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ABSTRACT

Let K be a complete, algebraically closed, non-trivially valued and non-Archimedean
field of mixed characteristic (0,p). We investigate D-module theory on rigid spaces
over K in the sense of Ardakov-Wadsley [5], with particular attention to module
invariants, and focusing on the 1-dimensional disc X = Sp K(z) as a base space.
Highlights of these investigations are to provide tools for calculating lengths of 1-
related modules, and to introduce a type of characteristic variety for coadmissible
13(X )-modules. Proposals for applications and directions of future study are impor-

tant features of the discussion.



INTRODUCTION

The chief concerns of this thesis are twofold: to continue the study of the sheaf Dy
of infinite-order differential operators on a rigid space X, as inaugurated by Ardakov
and Wadsley in [5], [6], with particular attention to its module theory; and to describe
work done towards adaptions of classical constructions to this rigid setting, specifically

of the characteristic variety.

With representation-theoretic applications in mind, the above-cited papers (as well
as the more recent [2]) prove versions of Beilinson-Bernstein localisation and Kashi-
wara’s equivalence, but their results beg a host of questions which remain unanswered.
A summary of these questions is provided in [1]|, which we elaborate upon below. Of
fundamental importance is the correct analogue for the notion of holonomicity for
ﬁx—modules, which is a key ingredient to the Riemann—Hilbert correspondence for D-
modules over C. In approaching a proof of a rigid Riemann—Hilbert correspondence,
the first steps are likely to involve a suitable definition of holonomic ﬁX—modules,
and an understanding of them via invariants such as a characteristic variety and the

length of a module.

In Chapter 1, we present a tight account of the core background theory necessary for
what follows, along with relevant notations and conventions. This includes basic facts
about structures on algebraic objects such as valuations, filtrations, and seminorms;
the classical D-module theory on complex varieties, which informs later work; the
rudiments of Tate’s construction of rigid geometry over non-Archimedean fields; and
an introduction to Berkovich and Huber spaces, following [32]. We also provide an
outline of relative analytification, vector bundles, and symplectic geometry in the
rigid setting, to make concrete certain definitions which are frequently omitted in the

literature.



In Chapter 2, we begin by recalling highlights from Ardakov—Wadsley’s constructions
and results in [5], [6], such as the definition of Dy and the rigid Beilinson-Bernstein
equivalence. These are then used to explain the outstanding problems which motivate
our work, as well as the current state of the theory, with respect to placeholder notions
like weak holonomicity. The discussion here should illustrate that much of the work

ahead lies in finding correct categories of modules to study and classify.

In Chapter 3, we embark on a study of lengths of modules over Dy ina simple setting:
That of the analytic unit disc X = Sp K (x) over a non-Archimedean field K, assumed
to be algebraically closed for technical reasons that soon become apparent. We employ
crucially the tool of microlocalisation for K-algebras equipped with complete, quasi-
abelian norms, as developed in [28]. Such microlocalisations afford decompositions
for modules which are reminiscent of those derived from Cech coverings of geometric
spaces, and which allow for inductive estimation of module lengths. We are able to
give lower bounds on the lengths of certain cyclic modules in terms of the Newton
polygon attached to the module’s relator, but our methods face technical obstructions

to further generalisation.

In Chapter 4, we discuss the definition of a sheaf of microlocal differential operators
on the cotangent space Y = T* X, where X is kept as the analytic unit disc for ease
of exposition and calculation. Classically, tensoring with such a sheaf and taking
supports allows for an alternative (but equivalent) description of the characteristic
variety of a D-module; the pursuit of a rigid characteristic variety is hence our moti-
vation. To be precise, we endow the structure sheaf Oy (U) with a non-commutative

Moyal product whenever the series defining it converges on the affinoid subdomain U.

The first half of the chapter is spent studying the resultant rings and the collection
of such quantisable U. Trouble arises from the fact that the quantisable subdomains

are not closed under intersections, and so cannot be a site for a sheaf. We go on



to describe a proposed solution in which the space is changed to suit the sheaf we
would like to define. First, we replace Y by its Huber space of prime filters P(Y),
before discarding from the space those prime filters which represent the pathologies
of Y. We are left with a topological subspace Q(Y) upon which it is possible to
define a suitable sheaf and subsequently a characteristic variety for (coadmissible)
Dy-modules. The chapter concludes with some calculations and a description of
those outstanding conjectures whose resolutions are expected to be crucial for future

developments.
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CHAPTER 1

BACKGROUND

The purpose of this chapter is to provide a concise account of some concepts and tools
required later on. This review will not be comprehensive but prioritise topics based
on their importance, or based on the need to fix notations and conventions. Unless

otherwise stated, modules are on the left and rings have 1.

1.1 VALUATIONS, FILTRATIONS, AND SEMINORMS

A valuation of a field K is a function v : K — I'U{oo}, where I' is an additive totally

ordered abelian group, satisfying the following axioms:
e v(a)=o00iff a =0,
e v(ab) = v(a) +v(b),
e v(a+b) > min{v(a),v(b)}.

The image of v on K* is a subgroup of I', the value group; replacing I' by v(K*), we
may assume v is surjective. The set R = v~![0, 00| is a local ring, the valuation ring,
with maximal ideal m = v=1(0, 0c]; the residue field is the quotient k = R/m. The

trivial valuation sends K* to 0 € T.



Theorem 1.1.1. Besides the aforementioned, there are three other equivalent char-

acterisations of valuation rings R in K:
e Whenever 0 # x € K, either x or 7! belongs to R.
e The ideals of R are totally ordered by inclusion.
e The principal ideals of R are totally ordered by inclusion.

Theorem 1.1.2. [21| An integral domain is a valuation ring iff it is a local Bézout

domain. Hence, such a ring is Noetherian iff it is a PID.

In fact, a Noetherian valuation ring either has exactly one non-zero prime ideal or is
a field (either a discrete valuation ring or discrete valuation field). Discrete valuation
rings are precisely those valuation rings with I' = Z. When they exist, principal

generators for m are called uniformisers.

The rank or height of a valuation is an important invariant of R. Rank 1 valuations
will be most significant for us; it is equivalent to say that I' can be realised as a
subgroup of R, or that R has Krull dimension 1. In that case, we can choose a real
base b > 1 and obtain an absolute value b="0) on K; that is, a function |- |: K — R

satisfying the following axioms:
e |z| > 0 with equality iff z = 0,
o |zyl = |2llyl,
o [z +yl <z +yl.

Beyond this usual triangle inequality, we have a stronger ultrametric inequality

|z + y| < max{|z], |y|},



so K is non-Archimedean: |n| < 1 for all n € Z. The metric completion of K with
respect to such an absolute value is another valuation ring of rank 1, as is the algebraic

closure.

Example 1.1.3. Ostrowski’s theorem: up to metric equivalence, the non-trivial ab-

solute values on Q are indexed by {primes} U {oo} and determined by
|£L’|p = p—vp(x)7 |x|oo =V .1'2,

where v,(x) is the number of times a prime p divides x € Z. We obtain non-
Archimedean completions Q, with (discrete) valuation rings Z, and residue fields
F,; and the Archimedean completion Q4 = R. The algebraic closure @, inherits an

absolute value, the completion of which is denoted C, and is algebraically closed with

residue field F,.

Example 1.1.4. For any field F', the field of Laurent series K = F'((t)) has a valuation

given on K* by v (Yiez a;t') = min{i : a; # 0}; here, R = F[[t]], m = (¢), and k = F.

A local field is a field K with a non-trivial absolute value which is locally compact in

the induced topology.

Theorem 1.1.5. An Archimedean local field is isomorphic to R or C; otherwise, it

is isomorphic to a finite extension of Q, or F,((t)) for some prime p.

In particular, Q, is locally compact with compact unit ball Z,, while C,, is not locally
compact. Another peculiarity of its topology is its lack of spherical completeness,

meaning it possesses nested sequences of closed balls with empty intersection.

Let A be a ring. A Z-filtration F' of A is an increasing sequence
anflAanAanJrlAggAa TLEZ,
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where each F, A is an additive subgroup of A, 1 € FyA, and (F,A)(F,,A) C FoymA
for all n,m € Z. We say F' is ezhaustive if UF,A = A; separated if NF,A = 0. A
morphism of filtered rings ¢ : A — B is a ring map satisfying ¢(F,A) C F,B. A
filtered module M for A contains a similar sequence F, M, satisfying (F,,A)(F,,M) C

F, M for all n,m € 7Z.

An important kind of Z-filtration arises from Z-gradations. These are direct sum
decompositions A = @;czA; for additive subgroups A;, the homogeneous components,
which are required to satisfy (A;)(A;) C A;; for all 7, 5. There are simply defined
notions of graded morphisms and graded modules for graded rings. Given a gradation

of A, we obtain a filtration by setting F,,A = ®,<,A4;.

For any filtered ring A, there is an associated graded ring

gr A= Fi.A/FA,
i€z,
with multiplication determined by (z + F;A)(y+ F;A) =2y + Fipj 1A lfo; i gr A —
gr A denotes the i-th projection followed by the i-th injection, then every z € gr A
has a principal symbol o(x) given by the last non-zero o;(x). The associated graded
is functorial: given a filtered ring map ¢ : A — B, there is gro : gr A — gr B given
by

(erp)(x + FA) = p(z) + F;B;

this is well defined precisely because ¢ is filtered. Results such as the following witness

the usefulness of the gr construction.

Proposition 1.1.6. If A is positively filtered, i.e. has F,A = 0 for n < 0, with gr A

left Noetherian, then A is left Noetherian.

Example 1.1.7. Polynomial rings A in finitely many variables are graded by degree:

A= Aplzy, ...z, = @i>0A;, where A; consists of polynomials of total weight 1.

11



Example 1.1.8. Consider the n-th Weyl algebra over a field K (in characteristic
zero, say):

A?’L(K) :K{xlv"'>xn>y17"'7yn}/[7

where the numerator denotes a free unital K-algebra and [ is the two-sided ideal
generated by the elements [z;, 2], [vi, y;], [y, ] — 0ij for 1 < 4,5 < n. It’s straight-
forward to argue that A, (K) has a basis in elements 2%y? for a, 3 € N"; hence, we

can give A = A, (K) a filtration

F,A= Y (BRAY.

|8|<n

In this case, gr A = K[Xy,...,Xp, Y1,...,Y,], where the X, Y; represent the symbols

of x;, y; respectively; this is the easiest proof that A, (K) is (left or right) Noetherian.

Finally, let us recall that a seminorm on an abelian group M is a function ||-|| : M — R
such that ||0]] = 0 and || f+gl| < || fl+]lgll; it is non-Archimedean if it actually satisfies
the ultrametric inequality. The metric topology afforded to M by a seminorm is
Hausdorff precisely when that seminorm is a norm; that is, when [|m|| = 0 iff m = 0.

Seminorms || - ||, || - ||" are equivalent if there exists C,C’ > 0 such that
Clml|| < [Jm] < C'||m|| for all m e M,

in which case the topologies induced on M coincide. The metric completion of a

seminormed group is again a seminormed group in a natural way.

A morphism of seminormed groups f : M — N is a group homomorphism which is

bounded and therefore continuous: there is C > 0 such that

|f(m)]| < C|m]|| forall m e M.

12



Quotient groups M /N inherit a residue seminorm from a seminormed group M via

the formula [|z|| = inf{||m|| : x = m + N}.

A seminormed ring A is required to satisfy ||1]] = 1 and ||ab|| < ||a||||b]| in addition
to the properties of a seminorm on the additive group of A. If the latter inequality
is always an equality, the seminorm is multiplicative; if it is an equality when b is a
power of a, it is power-multiplicative. A seminormed module for a normed ring A is

an A-module and seminormed group M such that, for some C' > 0,
lam|| < C|lal|||m]| forall a€ A, me M.

In this situation, there is an equivalent seminorm on M for which the above inequality

holds with C'= 1. A Banach ring or module is a complete normed ring or module.

In case M, N are right and left non-Archimedean Banach modules for a non-Archimedean
Banach ring A, respectively, we provide the tensor product M ® N with the following

seminorm:

||| = inf {miax |l ||| = 2 = Zmi ® nl} .

The completed tensor product T = M®N is the corresponding completion of M & N’;
the induced map M x N — T is initial in the category of bounded A-balanced maps
of M x N into Banach A-modules.

To conclude this section, we state some classical results from functional analysis on

Banach spaces over fields.

Theorem 1.1.9. (Open mapping theorem) Let f : V' — W be a surjective continuous

map between K-Banach spaces. Then f is an open map.

Theorem 1.1.10. (Uniform boundedness principle) Let V)W be normed K-vector

spaces with V' Banach, and let S be a set of linear operators V' — W. If for allv € V

13



it holds that

sup || f(v) ]| < o0,
fes

then sup;cg || f|| < oo. Here we refer to the operator norm defined on the space of

bounded linear operators V. — W by || f|| = sup, = | f(v)]-

1.2 CLASSICAL D-MODULE THEORY

Modules over the Weyl algebra A, (C) (introduced in Example 1.1.8) are prototypes
for D-modules, whose theory has been a cornerstone of algebraic analysis for over 50
years. In this section, we define key terminology in that theory while relating classical
D-modules to partial differential equations (but making no mention of representation-

theoretic applications, such as the resolution to the Kazhdan-Lusztig conjecture).

Let (X, Ox) be a smooth n-dimensional algebraic C-variety, and write
Tx = Derc(Ox)

for the tangent sheaf on X, whose local sections over an open U C X are the
0 € Endc(Ox(U))

satisfying Liebniz’s rule: 6(fg) = f0(g)+6(f)g. Regarding Ox and Tx as subsheaves
of Endc(Ox), we denote by Dy the sheaf of differential operators they generate as a

C-algebra.

Theorem 1.2.1. [16, Ch. A.5| For all p € X, there is an affine open neighbourhood

U, regular functions z; € Ox(U) generating m, in Oy ., and vector fields 0; € Tx (V)

14



such that [0;,0;] = 0, 0;(x;) = 95, and Ty = @}, Oy 0;, whence

Dy = Dx |y = ®aenrOp0°.

We say {x;,0;} are local coordinates at p. In their presence, we give the sheaf Dy an
order filtration by setting
F,Dy = Z Opo°.

jaf<n
Since X is covered by such U, we can patch together these local parts to obtain an
exhaustive filtration of Dx by locally free Ox-modules F,,Dyx. It’s easily verified
that [F,,Dx, F,,Dx] C Fin_1Dx, so gr Dy is a sheaf of commutative C-algebras;
affine-locally,

(gl”DX)\U =grDy = OU[fl, e ,fnL

where the & = 0(0;) € gryDy are principal symbols. Since the cotangent bundle

m:T*X — X is glued from varieties U x AZ, we derive canonical identifications

gr Dx = 1,07 x = Symg, Tx.

Now, any linear PDE on a domain U C X can be represented by an equation Pu =0
for P € Dx(U) = D and u € Ox(U) = O. We associate to this equation the cyclic
D-module M = D/DP; the space of its holomorphic solutions is then naturally
isomorphic to

Homp (M, O) = {p € Homp (D, O) : ¢(P) = 0},

because Homp (D, O) = O with Pu = 0 iff o(P) = 0 for ¢ : P +— Pu. More generally,
we can replace O by any space F' on which D acts to obtain different types of solutions
Homp (M, F). In this sense, finitely presented D-modules correspond to systems of

linear PDEs.
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To give an Ox-module M the structure of a Dyx-module, it is equivalent to provide
a morphism of C-linear sheaves V : Ty — Endc(M) such that, on sections 6 € Ty,

f € Ox, s € M, one has the following properties:

Vig= [V, Vo(fs)=00f)s+ [Va(s), Vig 01 =[Va, Ve,

The module structure in terms of V is given by Vy(s) = 0s. In case M is locally
free over Oy, the first two conditions define a connection; the third one, an integrable
connection. It turns out that a Dx-module is an integrable connection precisely when

it is Ox-coherent.

The characteristic variety is an invariant of D-modules which will be of fundamental
interest to us. To approach its definition, we require the notion of a good filtration;

this is described by the following equivalent properties.

Proposition 1.2.2. [16, Ch. 2.1] Let M be a filtered Dx-module. The following are

equivalent:
e or M is coherent over gr Dx = m,Op«x.

e [, M is coherent over Ox for all n, and for all n > 0, m > 0, one has

(FwDx)(F,M) = F,1,,M; here we refer to the order filtration of Dy.

e Locally on X there is a Dx-linear morphism ® : D% — M and my, ..., m, with

O(Fpy_y, Dx ® -+ ® Fy_n,Dx) = F,M.

Coherent D x-modules are exactly the ones admitting a good filtration. Let Y = T*X.

Fixing a good filtration of a coherent M, we consider the coherent Oy-module

(gr M)~ = Oy ®@n-11,0y ﬂ_l(gr M).

Its support on Y is the characteristic variety Ch(M); it is independent of the choice

16



of good filtration, and has a host of important qualities:

e [t is a conical algebraic subset of Y, in the sense of being stable under the action

of C on the fibres of 7.

e Compatibility with exact sequences: If 0 - L — M — N — 0 is an exact

sequence of Dy-modules then Ch(M) = Ch(L) U Ch(N).
e Ch(M) = T%X is the zero section of 7 iff M is an integrable connection.

e Ch(M) is involutive with respect to the canonical symplectic structure of Y, a
corollary of which is that any irreducible component of Ch(M) has dimension

at least dimX.

Holonomic D-modules are those for which equality holds in the last point. Since
the size of a characteristic variety is related to the size of the solution space for
the differential equations corresponding to a coherent M, holonomic modules are

sometimes called mazimally overdetermined systems.

Let us conclude this section by noting that the characteristic variety may alternatively
be constructed using microlocal differential operators. Specifically, one can define a
sheaf of non-commutative rings Ex on Y, as an extension of 771Dy, in such a way
that

Ch(M) = Supp(Ex @x-1p, 7 M);

this construction is outlined in [18, Ch. 7]. One advantage to this viewpoint is that
it specifies Ch(M) in terms of a fixed ring and independently of good filtrations; for
that reason, it is the viewpoint we will pursue later on when attempting to construct

a rigid characteristic variety.

17



1.3 AFFINOID ALGEBRAS AND RIGID GEOMETRY

The remainder of this chapter will briefly introduce the basics of rigid analysis, start-
ing with affinoid algebras and progressing to rigid spaces; we loosely follow [9], in
which all major results can be found. Fix K, R,m,k with a complete non-trivial

non-Archimedean absolute value. The Tate algebra

= Kl 6) = {7 = 3 6" € Kl Gl Jim 1] =0}

aeN”

consists of restricted power series converging on the n-dimensional unit ball B"(K)
over the algebraic closure K, since the convergence of an infinite series is equivalent
to the convergence to zero of its summands in ultrametric settings. Tate algebras

play a similar role in rigid geometry as polynomial rings do in algebraic geometry.

Proposition 1.3.1. T, is a Banach K-algebra with respect to the non-Archimedean

multiplicative Gauss norm, given on series as above by |f| = sup, | fa/l-
Theorem 1.3.2. Maximum Principle: If f € T,,, then |f| = max, g ) | f(2)].

Let 7, = R{((1,...,¢) C T, denote the affine formal model of T, consisting of

restricted power series with coefficients in R. The reduction epimorphism

7;L_>k[<17"'7cn]7 f'_>f7

helps us to describe the units in T,.

Proposition 1.3.3. Suppose f € T), has |f| = 1. Then f € T,° iff fek* Soin

general g € T,° iff |g| = |go| > |ga| for all 0 # a € N™.

We omit a discussion of Weierstrass division and the Noether normalisation theorem

that follows, but here are some key corollaries for the structure of 7T,,.
Theorem 1.3.4. Let M be a maximal ideal of T,,.

18



e T, /M is a finite extension of K and in fact M = {f € T,, : f(z) = 0} for some

xr € B"(K).

e T}, is a Noetherian, Jacobson UFD of Krull dimension n, and every ideal I C T,

is topologically closed.

An affinoid K-algebra A is any algebra admitting an epimorphism « : T, — A.
They form a full subcategory of the category of K-algebras. We topologise A via
the induced residue norm | - |,, with respect to which A is complete. There is also a

(power-multiplicative) supremum seminorm on A, given by

| flsup = max{|f(z)| : * € mSpec A};

here f(z) refers to the image of f in the quotient A/x, a finite extension of K which
therefore admits a unique extension of the absolute value. The supremum seminorm

is the Gauss norm for A = T},; the next theorem collects its properties in general.
Theorem 1.3.5. o If p: A — B is an affinoid map, |p(a)|sup < |@|sup-

e For any epimorphism o : 7, = A and f € A, |flsup < | fla-

o A satisfies the maximum principle with respect to | - |sup-

Tate algebras are “free” affinoid algebras in the following sense: If A is an affinoid
K-algebra and fi,..., f, € A, then there is a (unique) morphism ¢ : 7,, — A with
©(¢;) = fi for all ¢ iff | filsup < 1 for all i. Such ¢ is continuous with respect to the

Gauss norm on 7T, and any residue norm on A, which allows us to prove:

Theorem 1.3.6. A morphism of affinoid algebras A — B is continuous with respect
to any residue norms on A and B. Thus all residue norms on A are equivalent, and

we can sensibly define the relative Tate algebra A((y, ..., Cn)-

19



As suggested in the definition of the supremum seminorm, elements f € A may be
viewed as functions on mSpec A. We will consider mSpec A, equipped with its ring of
functions A, as an affinoid space Sp A. (Maximal spectra replace prime spectra in rigid
geometry because maximal ideals are found to be more compatible with appropriate
notions of localisation.) By taking preimages, morphisms of affinoid algebras ¢ : A —
B induce maps ¢* : Sp B — Sp A; by fiat, Sp is then an anti-equivalence of categories

from affinoid K-algebras to affinoid K-spaces. Fibre products are obtained as follows:
SpA XSpC Sp B = Sp (A@CB),

here, we use that presentations 7,, — A, T,, — B canonically beget a presentation

Thim — A®c B, so the latter is an affinoid K -algebra.

X = Sp A can be endowed with a Zariski topology in the usual way and with the
usual properties, but it takes second place in the theory to a finer canonical topology.

This is generated by the sets
X(f)={zeX:|f@) <1}, feA

In particular, subsets of X are canonically open whenever they are unions of Wezer-
strass domains X (f1,...,fn) = X(f1) N --- N X(f,). We also have open Laurent

domains

X(fio fugr'oogm) ={z € Xt |filw)] < 1, 1g;(x)] > 1}

and rational domains

fl fn = {r . (x x
X(fo,...,fo)—{ e X |fi(@)] < [fol@)]},

20



whenever fo, ..., fi do not have a common zero. These types are said to be special
kinds of affinoid subdomains, subsets U C X such that there is a morphism of affinoid

spaces ¢ : X' — X with «(X’) C U and which is terminal among all such morphisms.
Theorem 1.3.7. Let ¢ : X' =Sp A’ — X =SpA and U C X be as just described.

e ¢ bijects X’ onto U and 2’ = ¢(2’)A’ for all maximal ideals 2’ € X".
e Transivity: If V C U and U C X are affinoid subdomains, then so is V' C X.

e The base change of ¢ by a morphism of affinoid spaces ¥ — X is an affinoid

subdomain of Y. In particular, if U,V C X are subdomains, sois U N V.

Straightforward but technical labour verifies that the special affinoid subdomains
really are subdomains; respectively, Weierstrass, Laurent, and rational subdomains

arise from the spectra of affinoid K-algebras
f
A(-)=A —
(4) =40/ Ch - D,
where we have truncated tuples of variables to single symbols.

Theorem 1.3.8. (Gerritzen-Grauert) If U C X is an affinoid subdomain, then U is

a finite union of rational subdomains of X. (In particular, U is open in the canonical
topology.)
Write Ox (U) for the affinoid K-algebra corresponding to an affinoid subdomain U C

X, noting the natural restriction maps
Ox(U) — Ox(V) whenever V CU.

Our desire is to view (X, Oy) as some kind of ringed space, but there is an immediate

obstacle: the affinoid subdomains of X are closed under finite intersections, but not
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even finite unions, so they do not form a topology. The solution is to modify our

understanding of topology, in a way that also permits Ox to be called a sheaf.

A Grothendieck topology T on a category € is a set of coverings of the objects of C,

which are collections of morphisms {U; — U },¢; satisfying these axioms:

1. If & : U — V is an isomorphism, then ¢ € %.
2. If {UZ — U}ieh {V;] — Ui}jGJi € (5, then {V;] — Uz — U}ie[,jeJi €%,

3. f {U; - U}lie; € T and V — U is a morphism in €, then U; Xy V exists in €

and {U; xy V —>V}e%.

The pair (€,%T) is called a site. The objects of € analogise open sets, with admissible
open coverings prescribed by ¥; fibre products emulate intersections. In fact, any
topological space S gives a site, with € = O(.S) the poset of open sets of S and ¥ all
possible open covers. A sheaf (of sets) on a site is a presheaf (contravariant functor)

F : € — Set for which the diagram

FU) = [[FU) = [[FU; xu U;) s exact whenever {U; — U} € <.
iel irj
Familiar notions like abelian sheaves, stalks, and sheafification exist here, albeit with
complications in the latter case. If (€', F') is another site, then a functor u : € — @’
is continuous if the pushforward u.(F) = Fu is a T-sheaf whenever F is a ¥'-sheaf.
In that case u, is a functor defined on the sheaf categories (topoi, sing. topos),
Sh¢ — Sh(¢; it has a left adjoint u*. Now wu is a morphism of sites € — € if u
is continuous and u* preserves all finite limits. The direction of u as a morphism of

sites takes its cue from the basic example of topological spaces: continuous functions

S — ' yield maps O(S') — O(S).

Generally, if € is constructed from specific subsets of a fixed set S, we refer to S

as a G-topological space. Functions between G-topological spaces f : S — T are
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then continuous in case the pullback f~! defines a morphism of sites, while coverings
and fibre-products are genuine unions and intersections. In our setting, € = X, will
be the category of affinoid subdomains of X, with inclusions as morphisms and T

consisting of finite (set-theoretic) coverings only; this is the weak G-topology on X.

There is a canonical way to enlarge X, to a strong Grothedieck topology X.e, in order

to obtain some desirable completeness properties:
e Go: 0 and X admissible open.

o Gi: f' V CU € X, is such that U = U,;U; is an admissible open cover with

V NU; € X, for all 4, then V € Xj,.

o Gy: If {U;} is a covering of some U € X,;, with an admissible open refinement,

then {U;} is admissible too.

Admissible opens U € X,;, are defined by having (not necessarily finite) coverings
U = U,;U; such that whenever ¢ : Z — X is a morphism of affinoid spaces with image
in U, the covering Z = U, ' (U;) has a finite refinement by affinoid subdomains of
Z. Meanwhile, precisely those coverings are admissible in X,;,. Strongly admissible

subsets of X are sometimes called special subsets.

Importantly, any sheaf on X, has a (unique) extension to X,;,. We therefore come
upon a (locally) ringed site (X,ig, Ox) after establishing Ox is a sheaf on X,,. In fact,

more 1s true.

Theorem 1.3.9. (Tate acyclicity) For any covering U € X,, and abelian presheaf F,

consider the augmented Cech complex they determine:

0—=F—=C'U,F)— CUF)— ...

If this complex is exact, say F is U-acyclic. Then Ox is U-acyclic for all U € X,,.
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Our work culminates with rigid spaces, which bear the same relation to affinoid spaces
as schemes do to affine schemes. A G-topological space X equipped with a sheaf of
K-algebras (with local stalks) is known as a (locally) G-ringed K-space. A morphism
of G-ringed K-spaces ¢ : X — Y is a continuous function ¢ paired with a sheaf
morphism ¢# : Oy — p,Ox. In the locally G-ringed case, we also require all induced

stalk maps 7 to be local ring homomorphisms.

Proposition 1.3.10. Sending a morphism of affinoid K-spaces ¢ : X — Y to the pair
(¢, o), where (o%)* = ¢, constitutes a fully faithful functor from affinoid K-spaces

to locally G-ringed K-spaces.

A rigid K-space (X,Ox) is then a locally G-ringed K-space satisfying (Gy), (G1),
(G2), and such that X has an admissible covering {X;} with (X;, Ox|x,) an affinoid
K-space for all 7. Rigid K-spaces form a full subcategory of locally G-ringed K-spaces,

and they support all fibre products and suitable gluing.

Specifically, suppose we are given rigid K-spaces X, A € A, along with open sub-
spaces Xy, C X, and isomorphisms @), : X, = X,\, o € A. Assume go)_\j = Qur,

X = X, with ¢y, = id, and ¢,, induces isomorphisms
Py - X)\}L N X)\I/ = X;LA N X/.Ll/

for which vxu = @uur 0@y, all A, i, v € A. Then there is a rigid space X, unique up
to canonical isomorphism, formed by gluing the X, along the X,,; then {X)}ea is an
admissible covering of X. Similarly, if {Y;};c; is an admissible cover of a rigid space
Y, and there are morphisms v; : Y; — Z agreeing with each other on intersections
Y;NY}, then there is a unique extension ¥ : Y — Z of the ;. Arbitrary fibre products

of rigid spaces are obtained by gluing fibre products of affinoid patches.

An important class of rigid spaces arises from a process of analytification of K-schemes
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Z, similar in spirit to Serre’s GAGA from complex algebraic geometry. Specifically,
a rigid analytification of Z is a terminal object Z*" — Z in the category of rigid
K-spaces over Z (within the suitably large category of locally G-ringed K-spaces).
The fundamental case is the affine space Z = A%.. For fixed ¢ € K with |c| > 1, let
T.(r) = K{(c"&,...,c"&,) = K(c7"¢), so that

K¢ = - = Th(2) = To(1) — T,(0) = T,. (1.3.1)

This corresponds to a reversed chain of inclusions of maximal spectra, starting with
B"(K) = SpT,. By gluing, we construct the union (colimit) of these rigid spaces, and
it satisfies the universal property required for A%*™. (In particular, its isomorphism
type is independent of ¢.) If instead Z = Sp[&;,...,&,]/a is affine of finite type, we
start by quotienting the terms in (1.3.1) by (a) and construct Z*" that way. Patching

together ultimately yields:

Proposition 1.3.11. There is a rigid analytification Z*" for any K-scheme Z of

locally finite type.

Associated to the construction of Z*" is an analytification F — F*" defined on the
category of quasi-coherent Oz-modules. As proved in [20], this functor furnishes an

equivalence of categories between coherent Oz-modules and coherent O zan-modules.

Later on, we will require a further notion of “relative” analytification. For this,
we generalise the Spec of a quasi-coherent sheaf of Ox-algebras A on a scheme
X. Recall that in this setting f : Spec.A — X is a scheme over X, such that
S7H(V) = Spec A(V) for all open affines V' C X, and such that whenever U — V is
an inclusion of affines, f~'(V) — f~1(U) corresponds under these isomorphisms to

restriction A(V) — A(U). The Spec is unique up to isomorphism and functorial in
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construction, because it represents the functor

Sch/X — Set, (p:Y — X)+— Homo, (A, p.Oy).

Likewise, we will rely on the existence of a functor Spec®™ defined on the category
of locally finitely presented sheaves of algebras on a rigid space. The fundamental

example is A = Ox|ty, ..., t,], with Spec®™ A = X x AR™.

Theorem 1.3.12. [11] Let X be a rigid K-space and let A be a sheaf of locally
finitely presented Ox-algebras. The functor sending rigid spaces ¢ : ¥ — X to
Homo, —a1g(A, ¢.Oy) is represented by a rigid space Spec™A — X, in such a way

that:
e Spec™ is compatible with base change of X.

e Given maps of locally finitely presented Ox-algebras C — A and C — B, there

is a canonical isomorphism

Spec™ (A ®c¢ B) — Spec™ A Xgpecane Spec™ B.

o If A, is a quasi-coherent sheaf of locally finitely generated Ox,-algebras on a
K-scheme X, then AJ" is a locally finitely presented sheaf of algebras on X§"

and there is a natural isomorphism

Spec™ A" — (SpecAg)™.

Relatedly, one can consider geometric vector bundles on rigid K-spaces X; see [35] for
n,an

an outline. These are defined in the intuitive way, with X x A" playing the role of

the trivial rank-n bundle. Rigid geometry retains the classical 1-to-1 correspondence
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between locally free Ox-modules of rank n and rank-n vector bundles over X:
E — (Spec™(Symy, £) = X), (¢:Y = X) = L (YV/X),

where £ is a locally free Ox-module and .(Y/X) denotes the sheaf of sections of ¢.

This correspondence will be used freely and crucially in the next section.

1.4 SYMPLECTIC STRUCTURES AND THE COTANGENT
SPACE

In this section, we define symplectic structures on rigid spaces X over K and intro-
duce the cotangent space T*X. Most concepts run in parallel to classical algebraic
geometry. Letting Z denote the ideal sheaf of the diagonal A : X — X xx X, we
have a cotangent sheaf

Qx/x = AY(Z/1?)

equipped with a K-linear derivation d : Ox — {lx/kx. As in ordinary algebraic

geometry, d fits into a de Rham complex

where Q’)“(/K = A" Qx/K is the k-th exterior power of the Ox-module 2x/x; we call
its sections k-forms on X. The de Rham complex defines what it means for forms to

be closed or exact.

Suppose F is an Ox-module, with f,g € FY(X). Then we can consider the map
A2 F(X) = Ox(X) defined by Ox(X)-linear extension of the formula

uhv = fu)g(v) = g(u)f(v).
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In this way we have an alternating Ox (X)-linear map F(X)"®@F(X)" — (A F(X))Y,
or equivalently an Ox(X)-linear map A? F(X)" — (A2 F(X))". By sheafification, we

in fact get an Ox-module morphism
2 2
ANF = (ANF).

Let U C X be admissible open. Elements of (A2 F)Y(U) correspond to alternating

morphisms F(U) @ F(U) — Ox(U), which in turn correspond to morphisms
F(U)— FU)".

Chasing through the maps we have constructed, we see that global sections w in

(A2 FY)(X) induce sheaf morphisms
Ou: F = F".
Now take F = Tx/x = Q\)’(/K to be the tangent sheaf. If a (global) 2-form w in

(A*Qx/x)(X) is such that ©,, is an isomorphism, then we say w is non-degenerate.

Definition 1.4.1. A symplectic form on a rigid space X over K is a closed, non-

degenerate (global) 2-form.

If F: X1 — X5 is amorphism of rigid K-spaces, then by universality and functoriality

of AF there is an induced morphism

k k k
A Qxx = N Fx ke = Fo \ Qxy ks

so that a k-form w on X, pulls back to a k-form F*w on X;. When the X; are
equipped with symplectic forms w;, an isomorphism F' such that F*w, = w; is termed

a symplectomorphism.
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Theorem 1.4.2. [5] The tangent sheaf 7 = Tx,x introduced above has sections

T(U) = Derk(U)

over affinoid subdomains U C X, and for every admissible open subset Y C X, T(Y))

acts on Ox(Y') by derivations.

Definition 1.4.3. Say a rigid K-space X is smooth in case {1x,x is locally free of
finite rank. The cotangent space and tangent space of X are then, respectively, the

vector bundles corresponding to Tx,x and €x/k:

T X = Spec™(Symy, Tx/kx), TX = Spec™(Symp, Qx/x)-

If f:Y — X is a morphism of rigid K-spaces, there is an induced morphism of
Ox-modules Qx/x — f.fdy;x. When X and Y are smooth, various functorialities

and the compatibility of Spec®™ with base change provide a canonical map

Tf:TY — TX.

In particular, if Y =7T*X and 7 : Y — X is the natural projection, then we have

Tr:TY - TX.

Dualising T'r (on the level of the locally free sheaves corresponding to the bundles
TY and TX) gives a : Y — T*Y, which is a section of 7*Y — Y, i.e. a 1-form on
Y, the canonical 1-form. Then w = da is a symplectic form on Y, showing that the

cotangent space Y = T*X has a symplectic structure.
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Example 1.4.4. If X = Sp K(xy,...x,) = D} is the n-dimensional disc, then
T"X =X x A" = hﬂSpK(xl, e Ty DYy e DY)

It has a canonical 1-form

1.5 BERKOVICH AND HUBER SPACES

In this section, we concisely introduce Huber spaces and Berkovich spaces, following
the exposition in [32]. These spaces (compatibly) generalise the points on rigid vari-
eties, in such a way that their abelian sheaves have better properties. For instance,
while a non-zero abelian sheaf on an affinoid K-variety X can have all its stalks zero,

this pathology does not arise on the enlarged space P(X), which we define presently.

Definition 1.5.1. Recall that a special subset of X is a finite union of rational

subdomains of X. A filter f on X is a collection of special subsets of X such that
e Xecfand ¢ f.
o IfU,Us € fthen Uy UU, € f.
o If U € f and V is a special subset containing U, then V' € f.

A prime filter p on X satisfies the extra condition that if U; UU, € p then Uy € p or
Uy € p, or equivalently: If U;U; = U is an admissible covering of U € p, then some
U; € p. Using this restatement, we can extend the definition to all rigid spaces X,

using admissible opens rather than special subsets.
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We write P(X) for the collection of prime filters on X. By a straightforward Zorn’s
lemma argument, it contains the set M(X) of maximal filters (with respect to the

partial ordering of filters by inclusion).

Definition 1.5.2. Let 7 € K be any fixed element of norm less than 1. A wvaluation

(p, A) on X consists of a prime ideal p C O(X) and a valuation ring
A C Frac(O(X)/p),

such that A contains (O(X)° +p)/p and N,7"A = 0.

Theorem 1.5.3. [32] There is a natural, explicit bijection between P(X) and Val(X),
the set of valuations on X, restricting to a bijection between M(X) and the subset

of valuations (p, A) for which A has rank 1.

Let us describe this bijection. Given a valuation (p, A), we obtain a prime filter p by

Uep <« U contains some X (fl f") with ¢(f;) € o(fo)A,

fo T o

where ¢ : O(X) — FracO(X)/p is the natural map. Given p € P(X), let

11 = inf Il

for elements f € O,; here we refer to the stalk F), = thEp F(U) of an abelian sheaf
F on X, and the supremum norms || f||y on opens U where f is defined. Then || - ||,
is a seminorm with unit ball O and kernel m,,, the unique maximal ideal of O,. So
letting k, = O,/m, and

b = ker(O(X) — k).

we can consider the image of Frac(O(X)/p) in k,, and the intersection A of this image

with k) = Op /m,. Now val(p) = (p, A) is the desired valuation.
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Valuations (p, A) with rank A = 1 are also known as analytic points. Any x € X
(maximal ideal in O(X)) yields a prime filter p, = {U : x € U}, corresponding to the
analytic point given by O(X) — O(X)/xz. Analytic points can in fact be identified

with bounded, multiplicative seminorms on O(X), i.e. multiplicative seminorms

A O(X) - RS

which are continuous with respect to the supremum seminorm on O(X). If p is the

prime filter determined by A, then U € p if and only if U contains a subdomain
X(f1/ fos- -5 faf fo) with A(fi) < A(f).

Definition 1.5.4. The Huber space P(X) has a basis of open sets

U={peP(X):Uecp}, UCX special.

The Berkovich space M(X), viewed as the set of bounded multiplicative seminorms

on O(X), has the coarsest topology for which all maps

A= A(f), feOX),

are continuous.

The subspace topology on M(X) C P(X) differs from its Berkovich topology, but
they are related in the following way. For p € P(X), the map O(X) — R, f — | f]l,
is simply checked to be a bounded multiplicative seminorm, so we obtain a retraction
map

r:P(X) > M(X).
The quotient topology on M(X) induced by r is precisely the Berkovich topology.

Proposition 1.5.5. [32] [8] The space P(X) is compact with maximal Hausdorff
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quotient M(X). For any a € M(X) C P(X), the closure of {a} C P(X) is the fibre

r~(a).

Example 1.5.6. [8, Ch. 1] The classification of points in M (K (z)) is illustrative and

very useful. There are four types:
e Type I: Seminorms f +— |f(a)|, where a € K, |a|] < 1.

e Type II (resp. Type III): Seminorms f — |f|g = max, |a,|p", for expressions

f= Zan(x —a)",

where E = E(a, p) is a disc with centre a € K, |a| < 1, and radius p € |K*|

(resp. p & [K*]).

e Type IV: Seminorms f — |f|e = inf; | f

E,, where & = {E;} is a nested collec-
tion of discs in K with empty intersection. (This is possible precisely when K

is not spherically complete.)

Definition 1.5.7. [8, Ch. 2] The Shilov boundary of X is the unique smallest subset
['(X) of M(X) upon which every element f € O(X) attains its maximum (when

regarded as a function f: M(X) — R). It always exists and is finite.

Let us record precisely the fact about sheaves mentioned before. Notice that the

functor U — U defines a morphism of sites o : P(X) — X.

Theorem 1.5.8. [17] The functors o, and ¢* are quasi-inverse equivalences between

the categories of abelian sheaves on P(X) and on X.

It is shown in the proof of this theorem that if F'is an abelian sheaf on X and U C X

is a special subset, then
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This follows from establishing that U=V implies U = V (by consideration of
neighbourhood filters). Thus the functors F, — (¢*F'),, for p € P(X), are exact and

F=0if F,=0 for all p e P(X).

Finally, let us explain how the Huber space P(X) can be constructed topologically as
an inverse limit of reduced schemes over k, at least when X is an affinoid K-variety.
Any point in X is the kernel of a surjective K-algebra homomorphism O(X) — K;

here we use that K is algebraically closed. This induces a k-algebra homomorphism

O(X) — k,

whose kernel is a maximal ideal of O(X). Thus we have a surjective reduction map

red : X — X = {closed points z € X},

with the property that for every Zariski open V' C X, the preimage red_l(V) is a

special subset in X [10].

Lemma 1.5.9. [32] For any k-variety V, there is a bijection

V—PVa), 2+ D,

where p, = {U open : U N {z} = 0}. Topologising P(V ) by this bijection, there is

then a continuous surjection Red : P(X) — P(X,) = X defined by

Red(p) = {V C X open : red (V) € p}.

Let us conclude with one final fact about P(X). Fixing a set of elements

f=Afo.-- - fu} € O(X)
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generating the unit ideal provides a canonical covering of X by rational subdomains

Uos ..., U,. For all 4, j, it holds that U; N U; is an open subscheme of Uj, so the latter

schemes can be glued together into a reduced k-scheme (X, f) of finite type. Gluing

the canonical reduction maps U; — (U;)q gives

red(f): X — (X, f)

cly

and in the same fashion as the lemma a continuous surjection

Red(f) : P(X) — (X, f).

Now, whenever the covering afforded by f is refined by the covering afforded by some

9 =190,---,9m}, there is a continuous surjection (X, g) — (X, f); hence, we have an

inverse system of topological spaces indexed by the collections f.

Theorem 1.5.10. [32] The maps Red( f) induce a homeomorphism P(X) = @f (X, f).
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CHAPTER 2

MOTIVATION

In [5], [6], Ardakov and Wadsley begin development of a theory of D-modules on
rigid spaces, adapting concepts from the classical case and establishing analogues of
important theorems — most notably, a rigid-analytic version of the Beilinson—Bernstein
localisation theorem. Our concerns in this chapter will be to recall their constructions
and results, before describing the unanswered questions motivating the main content

of this thesis. The exposition here is an elaboration of [1].

2.1 CONSTRUCTIONS AND PREVIOUS RESULTS

Let R be a valuation ring of rank 1, separated and complete with respect to its m-adic
topology, where m € m belongs to the maximal ideal of R. Write K = Frac(R),
k = R/m. In the original references, R is assumed to be discretely valued, but this
assumption is removed in [2|. Commonly & will have prime characteristic p, in which

case we take m = p.

For K a finite extension of Q,, [29], [30] describe the theory of admissible locally
analytic representations of a p-adic Lie group G over K. Such representations are

relevant to the p-adic local Langlands program and other parts of number theory. Du-
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ally, there is a locally analytic distribution algebra D(G, K), certain of whose modules
form a category anti-equivalent to the category of admissible locally analytic repre-
sentations. We omit the definition of D(G, K') here, noting simply that it has U(g) as
a subalgebra, where g = Lie(G); this permits localisation of D(G, K)-modules onto
the flag variety of the associated algebraic group. While the localisation functor fea-
tures crucially in proofs of the Kazdhan—Lusztig conjectures (by Beilinson—Bernstein

and Brylinski-Kashiwara), it suffers topological deficiencies remedied by considering

—

the closure U(g) of U(g) in D(G, K).
Definition 2.1.1. Assume g is a finite-dimensional Lie algebra over K.

e A Lie lattice in g is a finitely generated R-submodule £ of g which is also an

R-Lie subalgebra and which spans g over K.

e Associated to L is its universal enveloping algebra U(L) over R, and hence its

affinoid enveloping algebra

UL = him U(2)/(x")) on K.

n—oo

e The Lie lattices in g form a poset under inclusion, yielding the Arens—Michael

envelope

U(g) =lim U(L)x = lim U(m"Lo)x

n—0o0

for any fixed Lie lattice Ly in g.

In greater generality, Arens—Michael envelopes were introduced by Taylor and named

by Helemskii. Even though U(g) is non-Noetherian for g # 0, it is approximated by

Noetherian rings in the following sense.

Definition 2.1.2. A K-algebra A is said to be Fréchet—Stein if it admits a presenta-
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tion A = ILHn A, for a tower of Noetherian Banach K-algebras
AQ(—Al(—AQ(—...

in which each arrow has dense image and renders its target flat over its source as a
right module. In this case, A obtains the structure of a K-Fréchet algebra. A left
A-module M is coadmissible if A, ® 4 M is finitely generated for all n > 0 and the

natural map M — @An ®4 M is an isomorphism.
Theorem 2.1.3. Let A be a Fréchet—Stein K-algebra.

e ([31], Corollary 3.5) There is an abelian category C4 of coadmissible A-modules,
and it is independent of the presentation A = T&nAn.

e (|27], Theorem 7.6) The locally analytic distribution algebra D(G, K) and

—

Arens—Michael envelope U(g) are Fréchet—Stein.

Example 2.1.4. A one-dimensional Lie algebra g = Kz has a Lie lattice £L = Rz,
so that U(L) = R[x] and

—

is the Tate algebra in one variable over K. The nested lattices

LOTL DL D

have affinoid enveloping algebras K(z) O K(rz) O K(r%z) D ..., where K{n"z)
comprises those a € K[[z]] with coefficients a,, satisfying a,,/7"™ — 0. These form a

—

Fréchet—Stein tower, and show that the Arens-Michael envelope U(g) coincides with
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rapidly vanishing power series over K:

K({x) = @K(W”JE} ={a=>a,2™ € K[[z]] : a,/7"™ — 0 for all n > 0} .

—

For g split semisimple, coadmissible modules for a central reduction of U(g) occur
on one side of the rigid version of the Beilinson—Bernstein equivalence. Describing
the other side requires the sheaves D of infinite-order differential operators on rigid

analytic spaces. We begin by defining Lie-Rinehart algebras.

Definition 2.1.5. Let S be a commutative ring and A a commutative S-algebra. An
(S, A)-Lie algebra consists of an S-Lie algebra L which is also an A-module, along

with an A-linear Lie algebra morphism
p: L — Derg(A),

the anchor map, satisfying [z, ay| = a[z,y] + p(z)(a)y for all z,y € L and a € A.

Every (S, A)-Lie algebra L has a universal enveloping algebra U(L), a filtered asso-
ciative S-algebra admitting maps iq : A — U(L) and iy, : L — U(L) (of S-algebras

and S-Lie algebras, respectively). These are such that, for alla € A,z € L,

ir(ax) =ia(a)ip(z), [ir(x),ia(a)] =ia(p(z)(a)),

and (ia,77) is initial in a suitable category of pairs of maps out of A and L satisfying
these equations. A morphism of (S, A)-Lie algebras is an A-linear map ¢ : L — L'
which respects the Lie structure and satisfies p'c = p; in this way we obtain a category
of (S, A)-Lie algebras, upon which U becomes a functor to the category of associative

R-algebras.

Definition 2.1.6. A coherent (S, A)-Lie algebra is coherent as an A-module; a smooth

(S, A)-Lie algebra is furthermore projective as an A-module.
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An extension of S-algebras f : A — B does not always yield a base change functor
B ®4 _ from (S, A)-Lie algebras to (S5, B)-Lie algebras. However, it does if there
is a lifting of derivations ¢ : Derg(A) — Derg(B), i.e. an A-linear map such that
¢(d)o f = fodforall de€ Derg(A). In this case, there are natural isomorphisms of

filtered left and right B-modules,

Be.iUL)2UB®sL), UL @1B=U(B®4L).

These facts are particularly useful for localisation purposes.

Proposition 2.1.7. If f : A — B is an étale morphism of affinoid K-algebras, then
there is a lifting ¢ : Derg(A) — Derg(B) and it is an A-linear morphism of K-Lie

algebras.

The fundamental example of an (S, A)-Lie algebra is Derg(A) itself, equipped with
the identity as anchor map. In many cases where S is a base field and A is the ring of
functions on a (smooth) space X, we obtain the global sections of the tangent sheaf
to X as a (smooth) (S, A)-Lie algebra; this is the situation motivating us, moving
forward. Set A to be an affinoid K-algebra with variety X = Sp A, and fix L to be a

coherent (K, A)-Lie algebra.

Definition 2.1.8. e An affine formal model A in A is an admissible R-algebra
for which A =2 A ®pr K.

e Let A be an affine formal model in A and £ an A-submodule of L. Then £
is an A-Lie lattice in L if it is an (R, .A)-Lie subalgebra of L which is finitely

generated over A and such that KL = L.

e With A an affine formal model in A and £ an A-Lie lattice, we construct

—

U(L) 40 = lim U (L) = lim (U(xL) 0 K )
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where the hat denotes m-adic completion as usual.

Proposition 2.1.9. Up to unique isomorphisms of topological K-algebras fixing
U(L) pointwise, the Fréchet completion U(L), . is independent of the choices of
A, L.

—

This renders meaningful the notation U(L). Suppose f : A — B is an étale morphism
of affinoid algebras and o : L. — L’ is a morphism of coherent (K, A)-Lie algebras.
Using Proposition 2.1.7 as a base for the argument, one can show there are unique

continuous K-algebra homomorphisms

— —_—

U(L) = UB®s L), UL)— UL,

extending the natural maps U(L) — U(B ®4 L) and U(L) — U(L'), respectively.

Theorem 2.1.10. (|5, Sect. 8|) Let X = Sp A be an affinoid K-variety and L a
smooth (K, A)-Lie algebra. Then, for affinoid subdomains Y of X,

%(L)(Y) =U(OY) ®or) L)
defines a sheaf of two-sided Fréchet—Stein algebras on X,,, with vanishing higher
cohomology.

In particular, if X is smooth with 7(X) a free O(X)-module, then we take L = T (X)

to obtain the desired sheaf of infinite-order differential operators:

Using the framework of Lie algebroids, which “sheafify” Lie-Rinehart algebras, it
is possible to extend these constructions to general rigid spaces X; this is done in

Section 9 of [5]. In this way, D extends to a sheaf of K-Fréchet algebras on Xyig if X
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is smooth, with Fréchet—Stein sections over a certain class of affinoid subdomains.

Example 2.1.11. Let X = Sp K (x), so that T(X) = K(z)0 for 0 acting as differ-
entiation by x on K(x). Then U(T (X)) = K(z)[0], which is a K (z)-algebra over
a non-commuting variable 0 subject to [0,x] = 1. We may choose an affine formal

model A = R(z) in K(z) and an A-Lie lattice £ = R(x)0d. Now

U(r"L)g = K{x,n"0) = {Zaiﬁi € K(2)[[0] : a;/7™ — 0 asi— oo} :
i>0
whence D(X) = K (z){(0) = m K (x,m"0) comprises rapidly vanishing power series
in 0 over K(z).

The last piece of the picture for rigid Beilinson—Bernstein localisation is an appro-
priate category of modules for D. To define these modules, we must pay attention
to a slightly coarser basis for X,. Let X,,(7) denote the set of affinoid subdomains
Y € X, for which there are an affine formal model A in O(Y) and a smooth A-Lie

lattice £ in 7(Y). Then X,,(7) is a basis for the topology on X.

Definition 2.1.12. Let X be a smooth rigid space. A sheaf .# of D-modules on Xiig
is coadmissible in case there is an admissible covering of X by affinoid subdomains

Y € Xy(T) such that .Z(Y) € C5,,.

We write Cy for the category of coadmissible D-modules on X. An analogue to Kiehl’s
theorem, proven in [5], is that the global sections functor induces an equivalence of

categories Cx == Cﬁ( x) for X a smooth affinoid K-variety.

Theorem 2.1.13. (Rigid Beilinson-Bernstein equivalence) Let G be a connected,
simply connected, split semisimple algebraic group over K, with Borel subgroup B
and Lie algebra g. Let B = (G/B)?, the rigid analytic flag variety. Then D(B) 2

—

U(g) @z K and there is an equivalence of abelian categories

Cs 2 Cp
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2.2 RIGID RIEMANN-HILBERT CORRESPONDENCE

A long-term goal in the study of D-modules is to find the best possible analogue in
rigid geometry for the Riemann—Hilbert correspondence, which in the classical setting

states the following.

Theorem 2.2.1. (Kashiwara-Mebkhout) Let X be a smooth complex algebraic va-
riety. Then the de Rham functor D% (Dx) — D%(Cxan), sending regular holonomic

D-modules to perverse sheaves on X, is an equivalence of categories.

Unfortunately, a clear statement of a Riemann—Hilbert correspondence for D is not
yet possible. One outstanding obstacle is the absence of an adequate definition of
holonomicity for coadmissible @—modules; this is at least partly attributable to the
fact they do not admit any direct notion of a characteristic variety. At the moment,

we have only the following somewhat lax condition.

Definition 2.2.2. Let X be a smooth affinoid K-variety such that 7(X) is a free
O(X)-module, and let M be a coadmissible module for D = D(X). We define the

grade and dimension of M by
§(M) =min {j > 0: Ext},(M,D) # 0}, d(M)=2dimX — j(M),

respectively. Then M is weakly holonomic if d(M) = dim X.

These definitions are inspired by the content of [31]. There, it is first recalled that
the dimension function for modules over regular commutative rings can be expressed
via the vanishing of Ext groups, which leads to a fruitful generalisation of dimension
theory to Auslander regular non-commutative Noetherian rings. It is then shown
that, as a consequence, there is a sensible dimension theory for coadmissible modules
over a certain Fréchet—Stein algebra A = @ A, where the A, are Auslander regular.

The next result allows for an adaption of that theory to coadmissible D-modules.
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Theorem 2.2.3. [7] Take X, D as in Definition 2.2.2. Then there is a Fréchet-Stein
presentation D @Dn, where each D,, is Auslander—Gorenstein with injective

dimension at most 2dim X.

It can be shown that non-zero coadmissible D-modules M satisfy Bernstein’s in-
equality d(M) > dim X, which is further justification for Definition 2.2.2. However,
weakly holonomic D-modules fail the important test of having finite length, as the

next example proves.

Example 2.2.4. Let P,(t) = (1 — ¢)(1 — wt)(1 — 7*t) - - (1 — 7"¢). Then

P() = Jim Po(t) = TL (1= ="0) € KT,

since the infinite product evidently belongs to every K (x™t). Now M = D/DP(d) is

a cyclic module for D = D(X), X = Sp K (z). Now

—_

Homz (M, D) =0
because P € D is not a (left) zero divisor, but Extl (M, D) # 0, so j(M) = 1 and
hence M is weakly holonomic. On the other hand, M surjects onto every quotient

D/DP,(d), which breaks up as a direct sum of n + 1 submodules according to the

linear factors of P,, so M cannot have a finite length.

Stability of holonomicity under pushforward and pullback functors is another key
ingredient to the classical proof of Theorem 2.2.1 which does not work for weakly
holonomic sheaves of D-modules. Positive results in this direction pertain specifi-
cally to closed embeddings, for which there is the following version of Kashiwara’s

equivalence:

Theorem 2.2.5. [6] Let ¢ : Y < X be a closed embedding of smooth rigid K-spaces.
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The induced pushforward functor

L+ICY—)C_)(,

is fully faithful and has essential image given by the coadmissible Dx-modules sup-

ported on «+(Y"). Moreover, ¢, preserves weakly holonomic modules.

In light of these deficiencies with weak holonomicity, the first step towards a rigid
Riemann—Hilbert correspondence will be to find a suitable refinement of the notion
which deserves to be called holonomicity, in the sense of admitting some character-
istic variety, ensuring finite length and appropriate functorial stability, and including
the integrable connections. The next two chapters describe, in turn, some progress
standing the lengths of D-modules in certain simple settings, and then work done in

pursuit of the characteristic variety:.
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CHAPTER 3

—

LENGTHS OF CYCLIC D-MODULES

3.1 INTRODUCTION

Let K be a complete, algebraically closed non-Archimedean field with non-trivial
valuation and mixed characteristic (0,p). Take a distinguished field element 7 of

norm 0 < £ < 1. We investigate the lengths of cyclic modules M = ﬁ/ D- P, for

D =D(X) = K(z)(d) = {Z a0 : ap € K{(x), ar — 0 rapidly} :

k>0

where X = Sp K (z) and K (x) is equipped with the supremum norm. We do this by

considering the base changes M, to the rings

D, = {Zakak Cap € K(z), ap /T — O}

k>0

and associated microlocalisations (following [28]). Here u > 0 is a rational number.
Applying an argument motivated by the geometry of Cech coverings, we analyse the

length [(M,) as a function of u, aiming to draw conclusions about [(M).
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3.2  MICROLOCALISATION

We briefly sketch the construction in [28] of microlocalisation for non-commutative,

unital Banach K-algebras whose norms satisfy certain properties.

Definition 3.2.1. Let A be a Banach K-algebra with non-Archimedean norm ||.

Recall that this norm is said to be multiplicative in case

1] =1, |ab] =]a||b| for all a,b € A.

A multiplicative norm is called quasi-abelian in case there is v € (0,1) such that

lab — ba| < ~y|ab| for all a,b € A.

Note that the possession of a multiplicative norm immediately entails an absence of
zero divisors. Suppose A admits quasi-abelian norms | |4, ..., | |, and fix a multiplica-

tively closed subset S C A (so 1€ 5,0¢ S). For 1 <i <m, define functions

Ai(z,y) = |s|; |t |at — sbl;,

where x = (s,a),y = (¢t,0) € (A —{0}) x A, and the saturations

S;={a€ A:lat —s|; <|[s|; for some s,t € S},

which are multiplicatively closed subsets containing S. We now obtain the following

pseudometric on S x A:

d(x,y) = max{dy(x,y),...,dn(z,y)}

for d;(x,y) = inf,cs,xa max(A;(z, 2), A;(y, 2)). The pseudometric d extends to the
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set C' of d-Cauchy sequences on S x A, and then descends to a genuine metric on
B:O/N = A<S;||17"-7||m>a

the quotient identifying exactly those sequences which are zero distance apart. Writ-
ing s™'a for the image of the pair (s,a), viewed as a constant sequence, we have
that

sta=t"" <« d((s,a),(t,b)) =0.

Since it holds that d;((s, a), (s,b)) = |s|; *|a — b|;, the natural map A — B,a — 171a,

is an embedding.

Theorem 3.2.2. 28| Let | |max denote the norm max; | |; on A. Then B can be given
the structure of a unital Banach K-algebra with non-Archimedean norm [b| = d(b,0),

such that the following properties hold:

e There is a norm-preserving homomorphism of unital K-algebras ¢ : (A, | |max) —

(B,]]), such that ¢(S) C B*.
o If ¢ : (A ||max) = (X,||x) is a unital homomorphism of Banach K-algebras
such that ¢(S) C X* and there is ¢ > 0 with
|p(s) " té(a)|x < cmax|s|; |al; forallse S, ac A,

then ¢ factors through B via a unique continuous homomorphism of unital

Banach K-algebras.
Before applying this theorem in the next section, we record some additional facts.
Proposition 3.2.3. Let A and B be as above with their associated norms.

e For all b,/ € B, |bb/| = |v'b).
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e There is v € (0, 1) such that for all by,...,b, € B and any permutation 7 on n
letters,

e If m =1 then the norm on B is multiplicative (even quasi-abelian).

3.3 NON-COMMUTATIVE ANNULI

We know that D, has a multiplicative norm

’Z akak'u = max

Y

a
ﬂ-uk
and so is a non-commutative domain.

Proposition 3.3.1. The norm ||, on D, is quasi-abelian.

Proof. Let a =Y a;;2'07, b = Y b;a'd’ € D, have product ¢ = ¥ ¢;;2'd’. Then

j/ Z‘/l
Cij = Z Z ai’j’bi”j”k! <k> (k)

k>0 i/ +i"" =i+k
J' i =j+k

by Lemma 1.2.5 in [26]. It follows that the coefficient of 2'®7 in the commutator [a, b]
1s
j/ ,L‘//
dz] g Z Z (ai’j’bi”j” — bi’j’a/i”j">k! (k) <k>7
k>1 i +i""=i+k

i 43" =gtk

notice particularly that the £ = 0 term has cancelled out. But for each £ > 1,

‘(ai’j’bi”j” — buyrap)k(5) ()

||

|ai’j’ bi”j” — bi’j’ a/i”j”

7]

ai’j’ bi”j” bi’j’ ai”j”

— ’ﬂ_uk’

’ﬂ'j/u 7_‘_]'//“ leu /n_j//u *

< [7**{lal[b] < |7[*|ab].
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It now follows from the ultrametric inequality that % < |r|*|ab|, and therefore our

claim holds with v = " (in the notation of Definition 3.2.1). O

Notice that if 0 < u < v, then D, C D,, so by Proposition 3.3.1, ||, restricts to a

quasi-abelian norm on D, with |a|, < |a|, for all @ € D,. Thus

[ o = max{[ u, [ |},

and we can apply Theorem 3.2.2 with A = D,,, m = 2, and S = {9" : i > 0} to obtain
a microlocalisation

Diuw) = Do(S; | lus | o)

We note that the norm on Dy, ,) is properly submultiplicative for u # v: Lemma 1.7

in |28| provides the important calculation |97} = |07 - 1] = &%
Proposition 3.3.2. If v’ <u < v <o’ then Dy ) = Dy

Proof. Begin by noting that there is a map ¢ : Dy — D, — Dy, sending a € D,
to 17'a € Dy, ). This factors through the natural map ¢ : Dy — Djy ) via some

¢s : D o) = Dy, defined (on a dense subset) by

¢s(sa) = o(s) " p(a);
this is precisely the map afforded by Theorem 3.2.2. But ¢(s)"'¢(a) = 0 if and only
if ¢(a) = 0 if and only if a = 0, so ¢ is injective. O

Thus the Dy, are naturally partially ordered, with maximal elements Dy, (whose
norms are multiplicative by Proposition 3.2.3). Our next objective is to describe the

elements of Dy, ,) more concretely. Let K(z)[[y,y '] denote the K-vector space of
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doubly infinite formal power series with coefficients in K (x) and consider the subspace

Ly, = { S oyt e K@)ly.y )] Um |rlpf =0 for e <p< 5_“} :

e oo |k|—o0

Then L, is closed under the following (commutative) multiplication:

o0 oo o0
S oyt oyt )= >0 iyt for o=
k=—o00 k=—o00 k=—o00 i+j=k

simply observe that |ry/|p" < max; j_y p'|rs| - p7|rj| — 0 as |k| = oo. In fact Ly, is a

unital Banach K-algebra with respect to the “spectral” norm

o0

Z Tkyk

k=—00

= sup max|rg|p" = max{max|r;|e7* max|rp|e T} (3.3.1)
eu<p<le—v

Given f(y) = Y ry" € Ly, the expression f(9) sensibly specifies an element of
D). Indeed, if £ > 0, then

vk

|rk8k| = |7’1€|€_ —>O,

while if £ < 0, then

rk0F| < |r]|0F| = |rk]e™® — 0.

This shows that f(0) converges in Dy, so there is a K (z)-linear map

T Lyy — Dy, f(y) = f(9).
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Notice that if a = ¥ a;07 € D, then

|07"a| = max {|0"[,*|al., |'[, " |al. }
= max {max =9 g |, max a(i_j)”\aj|}
J J
= max |a;| max {0~ 7w}
J

= Inax |aj||6j_i|7
J

so we can calculate

oo

Y a;

j=—o0

= lim
n—oo

= lim
n—oo

(Z ajaj+n> o
j=-n

Z aj_naj 8_n
Jj=0

= Jizy ma a0

= 117
= max|a,| 7]

It follows directly that 7' is norm-preserving and so injective. By construction, the
elements 0~‘a, a € D,, are dense in Dy, )5 using the second point of Proposition 3.2.3,
this implies the elements a0~ are also dense. All of these belong to the image of T,

so by completeness 7' is a norm-preserving bijection.

As a consequence, we can now write general elements of Dy, ,) as doubly infinite power
series in 0 with coefficients from K(x); elements of D, < Dy, ] are then such power

series with no negative terms. Let L denote the unit ball in Dy, ,:
L={>"rp0" : max|r| max{e ™" e "} < 1}.

Let us describe the slice of L.

Proposition 3.3.3. Let k = R/mR be the residue field of K. Then the slice L/mL =

k[l’,y, Z]/(yz - 61“1)
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Proof. There is a ring map from the non-commutative free algebra R{z,y,z} to L
determined by (z,y,z) — (x, 70, (7“0)~'). After composition with the projection
L — L/mL, this map kills the two-sided ideal m{x,y, z}, so descends to k{z,y, 2z} —
L/mL. The latter is a surjection: mL contains the positive and negative tails of any
f € L, as well as the tails of f’s K (x)-coefficients, so f’s residue in L/mL is expressible

as a polynomial in z, 7°0, (7*9)~!. Calculating modulo mL, we have relations
[7°0, 7] = 7" =0, [(#“0) ' 2] =—7"(x"0) 2 =0, [7°0,(x"0)"']=0,
affording us k[z,y,z] — L/mL. The final relation to consider is (7V9)(7“9)~! =

" = §,,; quotienting by this yields the stated isomorphism. O]

For any f € Dy, there is ¢ € K such that |cf| = 1; call ¢f € L/mL a reduction of

f. Clearly reductions are unique up to scaling by non-zero elements of k.
Proposition 3.3.4. ® f € Dy is a unit if and only if its reductions are units.

e Suppose v < v and f € Dy, has the same reduction in Dy, for all w € [u, v].

Then f is a unit in Dy, if and only if it is a unit in Dy, for all w € [u,v].

Proof. Let f € Dpya”™, say fg = 1. The norm on Dy, is multiplicative by Propo-

sition 3.2.3, so |g| = | f|7', and if |cf| = 1, then |¢7'g| = 1. Thus

1= (cf)(c"g),

and this relation persists in the slice. Suppose conversely that ¢f + mL is a unit.

There is then h +mL with

l+mL=(cf+mL)(h+mL)=(ch)f+mL = (ch)f € 1+mL.

But elements of 1 +mL are invertible by geometric series, so f is a unit. Now assume
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the situation in the second bullet point. Certainly if f is a unit in Dy, it is a unit
in Diy ], since D,y = D). On the other hand, if f is a unit in Dy, ), then it
reduces to a unit in Ly, ) /MLy = k[z,y,y~']. The set of units in the latter ring is

E*y”. so this means f has some reduction cy™ for ¢ € k*. That is,

=3,
7

—mw

with |r,,|e = max; |r;|e™7* uniquely maximal, and with r,, reducing to ¢, i.e.
rm = C(1+r) for some C € K,r € K(x) with |C| = |r,| and |r|] < 1. Thus

rm € K({x)*, again using a geometric series; we therefore have

m—1 00
r fOTT = T =14 > 0 (3.3.2)
=0

j=m+1

Denoting the sum on the left-hand side by S, we see that r ;! f0~™ — S is a unit in

Dy}, because |r; ;077 < 1 for j > m. That is,
wr  fOTM =1 4w,

for some unit w with |w| = 1 (the inverse of the right-hand side in (3.3.2)). But now
lwS| = |S| < 1, because |r,'r;07~™| < 1 for j < m. Thus 1 +wS has an inverse ' in
Dyy ), meaning

Worltfom =1 = f=r,(Jw)tom

Crucially, though, the construction of the units w,w’ did not depend on w (only
the verification that they are units). Therefore, if we are given that f reduces to a
multiple of the same monomial y™ for all w € [u,v], then f’s inverse g € Dy ) is

given by the same formula for all such w. But this means g € Dy, . O]
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3.4 CEecH SEQUENCE AND APPLICATIONS

If X is a topological space with open covering il and F is a sheaf of abelian groups

on X, then there is an associated Cech resolution of F:
0= F—=CWF)—=CUF)—... (3.4.1)

Let u < w < v. Motivated by the idea that D, should represent the global sections of
a sheaf of differential operators on a space with a two-element cover {U, Us}, where
U; is a “disc” over which the sections are D,, and U is an “annulus” over which the

sections are Dy, ], we have the following analogue of (3.4.1).

Proposition 3.4.1. There is a short exact sequence of right D,-modules,
0= Dy 2 Dy & Dy 25 Diyuy — 0, (3.4.2)
where A(f) = (f, f) is induced by the inclusions D, < D, Dy, and ¢ — 1 is the

difference of the inclusions ¢, : Dy, Diya) < Diyw)-

Proof. Certainly A is injective into the kernel of ¢ — 1. On the other hand, let

a=3520a;0" € Dy and b=3Y22 ;07 € Dy satisfy ¢(a) = 1(b):

j=—o00

0= Zaj(?j — Z b]@j € D[u,w]-
=0 j=——oo

Uniqueness forces b; = 0 for j < —1 and a; = b; for j > 0, so that

a=be& D, = Dy, ie (a,b) e A(D,).
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It remains to show surjectivity of ¢ — 1. Let f=32__ r;0? € Dy,,). Writing

j=—o00

-1

f= irjaj - Z (—Tj)ajv
=0

j=—00

where |r;]p? — 0 as j — oo for p < e ™ and | —rj|p = 0as j — —oo for p > e,

we see that f is a difference of the required form. m

To make good use of (3.4.2), we need to know Dy, , is flat over D, for w < w.
A relatively simple argument using associated graded algebras is available for the
analogue of this statement over a discretely valued base field, but in our setting we

are forced to take a more technical approach.
Proposition 3.4.2. If 1 <w < v is as above, then Dy, . is a flat right D,-module.
Proof. Let Z = {x,d, e} be a totally ordered set, z < d < e, and assign degrees to
the elements as follows:
deg(x) = deg(d) =2, deg(e) = 1.

Form the quotient Q of the free R-algebra S = R{x,d, e} by the following relations:

[d,z] =7, [e,x] = —7"e* |[d,e]=0. (3.4.3)
As usual, extend the degree function additively to monomials in S; note deg(][z, 2'])
is less than deg(z) + deg(2’) when z, 2’ € Z, computing [z, /] according to (3.4.3).

We claim Q has an R-basis in the standard monomials x%d%e¢. To prove this, we use
a PBW-like argument as in [13|: it suffices to construct an R-linear map L : S — S

fixing the 2%d°c® and such that

L(zy---2n) = L(z1 -+ 2j4125 - 2n) + L(21 -+ [25, 2j41] -+ - 2n) (3.4.4)
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where all z; € Z and z;1; < z;, and where [2;, zj11] is computed according to the
rules (3.4.3). Indeed, L then kills the two-sided ideal J defining Q, so induces a linear
map Q@ — S fixing the standard monomials. To produce L, we introduce the defect

of a monomial z = 2;...2, € S:
def(z) = |{(4,) : i < j and 2 > z;}|.

Then, noting that the two inputs on the right-hand side of (3.4.4) have lesser defect
and degree, respectively, than z, we can use use lexicographic induction on the pair
(deg(z), def(2)) to define L(z) by the right-hand side. The verification that the right-
hand side is independent of the order in which defective indices are transposed can be
done as in [13|, because the strategy relies just on the easily checked Jacobi identity
for the non-associative, alternating, R-bilinear operation extended to S using (3.4.3)
and the Liebniz rule. All of this implies the filtration F~—'Q = 7'Q, for i > 0, is
separated. Let V denote the associated completion of Q and write V =V @ K (a
Banach K-algebra).

If U is the complete subalgebra of V generated topologically by x,d, then we claim
U=U®®r K= D, as K-algebras. Indeed, there is certainly a continuous K-algebra

surjection ¢ : U — D, induced by descent, completion, and tensoring from
R{z,d} - D,, z—=z, dw— 7"0.

In the other direction, there is a map of sets ¢ : D, — U given by

(0 <Z aj3j> = aj(z)m .

J=0 j=0

1 is clearly K-linear and it is also continuous, which we see as follows.
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Let fz = ij() ai]ﬁj — 0 in Dv, SO

lim max |a;;]e™" = 0.
i—00  j

For all n, there is therefore I such that 7=%a;; € 7" R(z) for all j and all i > I.
This shows that ¢(f;) — 0 in the m-adic topology on U, so ¢ is continuous (using
linearity). Since v respects addition and multiplication between x and 9, we see by
continuity that it is a unital homomorphism of Banach K-algebras. Now 1) o ¢ fixes
the topological generators x and d, and respects the operations between them, so it
agrees with the identity on a dense subset of U. Continuity now forces ¢ o ¢ = 1,
completing the argument that ¢ is an isomorphism. We will henceforth identify D,

with U.

Our next claim is that V is flat over U. Note first that U/, V are m-adically complete,
separated, and flat over R, and that U /7ld = R[z,d)] is a commutative R-algebra of

finite presentation (writing R = R/7R). Furthermore,

V/1V = Rz, d,e] = (U/7U)]e].

It follows that U,V satisfy the conditions of Proposition 4.1.7 in [2], so V' is a flat left

U-module. That Proposition also provides an isomorphism of left K(d, e)-modules

V®UM%JM<Y>,

for any finitely generated U-module M, where e acts on pu = S Y7m; € M(Y) by
multiplication by Y. Letting r = 7" —de € K(d,e) C V and supposing p is

annihilated by r yields a sequence of equations:

v—

7™ " meg =0, 7" "my—dmy=0, 7" “my—dm; =0, ...;
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inductively, we find m; = 0 for all j, and hence ¢ = 0. So V ®y M is r-torsionfree,

and Proposition 4.4 in [5] now implies V/rV is flat as a right U-module.

It remains only to prove that V/rV =2 Dy, as right D,-modules. As before, there
is an obvious surjection ¢ : V/rV — Dy extending U — D, since U — Virv. It
has a right inverse 1 : Dy, — V/rV, obtained by applying Theorem 3.2.2 to the
composite D, — U — V/rV. Once again ¢ o ¢ fixes topological generators z,d, e
and preserves operations between them, leading to the conclusion that ¢y o =1 and

© is the desired isomorphism. O]

Since D, is flat over D, for w < v [2, Thm. 3.4.8], and flatness is transitive, it follows
that Dy, . is flat over D,,. If M is any left D,-module, then tensoring (3.4.2) with M

yields a long exact sequence

-+ = Tory(Dy, M) — Tory " (D, & Dy, M) — Tory ”(D[u,w], M)

— M — (Dw D D[u’vﬂ ®p, M — D[u’w] X®p, M. (345)

Flatness ensures the first three terms vanish, and if we know for some other reason

that Dy, ®p, M = 0, then we obtain a decomposition of M:

M = (D, ®p, M) ® (Djyw ®p, M). (3.4.6)

Application 3.4.3. If P = Y5on” (1 + 72)d € D, then the length of M, =

D,,/D,,P is unbounded in n.

Proof. Our first step is to calculate reductions of P. The i-th term of P has norm

|7 (1 + ma') 0| = ™"
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in D;. This attains its maximum precisely for indices

{[t/2]}, ift¢2Z+1
s
{t—=1)/2,(t+1)/2}, ifte2Z+1,
where [a] denotes the integer part. In the former case, the reduction of P in the slice
of Dy g is y!/2 which is a unit, so P € D[t,t]x. In the latter case, the reduction of P
in the slice of Dy is y~1/2 + y(+1/2 which is not a unit, so P ¢ Dy 4”. (We are

using the first part of Proposition 3.3.4 for these deductions.)

For n > 1, let (u,w,v) = (2n —1/2,2n,2n + 2). Then P € Dy »* for all t € [u, w],
and it has the same reduction for all such ¢, so P € Dy,,* by Proposition 3.3.4;
hence,

D[u,w] ®Dv M2n+2 - D[u,w] ®Dv DU/DUP = D[UKLU]/D[UKLU]P =0.
On the other hand, 2n + 1 € [u, v], so by the same proposition, P ¢ Dy, ;™. Thus we
have a non-trivial decomposition in the form of (3.4.6):

Mspio = (Dy ®p, Many2) ® (D) @p, Mons2) = Moy @ (Djuw) ®p, Mani2). (3.4.7)

This is a decomposition of D,-modules, but D, — D,,, so the length of M,, as a D,-
module is greater or equal to its length as a D,-module. Inductively, letting n — oo,

the claim follows. OJ

Recall that D is a Fréchet-Stein algebra, as the limit of the inverse system of Banach
K-algebras

DQ(—Dl%D2<—...

For any P, M = ﬁ/ DP is coadmissible for ﬁ, so tensoring the above sequence with
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M vyields a tower of D-modules
My My My +— ...

with M,y = D, ®5 5/5]3 ~ D,/D,P and M = l&nMn For P as in Application
3.4.3, we claim the connecting map My, <~ My, is surjective. Indeed, it is nothing

other than the projection arising from the decomposition in (3.4.7):

Maony2 = Danys @py,yy Mongs = (Do2n @ Diun)) @Dy Mongo

— (Dan ®Dapys Mant2) ® (D] @Dopse Mant2) = (Dan @pays Monia) — Moy

is given on elements by f — (1,1)® f — (1® f,1® f) — f. That is, the projection
sends the residue f + Do, 2P to f + Ds, P, precisely as the connecting map does. It

follows that we have an inverse system of D-modules
M()(—M2<—M4<—...,

with surjective arrows, whose limit M therefore surjects onto each of its terms.

Corollary 3.4.4. Let P be as in Application 3.4.3. The D-module ﬁ/ﬁP has infinite

length.

To generalise these ideas, we introduce the Newton polygon for infinite-order elements
of completed Weyl algebras, following the description in [14] for commutative power
series. Suppose from here on that f = 3, a;0' is infinite-order, and let a; € Z denote
the coefficient valuations,

‘ai’ =%,

assuming f has been normalised so that ay = 0 and refusing to define «; if a; = 0. Plot

all defined points G = {(7, ;) : i > 0}, then rotate the negative y-axis anti-clockwise
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around the point (0,0) until one of the following occurs:

e The line simultaneously passes through infinitely many points of G. In this

case, stop; the polygon is complete.

e The line can be rotated no further without leaving behind some points. That
is, if the line currently has gradient m, then for all e > 0, the line of gradient

(1+e)m lies above some point of G. In this case, stop; the polygon is complete.

e The line passes finitely many points of G. In this case, cut the line at the last
such point and use it as a new centre of rotation, starting from the current

angle.

As explained in [14, Ch. 6], there are three possible outcomes of the process: the
last segment contains infinitely many points of G; the last segment contains finitely
many points, but can be rotated no further; or there are infinitely many segments of
finite length. Our primary interest is infinite-order f € D, for which only the latter

scenario is possible.

Lemma 3.4.5. The Newton polygon of an infinite-order f € D consists of infinitely

many segments of finite length with strictly increasing slopes tending to infinity.

Proof. The rapid vanishing condition for f means precisely that for all m, a; — mi —
0o as i — 00, i.e. for all m, the points of G are eventually above the line y = mux.
This implies that the first two cases can never arise in the construction procedure
for the Newton polygon of f. Thus it consists of infinitely many segments of finite
length, with slopes forming a strictly increasing sequence by construction. If that
sequence had a finite limit m, then any line y = m/x of slope m’ > m would lie above

infinitely many points of G; contradiction. O

Let mq, mo, ... denote the positive slopes of the Newton polygon of f € ﬁ, where slope

m; is associated to the segment with endvertices v;_1 = (i;_1,q;;_,), v; = (i5, ;).
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We refer to the part of the polygon strictly right of vy as the upward Newton polygon.

By construction, all points of GG lie on or above the line

fj Y = mj(x — ij—l) =+ aij_1~

This means the function f(i) = o — ay,_, —m;(i —4;_1) attains its minimum of zero

for i = i;_y,4;, and possibly other values of 7, so that

arg min o;; — mt

is not uniquely determined. Now f = Y a;m~ ™% (7™ 9)" € Dy, so after multiplying
by a normalising factor, f has a reduction in the slice of Dy, ;) which is supported
at least in degrees i;_1,¢;. By Proposition 3.3.4 and its proof, such a reduction cannot

be a unit, so f & Dip;m,) "

Now let w € (mj, m;41), so every point of G — {v;} lies strictly above the line through
v; with slope w, namely

Oy =w(r—1ij) + ay,.

That is, f(i) = a; — ay;

; — w(i —i;) attains its minimum of zero just for ¢ = i;, and

hence

arg min oy — Wi = ;.

Writing f = Y a;7~“(7%9)* € D,, and normalising, we find that f has a reduction

in Dy, supported just in degree ;.

Proposition 3.4.6. Let f = S ;0" € D. The length of ﬁ/ﬁf over D is at least the

number of vertices (7, ;) in the upward Newton polygon of f with a; € K(z)*.

Proof. Retaining the notation immediately above, we have f € Da’w] for w €

(mj,mjy1) for any j associated to a vertex (ij, ay;) with a;; € K(z)*. Indeed, any
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such unit has the form

a;; =C(1+r),

J

for r € K(x) with |r| < 1, so the reduction of f in the slice of Dy, ) is a non-zero
constant multiple of 4% and therefore a unit. Hence f € D[fv,w} by Proposition 3.3.4.
On the other hand, f & Dy, , for v € (mj11,mj42) because f ¢ D[fnj%mjﬂ]. Running

an argument as in Application 3.4.3, we obtain a decomposition of D,-modules
My, = My @ (Do) @p, Moy).

Thus the length of M, as a D-module is at least 1 greater than that of M,. The
remainder of the argument from Application 3.4.3 (and the ensuing discussion) can

now be repeated essentially verbatim. O

3.5 FUTURE WORK

Even in the simplest non-trivial finitely generated case — that of the 1-related module
D / D f — the lengths of D-modules have proven difficult to control. Basic questions
remain unanswered, such as whether ﬁ/ Df has to be of infinite length if f has
infinite order. When the coefficients of f € D are not units, the obstruction to our
arguments above (say, over D,) is given by a polynomial p € K[z], whose reduction
is the coefficient of the leading term of f’s reduction in the slice (so in particular has
|p| = 1). The most straightforward response is to try to localise away this obstruction,
leading to consideration of the rings

Db =D, (3, ] |v) = K(x,p_l, 7v0),

v

DY = D£<EW“3; | |u7 | |v> - K<x,p_1,7l'va, (Wu8>_1>‘

[uw] ™
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One can then go on to establish a p-localised version of Proposition 3.4.1:

Proposition 3.5.1. There is a short exact sequence of right DP-modules,

0— D25 Dho DY, =% Db 0, (3.5.1)

[uv] [u,

where A, ¢, 1) are natural extensions of their correspondents in Proposition 3.4.1.

As in the proof of Proposition 3.4.6, we hence obtain a p-local decomposition,

M? = (Db, @pp MP) ® (D}, ,; ©pp MP) = ME @ (DY, @pp MP),

[w,v] [w,w

for M? = DP/DPf and v > w. How to use such decompositions to infer information
about the length of M, however, is not clear at present. Future work towards under-
standing this invariant of D-modules will likely require entirely new methods, even

in the cyclic case.
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CHAPTER 4

—

A CHARACTERISTIC VARIETY FOR D

4.1 SETUP AND ORIENTATION

Let K be a complete, non-trivially valued, algebraically closed non-Archimedean field
of mixed characteristic (0,p) with p # 2. Write R for the valuation ring, m for its
maximal ideal, and k for the residue field. For future reference, an easy fact about

this situation:

Lemma 4.1.1. [14, Ch. 4] In K, t"/n! — 0 if and only if ¢ < ||, where @w?~! = p.

In particular, this is the convergence radius of exp on K.

In Section 1.2, we described the classical characteristic variety of a D-module over C.
Our goal in this chapter is to motivate and explain the construction of a characteristic
variety for D-modules over K, at least in a special case. Before embarking upon this,
it is appropriate to recall a notion of characteristic variety more proximate to our

setting, as defined and detailed in [4] (but there for discretely valued K).

Definition 4.1.2. A K-algebra A is said to be doubly filtered if it contains an R-
lattice Fy A whose slice

gry A= FOA/mFoA
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is Z-filtered, and that A is complete in case it is p-adically complete and the filtration
on gr, A is also complete. From the natural category of doubly filtered K-algebras to

the category of k-algebras, one has a functor Gr with

Gr(A) = gr(gry A).

An A-module M is doubly filtered if it has an R-lattice FyM whose slice gr, M is
Z-filtered compatibly with gry A’s filtration; there is an obvious definition of Gr(M)
for such an M. If Gr(M) is finitely generated over Gr(A) and the filtration on gr, M

is separated, then we say the double filtration is good.

Example 4.1.3. Assume g is a finitely-dimensional K-Lie algebra with Lie lattice

L, as in Def. 2.1.1. Then the affinoid enveloping algebra A = U(L)x is naturally a

complete doubly filtered K-algebra. Taking

B:R<$1,...,J]n>, £:B81@@Ban,

yields the key example for us: A =U(p™L)x = K{(x1,...,2,,p"01,...,p"0p), with

Gr(A) =k[x1, ..., Tn, Y1y -+, Yn)-

Notice that in the latter example, Gr(A) is commutative and Noetherian. The sig-

nificance of this fact will imminently be clear.

Lemma 4.1.4. [4, Prop. 3.2] If A if a complete doubly filtered K-algebra for which
Gr(A) is Noetherian, then any finitely generated A-module has at least one good

double filtration.

Definition 4.1.5. Let A be a complete doubly filtered K-algebra such that Gr(A) is

commutative and Noetherian. Let M be a finitely generated A-module and choose a
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good double filtration on M. The characteristic variety of M is then
Ch(M) = Supp(Gr(M)) C Spec Gr(A).

As in the classical case, Ch is independent of the choices of good filtrations and is

compatible with short exact sequences of modules.

Adapting all this to the case of Dis problematic. Taking an inverse limit over m in

Example 4.1.3 yields global operators on the n-dimensional disc D%,

—

D(D%) = K(z1,...,2,){01,...,0.),

but the resulting inverse system of Gr’s loses too much information in the limit to be
useful for analysing D-modules. (Specifically, every connecting map kills the variables
y;.) Moreover, the D-modules most naturally of interest are the coadmissible modules,
not merely the finitely generated ones, and these do not admit a well-behaved notion
of good filtration. So, while we can define a characteristic variety in terms of module
support for the rings which approximate D in a Fréchet-Stein presentation, no such
definition is suitable for D itself. We therefore approach the problem by analogising

the alternative classical construction, via the sheaf of microlocal differential operators.

4.2 QUANTISABLE DOMAINS

For the remainder of this chapter we will work with a specific example, mainly for

concreteness and ease of exposition. Fix

X =SpK(z), Y=T'X=XxAp™
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Here Y is the union of affinoid subdomains Y;, = Sp K (x, p"y). Denote the projections

m:Y =X, x,:Y,—X

For U C Y admissible open, the sections of the tangent sheaf 7(U) act on Oy (U)
by derivations; let d,,0, € T(U) be the restrictions of the obvious derivations of
Oy(Y) = K{(x){y). If U € Y, then by [12, Ch. 7] these derivations are bounded on

Oy (U). We always refer to the supremum norm on Oy (U).
For U C Y admissible open, there is a Moyal product [25] on the space of power series

Oy (U)[[h]], given by

frg= 1719+ (h/2)[(0,f)(0:rg) = (0:1)(0y9)]

2

+ 5, [(62f><a§g> = 20,0, /)(0,0:9) + (2))(F9)] +--- (421
= ;ﬂm ( ) (220, 102 D59),

where juxtaposition indicates the standard multiplication of commuting power series.

Alternatively, we can let P = 0, ® 0, — 0, ® 0, and define

fxg=poexp((h/2)P)(f®g),

where g is multiplication and P is regarded as an endomorphism of Oy (U)[[h]] ®

Oy (U)][[h]]. This produces a non-commutative ring with 1.

Our interest will be in U € Y,, such that the power series ring contains “small” topo-
logical %-subalgebras, of the form Oy (U)(h/v). If (Oy(U){(h/7),*) is a topological
K-algebra, we say Oy (U)(h/v) is x-closed. Quotienting by the ideal generated by
h — 7 then corresponds to “setting h = 74” in formula (4.2.1) and thereby defining a

ring structure on Oy (U). Setting h = 0 trivially recovers the standard commutative
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multiplication on Oy (U); setting h = 1 is most interesting for us, because it yields a

multiplication generalising the rings D,, (which arise for U = Y,,).

Definition 4.2.1. For v € K* let
oy ={U €Y, : lim [po P'y"| =0}

denote the collection of v-quantisable affinoid subdomains of Y. Here we refer to the
operator norms induced by the supremum norm on the relevant affinoid algebras, and

write [n] to denote a divided power.
Clearly 7, depends only on ||, and by abuse of notation we can write <7 for ¢ € |K*|.

Lemma 4.2.2. Let M, N be complete seminormed K-vector spaces, with unit balls

M?°, N° respectively. Then the natural image of M° ®z N° is dense in (M®xN)°.

Proof. If z € M ®x N has norm |z| < 1, then there is a representation

1=0

with |a;]|b;] < 1 for all i. Rescaling by suitable constants in K, we can assume
la;|, |b;] < 1foralli. This shows z belongs to the image of M°®@zrN°. Yet {z :|z| < 1}
is dense in (M ®g N)°, which likewise is dense in (M®xN)°. O

This shows that, to calculate |p o P"| on ARk A, it is enough to consider elements
of the image of A° ®p A° -+ A®x A — ARk A. Although <7, will turn out to be a

well-behaved class of y-quantisable domains, we can consider two related collections.
Definition 4.2.3. For a bounded linear operator 7" on a seminormed K-space, con-
sider the (weighted) spectral norm

p(T) = lim |T0]'""

n—o0
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Proposition 4.2.4. Let T': V — V be a bounded linear operator on a seminormed

K-space V. Then p(T') depends only on the equivalence class of a seminorm on V.
Proof. Assume V has norms || [|; and || ||2 such that [[cv|l; < [[v|l2 < ||Cv||; for all

v € V and some constants ¢ # 0 # C' in K. Then, applying the inequalities to T,

lef sup [[Toly <|[T]]2 <[C] sup [[To]s.

flvoll2<1 lvll2<1

Now

sup |[Tv]ly = sup |[[Twlly = (1/[C]) sup [[T(Co)lls = (1/ICDIT]),

llv]l2<1 ICv]l1<1 [Cvll1<1
and similarly

sup |[To]ly < (1/]e)[I T

lvll2<1
Thus we conclude, for d = ¢/C and D = C/c, that |d|[|T]1 < T2 < |D|||T||x-

Applying these inequalities to 71" and taking n-th roots,
TR < T < DT

Let n — oo to obtain equality of the spectral norms associated to || ||1, | |2 O

Definition 4.2.5. For v € K*| let

A = {UeY,: IOOy(U)@Oy(U)(P> <1/}

S ={U €Y, : Oy(U)(h/y) is +-closed}.

Given Z C Y, we can analogously define 7, (Z) and %i(Z), but in this section we
will mostly restrict our discussion to @7, = .7, (Y) and &/"(Y), trusting the reader to

see appropriate generalisations. The next few results record some basic properties of
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these collections.

Proposition 4.2.6. Let U € &/, and A = Oy(U). Then A(h/7) is closed under
the Moyal product. Moreover, the product is jointly continuous, so (A(h/7v),*) is a

topological K-algebra.

Proof. Take f,g € A. In A[[h]], we have

ZZL:L!M o P (f®g)=> 7" (Z{Jjn

n>0

poexp((h/2)P)(f ®g) = Z

n>0

po P'(f®g)

Observe that

o PP(f® g)| < |uwo PP||f @ gl < |uwo P||f]lg]

in A ®k A, where |y"||u o PP/27| — 0. It follows that f x g € A(h/y), with

|f % g| < M|f||g| for some absolute constant M. Next let

F=Yfh", G=Yg.h"

be arbitrary elements of A(h/v). Computing in A[[h]], we have FF'x G = L = > A\, h"™
with

/\n = Z fi*gj'

i+j=n
Now

"Xl < max |(4fi) x (779;)] < M max [ fil[77g;] = 0

as n — 0o, which proves L € A(h/v). Lastly,
IL] < max|y"Aa| < M max max |7 fill'g; = MIF||G,
n n  itj=n

completing the proof that x is jointly continuous. O

72



Proposition 4.2.7. If U € Y,, can be covered by finitely many affinoid subdomains
in 7, then U € &7,

Proof. Consider a cover U = Uy U- - -UU,, where all U; € 7,. We have a commutative
square
O(U X U)HO(Ul X Ul) @@O(Un X Un)

Lu,opgn] LUOPI[};] @"'@#OP[[;S

OU) —————OU) & - & O(U,),

where the bottom arrow is an isometry with respect to supremum norms. This shows
1o Py | < max |uo Py,
7 k2

meaning |u o P([]”]W"| — 0 as n — oo, and hence U € . O

Proposition 4.2.8. Let u denote the commutative multiplication on an affinoid

algebra. Then
A ={U €Yy (no P (t)y" = 0 for all t € O(U)RO(U)}.

Proof. If U € &/, then we have a map m : Oy (U)®xOy (U) — Oy(U) induced on

the quotient
Oy (U)(h/7)/(h =) = Oy(U)

by the *-product on Oy (U)(h/v). Here

m(t) = 3 (v/2)" (o P™)(1),
n>0
which converges only if y o P"(t) — 0. Suppose instead U is such that

po Pty =0
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for all . Then by the uniform boundedness principle, |y"*(u o P")| is uniformly
bounded by some constant C'. It follows much as in the proof of Prop. 4.2.6 that
Ued}t. O

In view of the above results, it’s easy to see

- +.
oA C o, C o
we do not currently know whether these inclusions are strict. Each collection has
properties which suggests it as a well-behaved class of “quantisables”; the reason we
choose 7, will become clear later. If U belongs to any of them, Oy (U) has a non-

commutative ring structure induced by the Moyal product on Oy (U)(h/7).

Notice that in order to provide A with the non-commutative product arising from
the specialisation h = -+, one does not need A(h/v) to be *-closed, but merely *-
containing in the sense that A x A C A(h/v). The next proposition demonstrates

there is no difference between these notions.

Proposition 4.2.9. If A = Oy (U) is a K-affinoid algebra as above, then A(h/7) is

*-containing if and only if it is x-closed.

Proof. Suppose A(h/v) is x-containing; it clearly suffices to treat the case v = 1. For

an arbitrary f € A of norm at most 1, consider the operator

LF A= Alh), Li(g)=frg=">(h/2)"L(g),

n>0

where Lf(g) = S0, k!(n — k)! ((f)g[f}@é”*k]f) (33[5"*]“}8&]9) . By assumption, L}(g) — 0
as m — 00, so we can apply the uniform boundedness principle to the family {L{},>¢
to conclude that

sup |L£| < 00,
n
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and hence that L/ is continuous by the ultrametric inequality. By similar continuity
of RY with RI(f) = f % g, the family {L'} is uniformly bounded, so there is o with
|L/] < a for all f of norm at most 1. Now, for any f € A, let ¢, be a sequence in K

with ¢, — 1/|f| from below. Then by continuity of R,,

|/ x gl = lim |1/cp[[(cnf) * g| < lim [1/cn|alg] = o f]lg]-

Now we can run an argument as in Prop. 4.2.6 to conclude A(h) is *-closed. []

We want to record an easily checked sufficient condition for an affinoid subdomain U

of Y to belong to &/ (and so ). First, a preliminary lemma.

Lemma 4.2.10. Suppose a,, b, are sequences of non-negative real numbers such that
lim a'/") lim bY/™ < ¢,

n—o0 n—oo

for some ¢ > 0. Then ¢, = maxo<x<, arb,—i is also such that lim,,_, c}/” < /.

Proof. For any real m > ¢, let N € N be such that
n>N = a/" /" < m.
Then, for any k € N,
a,lg/n < max{a(l)/n, Ca™, mh/my, b,le/n < max{b(l]/", A mmy,

and if £ > N we can improve each of these bounds simply to m*/™. Hence, if n > 2N,

we can put these together to get

1/ny1/n /n__ (n—k)/n ., k/npl/n
a "0, < max fa;"m ,m T, my

75



whenever 0 < k < n, because in this range at least one of k,n — k > N. Thus

1/n

1/n
c,ll/”:maxa/b/n max {a "m,mb;//",m} - m
0<k<n 0<i,j<N
as n — 0o. Since m > £ was arbitrary, we obtain lim,, c,ll/ <. O

Lemma 4.2.11. Let A= Oy (U). Then U € & if |[@|pa(0z)pa(0,) < [1/7].

Proof. Observe that

1 & _
Z 14 >!<aﬂﬂa§7-’ﬂ> ® (o),

so that |P"| < maxy [k!(n — )!||8¥“}8}/”’k]||8£;”’k}01[f]|, which in turn is at most
sy e 0] 02 max ol 0.

for s, = maxy |k!||(n — k)!| ~ |n!| ~ |@|". Applying Lemma 4.2.10, we can take n-th

roots and let n — oo to find

p(P) < |@|pa(0:)pa(9y) < [1/7],

as required. O

Example 4.2.12. Let a € K* and U = Sp K(z,y/a). Then U € &7, if and only if

lal > [@].

Proof. Let A= O(U) = K(x,y/a). Typical elements of A have the form

F=3 fond™(W/a)",  fan €K, Hm _ fr, =0.

m-+n—o00
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Then 0,.f = X mfrnz™ *(y/a)", 0,f = (1/a) ¥ fmmx™n(y/a)" !, which proves
|0cla <1, |0yla < |1/al,

remembering that the supremum norm on A is the Gauss norm. In fact these in-

equalities are equalities, by considering f = x and f = y/a. This shows

@|p(0:)p(9y) < |w/al < [1/9]

if la| > |@y|, so U € /. Suppose conversely that U € 7, and imagine |a| < |wy|.

Consider elements in A of the form

f=a(fo+ fily/a) + f2(y/a)®* +...), g=(y/a)(go+ g1z + g2 +...),

where f;, g; — 0 in K. Then in A[[h]],

frg=Sh2] "

n

z(y/a)(fu+ (n+1) furi(y/a) + .. )(gn + (R + D)gnz +...)

(n—1)!

a?’L

an

(froo1 +nfaly/a)+ ... ) (Ggn-1 + ngnx + ... )|.

The norm of the coefficient of A" is at least |f,_1gn—1(n — 1)!/a™|. For n = p™, we

can calculate from || = p~ /=Y that

[(n = D)Ya"|[y|" = pm e,

Consequently, if f; and g; vanish sufficiently slowly, then f x g & A(h/7v). O

Example 4.2.13. If [a| > |@wy| and V = Sp K(z,y/a,a/y), then V € &7 Indeed,
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typical elements of B = O(V') have the form

f= Z faly/a)®,  fn€ K(z), lim f,=0.

ned, [n]—o0

With respect to this representation, |f| = max,ez | f,|. Then

O0yf = (1/a) 3_nfuly/a)" ",

neL

whence |0, f| = |1/a|max,ez|nfn] < |fl/lal, so pp(dy) < 1/|al. It’s clear that

pp(0;) <1, so we conclude |1/v| > |w|pp(0y)pr(0s).

We now develop theory allowing the latter example to be deduced from the former.
Recall that if B is a K-algebra, then we can define a K-subalgebra D(B) of differential

operators in Endg (B) inductively: with Dy(B) = B and

D,(B) ={Q € Endg(B) : [b,Q] € D,_1(B) for all b € B},

we let D(B) = U, D,(B). This filtration of D(B) is by order of differential operator.
Examples of differential operators include derivations of B, and P when viewed as an

endomorphism of O(U)®xO(U). A good reference for differential operators is [24,
Ch. 15].

Lemma 4.2.14. Suppose B is a dense K-subalgebra of a topological K-algebra C,

and @ € D,,(B) is a continuous differential operator. The unique continuous exten-

sion of @ to C' lies in D,,(C).

Proof. It’s trivial that the continuous extension S : C' — C'is K-linear. The claim is
trivial if m = 0, so assume @ has order m > 1. Then [b, )] has order at most m — 1
for all b € B. Any [c¢, 5] is a uniform limit of operators [b,, S|, where b, — ¢ is a

sequence in B. Each [b,, S] is obviously the unique continuous extension of [b,,, Q)], so
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by induction is a differential operator of order at most m — 1. It remains to show a
limit of differential operators of order at most m is also such a differential operator;

this is another simple induction. O]

Lemma 4.2.15. Suppose B is a reduced affinoid K-algebra and 0 # ¢ € B has
|¢| = 1. Then any bounded K-differential operator ) : B — B lifts uniquely to
a K-differential operator Q, : B{(¢p™') — B(¢~'), which satisfies |Qy4| < |Q| with

respect to the operator norms induced by the relevant supremum seminorms.

Proof. An order-m K-linear differential operator () : B — B lifts to a unique differ-

ential operator @Q* on the algebraic localisation B[¢~!], by the formula

m

Q" (¢7"0) = X_(=1)"(¢") Q. ¢"],p(b), (4.2.2)

p=0

where the operator [Q, s, is defined inductively by the equations

[Q7 8]0 = Q7 [Q) 3]1 = QS - SQ? [Qv S]p = HQ7 S]p—lv S]'

(This fact is stated for integral domains in [15], but that hypothesis is unnecessary in

the proof.) Now (4.2.2) shows that

Q7 (¢7"0)| < max ||Q, ¢"],[[b] < [QI[Y (4.2.3)

in B(¢™'), noting that |¢| = |¢'| = 1 and (inductively on p) |[Q,¢"],| < Q.
By density of B[¢~!] in C = B(¢™!), Q* now extends uniquely to a continuous
differential operator Q4 on C by Lemma 4.2.14. Moreover, since B is reduced, B°[¢™!]
is dense in C°, so (4.2.3) shows that |@Q,| < |@|. Uniqueness of Q4 is immediate: Any
other extension of @ to B(¢~!) would differ from Q, by a differential operator whose
restriction to B is zero, and it is easily argued that such a differential operator must

itself be zero. N
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Theorem 4.2.16. Suppose U = SpA € o/~ and 0 # f € A with |f| = 1. Then
U(fY) =Sp A(f') € & . The same statement holds with o7~ replaced with <.

Proof. Let us prove the statement for U € o7 first. By Lemma 4.2.15 applied to
BZA@KA? ¢:f®f7

the differential operators P"/n! lift uniquely and with non-increased operator norms
o (AR A)((f ® f)~'). Because the most obvious maps each way give an isomor-
phism of affinoid algebras (ARx A){((f ® f)~1) =2 A(f 1)@k A(f1), there is hence an

absolute constant C' such that
|Pn/(2nn')|A NBRA(FT) S clpr/e )|A®KA‘
Taking n-th roots and a limit as n — oo now yields
Pagr-oray-1(P) < pagealP) <1,
as necessary. Suppose instead that U € . To find U(f™1) € &, it suffices to show

‘”OPI[J(f

To see this, take Q) = P([] in Lemma 4.2.15 and note that p distributes appropriately

over the terms in (4.2.2). Since we have by induction that for any s € A,

o [Q,slp| = |[uo[Q,sly-1, o8] < |poQ|pos|”,

the claim follows directly from the ultrametric inequality. O]

The localisation property described in Theorem 4.2.16 will be a very important in-
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strument for us. That 7 has this property, in addition to the covering property given
by Proposition 4.2.7, is the decisive reason for our preferring <7, over <7~ and JZZY+,

but we have decided to retain all three notations in case of future developments.

Example 4.2.17. Let us describe a final example, the regions bounded in D% by the

“hyperbola” |zy| = |c|, for ¢ € K with |c¢| < 1. Set
A=K <x, Y, C>
Ty
and U = Sp A. By the reduced fibre theorem [22], the supremum unit ball is
A® = R(z,y, c/zy),

which has an R-topological spanning set given by monomials 2y’ /¢;;, 4,7 € Z, for
some normalising constants ¢;; € K. We can now use that A° ®p A° is dense in

(A®xA)° to bound |P"|. Since
kal( i3y — : o - ik, j—C
0, 0,(¢"y’) =i(i =1)--- (i =k +1)j(G = 1)--- (G =€+ D"y,
we find that

Prl(ziy) @ 27y") = —rwe () (D)) )t e (C) gy
po P (x'y’ @ ay”) kézﬁn( ) (k IV VN E w) o

Bringing in the normalising constants, which satisfy |c; i j1+j/| < |cij||cij7|, we achieve
that

o PM| < max |ELN -1 |e|™ — 0 if |e| > |

Thus U € & if |¢| > |w|. The reverse implication can be shown by considering

81



P"(¢/(zy) ® ¢/(xy)), so in fact

Uegw iff |c] > |wl];

once again the exponential radius |w| is seen to be a critical value for quantisation.

A similar conclusion is reached for W = Sp B where B = K(z,y, zy/c).

4.3 RING PROPERTIES

Write o7 for o7 from the previous section, and let X = Sp K(z), Y = T*X be as
above. If U € o7, we will write W,,(U) and W(U) for (Oy (U)(h),*) and its quotient
by the ideal (h — 1), respectively. In this section, we consider some basic properties
of these rings and examine questions of integrality and Noetherianity. The following

proposition relates the Moyal product to the symplectic structure on Y.

Proposition 4.3.1. Consider Y with its canonical symplectic form w = dy A dx. If
F :Y — Y is a symplectomorphism with underlying sheaf morphism F'#, then the

induced coordinate change

{z.y} = {F] (), Ff (v)}

preserves the Moyal product on W, (and so on W).

Proof. By assumption, F*w = w, so

dF#(y) A dF#(z) = dy A dx.

Applying this 2-form to 9, A 0, yields the equation

F#(y) F*(2), — F*(y). F*(z), = 1. (4.3.1)
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Suppose we write
Op#(y) @ Op#(z) — Op#(z) @ Ops(y) = 0y ® 0, — 0, ® 0y + R (4.3.2)
in the space Ty x(U) @k Ty/k (U) for any U € Y,,, where R is a reminder term. Since
Ty (U) @k Ty (U) — Endg (Oy (U)[[h]] @k Oy (U)[[R]]),

we can view (4.3.2) as an equality of endomorphisms. Moreover, using (4.3.1) after
writing Op(y) = dz(Op#(y))0e + dy(Op# ()0, (and similarly for Op«(,)) allows us to
calculate R explicitly and find po R = 0. So if Pr denotes the left-hand side of
(4.3.2), then

Jo P — o phi
for all n, whence fxp g = f*g for all f,g € Oy (U)[[R]]. O
Lemma 4.3.2. For v € K* and U C V affinoid subdomains in o7, (Y"), the restriction

Oy (V) — Oy (U) lifts to a map of Moyal algebras

Oy (V)(h/v) = Oy (U){h/7).

Proof. By Prop. 9.1 in [5] we can consider P = 0, ® 0, — 0, ® 0, as an endomorphism

of Oy ® Oy for which the following diagram commutes:

Oy (V) ® Oy (V) L= Oy (V) @ Oy (V) —— Oy (V)

| | |

Oy (U) ® Oy (U) —E= Oy (U) @ Oy (U) — Oy (U);

unlabelled arrows are restriction pyy ® pyy or multiplication p. It follows that the

induced restriction pyy[[h]] on the power series rings respects the Moyal product on
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Oy (V)[[h]] and Oy (U)][[A]}:

pvullM](f x 9) = pvul[h]] (1o exp((h/2)P)(f © g))
= po (pyul[h]] ® pvu([h]])(exp((h/2)P)(f @ g))

= poexp((h/2)P)(pvu(f) @ pvu(9)) = pvu(f) * pyvu(g)-

Since pyy is bounded, pyy[[h]] descends to Oy (V)(h/v) — Oy (U){h/7). O

Now the non-commutative ring multiplication on Oy (U) = Oy (U)(h/~)/(h/y — 1)
obtained by transport of structure is compatible with restriction in .27, too. Thus

there is a restriction map W(V) — W(U) for U C V both in .

Fix £ a Lie lattice in 7(X). In the remainder of this section, we refer to the sites

Xy(p"L) and the sheaves

D, = U(pn/;)](
defined on them, as in [5].
Proposition 4.3.3. If V € X,,(p"L) then there is a (perhaps not isometric) isomor-

phism of Banach K-algebras

W(r, (V) = W(V xx Sp K (p"y)) = Dy(V).

n

In particular W(Y,,) = D,,.

Proof. For simplicity we take n = 0. Let B be an L-stable formal model in Ox (V).
By reducedness, B gives rise to a norm on Ox (V') equivalent to the supremum norm.
We will prove the stated isomorphism by producing an isometric isomorphism for the

norms obtained from B on Ox (V) and thus on Dy(V') and

Wi(mg (V) = (Ox(V)(y), %)
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Note B9, is an (R, B)-Lie algebra and there is an R-linear map

¢ : BO, — W(ry'(V)), 00— bxy.

In fact ¢ is a morphism of R-Lie algebras because of the following calculation:

([00,6'0]) = p((bO(V) = V'O(b))D) = (bO(V) = H'O(b)) * v,

while, using associativity of x,

[bxy, b >yl = (bxy) (b *y) = (V' xy) * (bxy)
=bx (V' xy+0(b) xy = % (bxy+ (b)) xy
= (bx0()) xy — (V' x O(b)) xy

— (bO(V') — V'O(D)) .

Hence ¢ lifts to U(Bd,) — W(ry*(V)), with image contained in B{y); hence it is

bounded, so continuous, and lifts further to

¢ : Du(V) =U(Bd)xk — W(my ' (V).

Now
m

bry™ = (-2)7 (T) L (byy™,

J=0

so the coefficient of y* in ¢ (3 6,,0™) = 3 by, % y™ is

C+2

by — 2710 + 1), (besr) + 2—2< ,

>8§(bg+2) L

This shows ¢ is injective: consider the coefficient of y* where ¢ is maximal with

|bs] = max,, |b,|. This also proves ¢ is norm-preserving, hence closed, and hence
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surjective, since by an induction on degree its image contains all polynomials in y

over O(V).

]

Similarly, we have the following result, which formalises previous intuition about

“rings lying over annuli”.

Proposition 4.3.4. Let 0 < u < v be such that p=* > |w|. Consider

Yuw = Sp K (z,p"y,p "y~ ") € Ya.

Then Y, , € &7; and, in the notation of Chapter 3, there is an isomorphism of Banach

K-algebras,
W(Yu) = Dy -

)

Proof. As in Prop. 4.3.3, there is a homomorphism D, — W(Y,), where
Yy = Sp K(z,p"y).

By restriction to Y, = Y, ((p"y)™!), we obtain
¢ Dy = W(Yi0).

Now ¢(9%) = y* € W(Y,,)* for all k > 0, and if a = ¥ a;07 € D, then

o }

k .
>y’
7=0
. .
= max{max |a;[p|"* ™), max|a; [ [p| 7}

Yo ajyh

Jjzk

Yo ajy’ "

>0

6(0") 6 (a)] =

)

< max{|p|“*|alu, |p|**|al, }

= max{|0*| |alu, |0"]; " |al.}.

b
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so we can use Theorem 3.2.2 to deduce that ¢ factors through a homomorphism

P . D[uﬂ,] — W(Yu’v).

It’s clear from our previous descriptions of these vector spaces that ® is bijective. [
Suppose Y, , € &. Then, for any polynomial ¢ € K[z| with |¢| = 1, we know
Yuo(q7t) € & by Thm. 4.2.16, and there is no added difficulty in proving that

W(Yuu(g™)) = Df

[u,0]*

Thus all of our microlocal constructions in Chapter 3 can be realised in terms of the

Moyal product.

Now an observation on integrality and Noetherianity. Recall the following lemma,

from [2].

Lemma 4.3.5. Suppose r € R and A is a flat, r-adically complete and separated R-
algebra such that A/rA is a commutative R/r R-algebra of finite presentation. Then
A= Ax = A®g K is Noetherian.

Proposition 4.3.6. Let U € . If |Plow)zow) < |@| then A = W(U) is integral

and Noetherian.

Proof. For integrality, we can pass the question to a Laurent subdomain U(1/a),
where |a| < 1, since we know such microlocalisation preserves the inequality assumed
on |P| and

OWU) — OU(1/a)).

Thus, without loss of generality, assume the supremum norm on O(U) is multiplica-
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tive. Integrality is then immediate, because

mn

fxg=poexp((1/2)P)(f®g) = u <Z ];!(f ®g)> , n>0,

n>0

and

(P /a)(f @ g)l < (IP[*/In!D]f @ gl <[f @ gl <|fllgl =S4,

so |fxg| =|fllg] # 0. For Noetherianity, begin by observing that
A=A°={aec W) :|a| <1}

is an r-adically complete and separated R-subalgebra of A. It is also flat because it

is torsionfree over R. Now, in A, we calculate that

[a,b]zp(Zi?(@@b—b@a)),

n>0

whence

[a, ]| < max([P"[/[n!])ja @b —b® a| <max|P"|/|n!] <1.

Taking r € R with |r| < 1 but sufficiently large, we then have A/rA = O(U)°/rO(U)°
as commutative R/rR-algebras. Now, by reducedness of U, O(U)° is an admissible
R-algebra, so O(U)°/rO(U)° is finitely presented over R/rR. By Lemma 4.3.5, A is

thus Noetherian. O

For instance, the above proposition applies in case |0,]|0,| < 1. In essence, it says that
if the deformation of O(U) is weak enough, so the commutative product in the leading
term strictly dominates, then important ring-theoretic properties are preserved. The
challenge will be to extend this result to the case of general U € . It is hoped in

particular that Noetherianity will persist here, as we discuss later.
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4.4 'TRUNCATING THE SPACE

The idea driving the work so far is to define a sheaf of non-commutative rings on
the 1-quantisable subsets of Y, in the spirit of the sheaf E'x of microlocal differential
operators in the classical setting over C. This would then enable the definition of a
characteristic variety for suitable types of D-modules. Unfortunately, <7 does not

form a G-topology on Y'; this is apparent from the examples already discussed. If

then U,V € &4, but UNV = SpK{(x,py) ¢ < by Example 4.2.12; see Fig. 4.4.1

overleaf. The same problem is suffered by .27*.

One attempt at a solution is to restrict attention to the collections

Y(e,d) ={U €Yy : |pu(9:)| < ¢, |pv(9y)] <d}, c.de R;

then Y(c,d) C @ if |wled < [1/7]. Indeed, calculating with appropriate tensor
products, one can show that Y (¢, d) is closed under finite intersections and so furnishes
a G-topology. However, the Y (¢, d) are not stable under coordinate changes on Y as
in Prop. 4.3.1. Since the characteristic variety should be intrinsic, this is a fatal flaw.
The goal of this section is to describe the remedy we actually propose: to change the

space to suit the sheaf.

To do this, we will make use of the concepts and notation from Section 1.4. Notice that
the Huber space P(Y) is the colimit of the spaces P(Y},); this follows by considering
the infinite admissible covering given by the Y,, and using the primality condition on

filters.

89



Figure 4.4.1: An illustration of the intersection of quantisable domains Sp K(z,y) (red) and
Sp K (z/p,py) (blue).

Definition 4.4.1. Let f be a filter on an admissible open Z C Y. We say f is a

Q- -filter if whenever V' € f, thereis W C V with W € f N/, For v € K, let
Q.(Z)={peP(Z):pisaQ, filter}

be a subspace of P(Z). We often suppress v or Z from the notation in case v = 1 or

Z =Y, speaking of Q-filters and Q.

This is the space of “quantisable” prime filters on which our constructions are to take
place. The remainder of this section concerns some of its most important set-theoretic

and topological properties.

Notice first that the sets U N Q,(Z2), for U € o, form a basis for a topology on
Q,(Z). Indeed, if p € unvn Q,(Z), then UNV € p contains some W € pN .47,
and so

peEWNQ(Z)CUNVNQ,(Z).

The topology so defined coincides with the subspace topology on Q. (Z) C P(Z): if U
is any admissible open, then p € U N Q.(Z) must contain some V C U with V € <,

WhencepEVﬂngﬁﬂQw.
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Lemma 4.4.2. For Z € Y,,, the inclusion P(Z) = Z C P(Y) restricts to an inclusion

2,(2) = Q,(Y).

Proof. The image of p € Q,(Z) is the filter ¢ = {U € Y,, : UN Z € p}; we have to
show g € Q,(Y). f U € ¢, then UNZ € p,so thereis W CUNZ, W € pNna,(2).
This means lim,, |,uoP‘£3]| = 0. But Oz(W) = Oy (W), so we find that W € o7 (Y')Ng.

Since U was arbitrary, ¢ € Q. (Y). O

Lemma 4.4.3. Let @'(Z) denote the collection of V' € Z,, with VN, (z)=0.
Suppose ) # s C Z,, contains %*(Z ) and is closed under finite unions, and suppose
f is a filter on Z with f N's = (. Then there is a filter ¢ € Q,(Z) maximal with
respect to ¢ O f and ¢ N's = (). In particular, any Q-filter f on Z € Y, is contained

in some prime Q-filter.

Proof. By Remark 1 in [28], there is a filter p on Z maximal with respect to p 2 f

and pN s = (). This p is prime, and p N .o (Z) = () means p € Q,(Z). O

The utility of Lemma 4.4.3 is in its power to assert the existence of points in Q.;
these are often difficult to identify explicitly. The next statement is an immediate

consequence of Lemma 4.3.2.

Proposition 4.4.4. Let 0 : P(Y) — Y denote the morphism of sites given by the
functor U — U. For all p € Q,(Y), the stalk

Op = (O'*Oy)p = thy(U) = llg Oy(U)

Uep Uepnay
admits a non-commutative ring structure induced from the appropriate W(U).
Example 4.4.5. If z € Y, then its neighbourhood filter p, ¢ Q,(Y) for all v € K*.

Proof. Choose m so that z € Y, = Z. It will suffice to show that for some U C Z

with 2 € U, py(P) > |y| for all V. C U with V € Y,, N p,. Since K = K, we can
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n

apply an automorphism (z,y) — (x — a,y — b) for |a|] < 1, |b] < p~™ and assume z

corresponds to the ideal (z,y) of O(Z). But then if
VgU:spK<‘” y> € p.,
pp

we find that

o P~y > (o PM)((x/p")" @ (y/p")" )" = [4|"/|p*"nl],

which does not vanish with n for ¢ chosen sufficiently large relative to |7|. O

The problem with neighbourhood filters is that they necessarily possess subdomains
“too small” to contain any quantisables. Thus in forming Q., the classical points are

all thrown away. However, enough points are retained for the following result.
Proposition 4.4.6. If U € &, then Q;(U) = U N Q,(Y) # 0.

Proof. Let A= O(U). As stated in [8], we can find f € A with |f| = 1 and such that
V = U(f™') has irreducible reduction V. Since V € 44 by Proposition 4.2.16, and
V € p implies U € p, we can replace U by V. This amounts to assuming that the
supremum norm on A is multiplicative, so that actually | |su, € M(U). Let p be the
corresponding filter; by definition, U € p. Now, if W C U, W € p, then it contains

some rational subdomain

fl fn . :
U <fo,,fo> with ‘fz‘sup S |f0|sup7

where we can assume |folsuyp = 1 by rescaling. But this rational subdomain then in
turn contains U(f; '), since fo(z) > 1 forces fy(x) = 1 and hence f;(z) < fo(x) since
| filsup < |folsup = 1. But U(fy') € @4 by another application of Proposition 4.2.16,

and U(fy ') € p as required. O
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In other words, every 1-quantisable affinoid subdomain U C Y has a “witness” in
Q. Actually the proof shows there are at least as many witnesses as irreducible
components of U. This is an important fact to verify when replacing the cotangent

space Y by the space Q@ = Oy, as we intend for the purposes of defining a sheaf.
Here is a more abstract proof. Recall from [28] (or Section 1.5) that if Z is an affinoid
K-variety and Z denotes the reduction of Z, then there is a canonical reduction map

redZ AR ch,

which induces a continuous surjection

RedZ : P(Z) — P(ch) =27

with Redz(p) = {V C Z4 open : red (V) € p}.

Proposition 4.4.7. Let Z € /. The image of Redy : Q(Z) — Z contains all the

closed points. In particular, Z N Q;(Z) # 0.

Proof. Let z be a closed point of Z and consider the filter

f={red (V) : V n{z} #0}.

Every Zariski open V' contains a principal open set D(h) for some h € O(Z), |h| = 1.
Moreover, red Y (D(h)) = Z(1/h) € o, so f is a Q-filter. There is thus ¢ € Q with
q 2 f by Lemma 4.4.3. Hence Redz(q) contains the filter corresponding to z; since

this is maximal, we must have equality. O

Corollary 4.4.8. The closure of Q,(Z) in P(Z) can be described as follows:

Q.(Z)={peP(Z):forallU € pthere exists V C U, V € &, (2Z)}.
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Proof. Any neighbourhood U of p € Q, intersects 9., so there is ¢ € Q, with U € ¢,
and hence V' C U with V' € o7,; this shows the left containment. Suppose p € P(Y)
satisfies the condition defining the right-hand side, and pick any neighbourhood U of
p. Then there is V C U with V' € &7, by assumption. But then we can apply Prop.
4.4.6 to find a ¢ € Q, with V' € ¢, and hence U € ¢ by the filter property; that is,

Un Q, # 0. Since U was arbitrary, we now have that p € Q.. n
To conclude this section, we explain how points in @QNM(Yy) C P(Yj) can be studied
via their images under the natural map

v: % =MYy) > MX)=2,
since the points in the latter space are fully classified over algebraically closed fields
by Example 1.5.6. First, let us recall a key notion.

Definition 4.4.9. Let A be an affinoid K-algebra and ¢ € M(A) a bounded multi-
plicative seminorm on A. Its kernel p C A is then a prime ideal, with A/p an integral
domain. Since the value ((a) is independent of the residue class of a in A/p, ¢ induces

a valuation on Frac(A/p). The completion of this field is itself a non-Archimedean

valued field, which we denote 77(().

Proposition 4.4.10. For each p € 27, there is an isomorphism of Berkovich spaces,

(1) = M(HA (1) (y)).

Proof. The composite inclusion go f : K{x) — K{(x,y) — € (1)(y) induces a mor-

phism of Berkovich spaces,

poy: M (p)(y) = M(E(z,y)) = M(K(z)).
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For v € M(7(n){(y)) and a € K{(z), we have

pory(w)(a) =rvige fla) = pla),

since the image of g o f lies in the scalars of #(u). Hence y(v) € ¢~ !(u). On the
other hand, suppose A € ¢~ '(u). By taking a common denominator for appropriate
fractions, it is easy to extend A to S (u)[yl, since A is multiplicative and is assumed
to agree with p on #(u). Then, by continuity, it extends uniquely to some v in

M(F(11)(y)); obviously v(r) = A, and now we can see that ~ is bijective. O

Generically, (1) will not be algebraically closed, but we can still avail ourselves of

the following result to understand the fibre =1 (p).

Proposition 4.4.11. [8, Ch. 1| Let A be an affinoid K-algebra and { € M(A).

Denote the completion of the algebraic closure of 5#(¢) by ##(()?, which is itself an

—

algebraically closed field. The canonical inclusion J2(¢)(y) — J({)*(y) induces an

isomorphism

where G = Gal(72(()*/ 7 (()) acts as follows:

(@- OO any") =C (Do Han)y"), o€G,Ce M) ).

——

It’s easily verified that the action of G preserves the types of points in M (5 (()*(y)),
according to the classification provided before, so by Proposition 4.4.11 the points of

©1(¢) have a well-defined type.

Definition 4.4.12. Say \ € % is of type (a,b) € {1,2,3,4}* in case p(\) = u is of
type a in 2" and X is of type b in o~ (1u) = M (1) {y)).

Proposition 4.4.13. No type (1,b) point belongs to @ N M(Yp).
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Proof. Suppose p € 2 has type 1, so that

p(f) =1f(a)l, fe Kz,

for some a € K, |a| < 1. Then any A € o~ (u) =& M (S (u)(y)) satisfies

Mg(z,y)) = u(g(a,y)).

In particular, A(z — a) = 0, so if p, is the corresponding filter then the Weierstrass

domain Yo((x — a)/p*) € py for all £ > 0. This forces py ¢ Q. O

This generalises our earlier observation that neighbourhood filters never belong to Q,
and is generalised by the conjecture that Berkovich points in Q always have trivial

kernel. That same conjecture would afford us the following result.

“Proposition” 4.4.14. Suppose A is a type (a, 1) point, with ¢(\) = u, correspond-
ing to a classical point o« = g/h € Frac(K(z)) C 7 (u). Then A ¢ Q N M(Yp).

Indeed, such a A would satisfy A(hy — g) = 0. More exotic o € J7(u) yield type

(a, 1) points which are more difficult to analyse, and in complete generality one must

consider a € J(p)®.

Proposition 4.4.15. Suppose A is a type (2, 2) point, with ¢(\) corresponding to the

disc F(aq,71) in K and A corresponding in the fibre to the disc F(ag,79) in J2(p)e.

If ay € K, then X € Q exactly when 11y > |wo].

Proof. By construction,

A (Z an(y - al)n) = sup ,U,(CLn>7”;L = sup ’anm|rinrg7

n>0 n,m>0

writing a, = 3 apm(r — a2)™ € K(x). This proves that A is the Gauss point of the

disc Yo((z — 1) /m1, (y — aa) /r2), which is quantisable precisely when riry > |w|. O
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As the phrasing of these partial results suggests, it is apparently difficult to determine

the quantisability of type (a,b) points A whose type b part is defined properly over the

field extension m JFrac(K (x)), or even J€(p(N))*/K, except for the trivial
case a = 1. Better understanding of how the value a # 1 affects the structure of these

field extensions should help to fill in the gaps.

4.5 (CONSTRUCTING A SHEAF

From here on, let Q := Q;(Y) and P := P(Y). For the purposes we have foreshad-
owed, one might hope there is a sheaf £ of non-commutative rings on the subspace

topology of Q such that
EUNQ) = (0y(U),x),U € . (4.5.1)

An attempt to construct £: pulling Oy back along o : P — Y, there is a sheaf O on
P defined by

for admissible open U C Y. Writing j : Q@ « P, the presheaf inverse image j 'O

satisfies

GTO)UNQ) = lim O(N)= lim (gn 0‘/(V)>~1ig Oy (V).

NDUNQ NDUNQ \ VDN VDUNQ

for U € &/,. By intersecting V with U , we can refine the indexing set for the latter

colimit further, to obtain

GTOUNQ) = lim  Oy(V), (4.5.2)

VNo=UnQ

97



Unfortunately, simplification stops there, since it is unclear that UnQ=vVno
forces U = V. Thus there is a problem of well definition in (4.5.1). Nevertheless,
51O remains the natural choice of sheaf to support the non-commutative structure

we desire. We will proceed to define that structure indirectly, using the espace étalé.

Recall [23, Ch. II] that for the topological space T, there are mutually inverse equiv-

alences of categories

A Sh(T) — Et(T), T :Et(T)— Sh(T),

where we refer to sheaves of sets and étalé bundles over T'. A is given by the disjoint

union of stalks

ANF)=]] F—T,

zeT
with topology generated by the base $(U) = {[U, s|, € F, : x € U}, for U open in T
and s € F(U); T is given by taking the sheaf of sections associated to an étalé map
f S — T, namely
(f)(U) = {s € S : fs = (U = T)}.

These functors respect finite products, so in particular descend to equivalences be-

tween the subcategories of abelian group objects and unital ring objects:

Ab(Sh(T)) = Ab(Et(T)), Ring(Sh(T)) = Ring(Et(T)).

Our strategy will be to view ;7' as a unital ring object in Et(Q), prove that the
Moyal product on its stalks renders it a unital ring object in a different way, and then

apply the inverse equivalence to obtain a sheaf of rings on Q.
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Lemma 4.5.1. Consider the following diagram in some category:

A—=5B

a/l B

C——D=3F,
6/

where the square is Cartesian and 7 is the equaliser of §, §’ (so y is a regular monomor-

phism). Then « is a regular monomorphism, specifically the equaliser of 63, 5.

/ oB
Proof. Given X —“— B—=} F , we need existence and uniqueness of
5B

r:X - A with az =2
Uniqueness is clear, because « is a monomorphism. By the equaliser property of 7,

there is 2” : X — C with v2” = S2’. Then the pullback property of A provides the

required z : X — A. m

Corollary 4.5.2. If the previous diagram lies in Top, then C'is a subspace of D and

A is a subspace of B.
Proof. Regular monomorphisms in Top are precisely the topological embeddings. [

Now let m : S — P be the étalé map corresponding to the abelian sheaf O on P, so

that the pullback ¢ : R — Q corresponds to j 'O on Q:

PR
0

©
A"

—
J

Here R = [[,c0 O, is a subspace of S by Corollary 4.5.2. We define multiplication p
on R as follows:

p:RxgR— R, (x,y)— %y,
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where z,y € O, for p € Q. Addition R xg R — R, negation R — R, and unit @ — R
are already given on R by its commutative ring structure, so all we need is to prove

1 1s continuous.

Lemma 4.5.3. Let p € Q. A neighbourhood base in S for z = [U, (], is given by the

open sets C(W), where W C U lies in &/ Np.

Proof. By construction, a typical neighbourhood of z has the form #(N), where N C
P is open and v € O(N). By shrinking N, we can assume it has the form N = V for
V € p. Then

2=[U,{p =V, 1y,

so by definition of germ there is W C U NV with W € p such that {|w = v|w. Since

p € Q, we can assume that W € pN .. Then [W,(], = [W,v], for all ¢ € W, so

(W) = (W) C i#(N). O
Proposition 4.5.4. y is continuous, and so makes R a unital ring object in Et(Q).
Proof. Choose (z,y) € R Xg R, say x = [(7,3]1,, Yy = UN/,t]p for p € Q. As usual, we
may assume U =V € p N .; then p(z,y) = z is the germ

T x,y = [U, s *y U]

Let ( = sy t and take a typical neighbourhood C(W) N R of z in R, per Lemma
4.5.3. Then S(W) N R and t(W) N R are neighbourhoods of z and y, respectively. For

elements =’ = [W, s,y = [W,t], of these neighbourhoods (taken in the same fibre

of ),
(e’ y') = [W, sxw tly = [W, Clgs

because (|lw = (s *y t)lw = s +w t by the compatibility of the Moyal product with
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restriction in 7. Thus
p(($(W) N R) x (HW) N R) N (R xg R)) C¢(W)NR,

proving continuity of . O]

4.6 THE KEY DEFINITION

In the notation above, we have a composite morphism of sites
T=70j:Q—=>P-=>Y = X.
For U € X, there is a homomorphism of abelian groups
D(U) = (m.0y)(U) = Oy (x~(U)) = Ox(U)(y)-

This lifts to a morphism of abelian sheaves D — Oy, and so by the typical adjunc-

tion yields 1D = Oy. Pulling back further, we obtain

D jlo=¢.
By considering stalks, one sees this is in fact a morphism of sheaves of rings. Thus
we can sensibly define:
Definition 4.6.1. Let .# be a coadmissible D-module on X = Sp K (z). The char-
acteristic variety of .4 is then

Ch(A) = Suppg(E@__,57 ' M);

~ 771 # has nonzero stalk.

that is, the locus of points on Q where £ ®__, 5
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The above definition can easily be generalised to arbitrary rigid spaces X. Since our X
is a smooth affinoid variety, there is an equivalence of categories between coadmissible
D-modules on X and ﬁ(X )-modules, given by global sections in one direction and
localisation in the other; see |5, Ch. 9]. To be precise, given a coadmissible ﬁ(X )-
module M, we construct a D-module .# = Loc(M) by

M =Dz M.

D(X)
For such an M we therefore define

Ch(M) = Ch(Loc(M)) = Suppg (€ @5, M),

(X)

so that Ch(.#) = Ch(.# (X)) for .4 a coadmissible sheaf of modules. Similarly, if M
is a finitely generated D,-module, then we let Ch(M) = Suppg, (€, ®@p, M), where
&, is the restriction of £ to Q(n) = Q(Y,,).

Moving forward, the goal will be to justify the merit of these definitions, especially
with reference to the classical properties of characteristic varieties discussed in Chap-
ter 1. A major challenge here is that the sections of £ are currently poorly understood,
so for now its study is best approached via stalks. Crucial to understanding & will
be an improved understanding of Q, whose topological qualities and points within P

remain somewhat mysterious.

Lemma 4.6.2. Let M be a coadmissible D(X )-module. Then

Ch(M) = |J Ch(D, &5, M),

n>0
identifying ¢ € Q(n) with its image under the inclusion Q(n) C Q.

Proof. Writing out the definitions, this is immediate from the fact @ = U, Q(n). O
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So we can compute the characteristic variety of M by unioning the level-n character-

istic varieties of the base changes M,, = D, Rz M. Let us now develop the tools

(X)

to compute a particular example.

Lemma 4.6.3. Let A be an affinoid algebra and D a bounded K-linear derivation
of A. Then
[Dla < pa(D) < [D]a/|wl.

Proof. The upper bound is obtained trivially from submultiplicativity, |D"| < |D|".
To obtain the lower bound, it suffices to show that p(D) < 1 implies |D| < 1. First

extend D to a K (h)-linear derivation A of A(h):

A (> a,h™) =" D(an)h™.

Then
A™ (3 aph™)| = max |D™(ay)| < [D™|max [ay|,

whence pagy(A) < pa(D). Suppose there is a € A with |a| < 1 and [Da| > 1. Then,
in particular, there must be some point 7 in the Shilov boundary of the Berkovich
space M(A) for which n(a) > 1, say n(a) = s. For any ¢t € K with |t| < |w|, we can
then consider " € A(h), a unit with inverse 7' and norm 1 in A(h). Under A,

et has orbit as follows:

e s (tD(a)h)e' " s (tD(a)h)*e' " + '™ (tD*(a)h) v ...

h

Since €' is a unit, we can look at the leading coefficient of the h-polynomials here

to deduce

A" ()| = [t D(a)"| = [t["n(D(a)") = (|t]s)",

whence p(A) > |t|s/|w|. This contradicts [p(A)| < 1 for |¢| chosen close to |w|. O
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Lemma 4.6.4. If U € o/, then the following inequalities hold:
0:| < ly/@l, 10y < |z/w|.

Proof. 1t’s known that the x-product on W, (U) is jointly continuous, so there is a

constant C' such that for all f € O(U) and n > 0,
|f*a"| < C[f]|=]".
On the other hand, f x " has top-degree term (h"/(2"n!))n!d;(f), which shows

B ()] < Clf ]/ [n!]-

Taking a supremum over |f| < 1, extracting n-th roots, then taking limits now yields

powyny (0y) < |x/w|. Appealing to the previous lemma completes the proof. O

Proposition 4.6.5. If U € & is connected, then z € W(U) is a left or right unit if

and only if x € Oy (U)*; similarly for y.

Proof. Since the arguments are similar for z and y, we focus on z. If x € Oy (U)*,

then

xxl/r=1=1/z*x.

On the other hand, suppose there is f € W(U) with fxx = fz + 9,(f) = 1. There
are now two possibilities: either z is also a right unit, or x is a left zero divisor. In

the former case, we see that

l=xxf=fr—0,f,

so that now d,f = 0. But then 1 = fo = zf and x € Oy (U)*. In the latter case, we
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obtain 0 # g € W(U) with g xx = 0. This corresponds to the equation
9,y(9) = —zg
in Oy (U). Now, x ¢ Oy (U)* means that U contains some classical point
p=1(0,b) €Y;

for simplicity, assume b = 0. By injectivity of the relevant maps, we can pass our

equation to the local ring at p, O, = K[[z,y]]. In here we have
d,(ge™) = 9,(g)e™ + gre™ =0,

so that g = C'(z)e™ for some C(x) € K[[z]]. Here g(z,0) = C(x), which shows C
converges on U, and hence we can conclude |zy|y < |w|. Indeed, otherwise C' would
need to vanish on the non-empty affinoid subdomain U(w/xy), which is impossible
for C' # 0 by the connectedness of U (see Prop. 4.2 in [3]). But |zy| < |w| implies
that |0,| > |z/w| and |0,| > |y/w|, which contradicts Lemma 4.6.4. All of this shows

x is not a zero divisor in W(U). O

We are now prepared to make a calculation.
Proposition 4.6.6. Let a € K, 0 < |a| < 1. If M = D,,/D,x, then

Ch(M) = (U W) #0.

m2>0
A similar result holds for N = D,,/D,,0.

Proof. Notice that &, @5~ M = &, /E,x, so ¢ € Q(n) lies in the characteristic variety
of M if and only if  is not a left unit in &,. This holds if and only if there is no

U € q for which z € O(U)*, i.e. if and only if no subdomain Y,,(a/x) belongs to
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q, recalling the maximum principle and that o™ — 0. Thus we have the first stated

equality and it remains only to show non-emptiness. To this end, consider

s = (] (Yn) U{Y,(v/x) :v € K, |v| > |w|})u,

f={UCY,:UDY,(x/v) forsomev e K with |v| > |=|},

where (S), denotes the set of finite unions of elements in S. By Lemma 4.4.3, there
is a filter ¢ € Q(Y,,) with ¢ 2 f and ¢ Ns = ), assuming f N s = (); let us see this is

the case. Suppose U D Y, (z/v) and can be written

U=V UY,(w/x),

where V' € o/*(Y,,) and |w| > |w|. Then, by taking intersections,

Yo(z/v) =V UY,(w/x,z/v),

where V' € «/(Y,). This is impossible, because it implies Z = Z(w/x) for Z =
Y, (z/v), which is false. The g we have now procured satisfies the desired properties.

Since N = D,,/D,(p"0), we can repeat the argument with p"0 replacing x to find
Ch(N). O

If U € &, then x xy is a left unit in W(U) if and only if z and y are units in W(U);
hence

Ch(D,,/Dyz8) = Ch(M) U Ch(N).

Our calculations have relied on the unusual property that x,y are commutative units
if and only if they are units in the WW-rings. Describing the characteristic variety of

D, /D, f for general f is a far harder problem.
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4.7 QOUTSTANDING CONJECTURES

In this concluding section, we look ahead to several conjectures whose resolutions
would greatly clarify the state of the theory we have developed, provide strong ev-
idence for the correctness of our constructions, and possibly also be of independent

ring-theoretic or deformation-theoretic interest.
Conjecture 4.7.1 (Separation). For U # V in 7, it holds that Un Q# VN 0.

In other words, Q is able to “detect” distinct quantisable affinoid subdomains of Y.
This is trivial with P replacing Q because of neighbourhood filters. Working with
quantisables is necessary; if U # V are not quantisable, then the intersections in
question can both be empty. Knowing the claim even for U C V' would be sufficient
for our purposes, since it would show the local sections of £ are as desired. Some

special cases are known, as follows.

Proposition 4.7.2. The separation conjecture holds for non-trivial Laurent domains

V:U(fl,...,fn,gfl,...,g;ll)

where all |g;| = 1.

Proof. 1t suffices to prove the claim in the cases m = 0 and n = 0, since the more
general claim involves a smaller subdomain V. In the first case, assume without loss

of generality that |fi| = |c| > 1; then W = U(c/ f1) € «/. Hence

VNOoC(VNQuUWnNQ) CUNQ.
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In the second case, consider the following commutative diagram (of topological spaces):

U N Q¢ U oY VN9

Prop. 4.4.7 proves that the images of the outer arrows contain the closed points of U
and V, respectively. Now if Ung=vn Q, then we can deduce from the diagram
that the image of U < V contains the closed points of U. By [22, Prop. 3.1.5], this

is impossible for a subdomain V = U(g; ", ..., g;") with all |g;| = 1. O

More generally, the proof shows that the separation conjecture cannot fail in either of
the following situations: when there is a quantisable affinoid subdomain W C U —V/,

or when the image of V — U does not contain the closed points of U.

Remark 4.7.3. The following are loose remarks on a possible strategy to prove the
separation conjecture for V' C U, at least in the case that I'(U) € I'(V). For an

affinoid subdomain Z C Y, consider the subset

M(Z)gen = {x € M(Z) : kerz = 0},

which is closed in M(Z) by the Maximum Modulus Principle. Suppose that

Q(Z2) N M(Z) € M(Z)gen

were known to be an open subset; we discuss this further down. Then take any

ac(V)=T'(U) C QUU)NM(U). By the Maximum Modulus Principle for Berkovich
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spaces |8, Prop. 2.5.20|, we have

a € A(V/U) = M(U) — Int(V/U) = M(U) — M(V).

Shilov points are generic, so

a € M(U) = MV) N M(U)gen.

If one could show the latter set coincides with its subset M(U)gen — M(V )gen, OF

otherwise argue that a can be chosen inside it, we would now find that

0 # (QU)NM(U)) N (M(U)gen = M(V)gen) € QU) = (V).

It remains to discuss the issue of openness. For Z C Y, consider the following variants

of Q(Z):
QF(Z)={peP(Z):forallU € pthereis VC U,V € pna*}.

It would evidently suffice to work throughout with Q~(Z) in place of Q(Z). For

p € P(Z) define r(U) = porzow () and
vz M(Z)—[0,00], ¢z(p)=inf{t e R:{U € p:r(U) <t} is cofinal in p}.

Then we have

vz ([0,1)) € Q(Z) N M(Z) € ¢, ([0,1)).

Studying these inclusions and the continuity of ¢, especially when restricted to
M(Z)gen, could lead to a proof that Q7 (Z) NM(Z)gen is an open subset of the latter.

A basis of open sets for the Berkovich topology of M(Z)gen is given by complements
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of M(Z')gen for Z' C Z an affinoid subdomain. Thus continuity of ¢ is ultimately
tied to the relation between py(P) and py (P) for V' C U, but no clear such relation
exists. In order to define a function ¢ with the desired properties (continuous, and
with an appropriate subset of Q(Z) as an open preimage), it is probably necessary

to capture quantisability in terms of a better-behaved invariant than py (P).
Conjecture 4.7.4 (Noetherianity). For U € o7, the ring W(U) is Noetherian.

We saw above in Proposition 4.3.6 that this result is true in special cases; the con-

jecture is that we can remove the strong restrictions on U stated there.
Conjecture 4.7.5 (Flatness). For V C U in &7, restriction W(U) — W(V) is flat.

As with the previous conjecture, this is known for the commutative ring Oy. It is also
known for D and its Fréchet-Stein levels D,,, or equivalently for quantisable V, U € &/
arising as preimages of the projections Y,, — X. In that sense, the conjecture is a
generalisation of known facts to arbitrary quantisable subdomains. By Prop. 4.3.4,
our flatness results in Chapter 3 are also special cases of this conjecture. Finally, we

have a conjecture concerning coverings of open sets in Q.

Conjecture 4.7.6 (Refinement). Fix n > 0 and U € &/(n) = </(Y,). Any finite

covering of U N Q(n) admits a refinement of the form

U={U:nQ(n),...,UnNQn)},

where all finite intersections of the U; are quantisable.

What follows would likely be the most important consequence of our conjectures,

answering a question implied by the concluding paragraph of [5, Ch. 1.3].

Theorem 4.7.7. If the above conjectures hold, then up to isomorphism there is a
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unique coherent sheaf of rings £ on Q such that

EUNQ) =WWU), Ued,
and such that there is a fully faithful and exact embedding of categories,
{coadmissible sheaves of D-modules on X} — {coherent sheaves of E-modules on Q}.

Proof. In conjunction with [33], and recalling that Q has a basis given by quantisable
affinoid subdomains of Y, the separation conjecture enables us to define a sheaf of

rings on @ by the formula
EUNQ) =W(U), Ued.
In [5], it is shown that there is an equivalence of categories,
{coadmissible sheaves of D-modules on X} 2 {coadmissible D(X)-modules},
given by functors of global sections and localisation. Now observe that
£(Q) = lmé(Y, N Q) = lim D, = D(X).

So it will be enough to define a fully faithful embedding of coadmissible £(Q)-modules
into coherent sheaves of £-modules on Q. To begin, we define for any finitely generated

D,-module M,, a presheaf Loc(M,,) on Q(n), with
Loc(M,)(U N Q(n)) = W(U) ®@p, M,, U e o (n).
This is well defined, again by the separation conjecture. We claim it is in fact a sheaf.
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By the refinement conjecture, this can be proven by checking it is a /-sheaf for any

covering

U={Un9Mn),...,U,n9O(n)}

of U N Q(n) for U € o7 (n), where all finite intersections of the U; are quantisable.

Writing &, = £|g(n), consider the augmented Cech complex

C*(U,E,): 0= EUN QM) = [[ET N QM) — [[EWU:NT; N Qn)) — ---
i i<j
As abelian groups, the factors of these products agree with sections of Oy by definition
of £ and our assumptions on /. So by Tate’s acyclicity theorem, the complex is exact.
Furthermore, the flatness conjecture says that every term in the complex is flat over
D, so
C*(U,Loc(M,)) = C*(U,E,) ®p, M,

is also exact. Thus we see Loc(M,,) is a sheaf on Q(n) (even with vanishing higher
cohomology) and in fact a left &,-module. Now for any coadmissible £(Q)-module
M, choose a Fréchet—Stein presentation M = lgln M,,. Given the axioms of such a
presentation, we can glue the Loc(M,,) on Q(n) to obtain an £-module Loc(M) on

@, independent of the presentation up to isomorphism. We now have a functor
Loc : {coadmissible £(Q)-modules} — {sheaves of £-modules}.

Then Loc is surely faithful: given f,g: M — N, evaluating at global sections shows

that

Loc(f) = Loclg) = f=g.

On the other hand, consider any morphism of coherent £-modules,

¢ : Loc(M) — Loc(N),
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and set f = ¢o : M — N. Now 1) = Loc(f) — ¢ vanishes on global sections, so we

have a commutative square

M 0 N

| |

E(Z) @p, M——E(Z) @p, N,

for any Z = U N Q where U € &/ (n). This forces 15 = 0 since it is an £(Z)-module
map. So ¢ = 0 and ¢ = Loc(f). Thus Loc is fully faithful, as required, and its
exactness is an immediate consequence of our flatness of restriction hypothesis. It
remains only to verify that £ and the Loc(M) are coherent. By assumption, each
restriction &, is a sheaf of non-commutative Noetherian rings, and thus is a coherent
sheaf of rings on Q(n). The Q(n) form an open covering of Q, so £ is a coherent
sheaf of rings on Q. Now, fix a Fréchet-Stein presentation of M as above. By choice

of M, there is a finite presentation
DY — D™ — M, — 0;

due to our flatness hypothesis, tensoring here with &, yields an exact sequence of
sheaves:

EL — &M — Loc(M)| gy — 0.

Since the Q(n) cover Q, we conclude Loc(M) is of finite presentation as an £-module,

and sheaves of finite presentation over coherent rings are coherent [34]. [

Notice that in this proof the refinement conjecture was used only to deduce the
vanishing of the higher cohomology of £, so a viable strategy would be to prove
that fact independently. A further result, in the spirit of Kiehl’s theorem [19] for

coherent sheaves of Ox-modules on rigid spaces X, might enable us to conclude the
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Loc embedding is essentially surjective and therefore an equivalence of categories.
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