example, 17 has no nontrivial factoization in Z, but in G we have
17 = (4 + i)(4 − i). In what follows, when we talk of a “prime integer” we mean it in the usual
sense: an element of Z with no nontrivial factorization in Z. Our aim (which we will not be able
to achieve until after the development of some more theory) is to identify the irreducible elements
of G; in particular, we wish to find out whether prime integers remain irreducible when considered
as elements of G. Note that (fortunately) if a, b ∈ Z then “a

∣∣ b” has the same meaning whether
interpreted as referring to divisibility in Z or divisibility in G. This is because the rational number
a/b is in G if and only if it is in Z.
Exercise 33. Use Exercise 32 to show that if a ∈ G is such that N(a) is a prime integer, then a is
an irreducible element of G.
Exercise 34. Let a = n + mi ∈ G be irreducible. Show that there exists a prime integer p
such that p

∣∣N(a) and N(a)
∣∣ p2, and deduce that either N(a) = p or N(a) = p2. (Hint: Let

n2 + m2 = p1 p2 · · · pk be the factorization of N(a) ∈ Z as a product of prime integers. Show that
a
∣∣N(a), and deduce that a

∣∣ p j for some j. Use Exercise 32 to deduce that N(a)
∣∣N(p j) = p2

j .)

Exercise 35. Show that if a ∈ G is irreducible and N(a) = p2 for some prime integer p, then a
is an associate of p in G (so that p is irreducible as an element of G). Deduce that p cannot be
expressed in the form n2 + m2 with n, m ∈ Z (Hint: For the first part, observe that a

∣∣N(a) = p2;

49



so a
∣∣ p. Writing p = ab we see that N(b) = 1, and hence b is a unit. For the second part, note that

p = n2 + m2 would lead to the factorization p = (n + mi)(n − mi).)

Exercises 34 and 35 have shown that if a ∈ G is irreducible then either a = n + mi where
n, m ∈ Z are such that n2 + m2 is a prime integer p, or else a = ±p or ±ip for some prime
integer p. Conversely, if p is a prime integer then we may choose an irreducible element a ∈ G
such that a

∣∣ p, and then since N(a)
∣∣ p2 we find that either N(a) = p, so that p is the sum of two

squares, or else N(a) = p2, so that p is irreducible in G and not the sum of two squares.
To complete our study of irreducible elements of G we need to determine which prime integers

can be expressed as the sum of two squares. We defer this for a while.

10. Constructing fields as quotient rings

We remarked above that the ring of integers modulo p is a field whenever p ∈ Z is prime. More
generally, if R is any principal ideal domain and a ∈ R an irreducible element, then the quotient
ring R/aR is a field. We are primarily interested in the case R = Z and the case R = F[x], where F
is a field. But once again we find that there is not much extra work involved in proving the theorems
in significantly greater generality, and, accordingly, we shall do so. Readers should keep those two
special cases uppermost in their minds, and not worry too much about the extra generality.

Definition (10.1): Let R be a ring and I an ideal in R. We say that I is a prime ideal if the
following condition holds: whenever a, b ∈ R satisfy ab ∈ I, either a ∈ I or b ∈ I.

For example (and this is the motivation for the definition), if R is a principal ideal domain and
p ∈ R nonzero, then the ideal pR is prime if and only if the element p is prime.

Exercise 36. Show that if R is a commutative ring then the zero ideal is prime if and only if R has
no zero divisors.

Definition (10.2): Let R be an arbitrary ring. An ideal I of R is said to be maximal if I 6= R and
for all ideals J of R satisfying I ⊆ J, either J = I or J = R.

Exercise 37. Let R be a principal ideal domain and a ∈ R. Use Exercises 16 and 20 to show that
aR is maximal if and only if a is irreducible. Conclude that in a principal ideal domain a nonzero
ideal is prime if and only if it is maximal.

Although we had quite a lot to say about the First Isomorphism Theorem, we have not as yet
mentioned the results known as the Second and Third Isomorphism Theorems. These are in fact
reasonably easy consequences of the First Isomorphism Theorem, and we will leave their proofs as
exercises for the reader. The Second Isomorphism Theorem asserts that if S is a subring of R and I
an ideal in R then the set S + I is a subring of R, and I is an ideal of this subring; furthermore, S∩ I
is an ideal of S, and S+ I/I is isomorphic to S/S∩ I. (It is proved by applying the First Isomorphism
Theorem to the homomorphism S → R/I given by s 7→ s + I.) The Third Isomorphism Theorem
says that if I is an ideal of R then S 7→ S/I provides a one to one correspondence between subrings
of R containing I and subrings of R/I; furthermore, if S is an ideal of R containing I then S/I is an
ideal of R/I, and (R/I)/(S/I) ∼= R/S. (This last part is proved by applying the First Isomorphism
Theorem to a homomorphism R/I → R/S satisfying x + I 7→ x + S for all x ∈ R.)

The following result is in fact a special instance of the Third Isomorphism Theorem, but since
it is directly relevant to our purposes we include a proof.

Proposition (10.3): Let I be a maximal ideal of the ring R. Then the quotient ring R/I has no
ideals other than the zero ideal and the ring R/I itself.
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Proof. Let J ⊆ R/I be a nonzero ideal of R/I. Remembering that elements of R/I are cosets (of
the form r + I, where r ∈ R), it follows that J is a set of cosets. Define J = { r ∈ R | r + I ∈ J }.
Observe that I ⊆ J, for if x ∈ I then x + I = 0 + I is the zero element of R/I, which has to be in J
since ideals always contain the zero element, and so it follows that x ∈ J. Furthermore, if J were
equal to I then all elements of J would have the form x + I for x ∈ I; that is, J would have no
elements other than zero, contrary to our assumption.

We prove that J is an ideal of R. Firstly, it is nonempty since I ⊆ J and I is nonempty. Now
let x, y ∈ J and r ∈ R be arbitrary. Then x + I, y + I ∈ cal J and r + I ∈ R/I, and since J is an
ideal it follows from the closure properties listed in Theorem (7.3) that (x + I) + (y + I), −(x + I),
(r + I)(x + I) and (x + I)(r + I) must all be elements of J . That is, by the definitions of addition
and multiplication in R/I, the elements (x + y) + I, (−x) + I, rx + I and xr + I are all in J . So
x + y, −x, rx and xr are all in J. This establishes that J has all the required closure properties, and
so J is an ideal of R (by Theorem (7.3)).

So J is an ideal of R containing I and not equal to I. Since I was assumed to be maximal, it
follows that J = R, and hence J = R/I. Since our original assumption was merely that J is a
nonzero ideal in R/I, the conclusion must be that R/I has no ideals other than R/I itself and zero,
as required. �

Suppose in particular that R is a commutative ring and I a maximal ideal of R. Then Proposi-
tion (10.3) shows combined with Exercise 15 shows that R/I is a commutative ring with no ideals
other than itself and zero. Exercise 12 then shows that R/I is a field.

Combining some of the things we have noted above yields the following theorem, which plays
an important role in this course.

Theorem (10.4): Let R be a principal ideal domain and p ∈ R an irreducible element. Then
R/pR is a field.

Proof. Since p is irreducible it is prime (Theorem (9.18)), and so the ideal pR is prime (exercise!)
and therefore maximal (Exercise 37). So R/pR is a field (by the discussion above). �

In particular, Theorem (10.4) applies to the ring Z, and tells us that Zp is a field if p is prime.
We have already seen in Exercise 14 that if n is not prime then Zn has zero divisors—for example,
2× 3 = 0 in Z6—and so is not even an integral domain, let alone a field.

Because our proof of Theorem (10.4) made rather heavy use of previous results, we shall
give another, more direct, proof. Consider Zn first. It is certainly a commutative ring (since Z is
commutative) and has a 1 (since Z has a 1). To show that Zn is a field if n is prime, it remains to
show that, in this case, every nonzero element has an inverse. Every element of Zn has the form
r for some r ∈ Z, and r = 0 (the zero of Zn) if and only if n

∣∣ r. So assume that n/
∣∣r, and let

d = gcd(n, r). Then d
∣∣ n, and since n is prime either d = n or d = 1. But d

∣∣ r and n/
∣∣r; so d 6= n.

Hence d = 1. By one of the basic properties of gcd’s (Theorem (9.17) (iii)), there exist integers s
and t such that ns + rt = gcd(n, r) = 1. But this gives that rt ≡ 1 (mod n), and so r t = 1. That is,
t is an inverse for r.

The proof we just gave for Z applies unchanged for any principal ideal domain R. If n ∈ R is
irreducible then R/nR is certainly a commutative ring with 1 (since R is), and so to show that it is a
field it suffices to show that all nonzero elements of R/nR have inverses. Every such element has the
form r + nR for some r ∈ R such that n/

∣∣r. The gcd of n and r cannot be an associate of n since n/
∣∣r;

so since this gcd must be a divisor of n, which is irreducible, it follows that gcd(n, r) = 1 (or any
unit). Hence there exist s, t ∈ R with ns+rt = 1, and this gives (r+nR)(t+nR) = rt+nR = 1+nR
(since rt ≡ 1 (mod nR)). So t + nR is an inverse for r + nR.
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Theorem (10.4) is also applicable when R = F[x] for some field F, and it is this application
which is of most theoretical importance in this course. The theorem tells us that if p(x) ∈ F[x] is
irreducible, then the the quotient ring F[x]/p(x)F[x] is a field. In order to be able to apply this
result we need to have some understanding of irreducible polynomials, and so a large part of this
section will be devoted to an investigation of these. First of all, let us look at an example in which
the field F is the two-element field Z2.

Recall that the elements of Z2 are the modulo 2 congruence classes of Z. There are just two of
these: the set of all even integers and the set of all odd integers. For brevity we denote these two
sets by 0 and 1. Addition and multiplication of these elements is defined by the following rules:

0 + 0 = 0,
0 + 1 = 1,
1 + 0 = 1,
1 + 1 = 0,

0× 0 = 0,
0× 1 = 1,
1× 0 = 1,
1× 1 = 0.

(13)

(These become natural if you interpret “1 + 1 = 0” as “odd + odd = even”, and so on.) Note that
every field has to have at least a 0 and a 1. The field Z2 has no other elements.

We are going to be dealing with the polynomial ring Z2[x]. Let us list all of the elements of
Z2[x] that have degree at most 3.

degree −∞ : 0
degree 0 : 1
degree 1 : x, x + 1
degree 2 : x2, x2 + 1, x2 + x, x2 + x + 1
degree 3 : x3, x3 + 1, x3 + x, x3 + x + 1,

x3 + x2, x3 + x2 + 1, x3 + x2 + x, x3 + x2 + x + 1.

(Remember that the coefficients can only be 0 or 1. It is easily seen that there are 16 polynomials
of degree 4 in Z2[x], 32 of degree 5, and so on.)

Remember that the degree of the product of two polynomials is the sum of the degrees of
the factors (Proposition (6.2)). Consequently if a polynomial a(x) can be factorized, the degrees
of the factors must be less than or equal to the degree of a(x). Since polynomials of degree zero
are units (and in Z2[x] there is only one of these, namely 1), a factorization which is not of the
form (unit)× (associate of a(x)) must have both factors of degree less than deg a(x). This is clearly
impossible idf deg a(x) = 1, since 1 cannot be expressed as a sum of quantities that are nonpositive.
So polynomials of degree 1 are always irreducible (given that the coefficient ring F is a field).
A polynomial of degree 2 is irreducible if it cannot be expressed as a product of two factors of
degree 1. For Z2[x] the possible products of two factors of degree 1 are xx = x2, x(x + 1) = x2 + x
and (x+1)2 = x2 +2x+1 = x2 +1 (since 2 = 0 in Z2). The one remaining polynomial of degree 2,
x2 + x + 1, must therefore be irreducible. The polynomials of degree 3 that factorize nontrivially
must either have three irreducible factors of degree 1, or one irreducible factor of degree 1 and
one of degree 2. The possibilities are xxx = x3, xx(x + 1) = x3 + x2, x(x + 1)2 = x3 + x,
(x + 1)3 = x3 + x2 + x + 1, x(x2 + x + 1) = x3 + x2 + x and (x + 1)(x2 + x + 1) = x3 + 1. The
remaining two, x3 + x + 1 and x3 + x2 + 1, must be irreducible.

It follows from the above that if R = Z2[x] and K is the principal ideal (x3 + x + 1)Z2[x]
of R, then R/K is a field. The elements of this field are the cosets of K in R. Every coset has
the form f (x) + K for some polynomial f (x) ∈ Z2[x], and f (x) + K = g(x) + K if and only if
f (x) ≡ g(x) (mod K). By the division property for polynomials over a field, for each f (x) ∈ Z2[x]
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we can find q(x), r(x) ∈ Z2[x] such that f (x) = (x3 + x + 1)q(x) + r(x), and deg r(x) < 3. Note
that f (x) − r(x) ∈ K (since (x3 + x + 1)q(x) ∈ (x3 + x + 1)Z2[x]). So every coset contains a
representative of degree less than 3. Furthermore, if r1(x) + K = r2(x) + K with r1(x) and r2(x)
both of degree less than 3, then r1(x)− r2(x) is a polynomial of degree less than 3 which is divisible
by x3 + x + 1. This forces r1(x)− r2(x) = 0 (since deg(x3 + x + 1)a(x) = 3 + deg a(x) ≥ 3 unless
a(x) = 0). So in fact each coset of K in R contains a unique representative of degree less than 3.

We have seen that there are exactly 8 elements of degree less than 3 in R; so there are precisely
8 cosets:

K, 1 + K, x + K, x + 1 + K,
x2 + K, x2 + 1 + K, x2 + x + K, x2 + x + 1 + K.

Every element of R must lie in one of these cosets. For example, we find that x4 ∈ x2 + x + K, since
x4 − (x2 + x) = (x3 + x + 1)x ∈ K. (Note that − equals + in rings of characteristic 2, since 2 = 0.)
So R/K is a field that has exactly 8 elements.

The zero and identity elements of R/K are 0 + K = K and 1 + K respectively. Let us follow our
usual notational conventions for zero and identity elements, and denote 0 + K and 1 + K simply by
0 and 1. This will not cause any inconsistencies, since the formulas in Eq.(13) above remain true
in R/K. Let us also denote x + K by α. We can easily express all 8 elements in terms of α:

0, 1, α, α + 1,
α2, α2 + 1, α2 +α, α2 +α + 1.

Furthermore, α3 +α+ 1 = (x3 + x + 1) + K = 0 + K since x3 + x + 1 ∈ K, and so the element α of
R/I satisfies α3 +α+ 1 = 0. So we can think of α as a root of the polynomial x3 + x + 1. In some
sense, the field R/I is constructed from the field Z2 by “adjoining” to Z2 = {0, 1} the new element
α, which is assumed to be a root of x3 + x + 1. Of course adjoining α forces one to admit further
things, like α2 and α + 1, but the relation α3 +α + 1 = 0 limits the number of different elements
obtained to the 8 listed above.

The construction we have been through is totally analogous to the construction which creates
the complex field from the real field. The polynomial x2 + 1 ∈ R[x] is irreducible. We adjoin to
R a new element i, which is assumed to be a root of x2 + 1, and this automatically means that we
must also admit elements of the form x + yi for all x, y ∈ R. Since i2 = −1 no further elements
are required, and we have obtained a new ring, C, which contains the original ring R as a subring,
as well as containing a root of the polynomial x2 + 1.

Before continuing with the general theory, let us look at another example over Z2, doing things
a little less formally this time. Let us adjoin to Z2 a new element β, which we want to be a root
of the polynomial x3 + x2 + 1. What extra elements must we have? Besides 0, 1 and β, we will
need β + 1, β2, β2 + 1, β2 + β and β2 + β + 1. Using the fact that 1 + 1 = 0 here, it is easily
checked that this set of 8 elements is closed under addition. It is also closed under multiplication,
since the equation β3 + β2 + 1 = 0 permits β3 and higher powers of β to be expressed in terms of
1, β and β2. (For example, β3 = β2 + 1, and hence β4 = β3 + β = β2 + β + 1.) It is not totally
clear from this informal approach that the 8 element system so constructed is actually a ring. The
formal quotient ring approach that we used before provides the best method of proving that you
do get a ring.

Although in all the examples above we started with an irreducible polynomial, we did not
really have make this assumption. Indeed, if one starts with a polynomial which is not irreducible
and goes through the same construction, then everything works in just the same manner, and a
new ring is constructed which has the original field as a subring. This new ring will not be a field,
however. Irreducibility of the original polynomial is required if one wants to construct a field, but
not required otherwise.
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Theorem (10.5): Let F be a field and p(x) ∈ F[x] an element of degree d ≥ 1. Let K = p(x)F[x],
the principal ideal generated by p(x), and let E = F[x]/K. Then
(i) every element of E is uniquely expressible in form (a0 + a1x + · · · + ad−1xd−1) + K for some

elements a0, a1, . . . , ad−1 ∈ F,
(ii) the mapping η: a 7→ a + K is an embedding of F into E, and

(iii) if we write α = x + K, and use the embedding η to identify F with a subring of E, then each
element of E is uniquely expressible in the form a0 + a1α + · · · + ad−1α

d−1 with the ai ∈ F, and
α is a root in E of the polynomial p(x) ∈ F[x].

Proof. By the uniqueness part of Lemma (9.2), for each f (x) ∈ F[x] there is a unique r(x) ∈ F[x]
such that p(x)

∣∣ ( f (x) − r(x)) and deg r(x) < deg p(x). Hence f (x) + K is uniquely expressible in
the form r(x) + K with deg r(x) < d, which proves Part (i).

By the definitions of addition and multiplication in F[x]/K, we have, for all r, s ∈ F,

(ηr)(ηs) = (r + K)(s + K) = rs + K = η(rs)
ηr + ηs = (r + K) + (s + K) = (r + s) + K = η(r + s),

showing that η is a homomorphism. So to check that η is an embedding it will suffice to show
that ker η = {0} (by Proposition (5.14)). Recall that the zero element of F[x]/K is the coset
containing 0, namely K itself. So if r ∈ ker η then r + K = K, and so r ∈ K. Note that here r,
which commenced life as an element of F, is being regarded as a scalar polynomial. To say that
r ∈ K = p(x)F[x] is to say that p(x)

∣∣ r in F[x]. But since the degree of p(x) is at least 1, while
deg r ≤ 0, this forces r = 0. So 0 is the only element of ker η, and hence η is an embedding. So
Part (ii) is proved.

Using the embedding η to identify F with a subring of E amounts to writing r for the coset
r + K whenever r ∈ F. Of course, when one does this one needs to be away that one is doing it,
and that r as an element of F[x]/K is not exactly the same thing as r as an element of F or as an
element of F[x] (although exceedingly similar). Anyway, with this notation, and writing x+K = α,
we see that

a0 + a1α + · · ·+ ad−1α
d−1 = (a0 + K) + (a1 + K)(x + K) + · · ·+ (ad−1 + K)(x + K)d−1

= (a0 + a1x + · · ·+ ad−1xd−1) + K,

and by Part (i) each element of F[x]/K is uniquely expressible in this form. Furthermore, if
p(x) = p0 + p1x + · · ·+ pdxd then the same considerations show that

p(α) = (p0 + K) + (p1 + K)(x + K) + · · ·+ (pd + K)(x + K)d

= (p0 + p1x + · · ·+ pdxd) + K
= p(x) + K
= 0

since p(x) ∈ K (and therefore p(x) + K = K, which is the zero of F[x]/K). �

Restating Theorem (10.5) a little gives the following corollary.

Corollary (10.6): Let F be a field and p(x) ∈ F[x] with deg p(x) ≥ 1. Then there exists a ring
E which contains F as a subring and contains an element α such that p(α) = 0. Moreover, every
element of E is uniquely expressible in the form f (α) with f (x) ∈ F[x] of degree less than d. If p(x) is
irreducible in F[x] then E is a field.
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Note that when investigating questions of irreducibility or factorization of polynomials, it is
necessary to specify the particular polynomial ring in which the factors are to be sought. For
example, over the real field R the polynomial x2 + 1 is irreducible, but over the complex field C it
factorizes as (x + i)(x− i). Likewise x2 − 2 is irreducible as an element of Q[x], but as an element
of R[x] it factorizes as (x −

√
2)(x +

√
2). For a third example, let F be the field with 8 elements

that we discussed previously, formed by adjoining to Z2 an element α satisfying α3 +α+ 1 = 0. As
an element of Z2[x] the polynomial x3 + x + 1 is irreducible, but it has a root in F, and hence has a
nontrivial factorization in F[x]. Indeed, it turns out that x3+x+1 = (x+α)(x+α2)(x+α2+α). The
reader should check this by expanding the right hand side and usingα3 +α+ 1 = 0 to simplify the
expression. (And do not forget that 1+1 = 0, since we are working over a field of characteristic 2.)

The Euclidean algorithm provides a means of calculating inverses of elements of quotient rings
F[x]/p(x)F[x], as illustrated in the following example. Let p(x) = x3 + x2 + 1 ∈ Z2[x], and for
brevity write K for the ideal generated by p(x). Consider the element (x2+x+1)+K ∈ Z2[x]/K. Its
inverse will have the form f (x) + K, where f (x) ∈ Z2[x] is such that (x2 + x + 1) f (x) + K = 1 + K.
So we need to find an element f (x) such that (x2 + x + 1) f (x) − 1 ∈ K = p(x)F[x]; that is,
(x2 + x + 1) f (x)−1 = (x3 + x2 + 1)g(x) for some g(x) ∈ Z2[x]. Applying the Euclidean algorithm
to x3 + x2 + 1 and x2 + x + 1 gives the following steps:

x3 + x2 + 1 = (x2 + x + 1)x + x + 1 (14)

x2 + x + 1 = (x + 1)x + 1 (15)

x + 1 = 1(x + 1) + 0.

The last nonzero remainder is 1, which shows that gcd(x3 + x2 + 1, x2 + 1) = 1. Of course we
knew that the gcd would be 1, since x3 + x2 + 1 is irreducible, and hence has no divisors of degree
1 or 2. What is more relevant here is that combining Eq’s (14) and (15) gives

1 = (x2 + x + 1)− x(x + 1)

= (x2 + x + 1)− x((x3 + x2 + 1)− x(x2 + x + 1))

= (x2 + 1)(x2 + x + 1)− x(x3 + x2 + 1),

so that f (x) = x2 + 1 and g(x) = x is a solution to (x2 + x + 1) f (x) − 1 = (x3 + x2 + 1)g(x). So
x2 + 1 + K is the inverse of x2 + x + 1 + K in Z2[x]/K.

Another way to see that F[x]/p(x)F[x] is a field if p(x) is irreducible—analogous to an argu-
ment we gave for Zp—is as follows. It is clear that F[x]/p(x)F[x] is a commutative ring with 1,
since F[x] is. But if a(x) + p(x)F[x] is a nonzero element of F[x]/p(x)F[x] then p(x)/

∣∣a(x), and
since p(x) is irreducible this forces gcd(p(x), a(x)) to be 1. Then an inverse can be found for a(x)
as in the above example.

For another example, consider the ring Q[x] (polynomials over the rational field Q), and let
K be the ideal generated by x3 − 2. According to Theorem (10.5), every element of Q[x]/K is
uniquely expressible in the form (a + bx + cx2) + K with a, b, c ∈ Q. Furthermore, using the
viewpoint of Corollary (10.6), the ring Q[x]/K can be thought of as the result of adjoining to Q an
element α which is a root of the polynomial x3 − 2.

Note that we already knew of a field containing Q as a subfield and containing also a root
of x3 − 2: the real field R has these properties. Moreover, there is an evaluation homomorphism
θ = eval 3√2

: Q[x] → R given by θ( f (x)) = f ( 3
√

2) for all f (x) ∈ Q[x]. Now for an arbitrary
f (x) ∈ Q[x], dividing by x3 − 2 gives

f (x) = (x3 − 2)q(x) + a0 + a1x + a2x2
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for some q(x) ∈ Q[x] and a0, a1, a2 ∈ Q. Thus

θ( f (x)) = f ( 3
√

2) = a0 + a1
3
√

2 + a2( 3
√

2)2,

and it follows that the image of θ is the set of all real numbers of the form a0 + a1
3
√

2 + a2( 3
√

2)2

with a0, a1, a2 ∈ Q. We define

Q[ 3
√

2] = imθ = { a0 + a1
3
√

2 + a2( 3
√

2)2 | a0, a1, a2 ∈ Q }.

Let us show that x3−2 is irreducible in Q[x]. Suppose, for a contradiction, that it is not. Then
it must have a factorization in Q[x] as a product of a polynomial of degree 1 and a polynomial of
degree 2:

x3 − 2 = (ax − b)(cx2 + dx + e) (16)

for some a, b, c, d, e ∈ Q. By first year calculus we know that x3 − 2 has one real root and two
non-real complex roots (the real root being 3

√
2), yet Eq.(16) shows that the rational number b/a is

a root of x3 − 2. So 3
√

2 = b/a is rational, contradicting Exercise 26.
Using the irreducibility in Q[x] of x3−2 we can show that the kernel of θ is K = (x3−2)Q[x].

The kernel of θ is certainly an ideal in Q[x], and so it must have the form p(x)Q[x] for some
p(x) ∈ Q[x] (since Q[x] is a principal ideal domain). But x3 − 2 is certainly in the kernel of θ
(since evaluating x3 − 2 at x = 3

√
2 gives 0). So p(x)

∣∣ x3 − 2, and since p(x) cannot be a unit
(since p( 3

√
2) = 0) the irreducibility of x3 − 2 forces p(x) to be an associate of x3 − 2, so that

(x3 − 2)Q[x] = p(x)Q[x] = kerθ, as claimed.
By the First Isomorphism Theorem we deduce that there is an isomorphism Q[x]/K → Q[ 3

√
2]

satisfying f (x) + K 7→ f ( 3
√

2) for all f (x) ∈ Q[x], and in particular

(a0 + a1x + a2x2) + K 7→ a0 + a1
3
√

2 + a2( 3
√

2)2

for all a0, a1, a2 ∈ Q. This is very much in agreement with our previous analysis of Q[x]/K,
according to which (a0 + a1x + a2x2) + K could be thought of as a0 + a1α+ a2α2 where α is a root
of x3 − 2.

Note also that the irreducibility of x3 − 2 over Q[x] guarantees that Q[x]/K is a field, and
therefore that Q[ 3

√
2] is a field.

The ideas that arose in the above example can be employed in a wider context. To facilitate
the discussion of this we need a few definitions.

Definition (10.7): A field E is called an extension of a field F if F is a subfield of E.

More generally we could call E an extension of F whenever we have an embedding of F into E,
although we shall only do so if we intend to use the embedding to identify F with a subfield of E.
Note that by Exercise 11 we know that a nonzero homomorphism from one field to another is
necessarily an embedding.

Definition (10.8): Let E be an extension field of F and let t ∈ E. Define

F[t] = { a0 + a1t + · · ·+ adtd | 0 ≤ d ∈ Z and a0, a1, . . . , ad ∈ F }.

We call F[t] the subring of E generated by F and t.

Observe that F[t] = { f (t) | f (x) ∈ F[x] }, and thus is the image of the evaluation homomor-
phism evalt: F[x] → E.

56



Definition (10.9): Let E be an extension field of F and let t ∈ E. We say that t is algebraic over
F if there is a nonzero polynomial f (x) ∈ F[x] such that f (t) = 0. If t is not algebraic over F it is
said to be transcendental over F.

It is clear that t is algebraic over F if and only if the kernel of the evaluation homomorphism
evalt: F[x] → E is nonzero.

Definition (10.10): Let E be an extension field of F and let t ∈ E be algebraic over F. The
minimal polynomial of t over F is the polynomial p(x) ∈ F[x] which is monic, satisfies p(t) = 0,
and has minimal degree among all such polynomials.

Recall that to say that p(x) is monic is to say that its leading coefficient is 1 (which of course
implies that p(x) is nonzero). Note that, by the Least Integer Principle, if t is algebraic over F there
must exist a minimal degree nonzero polynomial p(x) with p(t) = 0; moreover, such a polynomial
will have a monic associate, which will then satisfy the requirements of Definition (10.10). More-
over, the minimal polynomial must be unique, since if p1(x) and p2(x) both satisfy the requirements
then f (x) = p1(x) − p2(x) has smaller degree (since the leading terms cancel) and also satisfies
f (t) = 0, and this forces f (x) = 0 since p1(x) and p2(x) have minimal degree among the nonzero
polynomials of which t is a root.

The next result is a crucial, yet almost trivial, property of minimal polynomials.

Theorem (10.11): Let E, F be fields such that E is an extension of F, and let t ∈ E be algebraic
over F. Then the minimal polynomial of t over F is irreducible.

Proof. Suppose to the contrary, and let p(x) be the minimal polynomial. Then there is a nontrivial
factorization p(x) = r(x)s(x), where r(x), s(x) ∈ F[x] have degree strictly less than deg p(x).
Evaluating at t gives 0 = p(t) = r(t)s(t), and hence either r(t) = 0 or s(t) = 0, since a field has no
zero divisors. But this contradicts the minimality of p(x). �

The minimal polynomial of an element t can alternatively be characterized as the monic gen-
erator of the ideal ker evalt.

Proposition (10.12): Let E be an extension field of F and let t ∈ E be algebraic over F. Then the set
I = { f (x) ∈ F[x] | f (t) = 0 } is an ideal of F[x], and if p(x) is the minimal polynomial of t over F
then I = p(x)F[x]. Furthermore, every generator of I is an associate of p(x).

Proof. Since I is the kernel of the evaluation homomorphism evalt, it is an ideal. However, we
saw in Theorem (9.4) that the generators of a nonzero ideal in F[x] are precisely the nonzero
polynomials of minimal degree that it contains, and since p(x) has minimal degree among the
nonzero elements of I the result follows. �

We should also note the following simple results, whose proofs we leave as exercises.

Proposition (10.13): Let R be a principal ideal domain and I an ideal in R. If I contains an
irreducible element p then either I = R or I = pR.

Proposition (10.14): Let E be an extension field of F and let t ∈ E be algebraic over F. If
p(x) ∈ F[x] is irreducible and satisfies p(t) = 0 then p(x) is an associate of the minimal polyno-
mial of t (and hence if it is monic it is the minimal polynomial of t).

Since in the course of the above discussion we have identified the kernel and the image of the
evaluation homomorphism evalt: F[x] → E, we would be negligent not to note what information
the First Isomorphism Theorem yields.

Theorem (10.15): Let E be an extension field of F and let t ∈ E.
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(i) If t is transcendental over F then evalt: F[x] → E is an embedding which maps F[x] isomorphi-
cally onto F[t]. In this case F[t] is not a field.

(ii) If t is algebraic over F then F[t] is a subfield of E isomorphic to the quotient ring F[x]/I, where
I = { f (x) ∈ F[x] | f (t) = 0 }. Furthermore, there is an isomorphism F[t] → F[x]/I satisfying
f (t) 7→ f (x) + I for all f (x) ∈ F[x].

Proof. The set I defined in Part (ii) is the kernel of evalt, and hence it is an ideal. If t is transcen-
dental then by definition I = {0}, and so evalt is an embedding (by Proposition (5.14)). So in this
case f (x) 7→ f (t) is an isomorphism F[x] → F[t], and since F[x] is not a field—nonzero elements
of F[x] of degree greater than 1, such as x, do not have inverses in F[x]—it follows that F[t] is not
a field either.

Turning to the case of an algebraic element t, the kernel I of evalt is generated by the min-
imal polynomial p(x) of t, which is irreducible by Theorem (10.11). So by Theorem (10.4)
F[x]/I = F[x]/p(x)F[x] is a field. The First Isomorphism Theorem tells us that there is an isomor-
phism F[x]/I → F[t] satisfying f (x)+ I 7→ f (t) for all f (x) ∈ F[x] (and the inverse of this is given
by f (t) 7→ f (x) + I). Since F[x]/I is a field it follows that F[t] is a field. �

Exercise 38. Let E be an extension field of F and let t ∈ E. Define the subfield of E generated by
F and t to be

F(t) = { f (t)g(t)−1 | f (x), g(x) ∈ F[x] and g(t) 6= 0 }.

Show that F(t) is a subfield of E, and show further that F(t) = F[t] if t is algebraic over F.

Exercise 39. With E, F and tas in Exercise 38, assume that t is transcendental over F. Use Theo-
rem (6.8) to show that F(t) is isomorphic to the field of fractions of F[x].

As a comment on the above exercise we mention that the field of fractions of F[x] is called
the field of rational functions over F in the indeterminate x, and denoted by F(x). Its elements are
objects of the form f (x)/g(x) where f (x), g(x) ∈ F[x] and g(x) 6= 0. Note that, despite the name,
elements of F(x) are not functions. They are formal expressions

a0 + a1x + · · ·+ anxn

b0 + b1x + · · ·+ bmxm

where the coefficients ai , b j are elements of F (and the b j are not all zero), two such expressions
f1(x)/g1(x) and f2(x)/g2(x) being identified if f1(x)g2(x) = f2(x)g1(x) in F[x]. Addition and
multiplication of these formal expressions is governed by the rules described in our discussion of
fields of fractions. Nor is it even the case that a rational function f (x)/g(x) determines a (genuine)
function F → F by t 7→ f (t)/g(t) for all t ∈ F, unless it happens to be the case that g(x) has no
roots in F.

While on these matters we should also point out that polynomials themselves are also not
functions. In fact we defined polynomials to be formal power series that have only finitely many
nonzero coefficients. Effectively, this means that a polynomial is a formal expression

a0 + a1x + · · · anxn,

addition and multiplication being given by the rules we have previously stated. It is true that each
polynomial f (x) ∈ R[x] defines a polynomial function R → R by the rule t 7→ f (t) for all t ∈ R
(although the same is not true for general power series since infinite sums in R are not defined).
Note, however, that it is quite possible for two different polynomial f (x), g(x) ∈ R[x] to give rise
to the same polynomial function R → R. The polynomials f (x) and g(x) are equal if and only if
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they have the same coefficients, but the polynomial functions they determine are equal if and only
if f (t) = g(t) for all t ∈ R, and this is a weaker condition.

Exercise 40. Give an example of two distinct polynomials over the field Z2 which determine the
same polynomial function Z2 → Z2.

Suppose that R is a ring with 1 and F a subring of R which contains the 1. Suppose also that
F is a field. (These assumptions apply, in particular, whenever R is an extension field of F.) Then
R may be regarded as a vector space over F: addition of “vectors” (elements of R) is given by
the addition operation of R, and scalar multiplication is given by the multiplication operation of R
(since both the “vectors”—elements of R—and the “scalars”—elements of F—can be regarded as
elements of R). It is routine to check that the vector space axioms are satisfied, following easily
from the ring axioms for R. It is a familiar fact, for example, that the complex field C can be
regarded as a two-dimensional vector space over R.

Let F be a field and p(x) ∈ F[x]. By Corollary (10.6) we know that the quotient ring
R = F[x]/p(x)F[x] can be regarded as the result of adjoining to F an element α which is a
root of p(x). Moreover, if deg p(x) = d then each element of R is uniquely expressible in the form
a0 + a1α + a2α

2 + · · · + ad−1α
d−1, with a0, a1, . . . , ad−1 in F. In the terminology of vector space

theory, regarding the elements of F as the scalars, this says that each element of R is uniquely
expressible as a linear combination of the elements 1, α, α2, . . . , αd−1. In other words, these ele-
ments form a basis of R considered as a vector space over F. In particular, R is finite dimensional
as a vector space over F, and the dimension is d.

Proposition (10.16): Let F be a field and p(x) ∈ F[x] a nonzero polynomial. As well as being a
ring, F[x]/p(x)F[x] is a vector space over F of dimension d = deg p(x).

Definition (10.17): Let F be a field and E an extension of F. The dimension of E considered as a
vector space over F is called the degree of the extension, denoted by [E : F].

If E is an extension of F and t ∈ E is algebraic over F, then Theorem (10.15) tells us that
F[t] is a field isomorphic to F[x]/p(x)F[x], where p(x) is the minimal polynomial of t over F, and
Proposition (10.18): then tells us that the degree [F[t] : F] equals d = deg px(x).

Proposition (10.19): Let E be an extension of F and t ∈ E algebraic over F. Then F[t] is an
extension field of F, and the degree [F[t] : F] of this extension equals the degree of the minimal
polynomial of t over F.

Note that the degree of a field extension could well be infinite: it is possible that there is no
finite set t1, t2, . . . , tn of elements of E with the property that every element of E can be obtained
as an F-linear combination of the ti. This is the case, for example, for R considered as an extension
of Q. In the important special case that E does have a finite F-basis, so that the degree [E : F]
is finite, we say that E is a finite extension of F. It is an important fact that finite extensions are
necessarily algebraic extensions (meaning that every element of the extension field E is algebraic
over the subfield F).

Theorem (10.20): Let E be an extension field of F and suppose that [E : F] is finite. Then every
element of E is algebraic over F.

Proof. Let d = [E : F] < ∞. Since d is the dimension of E as a vector space over F it follows
from a standard result in vector space theory that any sequence of d + 1 or more elements of E
has to be linearly dependent over F. So for every t ∈ E the elements 1, t, t2, . . . , td are linearly
dependent over F. This means that there are a0, a1, a2, . . . , ad ∈ F, which are not all zero, sat-
isfying a0 + a1t + a2t2 + · · · + adtd = 0. This means that t is a root of the nonzero polynomial
a0 + a1x + a2x2 + · · ·+ adxd ∈ F[x]. So by the definition, t is algebraic over F. �
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A fact which is crucial for our theoretical applications is the following multiplicative property
for degrees of extensions of extensions.

Theorem (10.21): Let F, E and L be fields, with E an extension of F and L an extension of E. Then
L is an extension of F, and [L : F] = [L : E][E : F].

Proof. Let n = [E : F] and m = [L : E]. If n is finite we may choose e1, e2, . . . , en ∈ E which form
a basis for E as a vector space over F. To say that n is infinite means that it is possible to choose
an infinite sequence e1, e2, e3, . . . of elements of E that are linearly independent over F. Similarly,
we may choose l1, l2, . . . , lm ∈ L which form a basis of L as a vector space over E, or an infinite
sequence of linearly independent elements if m is infinite. We show first that the collection of all
elements eil j (as i ranges from 1 to n and j ranges from 1 to m) is linearly independent.

Suppose that some F-linear combination of these elements is zero. That is, suppose that
∑

m
j=1 ∑

n
i=1 λi jeil j = 0 for some coefficients λi j ∈ F. (Note that in the case that either m or n is

infinite, there are ostensibly infinitely many terms here, but since genuinely infinite sums are not
allowed in this context it is assumed that only finitely many of the coefficients λi j are nonzero. We
could avoid using these ostensibly infinite sums by instead considering a finite, though arbitrar-
ily large, subset BE of {e1, e2, . . .}, and a finite, though arbitrarily large, subset BL of {l1, l2, . . .}.
Our proof will show that the collection of all products el, for e ∈ BE and l ∈ BL, is linearly inde-
pendent over F, thus establishing the existence of arbitrarily large subsets of L which are linearly
independent over F.) Returning to the proof, we have

( n

∑
i=1
λi1ei

)
l1 +

( n

∑
i=1
λi2ei

)
l2 + · · ·+

( n

∑
i=1
λimei

)
lm = 0,

and since the coefficients ∑
n
i=1 λi jei are elements of E (since the λi j are in F ⊆ E and the ei are in

E), the linear independence over E of l1, l2, . . . , lm shows that all the coefficients are zero. That is,

λ1 je1 + λ2 je2 + · · ·+ λn jen = 0

for all j. But here the coefficients λi j are in F, and since e1, e2, . . . , en are linearly independent
over F, it follows that all the coefficients λi j are 0. So having started from the assumption that
∑i, j λi jeil j = 0 we have proved that all the coefficients λi j have to be 0, which proves the linear
independence over F of the eil j.

It remains to prove that the eil j span L as a vector space over F. Let a ∈ L be arbitrary. Since
the l j span L over E there exist b1, b2, . . . , bm ∈ E such that

a = b1l1 + b2l2 + · · ·+ bmlm. (17)

But since e1, e2, . . . , en span E over F, each b j can be expressed as an F-linear combination of the ei;
that is,

b j = λ1 je1 + λ2 je2 + · · ·+ λn jen, (18)

and substituting Eq.(18) into Eq.(17) gives

a =
( n

∑
i=1
λi1ei

)
l1 +

( n

∑
i=1
λi2ei

)
l2 + · · ·+

( n

∑
i=1
λimei

)
lm = 0,

showing that the arbitrarily chosen element a of L can be expressed as an F-linear combination of
the eil j.
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Since the mn elements eil j are both linearly independent and span L over F, they constitute an
F-basis for L. So [L : F] = mn = [L : E][E : F], as required. �

Suppose that K is an extension field of F, and s, t ∈ K are algebraic over F. Put E = F[s],
and note that [E : F] is finite (by Proposition (10.19)). Since t is algebraic over F there is a
nonzero polynomial f (x) ∈ F[x] such that f (t) = 0. Since F is a subfield of E, polynomials over
F can also be regarded as polynomials over E, and in particular we can regard f (x) as an element
of E[x]. So t is a root of a is a nonzero polynomial in E[x], which shows that t is algebraic over E.
If we now put L = E[t] then we have that [L : E] is finite, and hence (by Theorem (10.21))
[L : F] = [L : E][E : F] is finite too. Observe that s ∈ L (since s ∈ E ⊆ L) and t ∈ L, and by the
various closure properties of L (see Theorem (5.9)) we conclude that s + t, s − t, st and (if t 6= 0)
st−1 are all elements of L. So by Theorem (10.20) these elements are all algebraic over F. Thus we
have proved the following theorem.

Theorem (10.22): Let s and t be elements of an extension field of F, and suppose that they are
algebraic over F. Then s + t, s − t, st and (if t 6= 0) st−1 are algebraic over F.

Example

Since 3
√

2 and
√

5 are both algebraic over Q, it follows that 3
√

2 +
√

5 is also algebraic over Q.
Indeed, 3

√
2 is generates an extension E of Q of degree 3, and

√
5 generates an extension of E

of degree 2; so it follows that 3
√

2 and
√

5 are both elements of an extension of Q of degree 6.
So there must be a polynomial in Q[x] of degree less than or equal to 6 that has 3

√
2 +

√
5 as a

root. There are various ways to go about finding such a polynomial. The method suggested by the
proofs given above is as follows. Calculate the powers ( 3

√
2 +

√
5)i for all i from 0 to 6, using the

formulas ( 3
√

2)3 = 2 and (
√

5)2 = 5 to express them all in terms of ( 3
√

2)i(
√

5) j for i ∈ {0, 1, 2}
and j ∈ {0, 1}. Then use linear algebra to find a linear relation between them. Writing t = 3

√
2 and

u =
√

5, a little calculation yields the following matrix equation.

(t + u)0

(t + u)1

(t + u)2

(t + u)3

(t + u)4

(t + u)5

(t + u)6


=



1 0 0 0 0 0
0 1 0 1 0 0
5 0 1 0 2 0
2 15 0 5 0 3

25 2 30 8 20 0
100 125 2 25 10 50
129 150 375 200 150 12




1
t
t2

u
ut
ut2


The aim is now to find a nonzero row vector v with rational entries satisfying the equation vM = 0,
where M is the 7×6 matrix on the right hand side of the above equation. To do this, apply column
operations to M to reduce it to column echelon form (or, if you prefer to use row operations,
transpose M), and then solve the echelon system. This is just standard first year linear algebra,
although somewhat tedious! The result is that

v = (−121,−60, 75,−4,−15, 0, 1)

is a solution. Hence t + u is a root of the polynomial −121− 60x + 75x2 − 4x3 − 15x4 + x6.
An easier method to get the answer is to make an educated guess. The polynomial x3 − 2

has three roots in the complex field, namely t, ωt and ωt, where ω = − 1
2 +

√
3

2 i, a complex
cube root of 1. However, from the point of view of the rational numbers, these three roots are
indistinguishable from each other, in that they have the same minimal polynomial over Q, and the
extension fields they generate (Q[t], Q[ωt] and Q[ωt]) are isomorphic to each other. In the same
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way the two roots of x2 − 5 (namely, ±
√

5) are algebraically equivalent as far as Q is concerned.
So it is reasonable to expect that an element of Q[x] that has t + u as a root will also haveωt + u,
ωt + u, t − u,ωt − u andωt − u as roots. Multiplying it out, we find that

(x − u − t)(x − u −ωt)(x−u −ωt)(x + u − t)(x + u −ωt)(x + u −ωt)

= ((x − u)3 − 2)((x + u)3 − 2)

= (x3 − 3x2u + 15x − 5u − 2)(x3 + 3x2u + 15x + 5u − 2)

= (x3 + 15x − 2)2 − (3x2u + 5u)2

= (x6 + 30x4 − 4x3 + 225x2 − 60x + 4)− (45x4 + 150x2 + 125)

= x6 − 15x4 − 4x3 + 75x2 − 60x − 121

in agreement with the previously found answer.

Eisenstein’s Irreducibility Criterion

This subsection is devoted to proving a useful criterion for irreducibility of elements of Q[x]. As-
sume that F is a field and R a subring of F such that
(i) 1 ∈ R,

(ii) every element of F is expressible in the form ab−1 with a, b ∈ R, and
(iii) R is a principal ideal domain.
Although all our proofs will be phrased in terms of F and R as above, in fact we will only be
interested in the case that R = Z and F = Q. (It is easy to check that items (i), (ii) and (iii) are
then satisfied.) Indeed, for the rest of this subsection the reader is advised to assume that R = Z
and F = Q.

Temporarily, let us adopt the following notation: if f (x), g(x) ∈ F[x] then “ f (x) ∼ g(x)”
means “there exists a nonzero λ ∈ F with f (x) = λg(x)”. In other words, f (x) ∼ g(x) if and only
if f (x) and g(x) are associates in F[x].

Note that the fact that R is a subring of F means that R[x] is a subring of F[x]. (This is obvious,
but can also viewed as an application of Exercise 7.)

Lemma (10.23): For every f (x) ∈ F[x] there exists g(x) ∈ R[x] with g(x) ∼ f (x).

Proof. We may write f (x) = (b0c−1
0 )+(b1c−1

1 )x+ · · ·+(bnc−1
n )xn where the bi and ci are elements

of R for all i, and the ci are all nonzero. Then all the coefficients of (c0c1 · · · cn) f (x) lie in R. �

Lemma (10.24): Let f (x), g(x) ∈ R[x], and let p be an irreducible element of R. If all the coeffi-
cients of f (x)g(x) are divisible by p then either all the coefficients of f (x) are divisible by p or all the
coefficients of g(x) are divisible by p.

Proof. Let a 7→ a be the canonical surjective homomorphism from R to R/pR, and also let
a(x) 7→ a(x) be the homomorphism R[x] → (R/pR)[x] to which the homomorphism R → R/pR
gives rise in the manner described in Exercise 7. That is, if

a(x) = a0 + a1x + · · ·+ anxn

then by definition
a(x) = a0 + a1x + · · ·+ anxn.

Now ai = 0 if and only if p
∣∣ ai, and so a(x) is the zero polynomial in (R/pR)[x] if and only if p

∣∣ ai
for all i.
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Suppose that all the coefficients of f (x)g(x) are divisible by p. Then

f (x)g(x) = 0

and therefore
( f (x))(g(x)) = 0.

But R/pR is a field (Theorem (10.4)); so (R/pR)[x] is an integral domain (Theorem (6.3)), and
therefore

f (x) = 0 or g(x) = 0

since (R/pR)[x] can have no zero divisors. But this says that either all the coefficients of f (x) are
divisible by p or else all the coefficients of g(x) are divisible by p, as required. �

Our next lemma is a key step in the proof of Eisenstein’s Criterion, and is interesting in its own
right. It says that if a polynomial with integer coefficients can be factorized nontrivially in Q[x],
then factors can be found which have integer coefficients. You never really need to use fractions
to factorize an integer polynomial. Thus, for example, although x2 + 5x + 6 = ( 1

2 x + 1)(2x + 6),
fractions can be avoided by multiplying the factors by suitable scalars: x2 +5x+6 = (x+2)(x+3).

Lemma (10.25): If f (x) ∈ R[x] and f (x) = g(x)h(x) for some g(x), h(x) ∈ F[x] then there exist
g1(x), h1(x) ∈ R[x], with g1(x) ∼ g(x) and h1(x) ∼ h(x), satisfying f (x) = g1(x)h1(x).

Proof. Choose a, b ∈ R such that ag(x), bh(x) ∈ R[x]. Then (ab) f (x) = (ag(x))(b(h(x)),
which shows that there exists at least one c ∈ R such that c f (x) factorizes as g1(x)h1(x) with
g1(x), h1(x) ∈ R[x], and g1(x) ∼ g(x) and h1(x) ∼ h(x). Now since R is a unique factoriza-
tion domain, every c ∈ R which has this property can be expressed as a product of irreducible
elements: c = p1 p2 · · · pn. Amongst all possible choices for c, choose one for which n is as small
as possible. That is, n is the least nonnegative integer such that there exist irreducible elements
p1, p2, . . . , pn ∈ R with (p1 p2 · · · pn) f (x) = g1(x)h1(x) for some g1(x), h1(x) ∈ R[x] such that
g1(x) ∼ g(x) and h1(x) ∼ h(x).

Suppose that n > 0. Then all the coefficients of (p1 p2 · · · pn) f (x) are divisible by pn, since all
the coefficients of f (x) itself are in R. By Lemma (10.24), either pn divides all the coefficents of
g1(x) or else pn divides all the coefficients of h1(x). In the former case we put g2(x) = p−1

n g1(x)
and h2(x) = h1(x), in the latter case we put g2(x) = g1(x) and h2(x) = p−1

n h1(x). Then
g2(x), h2(x) ∈ R[x],

g2(x)h2(x) = p−1
n (g1(x)h1(x)) = (p1 p2 · · · pn−1) f (x),

and since also g2(x) ∼ g1(x) ∼ g(x) and h2(x) ∼ h1(x) ∼ h(x) this contradicts the minimality
of n. �

Example

We illustrate a useful application of Lemma (10.25): it enables one to find all the rational roots of
an arbitrary integer polynomial.

Let f (x) = 12x4 − 4x3 − 37x2 + 14x + 15 ∈ Z[x]. We shall find all α ∈ Q such that f (α) = 0.
By Theorem (9.3), if f (α) = 0 then f (x) = (x −α)h(x) for some h(x) ∈ Q[x]. By Lemma (10.25)
this yields an integral factorization

f (x) = (qx − p)h1(x) with qx − p, h1(x) ∈ Z[x]
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such that qx − p is a scalar multiple of x − α. That is, α = p/q. Now on multiplying it out and
equating coefficients,

12x4 − 4x3 − 37x2 + 14x + 15 = (qx − p)(ax3 + bx2 + cx + d)

gives 12 = qa and 15 = −pq. So q
∣∣ 12 and p

∣∣ 15. So p is one of ±1, ±3, ±5, ±15 and q is one
of ±1, ±2, ±3, ±4, ±6, ±12. It is now easy to try the possibilities one at a time until the rational
roots are found. (After finding one root the amount of calculation can be reduced by taking out the
corresponding degree 1 factor of f (x) and repeating the process with the lower degree polynomial
that is left.) It turns out that in this example the values of p/q that give roots are 1, 3/2, −5/3
and −1/2.

Since the same process obviously works for any integer polynomial, we can see that the fol-
lowing theorem holds.

Theorem (10.26): If f (x) = a0 + a1x + · · · + adxd ∈ Z[x] then every root of f (x) in Q has the
form ±(p/q) for some p, q ∈ Z such that p

∣∣ a0 and q
∣∣ ad.

Theorem (10.26) is known as the Rational Roots Theorem.
Numbers (real or complex) which are roots of monic polynomials in Z[x] are called algebraic

integers. The Rational Roots Theorem has the following consequence, which, although we will not
make use of it in this course, is nevertheless an important mathematical fact: an algebraic integer
that is rational must be an element of Z.

We now come to Eisenstein’s Criterion.

Theorem (10.27): Let f (x) = a0 + a1x + · · ·+ adxd ∈ R[x], where d ≥ 1, and suppose that there
exists a prime p ∈ R such that
(i) p

∣∣ ai for i = 0, 1, . . . , d − 1,
(ii) p/

∣∣ad, and
(iii) p2/

∣∣a0.
Then f (x) is irreducible as an element of F[x].

Before proving it we give an example to illustrate its application. Consider the polynomial
f (x) = 3x5 + 4x3 + 2x2 − 16x − 10 ∈ Z[x]. Observe that the coefficients other than the leading
coefficient are −10, −16, 2, 4 and 0, which are all divisible by the prime 2. The leading coefficient,
3,is not divisible by 2, and the constant coefficient, −10, is not divisible by 22. So Eisenstein’s
Criterion applies, and tells us that f (x) is irreducible over Q. (In consequence, if K = f (x)Q[x]
then F = Q[x]/K is a field. Moreover, F can be alternatively obtained by adjoining a root of f (x)
to Q.)

Proof of (10.27). Suppose that f (x) is not irreducible. Then it follows that f (x) has a factoriza-
tion f (x) = g(x)h(x) such that g(x), h(x) ∈ F[x] have degrees less than d and greater than 0.
Lemma (10.25) tells us that g(x)and h(x) can be chosen to be in R[x]. Applying the homomor-
phism R[x] → (R/pR)[x] given by a(x) = ∑i aixi 7→ a(x) = ∑i aixi, where a 7→ a is the canonical
surjective homomorphism R → R/pR, we obtain

f (x) = (g(x))(h(x)). (19)

But all the coefficients of f (x) except the leading coefficient are congruent to 0 modulo p; so
f (x) = adxd. Furthermore, R/pR is a field, whence (R/pR)[x] is a unique factorization domain,
and so the only irreducible factors of adxd are scalar multiples of x. Now Eq.(19) and uniqueness
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of factorization in (R/pR)[x] combine to show that the only irreducible factors of g(x) and h(x)
are scalar multiples of x. Hence

g(x) = bxn, h(x) = cxm

for some nonnegative integers n, m and some c, d ∈ R such that c, d are nonzero. Moreover,
n ≤ deg g(x) < d and m ≤ deg h(x) < d, and since also

d = deg f (x) = deg g(x) + deg h(x) = n + m ≤ deg g(x) + deg h(x) = deg f (x) = d,

it follows that n = deg g(x) and m = deg h(x). Hence

g(x) = b0 + b1x + · · ·+ bnxn

h(x) = c0 + c1x + · · ·+ cmxm

for some bi , c j ∈ R such that b0, b1, . . . , bn−1 and c0, c1, . . . , cm−1 are congruent to 0 modulo p,
and bn ≡ b 6≡ 0 and cm ≡ c 6≡ 0 (mod p). Since n, m > 0, in particular p

∣∣ b0 and p
∣∣ c0. Now

a0 + a1x + · · ·+ adxd = f (x) = g(x)h(x) = (b0 + b1x + · · ·+ bnxn)(c0 + c1x + · · ·+ cmxm)

gives, on equating coefficients, that a0 = b0c0. Since p
∣∣ b0 and p

∣∣ c0 this gives p2
∣∣ a0, contrary

to hypothesis (iii) of the theorem. Hence the original assumption that f (x) is reducible must be
false. �

Exercise 41. Use the Rational Roots Theorem to prove that 5
√

2 is irrational. Then use Eisenstein’s
Criterion to show that the minimal polynomial of 5

√
2 over Q is x5 − 2.

Example

Let p be a prime integer. Recall that the binomial coefficients
(p

i

)
are integers and satisfy the

formula

i(i − 1)(i − 2) · · · 3 · 2 · 1
(

p
i

)
= p(p − 1)(p − 2) · · · (p − i + 1).

If 1 ≤ i ≤ p − 1 then the prime p appears as a factor on the right hand side, and so by Corol-
lary (9.19) it must be a divisor of one of the factors on the left hand side. Clearly it is not a
divisor of any of 1, 2, 3, . . . , i (since i < p), and so it follows that p

∣∣ (p
i

)
. We shall use this to-

gether with Eisenstein’s Criterion and a change of variable argument to show that the polynomial
f (x) = xp−1 + xp−2 + · · ·+ x + 1 is irreducible over Q.

Suppose to the contrary that f (x) is reducible. Then f (x) has a factorization f (x) = r(x)s(x)
such that r(x), s(x) ∈ Q[x] both have degree less than the degree of f (x). Define new polynomials
f1(x), r1(x) and s1(x) by replacing x by x + 1 in f (x), r(x) and s(x). That is, put f1(x) = f (x + 1),
r1(x) = r(x + 1) and s1(x) = s(x + 1). It is not hard to see that the degrees of f1(x), r1(x) and
s1(x) are the same as the degrees of f (x), r(x) and s(x) respectively, and since

f1(x) = f (x + 1) = r(x + 1)s(x + 1) = r1(x)s1(x)

it follows that f1(x) is not irreducible. But we shall show that this contradicts Eisenstein’s Criterion.
Observe that f (x) = (xp − 1)/(x − 1). It follows from the binomial theorem that

f1(x) = f (x + 1) =
(x + 1)p − 1
(x + 1)− 1

=

(
∑

p
i=0

(p
i

)
xi
)
− 1

x

= x−1
p

∑
i=1

(
p
i

)
xi =

(
p
1

)
+
(

p
2

)
x +

(
p
3

)
x2 + · · ·+

(
p

p − 1

)
xp−2 + xp−1
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(since
(p

0

)
=
(p

p

)
= 1). The leading coefficient of f1(x) is 1, which is not divisible by p, the constant

coefficient is p, which is divisible by p but not by p2, and all the other coefficients are divisible
by p since they are of the form

(p
i

)
with 2 ≤ i ≤ p − 1. Eisenstein’s Criterion thus tells us f1(x) is

irreducible over Q, and this contradiction shows that our original assumption is false. That is, f (x)
is irreducible.

11. Equation solving and constructible numbers revisited

We saw in Theorem (3.2) that a real number t is constructible if and only if there exists a sequence
of real numbers t0, t1, . . . , tn such that t0 = 0, t1 = 1 and tn = t, and for each i from 2 to n the
number ti is a sum, product, negative, reciprocal or square root of an earlier term or terms in the
sequence. Given such a sequence, define a sequence of subfields of R recursively as follows: put
F0 = Q, and for i > 0 put Fi = Fi−1[ti]. Observe that if ti ∈ Fi−1 then Fi = Fi−1, and this happens in
particular if ti is a sum, product, negative or reciprocal of anearlier term or terms, since fields are
closed under these operations. Deleting repeated terms we thus obtain a sequence of subfields of R

Q = F0 ⊆ F1 ⊆ · · · ⊆ Fm (20)

such that t ∈ Fm, and for each j from 0 to m − 1,

Fj+1 = Fj[
√

a j]

for some positive number a j ∈ Fj whose square root is not in Fj. Note that the condition √a j /∈ Fj

shows that √a j is not a root of any polynomial in Fj[x] of degree 1, and in consequence x2 − a j is
the minimal polynomial of √a j over Fj. So by Proposition (10.19) we conclude that [Fj+1 : Fj] = 2.

These considerations allow us to reformulate our criterion for a number to be constructible.

Theorem (11.1): A number t ∈ R is constructible if and only if there exists a chain of subfields of R
as in Eq.(20) such that t ∈ Fm and [Fj+1 : Fj] = 2 for each j from 0 to m − 1.

Proof. The discussion above showed that if t is constructible then there is a chain of fields of the
required kind. Suppose, conversely, that Q = F0 ⊆ F1 ⊆ · · · ⊆ Fm is a chain of subfields of R with
[Fj+1 : Fj] = 2 for all j from 0 to m − 1. We use induction on m to show that every element of Fm
is constructible.

If m = 0 the result follows from the fact that all rational numbers are constructible (which
holds since starting from 0 and 1 you can get to any rational number by a finite sequence of ad-
ditions, multiplications, subtractions and divisions). Suppose now that m > 0 and that the result
holds for shorter sequences of fields. In particular, then, the inductive hypothesis tell us that all ele-
ments of the field Fm−1 are constructible, and we must show that all elements of Fm = Fm−1[

√am−1]
are constructible. Now by Corollary (10.6) we know that each element of Fm is expressible in the
form a+b√am−1 with a, b and am−1 in Fm−1. Since a, b and am−1 are in Fm−1 they are constructible,
and since a + b√am−1 is obtained from a, b and am−1 numbers by use of operations of addition,
multiplication and square root extraction, it too is constructible, as required. �

Corollary (11.2): Suppose that t ∈ R is constructible. Then t is algebraic over Q and [Q[t] : Q] is
a power of 2.

Proof. By Theorem (11.1) we can find a chain of fields as in Eq.(20) such that each degree
[Fj+1 : Fj] is 2 and t ∈ Fm. By Theorem (10.21) we see that [Fm : Q] = 2m. But since Q ⊆ Fm and
t ∈ Fm we have that Q[t] is a subfield of Fm, and so Theorem (10.21) also yields

2m = [Fm : Q] = [Fm : Q[t]][Q[t] : Q].
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Thus [Q[t] : Q] is a divisor of 2m, and by unique factorization of integers it follows that it is a
power of 2, as required. �

We now have at our disposal a proof of the impossibility of one of the three ruler and compasses
constructions we mentioned in Section 3: the doubling of the cube. If this could be done by
ruler and compasses then 3

√
2 would have to be a constructible number, but since its minimal

polynomial over Q is x3−2 (since this is irreducible over Q by Eisenstein’s Criterion) it follows that
[Q[ 3

√
2] : Q] = 3, which is not a power of 2, contradicting Corollary (11.2).

Assuming Lindemann’s Theorem that π is not a root of any nontrivial polynomial with integer
coefficients, it follows that the same is true of

√
π , and in particular it follows that

√
π is not

algebraic over Q. This shows that
√
π is not a constructible number, and so also the problem of

squaring the circle cannot be solved by a ruler and compasses construction.
The problem of trisecting an arbitrary given angle is similar to the problem of doubling the

cube, in that to solve it one would have to solve a cubic equation. If we are given an angle POQ we
can set up a coordinate system with O as the origin and P as (1, 0), and then if R is the point on OQ
such that PR and OQ are perpendicular, we see that OR has length equal to the cosine of ∠POQ.
Constructing an angle equal to one third of ∠POQ is easily seen to be equivalent to constructing a
line segment whose length is cos

( 1
3∠POQ

)
. Since cos 1

3θ is a root of the polynomial 4x3−3x−cosθ,
solution of a cubic is involved. This cubic could well be irreducible, which would mean that cos 1

3θ

would generate a degree 3 extension of Q[cosθ], unachievable by ruler and compasses since 3 is
not a power of 2.

Exercise 42. Show that if f (x) ∈ F[x] has no roots in F and has degree 2 or 3 then it is irreducible.
Exercise 43. Use the trigonometric formula cos 3θ = 4(cosθ)3 − 3 cosθ to show that the cosine
of π/9 (or 20◦) generates a degree 3 extension of Q, and deduce that an angle of π/3 cannont be
trisected by ruler and compasses.

Regular polygons

Everyone knows that equilateral triangles, squares and regular hexagons can be constructed with
ruler and compasses. Using the fact that it is possible to bisect angles, it is fairly easy to see that if
a regular n-sided polygon can be constructed then so can a regular 2n-sided polygon. So regular
octagons, 16-gons, 32-gons, . . . and 12-gons, 24-gons and so on can be constructed with ruler and
compasses. What other regular n-gons can be constructed?

It is fairly well known that regular pentagons can constructed, and there are simple construc-
tions. We leave it to the reader’s ingenuity to devise one if (s)he does not know one already. In
view of the theory we have been through, the algebraic explanation of why this can be done is that
cos(2π/5) is a constructible number. This can be seen as follows. Since the roots of x5 − 1 are the
complex fifth roots of 1, e2kπ i/5 = cos(2kπ/5) + i sin(2kπ/5), we have that

x5 − 1 = (x − 1)(x − e2π i/5)(x − e4π i/5)(x − e6π i/5)(x − e8π i/5).

Note that e8π i/5 is the inverse and complex conjugate of e2π i/5, and e4π i/5 and e6π i/5 are similarly
related. So pairing the second and fifth factors above and also the third and fourth we find that

x5 − 1 = (x − 1)(x2 − 2 cos(2π/5) + 1)(x2 − 2 cos(4π/5) + 1),
whence

x4 + x3 + x2 + x + 1 = (x2 − ax + 1)(x2 − bx + 1),

where a = 2 cos(2π/5)and b = 2 cos(4π/5). Expanding the right hand side gives a + b = −1 and
ab = −1, so that a and b are the roots of x2 + x − 1. So a and b can be constructed by finding an
appropriate square root (

√
5, in fact).
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It is a remarkable fact, discovered by Gauss, that for odd values of n a regular n-gon can be
constructed if and only if n is a Fermat prime. This means that n must be prime and n− 1 a power
of 2. Now observe that if r is odd then

xr + 1 = (x + 1)(xr−1 − xr−2 + xr−3 − · · ·+ x2 − x + 1)

and evaluating at x = 2k we see that 2rk+1 is divisible by 2k+1 whenever r is odd. So 2m+1 cannot
be prime if m has any odd factor r. So Fermat primes must have the form 2m+1 with m a power of 2.
Examples are 20 + 1 = 2, 21 + 1 = 3, 22 + 1 = 5, 24 + 1 = 17, 28 + 1 = 257 and 216 = 1 = 65537.
The reader is invited to check that 232 + 1 ≡ 0 (mod 641), and is therefore not prime. (To do
this, it is convenient to make use of the readily checked facts that 5 · 28 ≡ −1 (mod 641) and
54 ≡ −24 (mod 641).) In fact, no more Fermat primes are known.

The following two exercises guide the reader through a proof that cos(2π/17) is a constructible
number.

Exercise 44. Let θ = 2π/17 and letω = eiθ = cosθ+ i sinθ, a complex 17th root of 1. Prove that

x16 + x15 + x14 + · · ·+ x2 + x + 1 = (x −ω)(x −ω−1)(x −ω2)(x −ω−2) . . . (x −ω8)(x −ω−8)

= (x2 − (2 cosθ)x + 1)(x2 − (2 cos 2θ)x + 1) . . . (x2 − (2 cos 8θ)x + 1).

Exercise 45. Define complex numbers as follows:

α1 =
−1 +

√
17

2
, α2 =

−1−
√

17
2

β1 =
1
2

(α1+
√
α2

1 + 4)

β2 =
1
2

(α1−
√
α2

1 + 4)

β3 =
1
2

(α2+
√
α2

2 + 4)

β4 =
1
2

(α2−
√
α2

2 + 4)

γ1 =
1
2

(β1 +
√
β2

1 − 4β3) γ5 =
1
2

(β3 +
√
β2

3 − 4β1)

γ2 =
1
2

(β1 −
√
β2

1 − 4β3) γ6 =
1
2

(β3 −
√
β2

3 − 4β1)

γ3 =
1
2

(β2 +
√
β2

2 − 4β4) γ7 =
1
2

(β4 +
√
β2

4 − 4β2)

γ4 =
1
2

(β2 −
√
β2

2 − 4β4) γ8 =
1
2

(β4 −
√
β2

4 − 4β2).

(i) Check that γ1 + γ2 = β1 and γ1γ2 = β3, and hence show that

(x2 − γ1x + 1)(x2 − γ2x + 1) = x4 − β1x3 + (2 + β3)x2 − β1x + 1
and similarly

(x2 − γ3x + 1)(x2 − γ4x + 1) = x4 − β2x3 + (2 + β4)x2 − β2x + 1,
(x2 − γ5x + 1)(x2 − γ6x + 1) = x4 − β3x3 + (2 + β1)x2 − β3x + 1,
(x2 − γ7x + 1)(x2 − γ8x + 1) = x4 − β4x3 + (2 + β2)x2 − β4x + 1.
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(ii) Check that

(x4 − β1x3 + (2 + β3)x2 − β1x + 1)(x4 − β2x3 + (2 + β4)x2 − β2x + 1)

= x8 +
(

1−
√

17
2

)
x7 +

(
5−

√
17

2

)
x6 +

(
7−

√
17

2

)
x5 + (2−

√
17)x4

+
(

7−
√

17
2

)
x3 +

(
5−

√
17

2

)
x2 +

(
1−

√
17

2

)
x + 1.

The product of the other two quartics appearing in Part (i) is similar: just replace −
√

17
by
√

17.
(iii) Multiply the eighth degree polynomial appearing in Part (ii) by its conjugate (obtained by

replacing −
√

17 by
√

17) and show that the result is x16 + x15 + x14 + · · · + x2 + x + 1.
Comparing with the previous exercise, deduce that the numbers γ1, γ2, . . . , γ8 are equal to
2 cosθ, 2 cos 2θ, . . . , 2 cos 8θ (not necessarily in that order), where θ = 2π/17.

(iv) Use the previous parts to deduce that a regular seventeen sided polygon can be constructed
with ruler and compasses.

Let us now turn our attention to solution of arbitrary polynomial equations. Our first task is to
decide what it means for a polynomial equation to be soluble by radicals. We employ the following
definition.

Definition (11.3): Let f (x) ∈ F[x], where F is a field. We say that the equation f (x) = 0 is
soluble by radicals if there is a chain of field extensions F = F0 ⊆ F1 ⊆ · · · ⊆ Fm such that
(i) for each i from 0 to m − 1 the field Fi+1 is obtained by adjoining to Fi a ki-th root of some

element of Fi (where ki is some positive integer), and
(ii) there exist α1, α2, . . . , αd ∈ Fm such that f (x) = (x −α1)(x −α2) · · · (x −αd).

It is probably not immediately apparent how this relates to our intuitive notion of what it
means for an equation to be soluble. Normally, saying that something is soluble suggests the ex-
istence of an algorithmic procedure that will lead one to the solution. In the case of a polynomial
equation, the algorithm should consist of performing various arithmetical operations, taking the
coefficients of the polynomial as input and yielding its roots as output. If the equation is solu-
ble by radicals, then the only arithmetical operations allowed—apart from addition, subtraction,
multiplication and division—are k-th root extractions (for positive integers k).† Since addition,
subtraction, multiplication and division of field elements yield other elements of the same field it is
only the root extractions that necessitate field extensions. Forming such an extension for each root
extraction involved in the solution process leads to a chain of extensions of the kind described in
Definition (11.3). So it is at least in accord with intuition that if an equation is soluble by radicals
then there should exist a chain of extensions as described in (11.3).

The other direction is perhaps more contentious. Is it right to say that an equation is soluble by
radicals simply because some chain of field extensions exists, without there necessarily being any
clear-cut procedure for finding the fields, or for finding the elements of the final field in the chain
which are the actual solutions of the equation? Perhaps not. But then, we are aiming to show that
certain equations are not soluble by radicals, and for this it will certainly be adequate to show that
no chain of field extensions exists having the properties required in Definition (11.3). This being
said, it nevertheless turns out to be the case—fortunately—that whenever a polynomial equation is
soluble by radicals in the sense of Definition (11.3), procedures can be found for constructing the
requisite field extensions, and formulas for the roots can be written down.

† The word “radical” is derived from the Latin radix -icis, meaning “root”; in the present context
“radical” means either “root” (of an equation xn = a) or the root sign “√ ”.
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12. Symmetry

As we suggested in Section 2, symmetry plays an important role in the theoretical investigation
of solutions of polynomial equations. By a symmetry of an object (of any kind) we mean a trans-
formation of the object which preserves its essential features. Of course the identity (do-nothing)
transformation is always a symmetry; furthermore, it should always be possible to undo a symme-
try. That is, for a transformation to be a symmetry there should exist an inverse transformation
(which will also be a symmetry). Finally, the composite effect of performing one symmetry and
then following it with another will also be a transformation that preserves the essential features of
the object, so that the composite of two symmetries is another. Thus the set of all symmetries of an
object is a group, in the sense of the following definition.

Definition (12.1): A group is a set G equipped with an operation (x, y) 7→ xy such that
(i) x(yz) = (xy)z for all x, y, z ∈ G,

(ii) there is an element i ∈ G such that ix = xi = x for all x ∈ G, and
(iii) with i as in (ii), for every x ∈ G there exists a y ∈ G such that xy = yx = i.

The use of the term “group” in this sense originated with Galois, who introduced it as an aid
in explaining his ideas concerning the solution of polynomial equations. For the present course we
do not need to go very deeply into group theory.

A group G is said to be Abelian or commutative if xy = yx for all x, y ∈ G. The element
i appearing in Axiom (ii) is called the identity element of G. It is easily proved that the identity
element is unique. In most group theory books the identity element of a group is denoted by 1.
We shall probably adopt this convention after a while, but for the time being we shall denote the
identity of G by iG. If x, y ∈ G are related as in Axiom (iii) then they are said to be inverses of
each other. It is also easily shown that the inverse of an element is unique, and the inverse of x
is denoted by x−1, as one would expect. If the group operation is written as addition—which will
only ever be done if the group is Abelian—then the identity element is denoted by 0 and called the
zero element, and the inverse of x is denoted by −x and called the negative of x. Observe that the
first four ring axioms say that a ring is an Abelian group under addition; the group derived from a
ring in this way is called the additive group of the ring in question. Observe also that if F is a field
then the nonzero elements of F form a group; this is called the multiplicative group of F.

Definition (12.2): A subset H of a group G is called a subgroup of G if H is a group under an
operation compatible with the group operation of G. We write H ≤ G to indicate that H is a
subgroup of G.

As explained in our discussion of subrings, if a set S has an operation ∗ defined on it then a
subset T of S has a compatible operation if and only if T satisfies the closure condition: x ∗ y ∈ T
for all x, y ∈ T. It is straightforward to derive the following criterion, analogous to Theorem (5.8)
for rings, for a subset of a group to be a subgroup.

Theorem (12.3): A subset H of a group G is a subgroup of G if (and only if) H is nonempty and for
all x, y ∈ G
(i) if x, y ∈ H then xy ∈ H, and

(ii) if x ∈ H then x−1 ∈ H.

Exercise 46. Show that if H1, H2, . . . , Hn are subgroups of the group G then the intersection
H1 ∩ H2 ∩ · · · ∩ Hn is also a subgroup.

A group G is said to be cyclic if there exists a g ∈ G such that every element of G is a power of g.
(Powers of g include negative powers—powers of g−1—as well as g0 = iG.) An element g which
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has the property that every element of G is a power of g is called a generator of the cyclic group G.
(Note that if the group operation is written as addition then gn becomes ng, and the condition for g
to be a generator becomes that every element of G is a natural multiple of g.) It turns out that the
generator g of a cyclic group is not unique if the group has more than two elements. The additive
group of the ring Z is an example of a cyclic group with infinitely many elements, and it is easily
seen that 1 and −1 are the only two generators. The additive group of the ring Zn is a cyclic group
with exactly n elements. Again 1 and −1 are generators, but there are likely to be others too. For
example, in Z7 the first seven multiples of 4 are (in order) 4, 1, 5, 2, 6, 3 and 0, and since this list
includes every element of Z7 it follows that 4 is a generator. Similar calculations show that in fact
all nonzero elements of Z7 are generators.

It is not hard to see that each element of an arbitrary group G is a generator of a cyclic subgroup
of G.

Proposition (12.4): Let G be a group and x ∈ G. Then the set { xn | n ∈ Z } is a subgroup of G.

The proof of Proposition (12.4) is a trivial application of Theorem (12.3), and is omitted. We
shall often use the notation 〈x〉 to denote the cyclic subgroup generated by the element x.

A homomorphism from a group G to a group H is a functionφ: G → H having the property that
φ(xy) = (φx)(φy) for all x, y ∈ G. A homomorphism which is bijective is called an isomorphism,
and two groups are said to be isomorphic if there is an isomorphism from one to the other. It
is easily shown that the identity function from a group to itself is an isomorphim, the inverse of
an isomophism is always an isomorphism, and the composite of two isomorphisms is always an
isomorphism. Hence the relation “is isomorphic to” is an equivalence relation.

The following proposition shows that, to within isomorphism, the additive groups Z and Zn
are the only cyclic groups.

Proposition (12.5): Let x be a generator of a cyclic group C. If there is no positive integer n such
that xn = iG then the mapping φ: Z → G given by φm = xm is an isomorphism from the additive
group of Z to G; otherwise, if n is the least positive integer such that xn = iG then there is a well-
defined mapping ψ: Zn → G, which is an isomorphism from the additive group of Zn to G, satisfying
ψm = xm for all m ∈ Z.

Proof. Define φ: Z → G by φm = xm, and note that φ is surjective since x is a generator of G. For
all r, s ∈ Z

φ(r + s) = xr+s = xrxs = (φr)(φs),

which shows that φ is a homomorphism from Z (under addition) to G. (Note that our dis-
cussion of exponent laws in Section 4 applies to groups just as well as to rings.) Now define
K = { r ∈ Z | φr = iG } (the kernel of φ). Observe that 0 ∈ K, and if r, s ∈ K then

φ(r + s) = (φr)(φs) = (iG)(iG) = iG ,
and also

φ(−r) = iGφ(−r) = (φr)(φ(−r)) = φ(r − r) = φ0 = iG ,

so that −r, r + s ∈ K. It follows from these properties that if r ∈ K and m ∈ Z then mr = rm ∈ K
(because multiplication in the ring Z can be expressed in terms of addition and subtraction:
mr = r + r + · · ·+ r︸ ︷︷ ︸

mterms

if m ≥ 0, and mr = (−m)(−r) if m < 0). Hence K is an ideal in Z (by

Theorem (7.3)), and by Theorem (7.4) we deduce that K = nZ for some nonnegative integer n.
Recall also from our discussion of ideals in Z that n is the least positive integer in K if there is a
positive integer in K, and n = 0 otherwise.
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If xr = xs then xr−s = xrx−s = xsx−s = x0 = iG, so that r − s ∈ K. Hence if K = {0}
(corresponding to n = 0) then φ is injective, whence it is a bijective and an isomorphism Z → G.
If n 6= 0 then we have that φr = φs if and only r ∼= s (mod nZ); in other words, φr = φs if and
only if r = s ∈ Zn. So there is a well-defined and injective mapping ψ: Zn → G such that ψr = φr
for all r ∈ Z. (It is well-defined since r = s implies φr = φs, and injective since φr = φs implies
r = s.) Moreover, ψ is surjective since φ is, and is a homomorphism since for all r and s,

ψ(r + s) = ψ(r + s) = φ(r + s) = (φr)(φs) = (ψr)(ψs).

Hence ψ is an isomorphism, as required. �

If S is an arbitrary set then the number of elements of S (sometimes by #S. In particular, the
statement that S has only finitely many elements is conveniently written as “|S| < ∞”.

Definition (12.6): If G is a group then |G| is called the order of G. If x ∈ G then the order of the
cyclic subgroup 〈x〉 is called the order or period of the element x.†

Note that g ∈ G has finite order if and only if there is a positive integer n such that gn = iG,
in which case the order is the least such positive integer, and the integers n such that gn = iG are
precisely the multiples of the order. Thus if g has order n then the order of any power of g will
be a divisor of n, since (gr)n = (gn)r = iG. Furthermore, if n = de then ge has order d, since
(ge)d = gn = iG, and if r is a positive integer less than d then (ge)r = ger 6= iG (since er is a positive
integer less than ed, which is the order of g).

Exercise 47. Show that if G is a cyclic group of order n and H a subgroup of G then H is also
cyclic, and the order of H is a divisor of n. Show furthermore that for each divisor d of n there is
exactly one subgroup of G of order d. (Hint: If g is a generator of G then a subgroup H of G will
be generated by gk, where k is the least positive integer such that gk ∈ H. Now n = qk + r for some
r with 0 ≤ r < k, and since gn = 1 this gives gr = (gk)−q ∈ H, forcing r = 0.)

Lemma (12.7): Let G be a group and x, y ∈ G such that xy = yx. Let m be the order of x and n
the order of y, and suppose that gcd(m, n) = 1. Then the order of xy is mn.

Proof. Since xy = yx we see that in any product xyxy · · · xy the x’s and y’s can be collected
together. That is, (xy)k = xk yk. Now if (xy)k = iG then xk = y−k, and since this element is both
a power of x and also a power of y it follows that its order is both a divisor of m and a divisor
of n. But gcd(m, n) = 1, and it follows that xk = y−k = iG, since this is the only element of
order 1. But now xk = iG yields that m

∣∣ k, since the order of x is m, and similarly y−k = iG yields
that n

∣∣ k. By Exercise 27 we conclude that k is a multiple of lcm(m,n), which equals mn since
gcd(m, n) = 1. Thus we have shown that if (xy)k = iG then k is a multiple of mn, and since also
(xy)mn = (xm)n(yn)m = iG it follows that the order of xy is mn, as required. �

It is a non-obvious fact that if p is a prime number then the multiplicative group of (nonzero
elements of) Zp is cyclic. Indeed, the multiplicative group of any field which has only finitely many
elements is cyclic. For example, the successive powers of 3 in Z17 are 3, 9, 10, 13, 5, 15, 11, 16,
14, 8, 7, 4, 12, 2, 6 and 1, exhausting all nonzero elements of Z17. As a first step towards proving
this theorem about finite fields we need the following lemma.

Lemma (12.8): Let G be an Abelian group, and x, y ∈ G elements of finite orders m, n respectively.
Then G contains an element whose order is lcm(m, n).

† “Order” is almost universally used in preference to “period”, which is regrettable since “order”
is an over-used word in mathematics, and “period” under-used.
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Proof. For each prime number p let a(p) be the largest integer such that pa(p)
∣∣m and let b(p)

be the largest integer such that pb(p)
∣∣ n. Let p1, p2, . . . , pk be all the primes p such that p

∣∣m
and a(p) ≥ b(p), and let pk+1, pk+2, . . . , pl be the primes p such that a(p) < b(p). So, writing
ai = a(pi) and bi = b(pi), we have

m = pa1
1 pa2

2 · · · pal
l

n = pb1
1 pb2

2 · · · pbl
l

with ai ≥ bi for 1 ≤ i ≤ k and ai < bi for k < i ≤ l. If we now define

m1 = pa1
1 pa2

2 · · · pak
k , m2 = pak+1

k+1 pak+2
k+2 · · · pal

l ,
n1 = pb1

1 pb2
2 · · · pbk

k , n2 = pbk+1
k+1 pbk+2

k+2 · · · pbl
l ,

then as well as n = n1n2 and m = m1m2 we have that m1n2 = lcm(m, n) and that gcd(m1, n2) = 1.
Since the order of xm2 is m1 and the order of yn1 is n2 we conclude by Lemma (12.7) that xm2 yn1 is
an element of G of order m1n2, as sought. �

Corollary (12.9): Let G be an Abelian group and let x1, x2, . . . , xk be elements of G of orders
n1, n2, . . . , nk. Then there is an element g ∈ G whose order is a multiple of ni, for each i from 1 to k.

Proof. This is trivial for k = 1. Proceeding inductively we may assume that g′ ∈ G has order
divisible by all ni for 1 ≤ i ≤ k − 1, and now Lemma (12.8) applied to g′ and xk yields an element
g whose order is divisible by the order of g′ and by nk. Then the order of g is divisible by all of
n1, n2, . . . , nk, as required. �

In particular, this result shows that if G is a finite Abelian group then there is an element g ∈ G
whose order n is a multiple of the order of every other element of G, so that hn = iG for all h ∈ G.
Suppose now that F is a finite field, with identity element 1F, and choose such an element g in the
multiplicative group of F. Thus, letting n be the order of g, we deduce that every nonzero element
of the field is a root of the polynomial xn − 1. Now a polynomial in F[x] of degree n can have
at most n roots (since every root t yields a factor x − t, and since the degree of a product is the
sum of the degrees of the factors there can be at most n factors of degree 1), and so the number
of nonzero elements of F is at most n. But on the other hand the elements gi (for 0 ≤ i < n) are
all nonzero, and there are n of them (since they are in bijective correspondence with the elements
of Zn, by Proposition (12.5)). So these are all the nonzero elements of G, and we have proved the
following theorem (as foreshadowed).

Theorem (12.10): The multiplicative group of a finite field is cyclic.

Regrettably, apart from trial and error, there is no simple method known for finding a generator
of the multiplicative group of a given finite field.

The next two exercises on finite fields should really have been included earlier, but they were
accidentally forgotten.

Exercise 48. Observe that 2 and 3 are zero divisors in Z6. Show that if R is an integral domain
of characteristic m 6= 0 then Zm is a subring of R, and deduce that m must be prime.
Exercise 49. Let F be a field. The prime field F0 of F is the smallest subfield of F. Show that if the
characteristic of F is zero then F0 is isomorphic to Q, while if the characteristic is p 6= 0 then p is
prime and F0 is isomorphic to Zp. Deduce that if F is finite then the number of elements in F is pd

for some integer d. (Hint: d is the dimension of F considered as a vector space over F0.)
Exercise 50. Let F be a field of odd finite order q. Show that there is an element t ∈ F with
t2 = −1 if and only if q− 1 is divisible by 4. (Hint: Let g be a generator of the multiplicative group
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of F, so that gq−1 = 1F, and the distinct nonzero elements of F are 1, g, g2, . . . , gq−2. Check that
the two roots of x2 − 1 = 0 are 1 and g(q−1)/2, and deduce that g(q−1)/2 = −1. Observe that if
(q − 1)/2 is even then t = g(q−1)/4 satisfies t2 = −1, but if (q − 1)/2 is odd then there is no i such
that 2i ≡ (q − 1)/2 (mod q − 1).)

Exercise 51. Show that if p is a prime and p ≡ 3 (mod 4) then p cannot be expressed as a sum
of two squares. (Hint: If p = a2 + b2 then (a)2 + (b)2 = 0 in the field Zp, and hence t = a(b)−1 is
a solution of t2 = −1, contradicting Exercise 50.)

Exercise 52. Show that if p is a prime and p ≡ 1 (mod 4) then p can be expressed as a sum of
two squares. (Hint: By Exercise 50 there is an integer t such that t2 + 1 ≡ 0 (mod p). Working
now in the ring G of Gaussian integers, observe that p is a divisor of t2 + 1 = (t + i)(t − i), so
that if p were irreducible then, by Theorem (9.18), p would have to be a divisor of either t + i or
t − i. But neither 1

p t + 1
p i nor 1

p t − 1
p i is a Gaussian integer; so p is not irreducible in G, and so (as

we saw in our previous discussion of irreducible elements of G) there exist integers a and b with
p = (a + bi)(a − bi).)

We return now to our discussion the aspects of group theory which will be of relevance for our
introduction to Galois theory. If X is any set then a permutation of X is by definition a bijective
function from X to itself. We define Sym(X) to be the set of all permutations of X. Ifσ , τ ∈ Sym(X)
then the composite function αβ: X → X (defined by (αβ)x = α(βx) for all x ∈ X) is also a
permutation, and so composition can be regarded as a multiplication operation on Sym(X). This
operation is associative, since if α, β and γ are arbitrary elements of Sym(X) then ((αβ)γ)x and
(α(βγ))x are both equal to α(β(γx)) (for each x ∈ X). The identity function i: X → X (defined
by ix = x for all x ∈ X) is clearly an identity element for this multiplication, and all elements of
Sym(X) have inverses (since every bijective function has an inverse which is also bijective). Hence
Sym(X) is a group. It is known as the symmetric group on the set X.

In the case X = {1, 2, . . . , n} we shall for brevity denote the symmetric group on X by Sn. We
shall also use the cycle notation for permutations: if i1, i2, . . . , ik are distinct elements of the set
X = {1, 2, . . . , n} then (i1, i2, . . . , ik) denotes the function σ: X → X satisfying

σ i j = i j+1 for j = 1, 2, . . . , k − 1,

σ ik = i1,
and

σ i = i for all i ∈ X such that i /∈ {i1, i2, . . . , ik}.

That is, σ permutes i1, i2, . . . , ik cyclically and fixes the other elements of X. We call such a
permutation a cycle, and the set {i1, i2, . . . , ik} is called the support of (i1, i2, . . . , ik). A k-cycle is
a cycle with k elements in its support. It is easily seen that if τ ∈ Sym(X) is arbitrary then X is
a union of disjoint subsets which are each permuted cyclically by τ , and τ is correspondingly a
product of cycles with disjoint supports. Thus, for example, the element τ ∈ S6 given by

1 7→ 4, 2 7→ 6, 3 7→ 1, 4 7→ 3, 5 7→ 5, and 6 7→ 2,

is (1, 4, 3)(2, 6). Note that disjoint cycles commute: we can equally well write τ = (2, 6)(1, 4, 3).
Furthermore, within the individual cycles it is only the cyclic order of the terms which matters, and
so τ above can also be written as (6, 2)(3, 1, 4).

Exercise 53. Check that the 24 elements of S4 comprise the identity, six transpositions (2-cycles),
eight 3-cycles, six 4-cycles, and three elements which are products of two disjoint transpositions.
Similarly check that the elements of S5 comprise the identity, ten transpositions, twenty 3-cycles,
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thirty 4-cycles, twenty-four 5-cycles, fifteen elements which are products of two disjoint trans-
positions, and twenty elements which are products of a 3-cycle and a transposition with disjoint
supports.

If G is a group and H a subgroup of G then we can define relations ∼R and ∼L on G as follows:
for all x, y ∈ G,

x ∼R y if x = hy for some h ∈ H,
x ∼L y if x = yh for some h ∈ H.

It is not hard to show that these are both equivalence relations on G. The equivalence classes for
∼R are called the right cosets of H in G, and the equivalence classes for ∼L are called the left cosets
of H in G. We see that the right coset of H that contains the element x of G is the set

Hx = { hx | h ∈ H }.

By the general properties of equivalence classes, each element of G lies in exactly one of these right
cosets; thus if x and y are arbitrary elements of G, then x ∈ Hy if and only if Hx = Hy, and
x /∈ Hy if and only if Hx ∩ Hy = ∅. The analogous properties hold for left cosets: the left coset
containing x is

xH = { xh | h ∈ H },

and for all x, y ∈ G we have xH = yH if and only if x ∈ yH, and xH ∩ yH = ∅ if and only if
x /∈ yH. Note that because multiplication in G need not be commutative, the left coset xH and the
right coset Hx will not in general be equal.

Consider for example the group G = S4, consisting of all permutations of the set {1, 2, 3, 4}.
Let H = {σ ∈ G | σ4 = 4 }. Then H is a subgroup of G. It is clear that H is isomorphic
to the group S3, since the restriction to {1, 2, 3} of a permutation of {1, 2, 3, 4} that fixes 4 is a
permutation of {1, 2, 3}, and this gives us a function from H to S3 which is easily shown to be
bijective and preserve composition. We find that

iH = H = { i, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2) }
(1, 4)H = { (1, 4), (1, 2, 4), (1, 3, 4), (1, 4)(2, 3), (1, 2, 3, 4), (1, 3, 2, 4) }
(2, 4)H = { (2, 4), (1, 4, 2), (2, 4)(1, 3), (2, 3, 4), (1, 4, 2, 3), (1, 3, 4, 2) }
(3, 4)H = { (3, 4), (3, 4)(1, 2), (1, 4, 3), (2, 4, 3), (1, 2, 4, 3), (1, 4, 3, 2) },

and each element of G occurs in exactly one of these. The elements i, (1, 4), (2, 4), (3, 4) constitute
a left transversal, or system of left coset representatives for the subgroup H of G, in the sense that

G = iH .∪ (1, 4)H .∪ (2, 4)H .∪ (3, 4)H

(where the symbol .∪ indicates a union of disjoint sets). Of course there are many other left transver-
sals, since any element of a coset can be chosen as the representative of that coset.

It is a general fact that a right transversal for a subgroup H of G can be obtained form a left
transversal for H by taking the inverses of the elements. In the above example, by a coincidence,
the elements i, (1, 4), (2, 4), (3, 4) of our chosen left transversal are all self-inverse, and so they
also form a right transversal. This is easily checked, with a little calculation. We find that

Hi = H = { i, (1, 2), (1, 3), (2, 3), (1, 3, 2), (1, 2, 3) }
H(1, 4) = { (1, 4), (1, 4, 2), (1, 4, 3), (2, 3)(1, 4), (1, 4, 3, 2), (1, 4, 2, 3) }
H(2, 4) = { (2, 4), (1, 2, 4), (1, 3)(2, 4), (2, 4, 3), (1, 3, 2, 4), (1, 2, 4, 3) }
H(3, 4) = { (3, 4), (1, 2)(3, 4), (1, 3, 4), (2, 3, 4), (1, 3, 4, 2), (1, 2, 3, 4) }.
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Note that the right cosets are not the same as the left cosets, and that many left transversals are
not also right transversals. (For example, i, (1, 2, 4), (1, 4, 2), (1, 4, 3) is a left transversal but not
a right transversal).

Proposition (12.11): Let H be a subgroup of the group G and let x ∈ G be arbitrary. Then there is
a bijection F: H → Hx given by Fh = hx for all h ∈ H. Similarly, h 7→ xh is a bijection H → xH.

Proof. By definition every element of Hx has the form hx = Fh for some h ∈ H; so F is surjective.
And if h, h′ ∈ H with Fh = Fh′ then

h = hiG = h(xx−1) = (hx)x−1 = (Fh)x−1 = (Fh′)x−1 = (h′x)x−1 = h′(xx−1) = h′i = h′,

so that F is also injective. �

Assume now that H is a subgroup of G and |G| < ∞. Then

G = x1H .∪ x2H .∪ · · · .∪ xn H,

where x1, x2, . . . , xn is any left transversal for H, and we see that

|G| = |x1H|+ |x2H|+ · · ·+ |xn H|.

But Proposition (12.11) tells us that |xi H| = |H| for all i, and so we conclude that |G| = n|H|,
where n is the number of left cosets of H in G. Exactly the same reasoning shows that |G| = n′|H|
where n′ is the number of right cosets of H in G; so we conclude that n = n′. (One can also readily
check that the mapping x → x−1 from G to G induces a bijection from the set of left cosets of H in
G to the set of right cosets of H in G.)

Definition (12.12): Let H be a subgroup of the group G. The number of left cosets of H in G
(which equals the number of right cosets of H in G) is called the index of H in G. The index is
denoted by [G : H].

Our discussion above proved the following proposition.

Proposition (12.13): If H is a subgroup of G then |G| = [G : H]|H|. In particular, if |G| < ∞
then |H| and [G : H] are both divisors of |G|.

We remark in passing that it is possible to define arithmetic of infinite numbers so that Propo-
sition (12.13) remains true when G is infinite.

Definition (12.14): Let G1 and G2 be groups and φ: G1 → G2 a homomorphism. The kernel of
φ is the set

kerφ = { x ∈ G1 | φx = iG2
}.

Just as kernels of ring homomorphisms are subrings, so kernels of group homomorphisms are
subgroups. And just as kernels of ring homomorphisms possess an extra closure property which
is not possessed by all subrings—kernels of ring homomorphisms are ideals, rather than merely
subgroups—so kernels of group homomorphisms possess an extra property, not possessed by all
subgroups. They are normal subgroups, in the sense of the following definition.

Definition (12.15): A subgroup K of the group G is said to be normal in G if x−1kx ∈ K for all
k ∈ K and x ∈ G.

Equivalently, the subgroup K is normal in G if x−1Kx = K for all x ∈ G, where of course by
definition x−1Kx = { x−1kx | k ∈ K }. Equivalently also, K is normal if xK = Kx for all x ∈ G.
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Exercise 54. Prove that the kernel of a group homomorphism G1 → G2 is a normal subgroup
of G1, and its image is a subgroup of G2.

If S and T are arbitrary subsets of the group G then it is natural to define the product, ST, by

ST = { st | s ∈ S and t ∈ T }.

It is easily checked that this multiplication of subsets is associative (but not usually commutative, of
course). If H is a subgroup of G then the fact that H is closed under multiplication and contains the
identity element makes it easy to show that HH = H. Suppose now that K is a normal subgroup
of the group G, and let x, y ∈ G be arbitrary. Then since y−1Ky = K we find that

(xK)(yK) = xy(y−1Ky)K = xyKK = (xy)K.

So multiplication of subsets of G defined above yields an operation on the set { xK | x ∈ G } of
cosets in G of the normal subgroup K. Note that left cosets and right cosets of K coincide, since K
is normal.

Theorem (12.16): Let K be a normal subgroup of the group G. Then the set of cosets of K in G
forms a group, with multiplication satisfying (xK)(yK) = xyK for all x, y ∈ G.

Proof. Our discussion above showed that there is a well-defined associative operation on the set
of cosets satisfying (xK)(yK) = xyK. An arbitrary coset α has the form xK for some x ∈ G, and so

α(iGK) = (xK)(iGK) = (xiG)K = xK = (iGx)K = (iGK)(xK) = (iGK)α,

which shows that the coset iGK = K is an identity element. And if α = xK is an arbitrary coset,
then x−1K is an inverse for α, since

(xK)(x−1K) = (xx−1)K = iGK = (x−1x)K = (x−1K(xK).

Thus all the group axioms are satisfied. �

The group of cosets of a normal subgroup K of G is called the quotient group (of G modulo K),
and it is denoted by G/K. It is immediate from the definition of multiplication in G/K that x 7→ xK
is a homomorphism from G to G/K. We leave it to the reader to check the truth the next result,
which is the First Isomorphism Theorem for groups.

Theorem (12.17): Letφ: G → H be a group homomorphism. Then K = kerφ is a normal subgroup
of G, and there is an isomorphism ψ: G/K → imφ such that ψ(xK) = φx for all x ∈ G.

We shall show in the next section how a group can be associated to a polynomial equation. The
group is known as the Galois group of the equation. One can then give a group theoretic criterion
for a polynomial equation to be soluble by radicals. Specifically, an equation is soluble by radicals
if and only if its Galois group is a soluble group, in the sense of the following definition.

Definition (12.18): A group G is said to be soluble if there is a chain of subgroups

G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gn = {iG}

such that Gi is a normal subgroup of Gi−1 and the quotient group Gi/Gi−1 is Abelian, for each
i = 1, 2, . . . , k.
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Our strategy for showing that not all equations are soluble by radicals is to show that there
exists an equation whose Galois group is the symmetric group S5, and to show that S5 is not
soluble. The remainder of this section is devoted an investigation of S5, including a proof that it is
not soluble.

Let n be any positive integer and letσ ∈ Sn. Recall thatσ can be written as a product of disjoint
cycles; let ci(σ) be the number of i-cycles occurring in this expression for σ . For the purposes of
this definition it is intended that a 1-cycle (k) should appear in the disjoint cycle expression for
σ for every k ∈ {1, 2, . . . , n} such that σk = k, so that c1(σ) is the number of fixed points of σ .
Thus the element σ ∈ S10 which would normally be written as (7, 9)(2, 4, 6)(3, 5, 10) becomes
(1)(8)(7, 9)(2, 4, 6)(3, 5, 10) when the 1-cycles are explicitly written in, and we see that c1(σ) = 2,
c2(σ) = 1 and c3(σ) = 2, while ci(σ) = 0 for all i > 3. We call the n-tuple (c1(σ), c2(σ), . . . , cn(σ))
the cycle type of the element σ of Sn.

Proposition (12.19): Elements σ , τ ∈ Sn have the same cycle type if and only if there exists ρ ∈ Sn
with τ = ρσρ−1.

Before proving this, we give an example which should clarify things somewhat. Consider the
element σ = (2, 5)(3, 4, 7, 6) ∈ S7. According to Proposition (12.19), if ρ ∈ S7 is arbitrary then
ρσρ−1 should have the same cycle type as σ; that is, it should be the product of a 2-cycle and a
4-cycle with disjoint supports. In fact, it can readily be seen that ρσρ−1 = (ρ2,ρ5)(ρ3,ρ4,ρ7,ρ6).
For example,

(ρσρ−1)(ρ2) = ρ(σ(ρ−1(ρ2))) = ρ(σ2) = ρ5,
and

(ρσρ−1)(ρ5) = ρ(σ(ρ−1(ρ5))) = ρ(σ5) = ρ2.

Proposition (12.19) also says, conversely, that given any τ ∈ S7 with the same cycle type as σ—
such as τ = (1, 4)(3, 2, 5, 6) for example—there is a ρ ∈ S7 such that ρσρ−1 = τ . We can find a
suitable ρ as follows. First write down σ , including the 1-cycles, and underneath it write down τ in
such a way that each cycle of τ is below a cycle of σ of the same length:

(1)(2, 5)(3, 4, 7, 6, )
(7)(1, 4)(3, 2, 5, 6, ).

Then define ρ to be the permutation which maps each number to the one written directly below it.
Thus, in this example, ρ1 = 7, ρ2 = 1, ρ5 = 4, ρ3 = 3, ρ4 = 2, ρ7 = 5 and ρ6 = 6. We see that

ρσρ−1 = (ρ2,ρ5)(ρ3,ρ4,ρ7,ρ6) = (1, 4)(3, 2, 5, 6) = τ ,

as required.
Proof of (12.19). Let σ1, σ2, . . . , σk be all the cycles (including those of length 1) that appear

in the expression for σ as a product of disjoint cycles. Suppose that σi is an ni-cycle (so that
n = sumk

i=1ni), and let σi = (ai1, ai2, . . . , aini
). If ρ ∈ Sn is arbitrary, then for each i we have that the

permutation τi = ρσiρ
−1 is also an ni-cycle; specifically,

τi = (ρai1,ρai2, . . . ,ρaini
),

since for each j < ni we have

τi(ρai j) = (ρσiρ
−1)(ρai j) = ρ(σiai j) = ρai j+1,
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and similarly τi(ρaini
) = ρai1. Furthermore, the τi have pairwise disjoint supports, since the permu-

tation ρ maps the support of σi to the support of τi, and the supports of the σi are pairwise disjoint.
Thus it follows that τ1, τ2, . . . , τk are the cycles that appear in the expression for τ = ρσρ−1 as a
product of disjoint cycles, and so τ has the same cycle type as σ .

Conversely, suppose that τ is any element of Sn with the same cycle type as σ . Then we can
write τ = τ1τ2 · · ·τk, where τi is an ni-cycle, and the supports of the τi are pairwise disjoint. Then
we have

τi = (bi1, bi2, . . . , bini
)

for some bi j, and furthermore

{1, 2, . . . , n} =
k⋃

i=1

{ai1, ai2, . . . , aini
} =

k⋃
i=1

{bi1, bi2, . . . , bini
}.

It can readily be seen that there is a permutation ρ of {1, 2, . . . , n} such that ρai j = bi j for all i
and j, and since this gives

τi = (ρai1,ρai2, . . . ,ρini
) = ρσiρ

−1,

we conclude that

τ = τ1τ2 · · ·τk = (ρσ1ρ
−1)(ρσ2ρ

−1) · · · (ρσkρ
−1) = ρσ1σ2 · · ·σkρ

−1 = ρσρ−1,

as required. �

Recall that, by the definition, if a normal subgroup K of a group G contains an element g
then it also contains x−1gx for all x ∈ G. Hence Proposition (12.19) shows that if K is a normal
subgroup of Sn and if σ ∈ K then all permutations of the same cycle type as σ are also contained
in K. This makes it a relatively easy task to determine all the normal subgroups of Sn, for all values
of n. However, we shall content ourselves with doing so for the case n = 5, since this is all that is
needed for this course.

A subset of Sn consisting of all elements of a given cycle type is called a conjugacy class, or
simply class, of Sn. In S5 there are exactly seven classes, and for ease of reference we label them
(a) to (g) in accordance with the following table.

Class Size Description Sample element

(a) 1 Five 1-cycles Identity
(b) 10 Three 1-cycles and one 2-cycle (1, 2)
(c) 20 Two 1-cycles and one 3-cycle (1, 2, 3)
(d) 30 One 1-cycle and one 4-cycle (1, 2, 3, 4)
(e) 24 One 5-cycle (1, 2, 3, 4, 5)
(f) 15 One 1-cycle and two 2-cycle (1, 2)(3, 4)
(g) 20 One 2-cycle and one 3-cycle (1, 2)(3, 4, 5)

Suppose now that K is a normal subgroup of S5. Suppose first of all that K contains an element of
Class (b) (the transpositions). Then since K is normal it must contain all elements Class (b), and
since K is closed under multiplication it follows that it contains all elements which can be expressed
as products of elements of Class (b). But short calculations yield

(1, 2, 3) = (1, 2)(2, 3)

(1, 2, 3, 4) = (1, 2)(2, 3)(3, 4)

(1, 2, 3, 4, 5) = (1, 2)(2, 3)(3, 4)(4, 5)

(1, 2)(3, 4, 5) = (1, 2)(3, 4)(4, 5);
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so K contains (1, 2, 3), (1, 2, 3, 4), (1, 2, 3, 4, 5) and (1, 2)(3, 4, 5), and hence all elements of Classes
(c), (d), (e) and (g). It also contains the elements of Class (f), since trivially these are products
of transpositions, as well as the identity element (which is in every subgroup). We conclude that
every element of S5 is in K.

Proposition (12.20): The only normal subgroup of S5 that contains a transposition is the group S5
itself.

Suppose next that K is a normal subgroup which contains an element of Class (c) (the 3-
cycles). Then K contains all 3-cycles, and hence contains (1, 2, 3)(3, 4, 5) = (1, 2, 3, 4, 5) and
(1, 2, 3)(2, 3, 4) = (1, 2)(3, 4). So K must contain all elements of Classes (e) and (f), as well
as Class (c) and the identity. Note that these four classes together have sixty elements, which is
exactly half the total number of elements of S5. It is in fact true that these sixty elements constitute
a subgroup of S5, known as the alternating group of degree 5, and denoted by A5. We leave the
proof that A5 is a subgroup for later. We now come to our main theorem concerning the group S5.

Theorem (12.21): The group S5 has no normal subgroups other than {i}, A5 and S5.

Proof. Let K be a normal subgroup of S5, and suppose that K 6= {i}. It suffices to prove that K
contains all the elements of Classes (c),(e) and (f), for then K either consists of these 59 elements
together with i, and thus equals A5, or else contains more than 60 elements. But |K| must be a
divisor of 120 = |G| (by Proposition (12.13)); so |K| > 60 forces |K| = 120, so that K = S5.

We have already seen in our discussion above that if K contains a transposition or a 3-cycle
then K must include all of A5. If K contains a 4-cycle then it must also contain a 3-cycle, since
(1, 2, 3, 4)(5, 4, 3, 2) = (1, 2, 5). If K contains a 5-cycle then it must also contain a 3-cycle, since
(1, 2, 3, 4, 5)(1, 5, 4, 2, 3) = (2, 4, 3). If K contains an element of Class (f) then it contains a 3-
cycle since ((1, 2)(3, 4))((1, 2)(4, 5)) = (3, 4, 5). And if K contains an element of Class (g) then
it contains a 3-cycle, since ((1, 2)(3, 4, 5))2 = (3, 5, 4). So in all cases K contains a 3-cycle, and
hence, by our earlier arguments, includes all of A5, as required. �

Before we can complete the proof that S5 is not soluble, we need some general information
concerning normal subgroups such that the corresponding quotient group is Abelian. We define
the commutator of two group elements x and y to be the element x−1y−1xy. The commutator of
x and y is commonly denoted by [x, y]. The commutator subgroup, or derived group, of a group G
is defined to be the smallest subgroup of G which contains all commutators. By Exercise 46 this is
the intersection of all those subgroups of G which contain all the commutators.

Theorem (12.22): Let G be a group and G′ the derived group of G. If H is any subgroup of G such
that G′ ≤ H then H is normal in G and G/H is Abelian. Conversely, if H is any normal subgroup of
G such that G/H is abelian then G′ ≤ H.

Proof. Suppose that H is a subgroup of G containing G′. Then for all h ∈ H and g ∈ G
we have that h−1g−1hg = [h, g] ∈ G′ ≤ H, and so (by closure of H under multiplication)
g−1hg = h(h−1g−1hg) ∈ H. Since this holds for all h ∈ H and g ∈ G it follows that H is normal
in G. Now for all x, y ∈ G we have that (x−1y−1xy)H = H (since x−1y−1xy = [x, y] ∈ G′ ≤ H),
and so

(yH)(xH) = yxH = yx(x−1y−1xyH) = xyH = (xH)(yH),

and hence G/H is Abelian.
Conversely, suppose that H is normal in G and G/H is abelian. Then for all x, y ∈ G we have

that (xH)(yH) = (yH)(xH), and so

(x−1y−1xy)H = (xH)−1(yH)−1(xH)(yH) = H,
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which shows that x−1y−1xy ∈ H. So H is a subgroup which contains all the commutators, and
hence contains G′ (which is the intersection of all subgroups that contain all the commutators).

�

Observe that the derived group G′ of G can be described explicitly as the set of all elements of
G that can be expressed as products of commutators (allowing any number of factors). That is, if
we define

S = { [x1, y1][x2, y2] · · · [xn, yn] | 0 ≤ n ∈ Z and xi , yi ∈ G for all i ∈ {1, 2, . . . , i} }
then G′ = S. To prove this, observe first that since G′ contains all commutators and is closed under
multiplication, it must contain all products [x1, y1][x2, y2] · · · [xn, yn]. So S ⊆ G′. The reverse in-
clusion will follow once we have proved that S is a subgroup of G, since S certainly contains all com-
mutators (for these are elements of the form [x1, y1][x2, y2] · · · [xn, yn] with n = 1). Clearly S 6= ∅;
indeed iG ∈ S since by the standard convention for empty products, [x1, y1][x2, y2] · · · [xn, yn] = iG
when n = 0. It is trivial that S is closed under multiplication, since concatenating two products of
commutators gives a (longer) product of commutators. Finally, the inverse of an element of S is an
element of S, since the inverse of [x1, y1][x2, y2] · · · [xn, yn] is [yn, xn] · · · [y2, x2][y1, x1]. (Recall
the general fact that (xy)−1 = y−1x−1, whence [x, y]−1 = (x−1y−1xy)−1 = y−1x−1yx = [y, x].)

Proposition (12.23): If H is a normal subgroup of the group G then the derived group H′ of H is
also a normal subgroup of G.

Proof. Let g ∈ G and t ∈ H′ be arbitrary. Then we have

t = [x1, y1][x2, y2] · · · [xn, yn]

for some integer n ≥ 0 and some elements xi , yi ∈ H. Now

g−1tg = (g−1[x1, y1]g)(g−1[x2, y2]g) · · · (g−1[xn, yn]g),

since all the internal g’s and g−1’s cancel out. Similarly,

g−1[x, y]g = (g−1x−1g)(g−1y−1g)(g−1xg)(g−1yg)

= (g−1xg)−1(g−1yg)−1(g−1xg)(g−1yg)

= [g−1xg, g−1yg]

for any x and y; so if we define x′i = g−1xig and y′i = g−1yig then we have that

g−1tg = [x′1, y′1][x′2, y′2] · · · [x′n, y′n],

which is in H′ since the fact that H is normal in G yields that x′i , y′i ∈ H for all i. Thus we have
shown that g−1tg ∈ H′ whenever t ∈ H′ and g ∈ G, as required. �

Proposition (12.24): The group S5 is not soluble.

Proof. Suppose to the contrary that it is soluble, so that there is a descending chain of subgroups
S5 = G0 > G1 > · · · > Gn = {i}, each normal in the preceding term in the chain, and such
that Gi−1/Gi is Abelian for all i. Since G1 is normal in S5 it follows from Theorem (12.21) that
G1 is either A5 or {i}. But since G0/G1 Abelian it follows that G1 contains the derived group
of G0, and hence contains all commutators [σ , τ] for σ , τ ∈ G0 = S5. Since, for example,
[(1, 2), (2, 3)] 6= i, we conclude that G1 6= {i}. Hence G1 = A5. By Proposition (12.23) the
derived group G′

1 of G1 = A5 is a normal subgroup of S5 contained in A5. By Proposition (12.21)
it follows that G′

1 = {i} or A5. But since (1, 2, 3), (2, 3, 4) ∈ G1 and [(1, 2, 3), (2, 3, 4)] 6= i it
follows that G′

1 6= {i}, and so we conclude that G′
1 = A5 = G1. However, since G1/G2 is Abelian

we must have G2 ≥ G′
1, and this contradicts the fact that every nonidentity term in the series

S5 = G0 > G1 > · · · > Gn = {i} is strictly larger than the following term. This contradiction
shows that our original assumption that S5 is soluble must have been false. �
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13. Introduction to Galois theory

In this final section we shall prove that there are equations of degree 5 over the field Q which are
not soluble by radicals. In accordance with Definition (11.3) and the subsequent discussion, we
need to investigate field extensions. As a first step we have the following proposition, which is
really just a Corollary of Theorem (10.5).

Theorem (13.1): If F is a field and f (x) ∈ F[x] a nonconstant polynomial, then there exists an
extension of F in which f (x) has a root.

Proof. Let p(x) be any irreducible factor of f (x). By Theorem (10.5) (or Corollary (10.6))
E = F[x]/p(x)F[x] is a field which can be regarded as an extension of F, and p(x) has a root
in E. Hence f (x) has a root in E (since p(x)

∣∣ f (x)). �

If α ∈ E, where E is an extension of F, then as in Exercise 38 we shall write F(α) for the
extension of F generated by α. If α is algebraic over F we shall write mα,F(x) for the minimal
polynomial of α over F. Recall that mα,F(x) is irreducible, and F(α) ∼= F[x]/mα,F(x)F[x].

As a corollary of Theorem (13.1) we obtain the following result.

Corollary (13.2): If F is a field and f (x) ∈ F[x] a nonconstant polynomial then there is a field E
that is an extension of F and has the property that f (x) splits into linear factors in E[x]. That is,
f (x) = c(x −α1)(x −α2) · · · (x −αd) for some αi ∈ E, where c is the leading coefficient of f (x) and
d its degree.

Proof. Choose an extension of F in which f (x) has a root α1, and let E1 = F(α1). Since α1 is a
root of f (x) in E1[x] we have f (x) = (x − α1) f1(x) for some f1(x) ∈ E1[x] (by Theorem (9.3)),
where the degree of f1(x) is deg( f (x)) − 1. If f1(x) is not constant we may repeat the argument
with f1(x) in place of f (x) and E1 in place of F, and obtain an extension E2 = E1(α2) such that
f1(x) = (x−α2) f2(x), and hence f (x) = (x−α1)(x−α2) f2(x) for some f2(x) ∈ E2[x]. If f2(x) is
not constant we repeat the argument again, and so on, constructing in this way an increasing chain
of fields

F = E0 ⊆ E1 = E0(α1) ⊆ E2 = E1(α2) ⊆ · · · ⊆ Ed = Ed−1(αd) = E

such that, in E[x],
f (x) = (x −α1)(x −α2) · · · (x −αd)c(x)

with deg(c(x)) = 0. Comparing the degrees and leading coefficients on either side of this equation
yields c(x) = c, the leading coefficient of f (x), and d = deg( f (x)). �

Definition (13.3): If f (x) ∈ F[x] (where F is a field) then a field K which is an extension of F is
called a splitting field for f (x) if
(i) f (x) splits into linear factors over K, and

(ii) if L is any subfield of K with F ⊆ L ( K then f (x) does not split into linear factors over L.

Corollary (13.2) shows that splitting fields always exist; indeed, the field E constructed in the
proof of (13.2) is a splitting field for the polynomial f (x). This can be seen as follows. Suppose
that L is any field with F ⊆ L ⊆ E, and such that in L[x] there is a factorization

f (x) = (a1x − b1)(a2x − b2) · · · (adx − bd)

expressing f (x) as a product of factors of degree 1. Then by uniqueness of factorization in E[x]
the elements bia−1

i ∈ L (for 1 ≤ i ≤ d) coincide with the roots αi (in some order). So L contains
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F = E0 and all the αi, and we successively deduce that L contains E1 = E0(α1), and E2 = E1(α2),
and so on, giving finally that L contains Ed = E. So there is no field L with F ⊆ L ( E over which
f (x) splits into linear factors.

The above discussion shows that if E is a splitting field for the polynomial f (x) ∈ F[x] then E
contains a complete set of roots of f (x), and, moreover, E is the extension of F generated by the
roots. Note that the degree [E : F] must be finite, since, in the notation used above,

[E : F] = [Ed : E0] = [Ed : Ed−1][Ed−1 : Ed−2] · · · [E1 : E0]

and [Ei : Ei−1] = [Ei−1(αi) : Ei−1] is finite for each i by Theorem (10.20).
The following lemma is a triviality, but certainly important.

Lemma (13.4): Suppose that F and K are fields and θ: F → K an isomorphism. Then there is an
isomorphism F[x] → K[x] given by f (x) 7→ (θ f )(x) for all f (x) ∈ F[x], where if f (x) = ∑i aixi then
by definition (θ f )(x) = ∑i(θai)xi.

In fact, this result was included in Exercise 7. We shall refer to the map f (x) 7→ (θ f )(x) from
F[x] to K[x] as the map induced by θ.

Of course we often like to regard isomorphic fields as being equal, and since identifying F
with K would surely mean identifying F[x] with K[x], it is just as well that Lemma (13.4) holds!
(However, we shall also encounter situations in which we shall not want to identify the isomorphic
fields F and K.)

The next theorem is of fundamental importance to our cause, and to highlight this fact we give
it a name as well as a number: we shall call it the Isomorphism Extension Theorem.

Theorem (13.5): Suppose that θ: F → K is an isomorphism of fields, and let F′ = F(α) and
K′ = K(β) be extensions of F and K. Let a(x) ∈ F[x] be the minimal polynomial of α over F, and
b(x) ∈ K[x] the minimal polynomial of β over K. Then if b(x) = (θa)(x) the isomorphism θ: F → K
extends to an isomorphism F′ → K′ such that α 7→ β.

Proof. Assume b(x) = (θa)(x). Then the isomorphism F[x] → K[x] (given by f (x) 7→ (θ f )(x)
for all f (x) ∈ F[x]) takes the ideal I = a(x)F[x] to J = (θa)(x)K[x] = b(x)K[x]. Hence

f (x) + I 7→ (θ f )(x) + J (for all f (x) ∈ F[x])

defines an isomorphism F[x]/I → K[x]/J. But by Theorem (10.15) there is an isomorphism
F[x]/I → F(α) such that

f (x) + I 7→ f (α)

for all f (x) ∈ F[x], and an isomorphism K[x]/J → K(β) such that

g(x) + J 7→ g(β)

for all g(x) ∈ K[x]. Combining these isomorphisms gives

F′ = F(α) ∼= F[x]/I ∼= K[x]/J ∼= K(β) = K′

f (α) 7→ f (x) + I 7→ (θ f )(x) + J 7→ (θ f )(β).

That is, there is an isomorphism F′ → K′ such that f (α) 7→ (θ f )(β) for all f (x) ∈ F[x]. In
particular, applying this with f (x) = x gives α 7→ β. �
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The following diagram illustrates the situation that Theorem (13.5) deals with:

a(x) = mα,F(x) ∈ F[x] F ↪−−−−→ F′ = F(α) α

θ
...

...
↓ ↓ ↓ ↓

b(x) = mβ,K(x) ∈ K[x] K ↪−−−−→ K′ = K(β) β

Assuming that θ is an isomorphism F → K which carries the minimal polynomial of α to the
minimal polynomial of β, the conclusion of the theorem is that the broken arrows in the diagram
above can be completed so that the resulting square commutes (meaning that the two routes from
F to K′ give the same function). Moreover, the map from F′ → K′ which completes the square is
an isomorphism mapping α to β.

The horizontal arrows in the above diagram are drawn with hooks on the left hand end to
indicate that the corresponding mappings are embeddings: the point is that ↪→ resembles to some
extent a cross between an arrow and a subset sign.

Just as iteration of Theorem (13.1) gave us Corollary (13.2), so Theorem (13.5) yields, on
iteration, the following corollary, which tells us that splitting fields are essentially unique. Since
this result is also rather important, we call it a theorem rather than a corollary.

Theorem (13.6): Let θ: F → K be an isomorphism and f (x) ∈ F[x] a polynomial. Let E be
a splitting field for f (x) over F and L a splitting field for (θ f )(x) over K. Then θ extends to an
isomorphism E → L.

Proof. We use induction on [E : F], the degree of the extension. This is a finite number because,
as we observed previously, E is the extension of F generated by a finite number of algebraic ele-
ments (namely, the roots of f (x)). In the case [E : F] = 1 we have E = F, which implies that
f (x) splits into linear factors in F[x]. Hence, applying the isomorphism F[x] → K[x] induced by θ
(see Lemma (13.4)) we deduce that (θ f )(x) splits into linear factors over K. Thus L = K, and the
desired isomorphism E → L extending θ is just θ itself.

Now suppose that [E : F] > 1. Let α ∈ E be any root of f (x) which is not in F, and let
F′ = F(α). Let p(x) = mα,F(x) ∈ F[x], the minimal polynomial of α over F. Since f (α) = 0
it follows by Proposition (10.12) that p(x)

∣∣ f (x), and applying the isomorphism F[x] → K[x]
induced by θ we deduce that (θp)(x)

∣∣ (θ f )(x). Now since (θ f )(x) splits into linear factors over L
it follows that (θp)(x) also splits into linear factors over L; thus

(θp)(x) = (x − β1)(x − β2) · · · (x − βk)

for some βi ∈ L. Since p(x) is an irreducible element of F[x] (being the minimal polynomial of
an element) it follows that (θp)(x) ∈ K[x] must also be irreducible, as any nontrivial factorization
of (θp)(x) would yield (upon application of the isomorphism K[x] → F[x] induced by θ−1) a
nontrivial factorization of p(x). We deduce that (θp)(x) must be the minimal polynomial of β1
over L (by Proposition (10.14)). Now by the Isomorphism Extension Theorem, the isomorphism

θ: F → K
extends to an isomorphism

θ′: F′ = F(α) → K′ = K(β1).

We have now achieved a partial extension of θ. Diagrammatically, we have

F ↪−→ F′ ↪−−−→ E
θ ↓ θ′ ↓

K ↪−→ K′ ↪−−−→ L
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and our objective is to now extend θ′ to an isomorphism E → L. But since [E : F] = [E : F′][F′ : F]
and [F′ : F] > 1 (since α /∈ F) we see that [E : F′] < [E : F], and this enables us to use the
inductive hypothesis to complete the proof. All we need to do is check that the hypotheses of the
theorem are satisfied with F′ and K′ replacing F and K and θ′ replacing θ.

Since x −α
∣∣ f (x) in F′[x], there is a polynomial f1(x) ∈ F′[x] such that f (x) = (x −α) f1(x).

Since E = F(α1,α2, . . . ,αd) (the extension of F generated by the αi) where α1 = α, α2, . . . , αd
are the roots of f (x), and since F′ = F(α1), we see that E = F′(α2, . . . , αd) is the extension
of F′ generated by the roots of f1(x). Thus E is a splitting field for f1(x) over F′. Applying the
isomorphism F′[x] → K′[x] induced by θ′ we see that (θ f )(x) = (x − β1)(θ′ f1)(x), and reasoning
as above we deduce that L is a splitting field for (θ′ f1)(x) over K′. So the theorem hypotheses are
indeed satisfied with F′, K′, θ′, f1(x) in place of F, K, θ, f (x), and the inductive hypothesis yields
that there is an isomorphism E → L extending θ′ (and hence extending θ). �

To illustrate the above ideas, consider the polynomial x4 − 2 ∈ Q[x]. Eisenstein’s Criterion
shows that this is irreducible. Elementary calculus can be used to prove that x4 − 2 has a positive
root in R; we denote this number by α. (That is, α = 4

√
2.) Let K be the extension of Q generated

by α, so that
K = Q(α) = { a + bα + cα2 + dα3 | a, b, c, d ∈ Q },

a degree 4 extension of Q. Observe that K is not a splitting field for x4 − 2; indeed, x4 − 2 has only
two roots in K, and in K[x] the factorization of x4 − 2 into irreducibles is

x4 − 2 = (x −α)(x +α)(x2 +α2).

To obtain a splitting field we would have to make a further degree 2 extension to split the irreducible
quadratic factor x2 +α2 into factors of degree 1. In other words, we would have to adjoin a root of
x2 +α2 to K.

Considering K as a subfield of the complex field C = R(i), put L = K(iα). (Observe that this
equals K(i), sinceα ∈ K.) Then L is a degree 2 extension of K, and hence a degree 8 extension of Q.
Observe that x4 − 2 is the minimal polynomial of α over Q (by Proposition (10.14)) and also the
minimal polynomial of −α over Q. Hence The Isomorphism Extension Theorem can be applied to
the identity isomorphism Q → Q, observing that the induced isomorphism Q[x] → Q[x] carries the
minimal polynomial ofα to the minimal polynomial of−α, to conclude that there is an isomorphism
φ: Q(α) → Q(−α) which takes α to −α and acts as the identity on Q. (It is worthwhile, at this
point, to look carefully back at the steps that have led us to this conclusion, just to make certain
that we have not cheated.) Since −α ∈ Q(α), it is clear that in fact Q(−α) = Q(α) = K.

What we have shown above is really not very surprising. The isomorphism φ: K → K satisfies
φα = −α, and it follows that

φ(α2) = (φα)(φα) = (−α)(−α) = α2,
and similarly

φ(α3) = (φα)(φ(α2)) = (−α)(α2) = −α3.

Since also φa = a for all a ∈ Q we conclude that the action of φ on a general element of K is given
by

a + bα + cα2 + dα3 φ7−→ a − bα + cα2 − dα3 (21)

(where a, b, c, d ∈ Q). This is somewhat similar to the isomorphism C → C given by complex
conjugation: the mapping from C to itself defined by

a + bi 7→ a − bi (for all a, b ∈ R)
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is well known to be bijective and to preserve addition and multiplication. Philosophically, the idea
is that from the point of view of the real numbers, −i is just as good a square root of −1 as i is,
so that swapping the two should not change anything much. Similarly, from the point of view of
the rational numbers one root of x4 − 2 should be as good as any other, and consequently there
should be an isomorphism which fixes Q and takes any given root of x4 − 2 to any other given
root of x4 − 2. One can also check directly, by a routine calculation, that Eq.(21) does define an
isomorphism K → K.

There is more to be said yet in this situation, since x4 − 2 has two other roots in L that we
have not considered yet, namely, iα and −iα. Since x4 − 2 is irreducible in Q[x] it must be the
minimal polynomial over Q for iα and for −iα. Since the identity isomorphism Q → Q takes the
minimal polynomial of α to the minimal polynomial of iα it can be extended to an isomorphism
Q(α) → Q(iα) such that α 7→ iα. And likewise, since the identity isomorphism Q → Q takes the
minimal polynomial of α to the minimal polynomial of −iα it can be extended to an isomorphism
Q(α) → Q(iα) such thatα 7→ −iα. Note that Q(iα) and Q(−iα), are not equal to K, although they
are equal to each other. We denote this subfield of L by K′.

We can now identify four different isomorphisms from K to subfields of L, as follows:

(i) φ1: K → K such that α 7→ α,

(ii) φ2: K → K such that α 7→ −α,

(iii) φ3: K → K′ such that α 7→ iα,

(iv) φ4: K → K′ such that α 7→ −iα.

(Of course, φ1 is simply the identity isomorphism.) We can now use the Isomorphism Extension
Theorem again to show that each of these isomorphisms has two extensions to isomorphism L → L.
For example, consider the isomorphism φ4: K → K′. For the general element of of K we find that

a + bα + cα2 + dα3 φ47−→ a − biα − cα2 + diα3, (22)

and in particular the induced isomorphism K[x] → K′[x] takes x2 +1 to x2 +1. That is, it takes the
minimal polynomial of i over K to the minimal polynomial of i over K′. Consequently there is an
isomorphism from K(i) to K′(i) which extendsφ4 and takes i to i. Similarly, since we can also regard
x2+1 as the minimal polynomial of −i over K′, there is also an isomorphism K(i) → K′(−i) = K′(i)
extending φ4 and taking i to −i. It is easily checked that K(i) and K′(i) are both equal to L.

Exactly similar reasoning applies to φ1, φ2 and φ3. The upshot is that we find eight different
isomorphisms from L to L which extend the identity isomorphism from Q to Q:

(i) ψ1:α 7→ α, i 7→ i.

(ii) ψ2:α 7→ α, i 7→ −i.

(iii) ψ3:α 7→ iα, i 7→ i.

(iv) ψ4:α 7→ iα, i 7→ −i.

(v) ψ5:α 7→ −α, i 7→ i.

(vi) ψ6:α 7→ −α, i 7→ −i.

(vii) ψ7:α 7→ −iα, i 7→ i.

(viii) ψ8:α 7→ −iα, i 7→ −i.

These eight are in fact the only isomorphisms L → L, and it is no coincidence that eight is also
equal to [L : Q], the degree of the extension. However, it is convenient to temporarily postpone
further investigation of this, since we have not yet introduced all the relevant concepts.
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Definition (13.7): (i) An injective homomorphism is called a monomorphism.
(ii) An isomorphism from a field to itself is called an automorphism of the field.

(iii) If F is a subfield of E then an automorphism φ of E is called an F-automorphism of E if φt = t
for all t ∈ F. Similarly, if L is another field containing F as a subfield then a monomorphism
φ: E → L is called an F-monomorphism if φt = t for all t ∈ F.

We use the notation AutF(E) for the set of all F-automorphisms of E. An F-automorphism of
E is a symmetry of E, in the sense that it is a bijective transformation which preserves the essential
structure of E as an extension field of F. In accordance with our general remarks at the beginning
of the section on symmetry above, AutF(E) should be a group under the operation of composition
of maps. And indeed it is easy to check the truth of this. If φ, ψ ∈ AutF(E) then φψ is certainly
an automorphism of E (since the composite of two isomorphisms is an isomorphism), and for all
t ∈ E we have (φψ)t = φ(ψt) = φt = t, whence φψ ∈ AutF(E). Hence composition does define
an operation on AutF(E). Checking that the group axioms are satisfied is straightforward.

Suppose, for example, thatφ is an R-automorphism of C. Then (φi)2 = φ(i2) = φ(−1) = −1,
since φ preserves multiplication and fixes elements of R. So φi = ±i. Furthermore, for all a, b ∈ R
we have that

φ(a + bi) = (φa) + (φb)(φi) = a + b(φi),

and soφ is either the identity (a+bi 7→ a+bi for all a, b ∈ R) or complex conjugation (a+bi 7→ a−bi
for all a, b ∈ R). We conclude that the group AutC(R) has order 2.

Note that all the elements of AutR(C) have the property that they permute the roots i, −i of
the polynomial x2 + 1. This is an instance of the following general result.

Proposition (13.8): Suppose that F and E are fields, with E an extension of F, and letα ∈ AutF(E).
Let p(x) ∈ F[x] be arbitrary, and let S = { t ∈ E | p(t) = 0 }, the set of roots of p(x) in E. Then
αt ∈ S whenever t ∈ S, and, moreover, the map S → S given by t 7→ αt (for all t ∈ S) is a permutation
of S.

Proof. Let p(x) = a0+a1x+· · ·+adxd and let t ∈ S. Sinceα preserves addition and multiplication,
and αa = a for all a ∈ F, we have

0 = α0 = α(p(t)) = α(a0 + a1t + · · ·+ adtd) = αa0 + (αa1)(αt) + · · ·+ (αad)(αt)d

= a0 + a1(αt) + · · ·+ ad(αt)d = p(αt),

so that αt ∈ S. Since α is injective and S is a finite set it follows that t 7→ αt is a permutation of S,
as required. �

The principal theme of Galois theory is that each polynomial f (x) ∈ F[x] has a splitting field E,
which is an essentially uniquely determined extension of the field F, and from this extension we
obtain the group AutF(E). The Main Theorem of Galois Theory states (amongst other things) that
there is a one to one correspondence between the subgroups of AutF(E) and the subfields of E
that contain F. Information about the group—in particular, information about its subgroups—then
yields information about the equation f (x) = 0.

Proposition (13.8) above enables us to regard AutF(E) as a group of permutations.

Proposition (13.9): Assume that E be a splitting field for the polynomial f (x) ∈ F[x], and let
f (x) = (x − t1)n1(x − t2)n2 · · · (x − td)nd , where the ni are positive integers and the ti are distinct
elements of E. Each α ∈ AutF(E) yields a permutation σ = σα ∈ Sd such that αti = tσ i. Furthermore,
the mapping AutF(E) → Sd given byα → σα is an injective homomorphism (permitting AutF(E) to be
identified with a subgroup of Sd.
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Proof. We have already seen in Proposition (13.8) that if α ∈ AutF(E) then ti 7→ αti is a per-
mutation of {t1, t2, . . . , td}. The obvious one to one correspondence between {t1, t2, . . . , td} and
{1, 2, . . . , d} permits us to convert this into a permutation of {1, 2, . . . , d}; that is, an element of Sd.
Specifically, the permutation σ ∈ Sd that we get maps i to j whenever α takes ti to t j. That is,
αti = tσ i.

Let f : AutF(E) → Sd be defined by fα = σ , where αti = tσ i for all i ∈ {1, 2, . . . , d}. That is, in
the notation used in the proposition statement above, fα = σα.

Let us show firstly that f (αβ) = ( fα)( fβ) for all α, β ∈ AutF(E). Given α and β, let σ = fα
and τ = fβ. Then αti = tσ i and βt j = tτ j for all i and j. So for all j,

(αβ)t j = α(βt j) = α(tτ j) = tσ(τ j) = t(στ) j,

which shows that f (αβ) = στ = ( fα)( fβ), as required. Thus f is a homomorphism from AutF(E)
to Sd.

It remains to show that f is injective. The key to this is the observation that E is the extension
of F generated by t1, t2, . . . , td (since E is a splitting field for f (x) over F), and hence all elements
of E can be expressed in terms of the ti. This means that an automorphism of E is completely
determined by its effect on the roots ti. To make this more precise, let E0 = F and then define Ei
recursively for i > 0 by Ei = Ei−1(ti), so that E = Ed. For all i ∈ {1, 2, . . . , d} each element a ∈ Ei
can be expressed in the form a0 + a1ti + a2t2

i + · · · + amtm
i for some integer m and some elements

a j ∈ Ei−1. It follows readily that every element of Ed can be expressed as a sum of terms of the
form

ctn1
1 tn2

2 · · · tnd
d

where n1, n2, . . . , nd are nonnegative integers and c ∈ F. Now suppose that α, β ∈ AutF(E) are
such that fα = fβ. Then for each i we have αti = tσ i = βti, where σ = fα = fβ. Furthermore,
αc = c = βc for all c ∈ F, since α and β are F-automorphisms. Hence

α(ctn1
1 tn2

2 · · · tnd
d ) = (αc)(αt1)n1(αt2)n2 · · · (αtd)nd

= (βc)(βt1)n1(βt2)n2 · · · (βtd)nd = β(ctn1
1 tn2

2 · · · tnd
d )

for all choices of the element c ∈ F and the nonnegative integers ni. Now for an arbitrary a ∈ E we
can find a finite collection of elements u1, u2, . . . , uk such that a = u1 + u2 + · · ·+ uk and each ui
is expressible in the form ctn1

1 tn2
2 · · · tnd

d , and it follows that

αa = α(u1 + u2 + · · ·+ uk) = αu1 +αu2 + · · ·+αuk

= βu1 + βu2 + · · ·+ βuk = β(u1 + u2 + · · ·+ uk) = βa,

and hence α = β. Thus f is injective, as required. �

Let us relate this result to the example we considered above. The polynomial x4 − 2 ∈ Q[x]
has four roots in C, namely t1 = α, t2 = iα, t3 = −α and t4 = −iα, where α = 4

√
2. Let

L = Q(t1, t2, t3, t4), the extension of Q generated by these roots. Then L is a splitting field for
x4−2 over Q, and by Proposition (13.9) we can identify each element of the group AutQ(L) with a
permutation in S4. Recall that we found eight Q-automorphisms of L, which we labelled ψ1 to ψ8.
It is straightforward to determine the corresponding permutations. For example, since ψ3α = iα
and ψ3i = i we find that

ψ3(iα) = (ψ3i)(ψ3α) = i(iα) = −α,
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and thus ψ3(−α) = −iα and ψ3(−iα) = α. In other words, we have

ψ3t1 = t2, ψ3t2 = t3, ψ3t3 = t4, ψ3t4 = t1,

and thus psi3 corresponds to the permutation (1, 2, 3, 4) ∈ S4. Carrying this kind of analysis out
for the other ψi, we find that

ψ1 = identity

ψ5 = (1, 3)(2, 4)

ψ2 = (2, 4)

ψ6 = (1, 3)

ψ3 = (1, 2, 3, 4)

ψ7 = (1, 4, 2, 3)

ψ4 = (1, 2)(3, 4)

ψ8 = (1, 4)(2, 3).

It is perhaps dubious to say that the automorphismsφ j are actually equal to the corresponding per-
mutations, but the permutations do at least determine the corresponding automorphisms uniquely,
and in practice it is often convenient to think of an automorphism of the splitting field as a permu-
tation of the roots. But beware that there may be permutations which do not give rise to automor-
phisms. For example, the permutation (1, 2, 3) does not correspond to any Q-automorphism of L.
This is easily seen, for if there were such an automorphism ψ then it would satisfy ψt1 = t2 and
ψt3 = t1, which is impossible since ψt3 = ψ(−t1) = −ψt1 = −t2, which is not equal to t1.

In fact, it is easily seen that the above eight permutations in S4 are the only ones that yield
automorphisms of L. If ψ ∈ AutQ(L) is arbitrary, then we must have ψt1 = t j for some j, for which
there are four possible choices. Since t3 = −t1 it follows that ψt3 = −ψt1 = −t j. Of course, −t j is
some tk, but the main point is that once ψt1 is chosen then ψt3 is also fixed. There remain only two
possible choices for ψt2, and once that choice is made then ψt4 will also be determined. So there
can be at most 4× 2 = 8 possibilities altogether, and hence the eight we found are the only ones.

Returning to theoretical matters, the next proposition explains the correspondence we men-
tioned earlier between subgroups of AutF(E) and fields K such that F ⊆ K ⊆ E.

Proposition (13.10): Let E be a field and F a subfield of E, and let G be the group AutF(E).
(i) For each subgroup H of G the set

Fix(H) = { t ∈ E | αt = t for all α ∈ H }

is a subfield of E such that F ⊆ K ⊆ E.
(ii) For each subfield K of E with F ⊆ K ⊆ E the set

AutK(E) = {α ∈ G | αt = t for all t ∈ K }

is a subgroup of G.

This is a relatively straightforward application of Theorems (5.9) and (12.3), and we leave
most of the details to the reader. The main task is to check that various closure properties are
satisfied. For example, in Part (i) it is necessary to check that Fix(H) is closed under addition. So
suppose that t, u ∈ Fix(H). Then αt = t and αu = u for all α ∈ Fix(H), and so for all α ∈ Fix(H)
we have

α(t + u) = αt +αu = t + u

and it follows that t + u ∈ Fix(H), as required.
Proposition (13.10) gives us functions from the set of subgroups of G to the set of intermediate

fields (fields lying between E and F) and vice versa. Ideally, these functions would be inverse to
each other. This is not in fact always true, but we shall see that it is true when certain very
reasonable extra hypotheses are assumed.
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A slightly complicating feature of the correspondence between subgroups and intermediate
fields is that it is inclusion reversing. If H and K are subgroups of G with H ≤ K then the reverse
inclusion holds for their fixed fields: Fix(K) ⊆ Fix(H). Similarly, if H and K are intermediate
fields with H ⊆ K then AutK(E) ≤ AutH(E). These facts are both immediate from the respective
definitions. Note also that if K is any intermediate fields then K ⊆ Fix(AutK(E)) (for this simply
says that elements of K are fixed by K-automorphisms of E), and if H is any subgroup of G then
H ≤ AutFix(H)(E) (which says that elements of H are automorphisms of E which fix all the elements
of the fixed field of H).

Definition (13.11): An irreducible polynomial f (x) ∈ F[x] is said to be separable if there is no
extension field E of F in which f (x) has a repeated root.

Irreducible polynomials that are not separable are harder to analyse than those that are, and
hence we intend to restrict our discussion to the separable case. Fortunately, inseparability is a
relatively rare phenomenon, and in particular it cannot occur when F has characteristic zero. We
shall be quite content to consider only the case F = Q.

Let us sketch briefly the proof that inseparability can only occur in nonzero characteristic.
Suppose that f (x) = ∑

d
i=0 aixi ∈ F[x] is a monic irreducible polynomial, and that E is an extension

of F over which f (x) has a factorization f (x) = (x − t)2g(x) for some g(x) ∈ E[x] and t ∈ E.
Note that f (x) is the minimal polynomial of t over F. But if we define the formal derivative f ′(x)
of f (x) by the usual formula, f ′(x) = ∑

d
i=1 iaixi−1, and define g′(x) similarly, then by a direct

calculation of both sides we can prove that f ′(x) = (x − t)((x − t)g′(x) + 2g(x), and we conclude
that f ′(t) = 0. This appears to contradict the fact that f (x) is the minimal polynomial of t over F,
since f ′(x) ∈ F[x] and deg( f ′(x)) < deg( f (x)). There is, however, a circumstance in which this
contradiction is avoided. If the polynomial f ′(x) is the zero polynomial then f ′(t) = 0 does not
contradict the fact that f (x) is the minimal polynomial of t. But how can f ′(x) be zero? After
all, f (x) is a polynomial of degree at least 1, and every student of calculus knows that the only
polynomial whose derivative is zero are the constants. This familiar fact from calculus does not
remain true for polynomials over fields of nonzero characteristic. In characteristic zero it is true: if
f (x) has degree d and leading coefficient ad then f ′(x) has degree d−1 and leading coefficient dad,
since dad 6= 0. But if the characteristic of F is nonzero and a divisor of d then dad = 0 in F;
moreover, it is possible for all the terms in the derivative of f (x) to disappear in a similar fashion.
For example, working over the field Z7 we find that the derivative of the polynomial x14 − 3x7 + 2
is zero.

It is natural to also apply the term “separable” to elements and to field extensions, in accor-
dance with the following definition.

Definition (13.12): If E is an algebraic extension of F then an element α ∈ E is said to be
separable over F if its minimal polynomial over F is separable. The extension is said to be separable
if every element of E is separable over F.

From now on we shall concern ourselves only with subfields of the complex field C, so that all
fields under discussion will have characteristic 0. As we have seen, this ensures that all extensions
are separable. Only minor modifications to the proofs would be required to deal with arbitrary
fields of characteristic 0.

One useful feature of the complex field is that every polynomial in C[x] splits into linear factors
in C[x]. This is the famous “Fundamental Theorem of Algebra”. Most proofs make use of complex
analysis; a particularly simple one, given by R. P. Boas (“Yet another proof of the Fundamental
Theorem of Algebra”, American Mathematical Monthly no. 71, p. 180 (1964)) goes as follows.
Suppose, for a contradiction, that f (x) ∈ C[x] has positive degree and satisfies f (z) 6= 0 for all
z ∈ C. For each z ∈ C let z be the complex conjugate of z, and let f (x) be the polynomial obtained
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from f (x) by replacing the coefficients by their complex conjugates. If we put g(x) = f (x) f (x),
then it is an easy calculation to check that the coefficients of f (x) f (x) are all self-conjugate, so that
g(x) ∈ R[x]. In particular, g(t) ∈ R for all t ∈ R. Furthermore, for each z ∈ C,

g(z) = f (z) f (z) = f (z) f (z) 6= 0

since f (z) and f (z) are both nonzero. It follows that

∫ 2π

0

dθ
g(2 cos(θ))

6= 0,

since g(2 cos(θ)) can never change sign.
Write g(x) = a0 + a1x + · · ·+ anxn, where an 6= 0, and define

h(x) = xng(x + x−1) = a0xn + a1xn(x + x−1) + · · ·+ anxn(x + x−1)n.

Observe that the negative powers of x cancel out, so that h(x) is a polynomial. Moreover, the
constant term of h(x) is an. Since g(z + z−1) 6= 0 for all nonzero z ∈ C, and h(0) = an 6= 0, we see
that 1/h(z) is analytic in all of C. So we have

∫ 2π

0

dθ
g(2 cos(θ))

=
1
i

∫
|z|=1

dz
zg(z + z−1)

=
1
i

∫
|z|=1

zn−1dz
h(z)

= 0,

where the last equality is by Cauchy’s Integral Theorem. So we have a contradiction. This shows
that every f (x) ∈ C[x] with deg( f (x)) > 0 has a root in C, and hence a factorization (x −α) f1(x)
for some α ∈ C and some f1(x) ∈ C[x] of degree deg( f (x)) − 1. Repeating the argument with
f1(x) in place of f (x), and continuing in this way, yields an expression for f (x) as a product of
linear factors.

Recall that in our investigation of Q-automorphisms of the splitting field of x4 − 2 over Q
we discovered that the number of Q-automorphisms equals the degree of the extension. Our next
objective is to prove a general result of this kind.

Proposition (13.13): Let F ⊆ E ⊆ C with [E : F] finite. Then the number of F-monomorphisms
E → C is exactly [E : F]. More generally, if θ: F → F′ is an isomorphism, where F′ is also a subfield
of C, then there are exactly [E : F] monomorphisms E → C extending θ.

Proof. Observe that the first assertion follows from the second by taking θ to be the identity. We
prove the second assertion by induction on [E : F], observing that the result is trivial if [E : F] = 1
(since E = F implies that the only map E → C extending θ is θ itself.

Suppose now that [E : F] > 1, and choose a field H with F ⊆ H ( E and [E : H] as small
as possible. If t be any element of E that is not in H then H ( H(t) ⊆ E, and since this gives
[E : H] = [E : H(t)][H(t) : H] and [H(t) : H] > 1 we deduce that [E : H(t)] < [E : H]. In view
of the way H was chosen, this forces H(t) = E. Furthermore, since [H : F] < [E : F] the inductive
hypothesis tells us that the number of monomorphisms H → C extending θ is precisely [H : F].

Let φ be any one of the monomorphisms H → C which extends θ, and let K be the image
of φ. Thus u 7→ φu is an isomorphism H → K extending θ. Let p(x) ∈ H[x] be the minimal
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polynomial of t over H, and let q(x) = (φp)(x) ∈ K[x]. Then p(x) is irreducible in H[x] (by
Theorem (10.11)) and so q(x) is irreducible in K[x] (since the map H[x] → K[x] induced by φ
is an isomorphism). Furthermore, by Proposition (10.19), deg(p(x)) = [H(t) : H] = [E : H].
By the Fundamental Theorem of Algebra combined with the fact that q(x) is separable we know
that q(x) has d distinct roots t1, t2, . . . , td in C, where d = deg(q(x)) = deg(p(x)) = [E : H]. By
the Isomorphism Extension Theorem (13.5), for each i ∈ {1, 2, . . . , d} the isomorphism φ: H → K
extends to an isomorphism E = H(t) → K(ti) such that t 7→ ti. Since K(ti) is a subfield of C an
isomorphism E → K(ti) can be regarded as a monomorphism E → C. Thus we have constructed
d monomorphisms E → C extending the given monomorphism φ: H → C. We know that the
monomorphisms we have constructed are all distinct from each other: they are distinguished by
their effect on the element t since the elements t1, t2, . . . , td are all distinct from each other.

There are [H : F] distinct monomorphisms φ: H → C extending θ, and each of them extends
in d distinct ways to a monomorphism E → C. Note that extensions of distinct mappings are
still distinct; so we have definitely obtained d[H : F] = [E : H][H : F] = [E : F] distinct
monomorphisms E → C extending θ. It remains to prove that these are the only monomorphisms
E → C extending θ. But ifψ: E → C is an arbitrary monomorphism extending θ then the restriction
of ψ to H is an monomorphism H → C extending θ, which by the inductive hypothesis must be
one of the [H : F] monomorphisms φ considered in our calculations. Writing q(x) = (φp)(x) as
above, and noting that (φp)(x) is the same as (ψp)(x), we see that q(ψt) = ψ(p(t)) = ψ0 = 0.
Hence ψt = ti for some i. So ψ is an extension of φ such that t 7→ ti. On such mapping is included
among the [E : F] monomorphisms that we counted above; so to prove that ψ is one of the maps
we have counted it remains to prove that the extension ψ of φ satisfying ψt = ti is unique. But
every element u ∈ E can be expressed in the form u = a0 + a1t + · · · + aktk for some nonnegative
integer k and some elements a j ∈ H, and thus

ψu = ψa0 + (ψa1)(ψt) + · · ·+ (ψak)(ψt)k = φa0 + (φa1)ti + · · ·+ (φak)(ti)
d

is uniquely determined by the conditions that ψ extends φ and takes t to ti, as required. �

As we have seen, if L ⊆ C is the splitting field for x4 − 2 over Q then [L : Q] = 8, and
so Proposition (13.13) says that there are exactly eight Q-monomorphisms L → C. However, we
discovered that in fact these eight monomorphisms all map L to itself, and are therefore, in effect,
Q-automorphisms of L. In contrast, we also saw that if α = 4

√
2 then the four Q-monomorphisms

Q(α) → C do not all map Q(α) to itself.

Definition (13.14): Let F and E be subfields of C with E an extension of F. We say that E is a
normal extension of F if φE = E for every F-monomorphism E → C.

It is fairly easy to see that splitting field have to be normal extensions. For suppose that
f (x) = a0 + a1x + · · · + adxd ∈ F[x] and let E ⊆ C be the splitting field of f (x) over F. That
is, E = F(t1, t2, . . . , tk) (the extension of F generated by t1, t2, . . . , tk), where t1, t2, . . . , tk are the
distinct roots of f (x) in C. Now ifφ: E → C is a F-monomorphism we have for all i from 1 to k that

0 = φ0 = φ(a0+a1ti+· · ·+aktk) = φa0+(φa1)(φti)+· · ·+(φak)(φti)
k = a0+a1(φti)+· · ·+ak(φti)

k,

whenceφti = t j for some j. Sinceφ is injective it follows thatφ permutes the set t1, t2, . . . , tk, and
hence

φE = φ(F(t1, . . . , tk)) = (φF)(φt1, . . . ,φtk) = F(t1, . . . , tk) = E,

and this shows, as required, that all F-monomorphisms E → C take E to itself.

92



The following proposition gives an alternative characterization of normality, which we could
have used as the definition.

Proposition (13.15): An finite extension E of the field F is normal if and only if every irreducible
f (x) ∈ F[x] that has a root in E splits into linear factors over E.

Proof. Suppose that E is a normal extension of F, and let f (x) ∈ F[x] be an irreducible polynomial
with a root t ∈ E. Let t′ ∈ C be any other root of f (x). By the Isomorphism Extension Theorem
there is an F-monomorphism F(t) → C taking t to t′. Furthermore, by Proposition (13.13) any
such mapping extends to an F-monomorphism θ: E → C, and it follows that t′ = θt ∈ θE = E,
since E is a normal extension of F. So E contains all the roots of f (x) in C, and hence f (x) splits
over E.

Suppose, conversely, that E is a finite extension of F having the property that every irre-
ducible f (x) ∈ F[x] with a root in E splits over E. We show that if θ: E → C is an arbitrary
F-monomorphism and t ∈ E is arbitrary then θt ∈ E. Indeed, suppose that f (x) ∈ F[x] is the
minimal polynomial of t over F. Then f (t) = 0, and applying the homomorphism θ it follows that
(θ f )(θt) = 0. But (θ f )(x) = f (x) since θ fixes all elements of F. So θt is a root of f (x). But
since f (x) splits over E it follows that E contains all the roots of f (x), and so θt ∈ E. Since t was
an arbitrary element of E we conclude that θE ⊆ E. But [θE : F] = [E : F] is finite, and thus
[E : θE] = 1. So θE = E, and we have shown, as required, that every F-monomorphism E → C
fixes E. �

Definition (13.16): Let E be a field and F a subfield of E. We say that E is a Galois extension of F
if it is a finite, normal separable extension of F. Under these circumstances the group AutF(E) is
called the Galois group of the extension, and it is denoted by Gal(E : F).

We need one further preliminary result before we can prove the Main Theorem of Galois
Theory.

Proposition (13.17): Let E be a finite extension of F and let G be any subgroup of AutF(E). Then
|G| ≥ [E : Fix(G)].

Proof. Let K = Fix(G), and suppose, for a contradiction, that |G| = n < [E : K]. Then we
may choose n + 1 elements, t1, t2, . . . , tn+1 in E which are linearly independent over K. Write the
elements of G as g1, g2, . . . , gn, where g1 = iG. Now

g1t1
g2t1

...
gnt1

 ,


g1t2
g2t2

...
gnt2

 , . . . ,


g1tn+1
g2tn+1

...
gntn+1

 ,

are n + 1 vectors in the n-dimensional space En, and so they must be linearly dependent. Thus we
can find s1, s2, . . . , sn+1 ∈ E which are not all zero and which satisfy

s1


g1t1
g2t1

...
gnt1

+ s2


g1t2
g2t2

...
gnt2

+ · · ·+ sn+1


g1tn+1
g2tn+1

...
gn+1tn+1

 =


0
0
...
0

 . (23)

Amongst all possible choices for coefficients s1, s2, . . . , sn+1 satisfying Eq.(23), with at least one of
the si being nonzero, let us choose one for which the number of nonzero si is as small as possible.
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Observe that the lth component of the above vector equation is

s1(glt1) + s2(glt2) + · · ·+ sn+1(gltn+1) = 0. (24)

If g ∈ G is arbitrary, then applying g to this gives

(gs1)(gglt1) + (gs2)(gglt2) + · · ·+ (gsn+1)(ggltn+1) = 0 (25)

(where we have used the fact that g preserves addition and multiplication and takes 0 to 0). Here
gl is any element of G; so for a given g ∈ G, Eq.(25) remains valid if gl is replaced by any element
of G. In particular, for each j ∈ {1, 2, . . . , n} Eq.(25) holds with gl replaced by g−1g j. Thus

(gs1)(g jt1) + (gs2)(g jt2) + · · ·+ (gsn+1)(g jtn+1) = 0 (26)

holds for all j. Now choose k ∈ {1, 2, . . . , n + 1} such that sk 6= 0, and multiply both sides of
Eq.(24) gsk. Replacing l by j this gives

(gsk)s1(g jt1) + (gsk)s2(g jt2) + · · ·+ (gsk)sn+1(g jtn+1) = 0. (27)

Multiplying Eq.(26) through by sk gives

sk(gs1)(g jt1) + sk(gs2)(g jt2) + · · ·+ sk(gsn+1)(g jtn+1) = 0, (28)

and subtracting Eq.(28) from Eq.(27) gives

((gsk)s1 − sk(gs1))(g jt1) + ((gsk)s2 − sk(gs2))(g jt2) + · · ·+ ((gsk)sn+1 − sk(gsn+1))(g jtn+1) = 0.

Writing s′i = (gsk)si − sk(gsi) for each i, this is the jth component of the vector equation

s′1


g1t1
g2t1

...
gnt1

+ s′2


g1t2
g2t2

...
gnt2

+ · · ·+ s′n+1


g1tn+1
g2tn+1

...
gn+1tn+1

 =


0
0
...
0

 .

Note that if si = 0 then gsi = 0 and so s′i = 0; moreover, s′k = (gsk)sk − sk(gsk) = 0, while sk 6= 0
by our choice of k. So the number of i such that s′i is nonzero is strictly less than the number of i
such that si is nonzero. This forces all the s′i to be zero, since the alternative would contradict our
original choice of the coefficients si. Thus

(gsk)si = sk(gsi)

for all i, and whenever si 6= 0 this can be rewritten as

sis
−1
k = g(sis

−1
k ).

But g ∈ G was arbitrary, and so we conclude that sis−1
k ∈ Fix(G) for each i such that si 6= 0. Writing

ci = sis−1
k we have ci ∈ Fix(G) for each i, and multiplying Eq.(24) through by s−1

k we obtain

c1(glt1) + c2(glt2) + · · ·+ cn+1(gltn+1) = 0
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where the ci are elements of Fix(G) which are not all zero. So glt1, glt2, . . . , gltn+1 are linearly
dependent over Fix(G). In particular, taking l = 1, so that gl is the identity, this says that
t1, t2, . . . , tn+1 are linearly dependent over Fix(G), contrary to our original choice of these ele-
ments. This final contradiction shows that the assumption that |G| < [E : K] is unsustainable; that
is, |G| ≥ [E : K]. �

Our next result is known as the Main Theorem of Galois Theory.

Theorem (13.18): Let E be a Galois extension of F and let G = Gal(E : F). Let S be the set of
all subgroups of G and T the set of all subfields K of E such that F ⊆ K ⊆ E. Then then function
Fix: S → T which takes each H ≤ G to its fixed field Fix(H) = { t ∈ E | gt = t for all g ∈ H }
is a bijection, and the inverse bijection T → S is given by K 7→ Gal(E : K) (for each intermediate
field K). Furthermore, a subgroup H of G is normal if and only if the corresponding field K = Fix(H)
is a normal extension of F, and in this situation Gal(K : F) is isomorphic to the quotient group
Gal(E : F)/Gal(E : K).

Proof. Recall first that Gal(E : K) = AutK(E), which is a subgroup of Gal(E : F) = AutF(E), since
every K-automorphism of E is certainly also an F-automorphism of E.

To show that H 7→ Fix(H) and K 7→ AutK(E) are mutually inverse bijections it suffices to show
that K = Fix(AutK(E)) for each field K with F ⊆ K ⊆ E and H = AutFix(H)(E) for each subgroup
H of G.

Let K be an arbitrary subfield of E containing F, and let K = AutK(E). Let K′ = Fix(K).
Our aim is to prove that K = K′. It is clear that K ⊆ K′, because every element of K is fixed by
every K-automorphism (and K′ is by definition the set of points fixed by every K-automorphism).
Now K ⊆ K′ implies that every K′-automorphism of E is also a K-automorphism of E; that is,
AutK′(E) ⊆ AutK(E). But, by the definition of K′, every element of K is a K′-automorphism of E.
So AutK(E) ⊆ AutK′(E), and thus AutK(E) = AutK′(E).

Since E is a normal extension of F we know that every F-monomorphism E → C fixes E.
Every K-monomorphisms is an F-monomorphism, since F ⊆ K, and the same applies to K′-
monomorphisms. So the number of K-monomorphisms E → C equals |AutK(E)|, and the number
of K′-monomorphisms E → C equals |AutK′(E)|. But by Proposition (13.13) these numbers are also
equal to [E : K] and [E : K′] respectively. As AutK(E) = AutK′(E), it follows that [E : K] = [E : K′],
and combined with K ⊆ K′ this yields K = K′, as required.

Now let H be an arbitrary subgroup of G, and let H = Fix(H). Let H′ = AutH(E). We aim to
prove that H = H′. It is clear that H ⊆ H′, since every automorphism in H fixes all the points of H
(and H′ is by definition the set of all automorphisms that fix every point of H. Now H ⊆ H′ implies
that anything fixed by all elements of H′ is fixed by all elements of H; that is Fix(H′) ⊆ Fix(H).
But, by the definition of H′, every element of H is a fixed point of H′. So Fix(H) ⊆ Fix(H′), and
thus Fix(H′) = Fix(H).

Since AutH(E) equals the number of H-monomorphisms E → C, Proposition (13.13) yields
|H′| = |AutH(E)| = [E : H]. But Proposition (13.17) tells us that |H| ≥ [E : H]. So |H| ≥ |H′|,
and combined with H ⊆ H′ this yields H ⊆ H′, as required.

Let us now show that normal subgroups of G correspond to intermediate fields that are normal
extensions of F. Suppose that H is a normal subgroup of G, and let H = Fix(H). Suppose
that θ: H → C is an F-monomorphism, and let H′ = θH. By Proposition (13.13) there is an F-
monomorphism E → C extending θ, and any such monomorphism must take E to itself since E is a
normal extension of F. So there is a φ ∈ G whose restriction to H coincides with θ. Now let t ∈ H′

and ψ ∈ H be arbitrary. Since H′ = θH = φH there exists u ∈ H with φu = t. Since H is normal
in G and ψ ∈ H it follows that φ−1ψφ ∈ H. Since u ∈ H = Fix(H) it follows that (φ−1ψφ)u = u,
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and thus
ψt = ψ(φu) = (φφ−1)(ψ(φu)) = φ((φ−1ψφ)u) = φu = t.

Since ψ was an arbitrary element of H, this shows that t ∈ Fix(H). Hence H′ ⊆ H, and since
[H′ : E] = [H : E] we deduce that H′ = H. We have shown that an arbitrary F-monomorphism
θ: H → C maps H to itself; that is, H is a normal extension of F.

Suppose, on the other hand, that K is a normal extension of F, and let H = Gal(E : K). We
must show that H is normal in G, and also that Gal(K : F) is isomorphic to Gal(E : F)/Gal(E : K).
For each φ ∈ Gal(E : F) = AutF(E) let fφ: K → φK be the restriction of φ. Observe that since
K is a normal extension of F we must have φK = K in all cases, and so φ 7→ fφ defines a map
f : Gal(E : F) → AutF(K) = Gal(K : F). It is clear that this map is a group homomorphism,
and it is surjective since by Proposition (13.13) every F-automorphism of K can be extended to
an F-automorphism of E (since any F-monomorphism E → C must map E to itself, and hence
correspond to an F-automorphism of E, since E is a normal extension of F). The kernel of f is the
set of all F-automorphisms of E whose restriction to K is the identity; that is, the kernel of f is
AutK(E) = Gal(E : K). The First Isomorphism Theorem for groups (Theorem (12.17)) now tells us
that Gal(E : K) is normal in Gal(E : F), and that Gal(K : F) is isomorphic to Gal(E : F)/Gal(E : K),
as required. �

Returning to an example we considered earlier, let L ⊆ C be the splitting field for x4 − 2
over Q. We found that G = Gal(L : Q) has eight elements ψ j, where 1 ≤ j ≤ 8, and we identified
these with permutations of the roots t1, t2, t3, t4 of x4 − 2 as follows:

ψ1 = id

ψ5 = (1, 3)(2, 4)

ψ2 = (2, 4)

ψ6 = (1, 3)

ψ3 = (1, 2, 3, 4)

ψ7 = (1, 4, 2, 3)

ψ4 = (1, 2)(3, 4)

ψ8 = (1, 4)(2, 3)

(where we have denoted the identity automorphism by id to avoid confusion with the complex
number i.) It is now not difficult to determine all the subgroups of G. Firstly, each element generates
a cyclic subgroup. This yields a subgroup of order 1, five subgroups of order 2 and a subgroup of
order 4:

H1 = {id}
H2 = {id, (2, 4)}
H3 = {id, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}
H4 = {id, (1, 2)(3, 4)}

H5 = {id, (1, 3)(2, 4)}
H6 = {id, (1, 3)}
H7 = {id, (1, 4)(2, 3)}.

Observe that (1, 2, 3, 4) and (1, 4, 3, 2) generate the same subgroup. Clearly a group of order 2 has
to be cyclic, and so G has no other subgroups of order 2. Since the order of any subgroup has to be
a divisor of |G| = 8 (by Proposition (12.13)) all other subgroups of G have order 4 or order 8. The
nonidentity elements of a noncyclic group of order 4 can only have order 2 (since if an element
had order 4 the group would be cyclic, and only the identity has order 1). So a noncyclic group of
order 4 must have the form {id, a, b, c}, where a, b and c all have order 2. Since ab cannot equal a
(since b 6= id) or b (since a 6= id) or id (since b 6= a−1 = a) it follows that ab = c, and similarly we
see also that ba = c. Looking through the elements of G for two elements a and b of order 2 such
that ab = ba, we readily discover that G has just two noncyclic subgroups of order 4:

H8 = {id, (1, 3), (2, 4), (1, 3)(2, 4)}
H9 = {id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

96



Together with H10 = G, we have now obtained all the subgroups. If we define K j = Fix(H j)
then the Main Theorem of Galois Theory tells us that the ten fields K j are all the subfields of L
containing Q.

The extension of Q generated by α = 4
√

2 (= t1) has degree 4, and 1, α, α2, α3 form a basis
for Q(α) as a vector space over Q. Since L = Q(α, i) is a degree 2 extension of Q(α) for which 1, i
is a basis, we deduce that every element of L is uniquely expressible in the form

λ1 + λ2α + λ3α
2 + λ4α

3 + λ5i + λ6iα + λ7iα2 + λ8iα3 (29)

where the coefficients λ j are elements of Q.
Recall that ψ2 fixes α and takes iα to −iα, which means that it takes i to −i. So ψ2 takes the

general element (29) of L to

λ1 + λ2α + λ3α
2 + λ4α

3 − λ5i − λ6iα − λ7iα2 − λ8iα3,

and so the element is fixed by ψ2 if and only if λ5 = λ6 = λ7 = λ8 = 0. In other words,

K2 = Fix(H2) = Fix({id,ψ2}) = Q(α).

(Observe that [E : K2] = 2 = |H2| = |AutK2
(E)|, which is as it should be!) Similarly, ψ6

takes α to −α and i to −i, and we find that the element (29) is fixed by ψ6 if and only if
λ2 = λ4 = λ5 = λ7 = 0. Thus K6 = Q(iα). Observe that α and iα are different roots of the
same polynomial x4−2 ∈ Q[x], and so the extensions K2 and K6 of Q, though distinct, are isomor-
phic to each other. These are not normal extensions of Q since there is a monomorphism K2 → C
taking K2 to K6 6= K2, and similarly there is a monomorphism taking K6 to K2 6= K6.

We can determine the fixed fields of the other subgroups in the same kind of way. The auto-
morphism ψ5 takes α to −α and fixes i; so it takes the general element (29) to

λ1 − λ2α + λ3α
2 − λ4α

3 + λ5i − λ6iα + λ7iα2 − λ8iα3.

We conclude that K5 consists of those elements such that λ2 = λ4 = λ6 = λ8 = 0. Thus
K5 = Q(i,α2), which can be seen to be the splitting field of (x2 − 2)(x2 + 1). Since this is a
normal extension of Q the group H5 = {id, (1, 3)(2, 4)} must be a normal subgroup of G. This is
easily checked. Indeed, the permutation (1, 3)(2, 4) commutes with every element of G, and so for
all φ ∈ G and ψ ∈ H5 we have that φ−1ψφ = ψ ∈ H5.

None of the other subgroups of G of order 2 are normal. For example, (1, 2)(3, 4) = ψ4 ∈ H4,
but

ψ−1
2 ψ4ψ2 = (2, 4)(1, 2)(3, 4)(2, 4) = (1, 4)(2, 3) /∈ H4.

Since ψ4 takes α to iα and iα to α, it takes i to −i and α2 to −α2. So it takes the general ele-
ment (29) to

λ1 + λ6α − λ3α
2 − λ8α

3 +−λ5i + λ2iα + λ7iα2 − λ4iα3,

and we conclude that K5 consists of all those elements such that λ3 = λ5 = 0, λ2 = λ6 and
λ4 = −λ8. So K5 = Q(γ), where γ = α+ iα. Observe that γ2 = 2iα2, and so γ4 = −8. That is, γ is
a root of the polynomial x4 + 8 ∈ Q[x]. In a similar fashion we find that ψ7 takes the element (29)
to

λ1 − λ6α − λ3α
2 + λ8α

3 +−λ5i − λ1iα + λ7iα2 + λ4iα3,

so that K7 consists of those elements of L such that λ3 = λ5 = 0, λ4 = λ8 and λ2 = −λ6. We
deduce that K7 = Q(γ′), where γ′ = α − iα is another root of the polynomial x4 − 8.
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It remains for us to determine K3, K8 and K9, the fixed fields of the subgroups of order 4. These
will all be extensions of Q of degree 2, since [E : K] = |AutK(E)| = 4 means that [K : F] = 2. Thus
each of these fields is the result of adjoining to Q a root of an appropriate quadratic polynomial, and
since a quadratic factorizes completely if it has one factor of degree 1, we deduce that these fields
are splitting fields for the relevant polynomials. Thus they are normal extensions of Q, which tells
us that the groups H3, H8 and H9 must be normal subgroups of G. This is a fact which we could
have easily checked directly (and indeed it is a general theorem of group theory that a subgroup of
index 2 in any group is necessarily normal).

The 4-cycle (1, 2, 3, 4) takes α to iα and iα to −α, and so we see that i is fixed. The general
element (29) is taken to

λ1 − λ6α − λ3α
2 + λ8α

3 + λ5i + λ2iα − λ7iα2 − λ4iα3,

and so is fixed if and only if λ2 = λ3 = λ4 = λ6 = λ7 = λ8 = 0. So K3 = Q(i) is the splitting field
of x2 + 1. The field K8 consists of all elements of L that are fixed by both ψ2 and ψ6; so

K8 = {λ + µα2 | λ, µ ∈ Q } = Q(
√

2),

the splitting field of x2 − 2. And K9 consists of those elements of L that are fixed by both ψ5 and
ψ7; we find that

K8 = {λ + µiα2 | λ, µ ∈ Q } = Q(i
√

2),

the splitting field of x2 + 2.

As a second example, let ζ = cos(2π/30) + i sin(2π/30), a complex thirtieth root of 1, and let
E = Q(ζ). Although ζ is a root of x30 − 1, this is not the minimal polynomial of ζ over Q, which,
as we shall see, actually has degree 8. Note, however, the thirty complex roots of x30 − 1 are the
powers ζk of ζ, where 0 ≤ k ≤ 29. (Recall that ζk = cos(2kπ/30) + i sin(2kπ/30).) Since these
all lie in Q(ζ), and no proper subfield of Q(ζ) contains them all, we conclude that E = Q(ζ) is the
splitting field for x30−1 over Q. Hence it is a normal extension of Q. To determine the Galois group
Gal(E : Q), consider the possible effect on ζ of an arbitrary Q-automorphism φ of E. Certainly φζ
must be another root of x30−1, and so we must haveφζ = ζk for some k with 0 ≤ k ≤ 29. But since
ζm 6= 1 if m is not divisible by thirty, we must also have that ζkm 6= 1 if m is not divisible by thirty.
In fact this means that gcd(k, 30) = 1, for if gcd(k, 30) = d > 1 then (ζk)30/d = (ζ30)k/d = 1
despite the fact that 30/d is not a multiple of 30. The conclusion is that the only possible values for
m are 1, 7, 11, 13, 17, 19, 23 and 29. Since a Q-automorphism of Q(ζ) is completely determined
by its effect on ζ we deduce that Gal(E : F) has at most eight elements, and so [E : Q] ≤ 8.

To show that [E : Q] is not less than 8 needs a little subtlety. Observe that ζ6 is a fifth root of 1,
and hence (since it is not 1) a root of the polynomial x4 + x3 + x2 + x + 1 ∈ Q[x]. We saw earlier
that for all primes p the polynomial ∑

p−1
j=1 x j is irreducible in Q[x]; this was done by a change of

variable followed by an application of Eisenstein’s Criterion. So x4 + x3 + x2 + x + 1 is the minimal
polynomial of ζ6 over Q, and hence ζ6 generates an extension of Q of degree 4. It remains for us
to check that ζ itself is not in the field generated byω = ζ6, for this will show that E : Q(ω)] ≥ 2
and hence that [E : Q] ≥ 2[Q(ω) : Q] = 8.

The Galois group Gal(Q(ω) : Q) has order 4, consisting of automorphisms id, σ , ρ and τ ,
defined by

idω =ω, σω =ω2, ρω =ω3, τω =ω4.

We see that σ2 = τ , and we deduce that the group is cyclic. Hence its only subgroup of order 2
is {id, τ}, and the fixed field of this is the only degree 2 extension of Q contained in Q(ω). Now
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(ω +ω4)2 = 2 +ω2 +ω3 = 1 − ω − ω4, and we deduce that ω +ω4, which is in the fixed
field of τ , is a root of x2 + x − 1. So Q(ω + ω4) = Q(i

√
5) is the only degree 2 extension

of Q contained in Q(ω). Suppose now, for a contradiction, that ζQ(ω). Then ζ5 ∈ Q(ω). Now
ζ5 = cos(π/3) + i sin(π/3) = (1 + i

√
3)/2 is a root of the polynomial x2 − x + 1, and so gen-

erates a degree 2 extension of Q, which must therefore equal Q(i
√

5). Thus there exist rational
numbers a and b such that a + bi

√
5 = 1 + i

√
3. Equating real and imaginary parts we conclude

that
√

(3/5) = b ∈ Q. But, of course,
√

(3/5) is irrational (since, for instance, it is a root of
5x2 − 3 ∈ Q[x], which is irreducible by Eisenstein’s Criterion).

After all this, we are able to say definitely that for each j ∈ S = {1, 7, 11, 13, 17, 19, 23, 29}
there is an element φ j ∈ Gal(E : Q) (where E = Q(ζ)) such that φ jζ = ζ j. Let j, k ∈ S and choose
l ∈ S such that l ≡ jk (mod 30) (which is possible since gcd( jk, 30) = 1). Then

(φ jφk)ζ = φ j(φkζ) = φ j(ζ
k) = (φ jζ)k = (ζ j)k = ζk j = ζ l = φlζ

and so we deduce that φ jφk = φl. Since jk = k j the same argument shows that φkφ j = φl, and,
in particular, G = Gal(E : Q) is Abelian. If we write g = φ7 and h = φ11 then it is readily checked
that g generates a cyclic subgroup of order 4 and h generates a cyclic subgroup of order 2, and each
element of G is uniquely expressible as a product xy where x is a power of g and y a power of h.
In the terminology of group theory, G is the direct product of its subgroups 〈g〉 and 〈h〉. Although
we shall not go into this further, it is a relatively easy exercise to determine the subgroups of G and
hence the subfields of E containing Q.

The hardest part of the example we have just done was the proof that the degre of the extension
was 8 and not 4. But even without doing this, the proof that the Galois group is Abelian would
still work. Indeed, the same idea works for nth roots of 1 for any positive integer n. If we let
ζn = e2iπ/n ∈ C, then Q(ζn) is a splitting field for xn − 1 over Q. Every Q-automorphism φ of
Q(ζn) is uniquely determined by φζn = ζk

n, where k is an integer such that gcd(k, n) = 1. If j, k are
two such integers and φ j, φk corresponding Q-automorphisms of Q(ζn), then φ jφk = φkφ j = φl,
where l ≡ jk (mod n) and φlζn = ζ l

n. Thus we have the following proposition.

Proposition (13.19): Let n be a positive integer and ζn = e2iπ/n) ∈ C. Then En = Q(ζn) is a normal
extension of Q such that Gal(En : Q) is Abelian. The degree [En : Q] is at most equal to the number
of positive integers k such that k ≤ n and gcd(k, n) = 1.

In fact the degree is always equal to the number of positive integers k such that k ≤ n and
gcd(k, n) = 1, but we shall not prove this.

Solution by radicals

We aim to prove that there exists a polynomial equation of degree 5 over Q which is not soluble by
radicals, and the strategy is to relate the problem to Galois groups. We start with a lemma which
deals with Galois groups related to equations of the form xk − a = 0.

Lemma (13.20): Let F be a subfield of C which contains all the complex kth roots of 1, and let
t ∈ C be a root of the polynomial xk − a ∈ F[x] (where a is any element of F). Then F(t) is a normal
extension of F and Gal(F(t) : F) is cyclic.

Proof. If t′ is another root of xk − a then (t−1t′)k = a−1a = 1, and so t′ = tζ where ζ is a kth root
of 1. Since ζ ∈ F it follows that t′ ∈ F(t), and hence xk − a splits into linear factors over F(t). On
the other hand, no proper subfield of F(t) contains the root t of xk − a, and so F(t) is the splitting
field of xk − a over F. Hence it is a normal extension of F.

Now let φ ∈ Gal(F(t) : F) be arbitrary. Then φt must be root of xk − a, and so φt = ζt for
some kth root ζ of 1. Since t generates F(t) as an extension of F, the automorphism φ is uniquely
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determined by φt, and hence by ζ. Let G be the set of all those kth roots of 1 for which there is an
element φ = φζ in Gal(F(t) : F) such that φζ t = ζt. If η, ζ ∈ G then since ζ ∈ F we have φηζ = ζ,
and thus

(φηφζ)t = φη(φζ t) = φη(ζt) = (φηζ)(φηt) = ζ(ηt) = φηζ t.

Hence φηφζ = φηζ . It follows that there is a bijective mapping G → Gal(F(t) : F) given by ζ 7→ φζ
for all ζ ∈ G, and this map preserves multiplication. So G is a group isomorphic to Gal(F(t) : F).
So G is a subgroup of the cyclic group generated by e2iπ/k, and is also cyclic by Exercise 47. Thus
Gal(F(t) : F) is cyclic. �

We now come to the key theorem, giving the group-theoretic condition for the solubility of a
polynomial equation.

Theorem (13.21): If f (x) ∈ Q[x] and the equation f (x) = 0 is soluble by radicals, then Gal(E : Q)
is a soluble group, where E is the splitting field for f (x) over Q.

Proof. Suppose that f (x) = 0 is soluble by radicals. Then by Definition (11.3) there is a chain
of fields Q = F0 ⊆ F1 ⊆ · · · ⊆ Fn = K such that f (x) splits into linear factors over K and, for
each j from 1 to n, there is an element t j ∈ Fj such that Fj = Fj−1(t j) and tk j

j ∈ Fj−1 for some

positive integer k j. We start by defining k = k1k2 · · · kn and L0 = Q(ζ), where ζ = e2iπ/k. By
Proposition (13.19) the group L0 is a normal extension of Q and Gal(L0 : Q) is Abelian. Since
e2iπ/k j is a power of ζ we see that L0 contains all the complex k jth roots of 1, for all j from 1 to n.
Now recursively define L j = L j−1(t j) for j = 1, 2, . . . , n. Lemma (13.20) yields that L j is a normal
extension of L j−1 and Gal(L j : L j−1) is cyclic for each j. Furthermore, an easy induction shows that
Fj ⊆ L j for each j ∈ {0, 1, . . . , n}: this holds for j = 0 since F0 = Q and L0 = Q(ζ), and for j > 1
if we have Fj−1 ⊆ L j−1 then it follows that Fj = Fj−1(t j) ⊆ L j−1(t j) = L j. Hence K ⊆ Ln, and so
f (x) splits into linear factors over Ln. In particular, the splitting field E is contained in En.

Let E−1 = Q, and for each j ∈ {0, 1, . . . , n} let E j = L j ∩ E. Observe that En = E. We
seek to prove that E j is a normal extension of E j−1 (for each j ∈ {0, 1, . . . , n}). So suppose that
p(x) ∈ E j−1[x] is irreducible and has a root u ∈ E j. Since E is the splitting field for f (x) over E j−1
we know that E is a normal extension of E j−1, and hence all the roots of p(x) are contained in E.
Now since p(x) ∈ L j−1[x], and u is a root of p(x), it follows that the minimal polynomial q(x) of u
over L j−1 is a divisor of p(x). In particular, all the roots of q(x) are roots of p(x), and so lie in E. So
q(x) = (x − u1)(x − u2) · · · (x − ur) for some u1, u2, . . . , ur ∈ E. It follows that q(x) ∈ E[x]. But
by definition the coefficients of q(x) lie in the field L j−1, and so it follows that these coefficients are
in L j−1 ∩ E = E j−1. So q(x) is a divisor of p(x) in E j−1(x), and since p(x) is irreducible in E j−1[x]
it follows that q(x) and p(x) are associates. As q(x) is the minimal polynomial of u over L j−1 it is
irreducible in L j−1(x), and since it has a root u in L j, which is a normal extension of L j−1, it must
split over L j. So all the roots of p(x)—which are the same as the roots of q(x)—are in L j. But we
have already seen that they are all in E; so they are all in L j ∩ E = E j. So we have shown that
every irreducible p(x) ∈ E j−1[x] with a root in E j splits over E j, and thus by Proposition (13.15) it
follows that E j is a normal extension of E j−1.

If φ ∈ Gal(L j : L j−1) = AutL j−1
(L j) then the restriction of φ to E j yields an E j−1-monomorph-

ism E j → C, which must take E j to E j since E j is a normal extension of E j−1. So there is an
element φ′ ∈ AutE j−1

(E j) such that φ′u = φu for all u ∈ E j. We seek to prove that every element
of AutE j−1

(E j) is obtained in this fashion from some element φ of AutL j−1
(L j). Clearly if we set H

to be the set of all elements of G = AutE j−1
(E j) which are so obtained, then H is a subgroup of G.

Now let
M = Fix(H) = { u ∈ E j | φu = u for all φ ∈ Gal(L j : L j−1) }.
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But the Main Theorem of Galois Theory tells us that the only elements of L j that are fixed by all
elements of the Galois group Gal(L j : L j−1) are the elements of L j−1, as Fix(Gal(E : K) = K for all
the intermediate fields K, including K = L j−1. So M ⊆ L j−1. But by definition M ⊆ E, and so we
conclude that M ⊆ L j−1 ∩ E = E j−1. Since H is by definition a group of E j−1-automorphisms of E j
it follows that M = Fix(H) = E j−1, and hence, by the Main Theorem, H = Gal(E j : E j−1). That
is, every element of Gal(E j : E j−1) is obtained as the restriction of an element of Gal(L j : L j−1), as
claimed.

Suppose now that θ1, θ2 ∈ Gal(E j : E j−1). Then we may choose φ1, φ2 ∈ Gal(L j : L j−1)
whose restrictions are θ1, θ2. Since φ1φ2 = φ2φ1 we deduce that for all u ∈ E j,

(θ1θ2)u = θ1(θ2u) = φ1(φ2u) = (φ1φ2)u = (φ2φ1)u = φ2(φ1u) = θ2(θ1)u = (θ2θ1)u,

and so θ1θ2 = θ2θ1. So Gal(E j : E j−1) is Abelian.
Thus we have obtained a chain of fields

Q = E−1 ⊆ E0 ⊆ E1 ⊆ · · · ⊆ En = E

such that each is a normal extension of the preceding and the Galois groups are all Abelian. Note
also that E is the splitting field for f (x) over each E j, and hence is a normal extension of each E j.
We define G = Gal(E : Q) and G j = Gal(E : E j) for each j. Then each G j is a subgroup of G, and
these subgroups form a decreasing chain

G = G−1 ≥ G0 ≥ G1 ≥ · · · ≥ Gn = {id}. (30)

(For example, Gn consists of all En-automorphisms of En, and the identity is the only such thing.
And G j ≤ G j−1 since every automorphism of E that fixes all elements of E j fixes all elements
of E j−1.) Now the Main Theorem of Galois Theory, applied to the situation

E j−1 ⊆ E j ⊆ E

in which E j is a normal extension of E j−1, yields that Gal(E : E j) is a normal subgroup of
Gal(E : E j−1) and the quotient group Gal(E : E j−1)/Gal(E : E j) is isomorphic to Gal(E j : E j−1).
That is, G j−1/G j is isomorphic to Gal(E j : E j−1), which we have shown to be Abelian. So in
the chain of subgroups Eq.(30) each successive term is normal in the preceding, and the quotient
groups are Abelian. Hence, by Definition (12.18), the group G is soluble, as required. �

We shall now give an example of a polynomial f (x) ∈ Q[x] such that Gal(E : Q) ∼= S5, where E
is the splitting field of f (x) over Q. Since S5 is not a soluble group, it follows from Theorem (13.21)
that the equation f (x) = 0 is not soluble by radicals.

Let f (x) = 2x5−10x + 5 ∈ Q[x]. Eisenstein’s Criterion tells us that f (x) is irreducible over Q.
By first year calculus we find that f (x) has exactly three real roots: the derivative f ′(x) = 10x4−10
has only two real roots (at±1), and since the two turning points of f (x) are at (1,−3) and (−1, 13)
it follows that there is exactly one root greater than 1, exactly one between −1 and 1, and exactly
one less than −1. So

f (x) = (x − t1)(x − t2)(x − t3)(2x2 + rx + s)

for some t1, t2, t3, r, s ∈ R, and 2x2 + rx + s has two non-real complex roots t4 and t5 (which are
conjugates of each other). Let E = Q(t1, t2, t3, t4, t5) ⊆ C, the splitting field for f (x) over Q.

Each Q-automorphism of E permutes the roots of f (x), and the automorphism is uniquely
determined by the permutation since the roots generate E as an extension of Q. Let G be the
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subgroup of S5 consisting of all those permutations σ ∈ S5 such that there is a Q-automorphism
of E satisfying t j 7→ tσ j (for 1 ≤ j ≤ 5). The mapping from Gal(E : Q) = AutQ(E) to G which takes
each automorphism to the corresponding permutation is an isomorphism.

Step 1. (4, 5) ∈ G.

Proof. The assertion is that there exists φ ∈ AutQ(E) such that αt4 = t5 and αt5 = t4. Defining
αt = t (the complex conjugate of t) does the trick. Complex conjugation is a Q-automorphism of C,
and it takes E to itself since it fixes t1, t2 and t3 and interchanges t4 and t5. �

Step 2. Suppose that (h, j) ∈ G and τ ∈ G satisfies τh = k and τ j = l. Then (k, l) ∈ G.

Proof. Let γ ∈ AutQ(E) correspond to (h, j) ∈ G, so that γ swaps th and t j and fixes the other
roots, and let β ∈ AutQ(E) correspond to τ ∈ G, so that βth = tk and βt j = tl. Then

(βγβ−1)tk = (βγ)th = βt j = tl ,

(βγβ−1)tl = (βγ)t j = βth = tk.

Moreover, if m /∈ {k, l} then β−1tm /∈ {β−1tk,β−1tl} = {th, t j}; so γ fixes β−1tm, and

(βγβ−1)tm = β(γ(β−1tm)) = β(β−1tm) = tm.

So βγβ−1 swaps tk and tl and fixes the others. �

Step 3. For each j, k ∈ {1, 2, 3, 4, 5} there is a σ ∈ G such that σk = j.

Proof. There exists a Q-isomorphism φ: Q(tk) → Q(t j) with φtk = t j since tk and t j have the
same minimal polynomial over Q. By Proposition (13.13) there is an extension of φ to a Q-
monomorphism E → C, and since E is a normal extension of Q the monomorphism in question
must take E to itself. That is, we obtain a Q-automorphism of E with tk 7→ t j. �

Fix j ∈ {1, 2, 3, 4, 5}. In view of Step 3, we may choose a permutation σ j ∈ G with σ j5 = j.
Let σ j4 = k, and note that k 6= j. By Steps 1 and 3 we see that ( j, k) ∈ G (since (4, 5) ∈ G and
σ j ∈ G satisfies σ j5 = j and σ j4 = k). Now j was arbitrary; so we have shown that for each
j ∈ {1, 2, 3, 4, 5} there exists k 6= j such that ( j, k) ∈ G. Thus, for some a, b, c we have that
(1, a), (2, b), (3, c), (4, 5) ∈ G. Our aim is to show that G = S5; that is, we aim to show that all
elements of S5 are in G.

Step 4. There exist j, k, l, distinct from each other, such that both ( j, k) and ( j, l) are in G.

Proof. If a = 4 then we can take j = 4, k = 1 and l = 5. If a = 5 we can take j = 5, k = 4 and
l = 1. If either b or c is 4 or 5 then the same applies with 2 in place of 1: for example, if b = 4 then
we can take j = 4, k = 2 and l = 5. So we are left with the possibility that a, b, c ∈ {1, 2, 3}. Then
(1, a), (2, b) and (3, c) must overlap, so to speak. For example, suppose that a = 2. Then if c = 1
we have that (1, 3), (1, 2) ∈ G, and so we may take j, k, l to be 1, 3, 2 respectively. On the other
hand, if c = 2 then (2, 3), (2, 1) ∈ G, and we may take j, k, l to be 2, 3, 1. Suppose alternatively
that a = 3. Then if b = 1 we may take j, k, l to be 1, 3, 2, and if b = 3 then we may take j, k, l to
be 3, 1, 2. �

Step 5. With j, k, l as in Step 4, all six permutations in S5 which permute j, k, l amongst themselves
and fix the other two elements of {1, 2, 3, 4, 5} are in G.
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Proof. We are given that ( j, k), ( j, l) ∈ G; so since G is closed under multiplication of per-
mutations, we deduce that ( j, l, k) = ( j, k)( j, l) ∈ G and ( j, k, l) = ( j, l)( j, k) ∈ G, and also
( j, l)( j, k)( j, l) = (k, l) ∈ G. It is trivial that the identity is in G, and this now accounts for all the
six. �

Let us now renumber the roots so that { j, k, l} = {3, 4, 5}. Choose τ ∈ G with τ5 = 2 (possible
by Step 3 above). Then τ4 = m and τ3 = h (for some m, h). By Step 2, since (5, 4), (5, 3) ∈ G,
we obtain (2, m), (2, h) ∈ G. But m and h cannot both be 1 (since τ4 6= τ3), and so (2, j) ∈ G
for some j ∈ {3, 4, 5}. And by exactly the same argument, using 1 in place of 2, we deduce that
(1, k) ∈ G for some k ∈ {3, 4, 5}.

It is now easy to deduce that every transposition (r, s) is in G. Suppose first that j = 3. Then
(2, 5) = (3, 5)(2, 3)(3, 5) ∈ G, and (2, 4) = (3, 4)(2, 3)(3, 4) ∈ G. So (2, 3), (2, 4), (2, 5) are all
in G. The same works if j = 4 or 5. By the same reasoning with 1 in place of 2 we deduce that
(1, 3), (1, 4), (1, 5) are all in G. This gives us six of the ten transpositions, and we already knew
that (3, 4), (4, 5), (3, 5) ∈ G, making nine. The last one is (1, 2), and it too must be in G since
(1, 2) = (1, 3)(2, 3)(1, 3).

Since G contains all the transpositions it must be the whole of S5, since every permutation
can be expressed as a product of transpositions. (This is simply a statement of the fact that a
row of n objects can be rearranged into any order by a sequence of operations consisting of inter-
changing pairs of objects.) So Gal(E : Q) is isomorphic to S5 = G, and hence is not soluble. By
Theorem (13.21) the equation 2x5 − 10x + 5 is not soluble by radicals.

The converse of Theorem (13.21) is also true: if the Galois group Gal(E : F) of the splitting
field E of f (x) ∈ F[x] is a soluble group, then the equation f (x) = 0 is soluble by radicals. To see
this, first adjoin to F all the kth roots of 1, for k = 3, 4, . . . , deg( f (x)). It is fairly easy to show that
if the Galois group of the splitting field was soluble before doing this, it will still be soluble after. In
other words, we may as well assume to begin with that F contains all these roots of unity. (We are
looking for a formula for the roots of f (x) which uses only field operations and radicals; we do not
mind if k

√
1 appears in the formula.)

Solubility of the Galois group tells us that there is a decreasing chain of subgroups of the
Galois group such that each is a normal subgroup of the preceding one and the quotient groups of
successive terms in the chain are all Abelian. It is a (not difficult) theorem of group theory that the
chain of subgroups can then be refined, by the insertion of extra subgroups, so that the quotient
groups of successive terms are cyclic of prime order. The fixed fields of these subgroups form an
increasing chain

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ · · · Fn = E

such that each is a normal extension of the preceding and Gal(Fj : Fj−1) is cyclic of prime or-
der for each j. Our next proposition shows that in this situation Fj = Fj−1( p

√
t) for some p and

some t ∈ Fj−1. It follows that the splitting field E is obtained by successively adjoining to F the pth
roots of elements, for various values of p, which is what it means to say that f (x) = 0 is soluble by
radicals.

Proposition (13.22): Suppose that E, F are subfields of C such that E is a normal extension of F.
Suppose that Gal(E : F) is cyclic of order p, where p is a prime number, and suppose that F contains
all the complex pth roots of 1. Then E = F(a) for some a such that ap = t ∈ F. Furthermore, E is the
splitting field over F of the polynomial xp − t.

Proof. Let ω = e2π i/k ∈ F, and let α ∈ AutF(E) be a generator of the Galois group. That is, the
powers α j of α, for 0 ≤ j < p, are all the F-automorphisms of E. We prove first that the functions
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α j are linearly independent over E; that is, there is no nontrivial solution of

λ0α
0 + λ1α

1 + λ2α
2 + · · ·+ λp−1α

p−1 = 0

with λ0, λ1, . . . , λp−1 ∈ E.
Suppose for a contradiction that a nontrivial solution exists, and choose one such that the

number of nonzero coefficients λ j is as small as possible. Leaving out the zero terms, we have

µ1(β1t) + µ2(β2t) + · · ·+ µk(βkt) = 0 (31)

for all t ∈ E, where β1, β2, . . . , βk are distinct elements of {α j | 0 ≤ j < p }, and the coefficients
µ j ∈ E are all nonzero. Clearly k ≥ 2, since β1 is not the zero function. Since β2 6= β1 we may
choose u ∈ E such that β2u 6= β1u, and now replacing t by tu in Eq.(31), and using the fact that
the β j are all automorphisms, we obtain

µ1(β1u)β1t) + µ2(β2u)(β2t) + · · ·+ µk(βu)(βkt) = 0. (32)

If we multiply both sides of Eq.(31) by β1u and subtract from Eq.(32) we get

µ2(β2u − β1u)(β2t) + µ3(β3u − β1u)(β3t) + · · ·+ µp−1(βp−1u − β1u)(βp−1t) = 0 (33)

for all t ∈ E. This is an equation of the same form as Eq.(31), but with fewer terms. It is still a
nontrivial relationship since the coefficient µ2(β2u − β1u) is nonzero. This contradicts our choice
of Eq.(31).

In particular the above shows that id +ωα +ω2α2 + · · ·+ωp−1αp−1 is not the zero function
on E, and so we may choose b ∈ E such that a 6= 0, where

a = b +ω(αb) +ω2(α2b) + · · ·+ωp−1(αp−1b).

Since α fixesω we see that

αa = αb +ω(α2b) + · · ·+ωp−1b =ω−1a

(since αp is the identity) andωp = 1. So

a(αa)(α2a) · · · (αp−1a) = a(ω−1a)(ω−2a) · · · (ω−p+1a) =ωp(1−p)/2ap,

and since the left hand side of this equation is fixed by α, and hence by all powers of α, we deduce
that ωp(1−p)/2ap is in F (the fixed field of Gal(E : F)). If p = 2 then ωp(1−p)/2 = −1, and if p > 2
then ωp(1−p)/2 = 1; so in either case it follows that ap ∈ F. On the other hand a itself is not in F
since αa 6= a. Hence F(a) is an extension of F with F ( F(a) ⊆ E. Now Gal(E : F), being cyclic
of prime order, has no proper subgroups, and so there are no fields lying strictly between F and E.
Hence we must have F(a) = E. Obviously a is a root of xp − ap, which is in F[x] since ap ∈ F, and
furthermore E splits this polynomial since its other roots are all of the form ω ja, and these all lie
in E. �

The reason why polynomial equations of degree 2, 3 and 4 are soluble by radicals, while those
of degree 5 or more may not be, is because the groups S2, S3 and S4, unlike Sn for higher values
of n, are soluble. Let us review the process for solving cubic equations that we described previously,
in the light of the theory we have just been through, and then investigate quartics.
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For the group S3 the subset A = {id, (1, 2, 3), (1, 3, 2)} is a normal subgroup such that S3/A is
cyclic of order 2 and A is cyclic of order 3. Suppose that F is a subfield of C containingω = e2π i/3,
and f (x) ∈ F[x] has degree 3. Let E ⊆ C be the splitting field for f (x) over F. From the point of
view of solving the equation f (x) = 0, the worst case scenario is that Gal(E : F) = S3. Any process
which solves the equation if the Galois group is S3 will also work if the Galois group is a proper
subgroup of S3, the only difference being that obtaining the various cube roots or square roots that
are required may not necessitate extending the field. So let us proceed under the assumption that
the Galois group is S3.

Let t1 ∈ C be a root of f (x). Then 1, t1, t2
1 form a basis for F(t1) as a vector space over F, and

f (x) = (x − t1)g(x) for some quadratic polynomial g(x) with coefficients in F(t1). If t2 is a root of
g(x) then 1, t2 form a basis of F(t1, t2) over F(t1), and since the remaining root t3 is automatically
in F(t1, t2) (since x − t3 = f (x)/(x − t1)(x − t2)) we see that F(t1, t2) = E, the splitting field.
Furthermore,

1, t1, t2
1, t2, t2t1, t2t2

1 (34)

form a basis for E over F.
The theory indicates that the first step in the process of solving the equation should be to

construct the fixed field of the subgroup A. This will be a field K such that F ⊆ K ⊆ E, with
Gal(E : K) ∼= A and Gal(K : F) ∼= S3/A. Write α = (1, 2, 3), a generator of the group A, and
observe that if u ∈ E is arbitrary then u +αu +α2u is fixed by α, and hence is an element of K. To
find elements which span K as a vector space over F it suffices to apply this for each of the basis
elements in Eq.(34) above. In this way we discover that K = F(v), where v = t2t2

1 + t3t2
2 + t1t2

3. It
is a simple task to square v and thus find a quadratic equation over F of which v is a root.

By Proposition (13.22) we know that E = K( 3
√

t) for some t ∈ K. The proof of (13.22) gives
a method for finding a suitable t: if we choose any b ∈ E and put a = b +ω(αb) +ω2(α2b), then
t = a3 will be in the field K. If we put b = t1 then αb = t2 and α2b = t3, giving

t = a3 = (t1 +ωt2 +ω2t3)3,

and it is straightforward to express this in terms of v, which we have already found. Now since
1, a and a2 = t/a form a basis for E as a vector space over K, the roots t1, t2 and t3 can be
expressed as linear combinations of 1, a and a2, where the coefficients are elements of K. Finding
the coefficients is a matter of solving simultaneous linear equations, and we essentially did this in
our previous calculations.

Consider now the quartic equation x4 − S1x3 + S2x2 − S3x + S4 = 0, and suppose that
its roots are t1, t2, t3 and t4. The key observation is that the group S4 has a normal subgroup
H = {id, (12)(34), (13)(24), (14)(23)}. The group H is Abelian, and S4/H is isomorphic to S3.
We start by finding the fixed field H of the group H, which we do by observing that if u is an
arbitrary element of the splitting field E = F(t1, t2, t3) then

u + (12)(34)u + (13)(24)u + (14)(23)u ∈ H.

Applying this first with u = t2t3, then with u = t1t3, and then with u = t1t2, yields that

r1 = t1t4 + t2t3

r2 = t1t3 + t2t4

r3 = t1t2 + t3t4

are elements of H. It can be seen that each permutation of t1, t2, t3, t4 gives rise to a permutation
of r1, r2, r3; for example, interchanging t3 and t4 fixes r3 and interchanges r1 and r2. (This mapping
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from permutations of 1, 2, 3, 4 to permutations of 1, 2, 3 is in fact a homomorphism from S4 to S3
whose kernel is the normal subgroup H.) It follows that the elements of the Galois group Gal(E : F)
fix the polynomial (x − r1)(x − r2)(x − r3). Thus the coefficients of this polynomial must lie in the
field F, and with a little calculation we find that indeed

r1r2r3 = S2
3 − 4S4S2 + S2

1S4,
r1r2 + r1r3 + r2r3 = S1S3 − 4S4,

r1 + r2 + r3 = S2.

Since we already know how to solve cubics, we can solve

x3 − S2x2 + (S1S3 − 4S4)x − (S2
3 − 4S4S2 + S2

1S4)

and thus find r1, r2 and r3.
Now let K be the fixed field of the group K = {id, (12)(34)}, a subgroup of index 2 in H.

Elements of K will be roots of quadratic equations over H. The element t1 + (12)(34)t1 = t1 + t2 is
in K, and (13)(24) ∈ H swaps t1+t2 and t3+t4, which is also in K. So t1+t2 and t3+t4 are the roots
of a quadratic polynomial with coefficients in H. In fact, (x−t1−t2)(x−t3−t4) = x2−S1x+(r1+r2).
We have found r1 and r2; so we can solve this quadratic to find t1 + t2 and t3 + t4. Since we can
similarly find t1 + t3 and t2 + t4, and also t1 + t4 and t2 + t3, we can now easily get the roots ti,
since (for instance) t1 = (1/2)((t1 + t2) + (t1 + t3) + (t1 + t4)− S1).

Examples

We close with two examples which are beyond the scope of the Maths 392F course, and are included
only for interested readers who may wish to pursue the subject further. The examples show how
to find polynomials in Q[x] with whose galois groups are, respectively, the quaternion group of
order 8 and the nonabelian group of order 21.

If a group contains elements g′ and f ′ which both have order 4 and which satisfy ( f ′)2 = (g′)2

and f ′g′ f ′ = g′ then it is not hard to show that f ′ and g′ generate a subgroup of order 8. The
complex matrices (

i 0
0 −i

) (
0 1
−1 0

)
provide an example of such a pair of elements. The term “quaternion group of order 8” means
any group isomorphic to this. We proceed to construct an extension of Q whose Galois group is
generated by two elements g′ and f ′ satisfying the specified relations.

Let F = Q(
√

10,
√

26), a degree 4 normal extension of Q. Let f be the Q-automorphism of F
given by

f (
√

10) =
√

10 f (
√

26) = −
√

26 f (
√

65) = −
√

65,

let g be the Q-automorphism of F given by

g(
√

10) = −
√

10 g(
√

26) =
√

26 g(
√

65) = −
√

65,

and let h = f g, so that

h(
√

10) = −
√

10 h(
√

26) = −
√

26 h(
√

65) =
√

65.
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Let T = −(10 + 3
√

10)(65 + 5
√

65) ∈ F, and observe that T has no square root in F since T < 0
and F is real. Let E = F(u), where u is a root of x2 − T, so that E is a degree 8 extension of Q.
Define elements u1, u2, u3, u4 ∈ E by

u1 = u

u2 =
10
√

26

65 + 5
√

65
u

u3 =
10
√

10
√

26

(10 + 3
√

10)(65 + 5
√

65)
u

u4 =

√
10

10 + 3
√

10
u.

Then we find that

u2
2 = −2600(10 + 3

√
10)

65 + 5
√

65
= −(10 + 3

√
10)(65− 5

√
65) = f (T),

u2
3 = − 26000

(10 + 3
√

10)(65 + 5
√

65)
= −(10− 3

√
10)(65− 5

√
65) = g(T),

u2
4 = −10(65 + 5

√
65)

10 + 3
√

10
= −(10− 3

√
10)(65 + 5

√
65) = h(T).

Hence±u1, ±u2, ±u3, ±u4 are the eight roots of p(x) = (x2−T)(x2− f (T))(x2−g(T))(x2−h(T)),
and this polynomial has coefficients in Q since it is fixed by all elements of the Galois group of F
over Q. Hence E is a splitting field for p(x) over Q, and in particular it is a normal extension of Q.
Since F = Q(T), clearly E = Q(u); furthermore, p(x) is the minimal polynomial of u over Q.

Let f ′: E → E be the Q-automorphism defined by f ′(u) = u2, and let g′: E → E be the
Q-automorphism defined by g′(u) = u3. Then f ′(T) = f ′(u2) = u2

2 = f (T), and similarly
g′(T) = g′(u2) = u2

3 = g(T); so f ′ and g′ are extensions of f and g respectively. Now
f ′(u1) = u2

f ′(u2) =
10 f (

√
26)

65 + 5 f (
√

65)
f ′(u) =

(
−10

√
26

65− 5
√

65

)(
10
√

26

65 + 5
√

65

)
u = −u1

f ′(u3) =
10 f (

√
10) f (

√
26

(10+3 f (
√

10))(65+5 f (
√

65))
f ′(u) =

−10
√

10
√

2610
√

26

(10+3
√

10)(65−5
√

65)(65+5
√

65)
u = −u4

f ′(u4) =
f (
√

10)

10 + 3 f (
√

10)
f ′(u) =

√
1010

√
26

(10 + 3
√

10)(65 + 5
√

65)
u = u3,

and similarly
g′(u1) = u3

g′(u2) =
10g(

√
26)

65 + 5g(
√

65)
g′(u) =

10
√

26

65− 5
√

65
u3 = u4

g′(u3) =
10g(

√
10)g(

√
26)

(10 + 3g(
√

10))(65 + 5g(
√

65))
g′(u) =

−10
√

10
√

26

(10− 3
√

10)(65− 5
√

65)
u3 = −u1

g′(u4) =
g(
√

10)

10 + 3g(
√

10)
g′(u) =

−
√

10

(10− 3
√

10)
u3 = −u2.

It is now easily checked that ( f ′)2 = (g′)2 satisfies ui 7→ −ui for all i, and that f ′g′ f ′ = g′, as
required.
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There is a nonabelian group of order 21, which can be described as follows: it is generated by
two elements f and g such that f has order 7, g has order 3, and g−1 f g = f 2. If γ = e2π i/7 then
the following complex matrices provide an example of a pair of elements satisfying these relations:(

γ 0 0
0 γ2 0
0 0 γ4

) ( 0 1 0
0 0 1
1 0 0

)
.

We proceed to find an extension of Q whose Galois group is generated by two elements satisfying
the specified relations.

Let F be a splitting field over Q for the polynomial f (x) = x14 − 8x7 + 128. Modulo 7 we find
that (y + 4)14 − 8(y + 4)7 + 128 is congruent to (y7 + 4)2 − 8(y7 + 4) + 2 ≡ y14, and modulo 49
the constant coefficient is 414−8×47 + 128 = 27(221−210 + 1) ≡ 27(2× (−5)2 + 5 + 1) 6≡ 0. So,
by Eisenstein’s Criterion, (y + 4)14 − 8(y + 4)7 + 128 is irreducible over Q, and hence so is f (x).
Let γ = 4 + 4

√
7i, a root of x2 − 8x + 128, and let α be a 7th root of γ, so that α is a root of f (x).

Observe that (αᾱ)7 = (4 + 4
√

7i)(4 − 4
√

7i) = 128, and so ᾱ = 2α−1. Now if ω is a primitive
complex 7th root of 1 then ωiα and 2ωiα−1 are roots of f (x) for each i from 1 to 7. Note that
these are 14 distinct roots, since ωiα = 2ω jα−1 would give α14 ∈ Q, contradicting the fact that
f (x) is the minimal polynomial of α. Since

√
7i ∈ Q(ω) it follows that the minimal polynomial of

ω over Q(
√

7i) has degree 3; furthermore since
√

7i ∈ Q(α), which is a degree 14 extension of Q,
it follows thatω generates a degree 3 extension of Q(α). Hence [F : Q] = 42.

Let us now investigate the Galois group of this extension. The mapping Q(α) → Q(ωα) given
by α 7→ ωα extends to an automorphism f of F which fixes ω, since the minimal polynomial of
ω over Q(α) has its coefficients in Q(

√
7i) = Q(α7), and is therefore fixed by α 7→ ωα. Since

ᾱ ∈ Q(α) there is an automorphism of Q(α) with α 7→ ᾱ. (Indeed, this automorphism is simply
complex conjugation.) Since it takes (x −ω)(x −ω2)(x −ω4), the minimal polynomial ofω over
Q(α), to (x −ω3)(x −ω5)(x −ω6), it extends to an automorphism g of F such that g(ω) = ω3.
Now g2(ω) = ω2 and g2(α) = α, and it follows easily that g2 has order 3 and g has order 6.
Clearly f has order 7. Now

(g f g−1)(α) = (g f )(ᾱ) = (g f )(2α−1) = g(2(ωα)−1) = g(ω−1ᾱ) =ω−3α = f 4(α),
(g f g−1)(ω) = (g f )(ω5) = g(ω5) =ω = f 4(ω),

so that conjugation by g induces an automorphism of order 3 on the cyclic group generated by f .
The Galois group is thus the direct product of a group of order 2 with the nonabelian group of
order 21. The fixed field of the element of order 2, which is the intersection of F with R since the
element of order 2 is complex conjugation, will be a normal extension of Q whose Galois group is
nonabelian of order 21.

It remains to find a polynomial which has the field in question as its splitting field. Since
(x − α)(x − ᾱ) has coefficients in Q(α + ᾱ) (since αᾱ ∈ Q), it follows that Q(α) is a degree 2
extension of Q(α + ᾱ), which is therefore a degree 7 extension of Q. If E is a splitting field for
the minimal polynomial of α + ᾱ, then E(α) is a degree 2 extension of E (the minimal polynomial
again being (x − α)(x − ᾱ), and hence a normal extension of Q since E is. So E(α) contains all
the algebraic conjugates of α, and it follows that E(α) = F. Hence E is the requisite degree 21
extension of Q. Now using αᾱ = 2 and α7 = 4 +

√
7i we find that

(α + ᾱ)7 = 8 + 14(α5 + ᾱ5) + 84(α3 + ᾱ3) + 280(α + ᾱ),

(α + ᾱ)5 = (α5 + ᾱ5) + 10(α3 + ᾱ3)40(α + ᾱ),

(α + ᾱ)3 = (α3 + ᾱ3) + 6(α + ᾱ),
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and therefore α + ᾱ is a root of

x7 − 14x5 + 56x3 − 56x − 8.

So this polynomial has the required Galois group.
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