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Observations of tropical convection from precipitation radar and the concurring large-

scale atmospheric state at two locations (Darwin and Kwajalein) are used to establish

effective stochastic models to parameterise subgrid-scale tropical convective activity.

Two approaches are presented which rely on the assumption that tropical convection

induces a stationary equilibrium distribution. In the first approach we parameterise

convection variables such as convective area fraction as an instantaneous random

realisation conditioned on the large-scale vertical velocities according to a probability

density function estimated from the observations. In the second approach convection

variables are generated in a Markov process conditioned on the large-scale vertical

velocity, allowing for non-trivial temporal correlations. Despite the different prevalent

atmospheric and oceanic regimes at the two locations, with Kwajalein being exposed to a

purely oceanic weather regime and Darwin exhibiting land-sea interaction, we establish

that the empirical measure for the convective variables conditioned on large-scale mid-

level vertical velocities for the two locations are close. This allows us to train the

stochastic models at one location and then generate time series of convective activity at

the other location. The proposed stochastic subgrid-scale models adequately reproduce

the statistics of the observed convective variables and we discuss how they may be used

in future scale-independent mass-flux convection parameterisations.
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1. Introduction

Despite a remarkable increase in complexity and resolution

of general circulation models (GCMs), the representation of

deep convection, which ultimately serves to drive the general

circulation, is still associated with large uncertainties (Flato et al.

2013). The inadequate representation of atmospheric convection

in GCMs is responsible for considerable uncertainty in estimating

climate sensitivity (Bony et al. 2015, and references therein) and

ambiguities in the numerical simulation of the Earth’s climate,

for example when comparing the inter-model mean and spread

of hydrological-cycle related variables of the CMIP5 ensemble

to observations (e.g. Jiang et al. 2012; Tian et al. 2013; Lauer

and Hamilton 2013). An improved representation of fundamental

atmospheric processes, such as convection, is therefore considered

to be of utmost priority in the model design (Stevens and Bony

2013; Jakob 2014).

Atmospheric convection cannot be resolved by the model

grid of GCMs currently used for climate projections and must

therefore be parameterised. More than four decades ago, the

pioneering works of Ooyama (1964) and Manabe et al. (1965)

laid the foundations for the development of increasingly complex

convective parameterisation schemes (see Arakawa (2004) for a

review and Randall (2013) for an outlook). As a result of this

development, GCMs are now capable of reliably capturing the

overall amount of precipitation. However, spatial distributions and

variance often compare poorly to observations (e.g. Dai 2006;

Pincus et al. 2008; Stephens et al. 2010). Further, capturing the

statistical relationship between convective activity and the large-

scale environment is a challenging task not often met by current

GCMs. For example, Holloway et al. (2012) show that a model

with parameterised convection does not adequately reproduce

the relationship between convective activity and vertical pressure

velocity ω as found in a cloud-system resolving model with

explicit convection. Using the observational datasets used in this

study (cf. Section 2), preliminary analysis of the relationship

between rain rates and ω at 500 hPa (ω500) in a state-of-the art

climate model (ECHAM6.2, c.f. Stevens et al. 2013, for a model

description) over Darwin and Kwajalein yield similar negative

results, with the relationship being qualitatively better captured

over Kwajalein (not shown).

Conventional convective parameterisations tend to be of a

deterministic nature and represent only the mean effect of the

small-scale unresolved convective processes on the resolved large-

scale environment on the scale of the numerical grid. In these

parameterisations, it is assumed that for any given resolved

large-scale state of the atmosphere-ocean system there exists

a single possible response at the small-scale convective state

feeding back upon the large-scale state. There is, however, a

mounting body of evidence that actual observed convection does

not obey deterministic relationships between large-scale variables

and convective scales (e.g. Peppler and Lamb 1989; Sherwood

1999; Holloway and Neelin 2009; Stechmann and Neelin 2011;

Davies et al. 2013; Peters et al. 2013). Furthermore cloud-

resolving models (CRMs) reveal a high degree of variability of

small-scale convective activity for a given large-scale state. This

challenges the usefulness of employing deterministic relationships

between convective activity and large-scale variables (Xu et al.

1992; Cohen and Craig 2006; Shutts and Palmer 2007).

The complex chaotic dynamics of small-scale processes is

widely recognised to give rise to the observed variability. For

example, Hohenegger et al. (2006), using an ensemble of limited-

area convection permitting simulations over the European Alps,

identified gravity waves generated in regions of diabatic forcing

(i.e. moist convection) as the main source of error growth in their

simulations. A lack of variability in the high-frequency, small-

scale convective processes can dynamically propagate upscale

and cause GCMs to misrepresent low-frequency large-scale

variability (Ricciardulli and Garcia 2000; Horinouchi et al. 2003).

Model simulations and observations suggest that a stochastic

approach to subgrid-scale parameterisations is needed (Palmer

2001, 2012). The recent increase of resolution of the numerical

cores adds to the failure of purely deterministic parameterisations:

For example, numerical square grids with edge lengths O(100km)

and less do not contain sufficient cumulus clouds to allow for

the estimation of meaningful averages (Palmer and Williams

2008), and there is a need for a stochastic resolution aware

parameterisation (Arakawa et al. 2011; Arakawa and Wu 2013).
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A plethora of stochastic subgrid-scale parameterisations for

convection have been developed. Buizza et al. (1999) applied

random perturbations to the parameterised tendencies in the

operational ECMWF Integrated Forecast System (IFS) improving

its forecast skill. Lin and Neelin (2000, 2003) introduced

random perturbations to convective available potential energy

(CAPE) and to the heating profile of the host convective scheme

improving on the statistics of tropical intraseasonal variability.

Bright and Mullen (2002) introduced random perturbations to

the trigger function of the Kain and Fritsch (1990) convection

scheme, and Teixeira and Reynolds (2008) randomly perturbed

tendencies from a deterministic convection scheme by sampling

from a normal distribution. Plant and Craig (2008) used random

samples of a distribution of convective plumes to match a

required grid-box mean convective mass flux. Their scheme

has been successfully applied to a limited area model-ensemble

over central Europe (Groenemeijer and Craig 2012). Berner

et al. (2005) used ideas from cellular automata to introduce

stochastic forcing to the streamfunction to model the effect of

mesocale convective systems. Bengtsson et al. (2013) developed a

stochastic convective parameterisation based on cellular automata

via a moisture convergence closure, and showed that in a

limited area model-ensemble framework over Scandinavia, the

parameterisation leads to a desired increase in spread of the

resolved wind field in regions of enhanced deep convection.

Majda and Khouider (2002) and Khouider et al. (2003) drove

a mass-flux convective parameterisation with a stochastic model

based on convective inhibition. Khouider et al. (2010) developed

the stochastic multi-cloud model (SMCM) evolving a cloud

population consisting of three cloud types associated with

tropical convection (congestus, deep convective and stratiform

clouds) by means of a Markovian process conditioned on the

atmospheric large-scale state. This model has been shown to

adequately simulate tropical convection and associated wave

features in a simple two-layer atmospheric model (e.g. Frenkel

et al. 2012, 2013; Deng et al. 2015) and to reproduce observed

convective behaviour when observation-based transition time

scales between cloud-types are adopted (Peters et al. 2013). For

a more comprehensive review on current stochastic subgrid-scale

parameterisations of convection see, for example, Neelin et al.

(2008) and Palmer and Williams (2010).

Despite successfully capturing the observed high-frequency

variability stochastic subgrid-scale parameterisations are often

difficult to tune and very sensitive to the choice of the

parameters as shown for example by Lin and Neelin (2000,

2002, 2003). There has, however, not been much effort in

alleviating this difficulty by imposing observational constraints

on the parameterisation. The limited availability of high-quality,

long-term datasets of concurring large-scale and convective

scale observations surely contributes to this omission. We

list recent works in that direction. Neelin et al. (2008) and

Stechmann and Neelin (2011) used observed relationships

between column integrated water vapour and precipitation to

inform a physics-based stochastic model to simulate the onset and

duration of very strong convection. Horenko (2011) developed a

framework which allows for a purely data-based Markov chain

parameterisation allowing for nonstationary data to model cloud

cover. De La Chevrotiére et al. (2014) used data to infer the

transition rates used in the SMCM by employing a Bayesian

framework. Dorrestijn et al. (2013) used data from large-eddy

simulations to design a data-driven multi-cloud model. The

transitions between different cloud types are calculated using

Markov chains which are conditioned on large-scale variables.

More recently Dorrestijn et al. (2015) have successfully employed

that model on observational data obtained in Darwin.

We complement here the suite of data-driven stochastic

models of tropical convection by using observations to build a

simple entirely observation-based stochastic model. An entirely

observation-based model lacks the transparency of physics-

based models, but is potentially more accurate. We exploit

available long-term observations of the large-scale atmospheric

and the concurring small-scale convective state over Darwin and

Kwajalein (Davies et al. 2013). The observations are used to

inform stochastic models for the convective area fraction (CAF)

and the rain rate. We present two stochastic models. In the

first model, CAF (or the rain rate) is treated as an uncorrelated

random variable conditioned on the large-scale vertical motion

ω500. To incorporate non-trivial temporal correlations, we propose

a second stochastic model whereby CAF (or the rain rate) are
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modelled as a Markov chain conditioned on ω500. The stochastic

parameterisations can be constructed at either location and then be

applied to observations of large-scale variables from the respective

other location. Despite the different atmospheric and oceanic

conditions of the two geographical locations, the stochastic

models reproduce the observed statistics of the convective activity

such as mean, variance and skewness.

The underlying premise of our approach is that the stationary

stochastic process relating small-scale convective activity and

large-scale vertical velocity is sufficiently universal in the sense

that the stochastic model can be transferred from one geographical

location to another one. Using a Kullback-Leibler information

criterion for the conditional probabilities of convective activity

as well as quantile regression for the observational data we

establish that for the two regions considered here, it is sufficient to

correct for the large-scale variables by a simple linear translation

to account for the respective ambient atmospheric and oceanic

regimes at Darwin and Kwajalein. It turns out that for mid-level

vertical velocities no translation is required and one can apply the

model trained at Kwajalein (Darwin) directly to data in Darwin

(Kwajalein).

Although most stochastic parameterisations involve CAPE, we

follow Davies et al. (2013), Peters et al. (2013) and Dorrestijn

et al. (2015) and relate the observed convective state to ω500.

Dorrestijn et al. (2015) find that convection is highly correlated

with column-integrated vertical velocity starting several hours

before the onset of deep convection. This is not surprising

as large-scale vertical motion in the tropics is directly related

to deep convection. Conditioning convective states on vertical

motion raises the question of cause-and-effect ambiguities (see

e.g. Arakawa 2004; Peters et al. 2013, for a discussion). On

the one hand, convection induces large-scale ascending motion

through latent heating, which then facilitates further convection.

On the other hand, pre-existing large-scale ascending motion

(or convergence) may facilitate the development of convection

(Hohenegger and Stevens 2013; Birch et al. 2014) which then

further increases large-scale ascending motion. We thus argue

that tropical convection and large-scale ascending motion are

intimately linked via a positive feedback loop, limited by

the available energy in the atmospheric column and its close

environment. We stress that the stochastic parameterisation we

propose does not rely on nor presume any cause-and-effect

relationship between vertical velocities and convective activity

such as CAF. The models only utilise observed statistical

relationships such as conditional probabilities and transition

probabilities.

We use CAF (as well as rain rate data) to characterise

convective activity (cf. Dorrestijn et al. (2013) and Bengtsson

et al. (2013)). Our motivation to formulate the parameterisation

with respect to CAF is that it can be used to close convection

schemes since measures of convective activity such as

precipitation are linearly related to the area covered by the

precipitation feature (Craig 1996; Nuijens et al. 2009; Yano and

Plant 2012; Davies et al. 2013).

Furthermore, parameterisations for CAF can be by construction

included in the framework of resolution independent

parameterisations (Arakawa et al. 2011; Arakawa and Wu

2013; Wu and Arakawa 2014). Current mass-flux convection

schemes used in operational GCMs assume the area covered by

convective updrafts to be negligible compared to the cloud-free

part of a model grid box – the so-called assumption of “scale-

separation”. This assumption breaks down once the resolution

of the GCM becomes high enough such that the area covered by

convective updrafts can occupy large parts of or even an entire

grid box. Parameterisations for CAF are naturally scalable and

could be used to mitigate this problem (Arakawa and Wu 2013;

Wu and Arakawa 2014). Furthermore, most currently employed

schemes are mass-flux schemes and need to predict the vertical

mass flux at cloud base. The mass flux at cloud base could be

determined by explicitly assigning an area to the convective

updraft together with an updraft velocity. The effect of convection

on the environment could be implemented by formulating

the dependency of the vertical eddy fluxes of thermodynamic

variables on updraft fraction as defined by Arakawa and Wu

(2013) and Wu and Arakawa (2014) or through allowing

convectively induced subsidence impact on neighbouring grid

boxes (Grell and Freitas 2014). Although using CAF allows for a

certain scale-adaptivity, an increase in resolution would prohibit

to identify the grid-box state as the large-scale environment. In

this case, defining the large-scale environment as the average over
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a number of surrounding grid-boxes could be used (e.g. Keane

and Plant 2012).

The paper is organised as follows. We introduce the

observational datasets along with a comparison of convective

behaviour in Darwin and Kwajalein in Section 2. We then use

the data to construct the stochastic subgrid-scale convection

parameterisations in Section 3. A summary of our results and

an outlook to future work are provided in Section 4. Details

on the stochastic convection parameterisations can be found in

Appendices A and B.

2. Data

2.1. Description of the datasets of tropical convection in

Kwajalein and Darwin

We utilise two datasets of observations of the large-scale vertical

velocity at 500 hPa ω500 and of the concurring CAFs and rain

rates over tropical locations, averaged to yield 6-hourly time

resolution. The datasets each cover a 190 × 190 km2 pentagon-

shaped area centered over Darwin (Australia) and Kwajalein

(Marshall Islands), respectively. The area is chosen as to represent

the size of a typical climate model grid-box. The Kwajalein site is

located in the tropical western Pacific and is typical for a purely

tropical oceanic climate. The Darwin site on the other hand is

typical for the monsoon climate of northern Australia and features

the complex topography characteristic of a coastal site.

The area-mean values of atmospheric variables are derived

using the method of Xie et al. (2004), who employ the variational

analysis approach of Zhang and Lin (1997), but use profiles

of atmospheric variables from numerical weather prediction

models instead of atmospheric soundings. Here, the variational

analysis employs analyses from ECMWF and is constrained

by observations of surface precipitation obtained from C-band

polarimetric (CPOL) research radars (Keenan et al. 1998) and top-

of-the-atmosphere radiation at both locations to reliably balance

the column budgets of mass, heat, moisture and momentum.

Davies et al. (2013) show that constraining the variational analysis

by observed rainfall substantially improves the derived large-scale

vertical velocities over the Darwin domain compared to using just

the ECMWF analysis alone.

Over Darwin, the analysis is applied to observational data

obtained during three consecutive wet seasons (2004/2005,

2005/2006, 2006/2007), yielding a total of 1890 6-hour means.

Over Kwajalein, the analysis is applied to the time period of

May 2008 – Jan 2009, produced to fit into the framework of the

Year Of Tropical Convection virtual field campaign (Waliser and

Moncrieff 2008; Waliser et al. 2012). For Kwajalein, 1095 6-hour

means are available. At both locations, the large-scale atmospheric

data are complemented by data of the concurrent small-scale

convective state derived from CPOL radar observations. The radar

observations were used to derive rain area fractions attributable

to either stratiform or convective precipitation after Steiner et al.

(1995). The convective area fraction is then determined as the ratio

of the number of radar pixels classified as “deep convective” with

respect to the total number of pixels. More information regarding

the derivation of the datasets can be found in Davies et al. (2013).

By relying on available 6-hourly averaged data, some

characteristics of tropical convection, e.g. the diurnal cycle, are

ill-resolved. The advantage of the 6-hourly averaged data used

in this study is that they are self-consistent in the sense that the

large-scale state is determined via the variational analysis and

constrained by the radar observations to satisfy budgets of mass,

heat, moisture, and momentum using the variational analysis

(Davies et al. 2013). We are not aware of observational data with

higher temporal resolution with the same properties covering a

comparable time period.

The data have already provided important new insights into

the behaviour of tropical convection (Davies et al. 2013; Peters

et al. 2013; Kumar et al. 2013). In particular, Peters et al. (2013)

showed that the relationship between convection and a range of

large-scale atmospheric forcing conditions is very similar for both

regions despite their distinctly different atmospheric and oceanic

regimes.

2.2. Analysis of the datasets over Kwajalein and Darwin

To support our premise that the underlying stochastic process

relating the small-scale convective activity to the large-scale

variables is sufficiently independent of the geographical location,

we contrast here the observed convection at Darwin and

Kwajalein.
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6 G. A. Gottwald, K. Peters and L. Davies

Figure 1. Normalised 2d histograms of CAF and ω500 [hPa/hour] obtained from observations over Darwin (left) and Kwajalein (middle). The difference of the histograms
is depicted in the right most plot.

Figure 1 shows the 2d histograms of CAF and ω500 of the

observations in Darwin and Kwajalein as well as the difference

between the two distributions. Throughout the paper ω500 is

given in units of [hPa hour−1]. The plots show strong qualitative

similarities between the two locations which are suggestive

of the existence of a universal relationship which can be

utilised to construct stochastic subgrid-scale parameterisations

of CAF conditioned on the large-scale variable ω500. Let us

briefly discuss some of the particularities of the relationships

between CAF and ω500 in Kwajalein and Darwin, as seen

in Figure 1. The difference between the distributions (right

panel in Figure 1) shows that Darwin features more convective

activity in the range of −5 < ω500 < 0 than Kwajalein. The

converse is true for 0 < ω500 < 5. We attribute this difference

in convective behaviour to the different prevailing meteorological

conditions in Kwajalein and Darwin and the respective different

convection initiating mechanisms. In particular, land-sea breeze

induced convective organisation at Darwin (diurnal cycle), and

the generally more inhomogeneous surface characteristics of the

Darwin domain may contribute to different convective responses

given a particular large-scale forcing. For relatively weak large-

scale dynamical forcing, i.e. for −5 < ω500 < 5 in our case, land-

surface heterogeneities in the Darwin region, such as coastlines

or spatial differences in land cover, can induce subgrid-scale

mesoscale circulations leading to organised convection (e.g.

Pielke 2001; Rieck et al. 2014) which then results in increased

mean large-scale ascent. The increased convective activity in

Darwin for negative values of ω500 implies a concurrent decrease

for positive values in the histograms as seen in Fig. 1 due to the

normalisation. It is worth mentioning that the observations also

include several instances of zero precipitation; 236 events from

1890 observations in Darwin and 28 from 1095 observations in

Kwajalein, and several instances of zero CAF; 194 such events

in Darwin and 82 in Kwajalein. Note that a zero CAF does not

imply that there is no precipitation and vice versa. Significant

deep convection is possible for neutral or even mean subsiding

conditions as in, for example, land-sea breezes in the tropics

during mean suppressed conditions.

Further, Figure 1 shows that the variance of CAF is dependent

on the state ω500 and increases with decreasing values of ω500

(not shown). This is consistent with the result of Craig and Cohen

(2006) and Cohen and Craig (2006) that the variance of convective

activity increases with the forcing. Therein the forcing considered

was a range of radiative cooling rates. However, we remark that,

increased radiative cooling is typically compensated by increased

domain mean mass flux, and therefore the vertical velocity ω500

is an effective proxy for forcing. Peters et al. (2013) show that the

ratio of the standard deviation and the mean of CAF decreases for

sufficiently negative values of ω500. This suggests that heavy rain

events may be viewed as being deterministic (relative to weaker

rain events) with an approximate linear dependency on ω500. This

is particularly evident in the Kwajalein data (Figure 1, middle

panel). An analysis of coarse-grained outputs from the ECMWF

IFS shows similar results for the Darwin region (Watson et al.

2015).

Figure 2 shows that CAF observed at Kwajalein and Darwin

has similar autocorrelation up to lags of 12 hours. For lags longer

than 12 hours, convection over Kwajalein looses memory, whereas

convection over Darwin exhibits significant autocorrelation up to
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Figure 2. Temporal autocorrelation C(τ), with τ in hours, of the CAF time series
for Darwin (blue crosses) and Kwajalein (red circles).

lags of 72 hours and features peaks corresponding to the diurnal

cycle (every 24 hours).

2.3. Statistical similarity of convective activity

The comparison of convective behaviour in Darwin and

Kwajalein above suggests that both locations feature notably

different convective behaviour. In this Section we will

nevertheless establish crucial similarities in the relationship

between convective activity and large-scale vertical motion

which constitute the working hypothesis for our stochastic

parameterisation schemes. A reader who is just interested in the

actual stochastic parametrisation may skip this section upon first

reading.

The stochastic subgrid-scale parameterisations proposed in

the next Section utilise conditional probabilities such as

p(CAF(t)|ω500(t)) describing the probability of convective

activity CAF occurring at time t for given vertical velocity ω500

at that time. We therefore now compare empirical conditional

probabilities for the two locations, Darwin and Kwajalein, which

we denote by pDarwin and pKwajalein, respectively. To construct

the conditional probabilities we bin the (ω500,CAF)-domain into

bins of size (0.1, 0.01).

Assuming that the different prevailing atmospheric and oceanic

regimes impact directly on the large-scale variables, we consider

as a first approximation a uniform translation of the large-scale

vertical velocities. In particular, we show that the conditional

probability functions pDarwin and pKwajalein are close when the

vertical velocities of Darwin are shifted as in

pKwajalein(CAF(t)|ω500(t)) ≈

pDarwin(CAF(t)|ω500(t)−∆ω) (1)

or analogously

pDarwin(CAF(t)|ω500(t)) ≈

pKwajalein(CAF(t)|ω500(t) + ∆ω) . (2)

A standard tool to compare probability density functions P and

Q is their Kullback-Leibler distance

DKL(P ||Q) =
∫

log
(

P (x)
Q(x)

)

P (x) dx . (3)

The Kullback-Leibler distance DKL(P ||Q) is defined provided

that the support of the probability function P is contained in

the support of Q; otherwise it is infinite. The Kullback-Leibler

distance is a non-negative quantity and it is zero if and only if

P = Q (see for example Kantz and Schreiber (1997)).

We will estimate the Kullback-Leibler distance between the

conditional probabilities pKwajalein and pDarwin for each of the

ω500-bins. In Figure 3 we show the median of these Kullback-

Leibler distances DKL as a function of the global shift ∆ω .

We have discarded those ω500-bins for which the support of the

conditional probability for Darwin is not contained in the support

of that for Kwajalein to allow for finite values of DKL.

A quadratic regression yields an optimal shift of ∆ω = 0.21

where the minimum of the Kullback-Leibler distance is

attained. The shift ∆ω is given in units of [hPa hour−1].

In general, the Kullback-Leibler distance is asymmetric

with DKL(P ||Q) 6= DKL(P ||Q). We find, however, that

DKL(pKwajalein||pDarwin) has a minimum very close to

same value of ∆ω supporting our approximation that the

two conditional probability functions are related by a simple

translation of the vertical velocities. We note, that due to the

larger amount of available observations for Darwin (N = 1890)

when compared to Kwajalein (N = 1095) and due to the larger

support of pKwajalein the formulation (3) is preferred.
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8 G. A. Gottwald, K. Peters and L. Davies

The similaritiy of the convective behaviour at both locations

can be further examined by performing a median (or 50th-

quantile) regression for CAF (see for example Koeneker and

Bassett (1978); Grinsted (2008) and Bremnes (2004); Friederichs

and Hense (2008); Mudelsee (2010) for applications of quantile

regression methods in the atmospheric sciences). We determine

the conditional median for the observations of Kwajalein and

Darwin using a second-order regression. Using conditional

medians rather than conditional means (as done in normal least

square regression) produces more robust estimates by eliminating

the impact of the few very large rain events and other statistical

outliers. The median regressions for Kwajalein and for Darwin

approximately coincide if one translates the ω500 values of

Kwajalein by ∆ω = 0.2 (or those of Darwin by −∆ω = −0.2,

respectively), as seen in Figure 4, corroborating the finding of the

Kullback-Leibler analysis.

We remark that the shift ∆ω depends on the height at which

ω is evaluated. We also analysed observations of the vertical

velocity taken at 715 hPa; there the optimal shift for which the

respective quantile regressions were closest and for which the

Kullback-Leibler distance was minimal is found to be ∆ω ≈ 1.67.

We attribute this uniform shift of the large-scale vertical velocity

to the different prevailing atmospheric-oceanic regimes at the

two respective locations as discussed in Section 2.2. Specifically,

land surface effects are expected to exert a stronger influence on

atmospheric variables in the lower (715 hPa) than in the middle

(500 hPa) troposphere.

It is by no means clear that the same (possibly non-zero)

shift can be applied to all locations in the tropics. The particular

value of ∆ω found from the data in Darwin and Kwajalein might

be different when considering other geographical locations.

Furthermore, it is also not clear that a similarity of the conditional

probability functions exists at all when shifting the vertical

velocity for other geographical locations. This would have to be

checked when more data from other locations become available. If

true, such a universality would mean that no costly geographically

dependent fine-tuning would be required in estimating the shift

∆ω for different geographical locations.

The estimated shift ∆ω = 0.2 hPa hour−1 , we found here for

ω500, is small compared to the range of ω500 and we therefore

ignore the shift when comparing data from Kwajalein with Darwin

(and vice versa), unless stated otherwise (note that non-trivial

shifts have to be applied in constructing models conditioned on,

let’s say, ω715). To ensure sufficient generality, however, we will

present in the following Section the method for possible non-

trivial shifts ∆ω 6= 0.

∆ω
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Figure 3. Kullback-Leibler distance between the conditional probability functions
pDarwin and pKwajalein as a function the shift ∆ω (circles). The minimum of the

quadratic least square approximation (solid curve) is at ∆ω = 0.21.
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Figure 4. CAF as a function of the vertical velocities ω500 [hPa/hour] obtained
from observations over Kwajalein (black crosses). The continuous line connecting

the circles (online blue) shows the results of a 2ndorder median regression. The
continuous line connecting the diamonds (online red) shows the result of a 2ndorder

median regression for the Darwin data plotted against ω500 − 0.2.
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3. Stochastic subgridscale parameterisation

We will develop two stochastic subgrid-scale parameterisation

schemes for CAF conditioned on ω500; one in which subgrid-

scale convection variables such as CAF are viewed as

instantaneous random variables conditioned on the current

value of the large-scale vertical velocity ω500, and a second

approach in which the subgrid-scale variables are viewed as a

conditional Markov chain taking into account non-vanishing

temporal correlations of the subgrid-scale variables (cf. Figure 2).

The parametrisation schemes we propose model tropical

convection at any location given only the information of the

large-scale values of ω500 at a given time without any usage of

the small-scale convection variables such as CAF at that time.

We are given time series consisting of 6-hourly averaged

observations of ω500 and of CAF obtained at Kwajalein and

Darwin, which we denote by {ω500k}k=1,··· ,N and {yk}k=1,··· ,N

with N = 1890 for Darwin and N = 1095 for Kwajalein,

respectively (cf. Section 2). The statistical similarity of convective

activity established in Section 2.3 suggests that we can generate

the stochastic model from observations of either location and

apply it to the other location, respectively, without applying a

linear shift ∆ω to the vertical velocities ω500. We describe the

methods for the situation when observations obtained in Darwin

are used to train the model which is then subsequently applied to

observations of ω500 in Kwajalein, but we will present results as

well for the reversed case.

3.1. Instantaneous conditional random variables

In our first stochastic model convective activity is treated as

sequence of independent random variables conditioned on the

current value of the vertical velocity ω500. The parameterisation

has two components: a training component and an application

component. The training component is performed as follows.

Given pairs of observations for the vertical velocity ω500 and

CAF (or the rain rate), we want to associate with each value of

ω500 a range of possible convective events and determine their

respective probabilities of occurrence. We do so by partitioning

the (ω500,CAF)-plane into bins. This will define coarse-grained

values ω̂ for ω. For each of the coarse-grained values ω̂ we

can now associated coarse-grained values ĈAF by averaging

CAF over each bin associated with the coarse-grained value ω̂

and estimate their respective conditional probabilities P (ĈAF|ω̂)

empirically recording the frequencies of ĈAF in their respective

bins. The interested reader is referred to the Appendix A for more

details on the model.

We construct the stochastic model with observations from

Darwin. We partition the (ω500, y)-plane into bins of size

(0.8, 0.005). Choosing the bin size is a balancing act between

requiring sufficiently small bin sizes to assure accuracy and

needing sufficiently large bin sizes to allow for meaningful

statistical averages within a bin. Choosing the bins requires

tuning and is dependent on the number of observations available.

We have tested that doubling the bin sizes still produces good

results.

Since we do not have sufficient data to construct the stochastic

model for large negative values of ω500, we use a deterministic

relationship between CAF and ω500 for observations with

ω500 < −18 (cf. Peters et al. (2013)). The deterministic

relationship is found by linear regression of the observations to

be CAF = −0.0044 ω500 − 0.011.

To test the effectiveness of our model we now apply the

Darwin-trained model to observations in Kwajalein and generate

synthetic time series of CAF conditioned on the large-scale

ω500 observed over Kwajalein. In Figure 5 we show the time

series of the observations of CAF in Kwajalein (top panel) and

the corresponding synthetic time series of the stochastic model

using conditional random variables (middle panel). The model

reproduces observed intermittent features of tropical convection.

However, it fails to reproduce periods of sustained non-convection

near, for example, t ≈ 200 and t ≈ 900. This failure is due to our

approach not incorporating any memory or trends, despite non

vanishing autocorrelations as seen in Figure 2.

To establish a more quantitative comparison, we compare in

Figure 6 the empirically determined probability density functions

of CAF for the synthetic time series and the actual observations.

By performing averages over 1, 000 realisations of the stochastic
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10 G. A. Gottwald, K. Peters and L. Davies

0 200 400 600 800 1000
0

0.05

0.1

0.15

t

C
A
F

 

 

Conditional Markov chain

t

0 200 400 600 800 1000

C
A
F

0

0.05

0.1

0.15 Conditional random variables

0 200 400 600 800 1000
0

0.05

0.1

0.15

t

C
A
F

 

 

Observations

Figure 5. Time series of CAF of the observations over Kwajalein (top), of
the synthetic process conditioned on the vertical velocities ω500 described in

Section 3.1 (middle) and of the conditional Markov process process described in
Section 3.2 (bottom). The time series generated via the conditional Markov chain

has missing data points in the depicted time interval (see text for details). The plots
have a time resolution of 6 hours. Here t = 0 corresponds to 1 May 2008 00 UTC.

model we have established that the first three moments of CAF in

Kwajalein, the mean µ, the variance σ2 and the skewness ξ, are

well captured by our synthetic time series. This is illustrated in

Table 1.

The numerical results presented above used a stochastic

model which was generated using the observations at Darwin

and then subsequently applied to observations of large-scale

vertical velocities observed at Kwajalein to produce the associated

convective activity at Kwajalein. In accordance with the statistical

CAF
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p
d
f
(%

)
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100

101

102

Observations
Conditional random variables

Figure 6. Empirical histogram of CAF for the observations over Kwajalein

(crosses, online blue) and for the synthetic process conditioned on the vertical
velocities ω500 described in Section 3.1 (circles, online magenta).

Table 1. First three moments mean µ, variance σ2 and skewness ξ of observed

CAF for Kwajalein and of the synthetic data obtained by the subgrid-

scale parameterisations conditioned on ω500 for the two models trained with

observations from Darwin.

µ σ2 ξ

observations 0.0066 1.89 10−4 4.27

random variable 0.0073 1.80 10−4 4.29

Markov chain 0.0066 2.75 10−4 4.25

Table 2. First three moments mean µ, variance σ2 and skewness ξ of

observed CAF for Darwin and of the synthetic data obtained by the subgrid-

scale parameterisation conditioned on ω500 for the two models trained with

observations from Kwajalein.

µ σ2 ξ

observations 0.0080 1.29 10−4 2.38

random variable 0.0075 1.45 10−4 2.46

Markov chain 0.0083 2.38 10−4 2.46

similarity of convective activity established in Section 2.3 we

have also trained the stochastic model on the data observed at

Kwajalein and applied them to observations of large-scale vertical

velocities observed at Darwin with equal success. The results for

the first three moments are shown in Table 2 for completeness.

We remark that conditioning the observations on the large-scale

variables produces better estimates of the moments than simply

taking the observations. For example, the actually observed mean

of convective activity in Kwajalein µ = 0.0066 is estimated as

0.0073 using instantaneous random variables conditioned on ω500

(cf. Table 1) whereas if just estimated by the mean of the training

set (i.e. the observations of CAF in Darwin) the estimate of the

mean of convective activity would be 0.008 (cf. Table 2).
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We obtained similarly good results when parameterising CAF

conditioned on observations of the vertical velocity at 715 hPa

(not shown); in this case the vertical velocities were shifted by

∆ω = 1.67 (cf. Section 2.3).

Further, we have constructed synthetic time series of rain rate

data consisting of random variables conditioned on the vertical

velocity and found similarly good results (not shown).

3.2. Conditional Markov chain

The observational data obtained in Kwajalein and Darwin exhibit

non-vanishing temporal autocorrelations as illustrated in Figure 2.

This suggests that a more appropriate parameterisation of CAF

should incorporate dependencies on previous observations rather

than simply conditioning on the present values of the large-

scale variables. The autocorrelation of CAF and of ω500 as well

as of the crosscorrelation function for a lag of one time step

(6 hours) exhibit similar values in Kwajalein and in Darwin

(with the autocorrelation function for ω500 exhibiting a much

stronger diurnal cycle), but differ substantially for lags greater

than 12 hours. This suggests a Markov model trained at one

location should adequately capture the convective behaviour at

the other location if conditioned on only the observations of

the previous time step 6 hours ago. As a first step towards

incorporating memory one may construct a Markov chain

conditioned on the previous state of the system (see, for example,

Crommelin and Vanden-Eijnden (2008)) or by fitting an AR(1)

process about an ω500-dependent mean as in Wilks (2005). We

follow here the approach proposed by Crommelin and Vanden-

Eijnden (2008) for a conditional Markov chain. The conditional

Markov chain estimates the conditional transition probability

P (ĈAFk|ω̂k, ω̂k−1, ĈAFk−1), where k denotes the present time

and k − 1 the time of the previous observation. The conditioning

on the previous time step takes into account trends in the dynamics

of the vertical velocity and accounts for non-trivial temporal

correlations. We first estimate the (unconditional) transition

probability from observations at Darwin. This is achieved again

by partitioning the (ω500,CAF)-plane into bins and counting

frequencies of transitions between bins within one sampling

time. The aim is now to use this transition probability to

draw random realisations ĈAFk from this Markov chain for

observations (ω̂k−1, ĈAFk−1) in Kwajalein conditioned on the

current observation of the large-scale velocity ω̂k. We refer the

interested reader to the Appendix B for more details on practical

aspects.

The data sparse region of large convective activity for ω500 <

−18 is again treated with a deterministic relationship as in the

instantaneous random variable model described in Section 3.1.

We subdivide the (ω500,CAF)-plane again into bins of size

(0.8, 0.005).

In Figure 5 (bottom panel) we show a time series of the

observations of CAF in Kwajalein and the corresponding data

obtained from the conditional Markov chains which was trained

with observations obtained in Darwin. Due to insufficient amount

of data not all transitions could be captured leading to a shorter

synthetic time series. Only approximately 3/4 of the data points

in Kwajalein can be reached by the Markov chain and only

approximately 60% of those form a time-continuous set of at least

12 hours. Hence the plot of the time series in Figure 5 suffers from

missing data points along the given time interval. We mention that

Dorrestijn et al. (2015) employed a Markov chain model for the

data obtained in Darwin mitigating the problem of data sparseness

by i), coarse-graining the convective state into different cloud

types at the scale of individual radar pixels, rather than using CAF

directly, and ii) using precipitation area fraction data at very high

temporal resolution (10 minutes) in combination with a linearly

interpolated version of the 6-hourly large scale atmospheric state.

We chose not to employ such a linearly interpolated version of

the large-scale data as this eliminates the self-consistency of the

dataset.

The empirical probability density functions of CAF are shown

in Figure 7 with reasonable correspondence. Results for the first

three moments of CAF are listed in Tables 1 and 2. Again, the

statistics of the actual observations is reasonably well reproduced.

The variance is overestimated by the Markov chain. This may be

due to the averaging of CAF within the relatively coarse bins (cf.

the definition of the coarse-grained CAF values (4) which is also

used in the Markov chain).
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Figure 7. Empirical probability density function of CAF for the observations

over Kwajalein (crosses, online blue) and for the conditional Markov chain model
(circles, online magenta).

4. Summary and Conclusions

In this study, we used observations of tropical deep convection

and the concurring large-scale atmospheric states at two tropical

locations, Darwin and Kwajalein, to design a data-driven

stochastic subgrid-scale parameterisation for tropical deep

convection. The parameterisation we propose can be built off-line

and then subsequently implemented at low computational cost.

The schemes we proposed assume that convective activity has

been triggered.

Given large-scale variables such as vertical velocity, as

provided by the dynamical core of the host model, our stochastic

models can be coupled to an already existing convection scheme,

which is part of the model physics. The important and hard

problem of triggering convection is performed by the host

models’ convection scheme. Once convection is triggered, we see

the contribution of our stochastic models as providing the host

models’ convection scheme with statistically consistent estimates

for the cloud-base mass flux. Properly estimating the cloud base

mass flux is paramount to determine the overall strength of

convection. This can be done in a scaleable way using CAF to

determine the convective cloud base mass flux. The convective

cloud base mass flux can be estimated as the product of CAF, the

air density and the upward velocity at cloud base which may be

either assumed constant, e.g. 1 ms−1, or may be estimated from

boundary layer characteristics. The upward velocity at cloud base

would be assigned at the beginning of the updraught calculation

in the convection scheme, with CAF providing the link to the

large-scale environment.

We presented two diagnostic approaches to stochastically

parameterise convective activity conditioned on large-scale

vertical velocity. The first method treated CAF as an

instantaneous random variable conditioned on the current value

of ω500. This method suffers from neglecting non-vanishing

autocorrelations present in the observations and is not able to

reproduce periods of sustained convection and non-convection,

for example. The second approach was built around a conditional

Markov chain and incorporates autocorrelations to some degree;

this method, however, requires substantially more data to train the

Markov chain as it involves conditioning on the past observations

as well as on the current value of ω500. Given these limitations,

our results are promising. The marginal probability functions of

CAF as well as its first three moments were reasonably well

reproduced by both approaches, except for the variance which

was overestimated by the Markov chain. This is particularly

remarkable as the stochastic models were trained with data

from one geographical location and then applied to another

geographical location with different atmospheric and oceanic

conditions. In general, we would expect the conditional Markov

chain to provide better diagnostics than the parameterisation

consisting of instantaneous random variables as it accounts for

memory effects. In particular we expect the conditional Markov

chain to reproduce the autocorrelations of CAF for time lags less

than 6 hours. The Markov chain generated by our observational

data sets, however, did not produce long enough artificial time

series of CAF which would allow for a reliable estimation

of the autocorrelation function. To further test the proposed

parameterisation schemes for CAF we will in future work i) use

numerical data from high-resolution cloud resolving models (or

larger observational data sets if they become available) and ii)

implement the proposed stochastic models as part of operational

convection parameterisations in comprehensive GCMs.

We have used quantile regression and the Kullback-Leibler

test to probe for universality of the relationship between

convective activity and large-scale vertical motion at 500 hPa,

ω500 [hPa/hour], allowing for a simple global shift of the vertical
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velocities. Despite markedly different prevalent atmospheric and

oceanic regimes at Darwin and Kwajalein the joint probability

density functions were close and did not require a shift.

This implied that the stochastic models can be trained at one

geographical location and then be subsequently applied to the

respective other location. For vertical velocities evaluated at

715 hPa the joint probability density functions were closest,

however, when a simple shift in the vertical velocity was

performed. To more accurately calibrate the required shifts in

the vertical velocities and to take into account the respective

atmospheric environments of different geographical locations,

numerical data from high-resolution cloud resolving models

could be used as a surrogate for missing observational data in

future research.

We chose to parameterise mainly subgrid-scale CAF because

i) it is directly related to domain mean rainfall and thus total latent

heating and ii) assigning a non-zero area fraction to convective

updrafts in a convection scheme relieves the problems associated

with the assumption of “scale-separation” as employed in current

convection schemes (e.g. Arakawa et al. 2011). As described

above, our stochastic models could be efficiently applied to

estimate statistically consistent estimates of cloud base mass

flux, essentially providing the closure for mass-flux convection

schemes. Such a convective scheme would be fully scalable

with convective updrafts eventually covering large portions of

or even entire grid-boxes. In fact, ongoing work by one of the

authors (KP) shows that such an implementation yields plausible

results in a full GCM. Although CAF is suited for a resolution

independent comprehensive parameterisation of deep convection,

the way the observational data have been obtained involves a

particular spatial scale (i.e. the 190× 190 km2 pentagon-shaped

area considered here). The observations would have to be adapted

for the particular resolution of the GCM. In that context, using

the same data as in the present study, Tikotin (2012) sub-divided

the Kwajalein domain into sub-domains of different size and

analysed the relationship between convective activity and ω500

as a function of the domain size. While the overall statistical

relationships remain identical with decreasing domain size,

the variability of convection given a particular large-scale state

increased with decreasing domain size.

We have developed here stochastic parameterisation schemes

for convective activity which are data-driven. Their attractiveness

lies in their simplicity and their ease of implementation. They can

be a useful tool in times when the physics is not sufficiently well

understood and/or resolved by physics-based parameterisation

schemes. However, we would like to end with a word of caution

for data-driven parameterisation schemes in climate models. The

models are trained under the assumption of statistical equilibrium.

It is not clear whether the change of global climatic conditions

will leave the statistical relationships between CAF and ω500

constant. These issues would not apply to parametrisation in

numerical weather prediction models.

In climate or numerical weather prediction models the resolved

variables including the vertical velocities are updated in time

using the convective state, e.g. vertically resolved heating rates. To

be able to test whether our data-based stochastic parametrisation

for the convective state can be successfully used requires several

tests planned for further research. Our premise is that, given

a judicious choice of large-scale variable, convective activity

can be parametrised in terms of just these variables. In this

work we chose the vertical velocity at 500 hPa as our large-

scale variable. The stochastic models we proposed here are only

practically viable if the number of those judicious variables

is sufficiently small. This is similar to the approach taken by

Dorrestijn et al. (2015) who conditioned a data-driven stochastic

multi-cloud model on large-scale vertical velocity only and were

able to adequately simulate observed convective area fractions. Of

course, the strength of atmospheric moist convection also depends

on numerous other variables such as the buoyancy of surface

air parcels and humidity of the mid-troposphere. It is a priori

not clear whether conditioning on just one variable is sufficient.

Indeed, one could imagine that by neglecting the conditioning

of the convective state on more variables than just the large-

scale vertical velocity, the error in the stochastic parametrisation

for the convection will eventually be accrued in all large-scale

variables during the numerical integration. This may lead to a

detrimental accumulation of errors in a positive feedback loop.
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It is planned to test in high-resolution cloud resolving models

whether introducing more than on large-scale variable for the

conditioning will be beneficial. In particular, low-to mid level

moisture might be important as it is known to play a major role in,

for example, in the initiation of the Madden-Julian Oscillation; see

for example, Khouider et al. (2013); Ajayamohan et al. (2013) and

references therein. In case more resolved large-scale variables are

needed to condition the stochastic parametrisations of convective

activity, one could use a linear combination of these variables to

allow for a computationally feasible parametrisation.
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A. Description of the stochastic model using instantaneous

random variables

Let us denote by y the subgrid-scale variable, for example

CAF or the rain rate. We partition the range of ω500 into Nω

intervals Iiω with i = 1, · · · , Nω and the range of the subgrid-

scale variables into Ny intervals Iny with n = 1, · · · , Ny . This

partitions the (ω500, y)-plane into NωNy bins. We assume that

the time series {ω500k}k=1,··· ,N and {yk}k=1,··· ,N stem from a

stationary process. Coarse-grained CAF values (denoted by ĈAF

in Section 3.1), conditioned on the large-scale variables ω500 ∈ Iiω

(denoted by ω̂ in Section 3.1), are determined as averages over

bins with

ȳ(n,i) =

∑

k yk1[yk ∈ Iny ]1[ω500k
∈ Iiω]

N
(n,i)
y

, (4)

where N
(n,i)
y =

∑

k 1[yk ∈ Iny ]1[ω500k
∈ Iiω] is the number of

yk-values belonging to the bin defined as the intersection of the

intervals Iiω and Iny . Here 1[·] denotes the indicator function with

1[yk ∈ Iny ] = 1 if yk ∈ Iny and 1[yk ∈ Iny ] = 0 otherwise. The

conditional probability P (n|i) of CAF yk being in the interval

Iny conditioned on ω500k being in the interval Iiω (denoted by

P (ĈAF|ω̂) in Section 3.1) is calculated as

P (n|i) =

∑

k 1[yk ∈ Iny ]1[ω500k
∈ Iiω]

N i
y

, (5)

where N i
y =

∑

k 1[ω500k ∈ Iiω] is the number of realisations

of yk for a given value of the large-scale ω500k ∈ Iiω . Note

that
∑

n P (n|i) = 1. Estimating ȳ(n,i) and P (n|i) concludes the

training period.

To generate artificial time series of the subgrid-scale variable y

conditioned on ω500 observed at a different geographical location,

one simply assigns with probability P (n|i) the coarse grained

value ȳ(n,i).

B. Description of the stochastic model using a conditional

Markov chain

To construct the Markov chain we determine a transition

probability P j,m
i,n which denotes the probability for the variables

(ω500k , yk) to take values in the bin defined as the intersection

of the intervals Ijω and Imy at time step k when they were in

the bin defined as the intersection of the intervals Iiω and Iny at

the previous time step k − 1. To construct P j,m
i,n as a matrix we

arrange the bins into one long array. The associated NωNy ×

NωNy transition matrix Pβ
α describing transitions from bin α =

i+ (n− 1)Nω to bin β = j + (m− 1)Nω is then estimated from

the observational data as

Pβ
α =

Tβ
α

∑NωNy

β=1 Tβ
α

, (6)

where Tβ
α counts the number of transitions from the bin labelled

with α to the bin labelled with β and is given by

Tβ
α =

∑

k

1[ω500k−1
∈ Iiω]1[yk−1 ∈ Iny ]

× 1[ω500k ∈ Ijω] 1[yk ∈ Imy ] .

Estimating the transition matrix Pβ
α concludes the training

phase. To construct a Markov chain conditioned on ω500 taking

a particular value at present time step k, we apply the transition

matrix to the given past state α⋆ at time k − 1 to calculate πβ
α⋆ =

(0, · · · , 1, · · · , 0)Pβ
α where the 1 is in the α⋆-th entry. Then we

select those L ≤ Ny bins, i.e. the non-zero coordinates of πβ
α⋆ ,
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which are consistent with the current value ω500k . These L entries

of πβl

α⋆ with l = 1, · · · , L, associated with the current value of

ω500, (if they exist!), do not necessarily sum up to 1 as required

for a probability. Hence we renormalise as follows

π̃
βl

α⋆ =
πβl

α⋆

∑L
l=1 π

βl

α⋆

. (7)

The subgrid-scale variable yk is then randomly chosen from

L possible states with probability π̃βl

α⋆ . The assigned values

corresponding to the bin labelled with βl are coarse-grained values

obtained by averaging over the bins analogously to (4).

References

Ajayamohan RS, Khouider B, Majda AJ. 2013. Realistic

initiation and dynamics of the Madden-Julian oscillation in

a coarse resolution aquaplanet GCM. Geophysical Research

Letters 40(23): 6252–6257, doi:10.1002/2013GL058187, URL

http://dx.doi.org/10.1002/2013GL058187.

Arakawa A. 2004. The cumulus parameterization problem: Past, present, and

future. J. Climate 17(13): 2493–2525.

Arakawa A, Jung JH, Wu CM. 2011. Toward unification of the multiscale

modeling of the atmosphere. Atmos. Chem. Phys. 11(8): 3731–3742, doi:

10.5194/acp-11-3731-2011.

Arakawa A, Wu CM. 2013. A Unified Representation of Deep Moist

Convection in Numerical Modeling of the Atmosphere. Part I. J. Atmos.

Sci. 70(7): 1977–1992, doi:10.1175/JAS-D-12-0330.1.

Bengtsson L, Steinheimer M, Bechtold P, Geleyn JF. 2013. A stochastic

parametrization for deep convection using cellular automata. Q. J. Roy.

Meteor. Soc. 139(675): 1533–1543, doi:10.1002/qj.2108.

Berner J, Shutts G, Palmer T. 2005. Parameterising the multiscale structure

of organised convection using a cellular automaton. In: Proceedings of

the ECMWF Workshop on “Representation of Sub-grid Processes Using

Stochastic-dynamic Models”. ECMWF.

Birch CE, Marsham JH, Parker DJ, Taylor CM. 2014. The scale

dependence and structure of convergence fields preceding the initiation

of deep convection. Geophys. Res. Lett. 41(13): 4769–4776, doi:

10.1002/2014GL060493.

Bony S, Stevens B, Frierson DM, Jakob C, Kageyama M, Pincus R, Shepherd

TG, Sherwood SC, Siebesma AP, Sobel AH, Watanabe M, Webb MJ. 2015.

Clouds, circulation and climate sensitivity. Nature Geoscience 8: 261268,

doi:10.1038/ngeo2398.

Bremnes JB. 2004. Probabilistic Forecasts of Precipitation in Terms of

Quantiles Using NWP Model Output. Mon. Wea. Rev. 132(1): 338–347.

Bright D, Mullen S. 2002. Short-range ensemble forecasts of precipitation

during the southwest monsoon. Weather Forecast. 17(5): 1080–1100.

Buizza R, Miller M, Palmer T. 1999. Stochastic representation of model

uncertainties in the ECMWF ensemble prediction system. Q. J. Roy. Meteor.

Soc. 125(560): 2887–2908.

Cohen BG, Craig GC. 2006. Fluctuations in an Equilibrium Convective

Ensemble. Part II: Numerical Experiments. J. Atmos. Sci. 63(8): 2005–

2015, doi:10.1175/JAS3710.1.

Craig GC. 1996. Dimensional analysis of a convecting atmosphere in

equilibrium with external forcing. Q. J. Roy. Meteor. Soc. 122(536): 1963–

1967.

Craig GC, Cohen BG. 2006. Fluctuations in an Equilibrium Convective

Ensemble. Part I: Theoretical Formulation. J. Atmos. Sci. 63(8): 1996–2004,

doi:10.1175/JAS3709.1.

Crommelin DT, Vanden-Eijnden E. 2008. Subgrid-scale parameterization with

conditional Markov chains. Journal of the Atmospheric Sciences 65(8):

2661–2675.

Dai A. 2006. Precipitation characteristics in eighteen coupled climate models.

J. Climate 19(18): 4605–4630, doi:10.1175/JCLI3884.1.

Davies L, Jakob C, May P, Kumar VV, Xie S. 2013. Relationships between

the large-scale atmosphere and the small-scale convective state for Darwin,

Australia. J. Geophys. Res. 118: 11,534–11,545, doi:10.1002/jgrd.50645.
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