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Preface ix

Preface

Every closed surface admits a geometry of constant curvature, and may be
classified topologically either by its fundamental group or by its Euler charac-
teristic and orientation character. Closed 3-manifolds have decompositions into
geometric pieces, and are determined up to homeomorphism by invariants asso-
ciated with the fundamental group (whereas the Euler characteristic is always
0). In dimension 4 the Euler characteristic and fundamental group are largely
independent, and the class of closed 4-manifolds which admit a geometric de-
composition is rather restricted. For instance, there are only 11 such manifolds
with finite fundamental group. On the other hand, many complex surfaces ad-
mit geometric structures, as do all the manifolds arising from surgery on twist
spun simple knots.

The goal of this book is to characterize algebraically the closed 4-manifolds
that fibre nontrivially or admit geometries, or which are obtained by surgery
on 2-knots, and to provide a reference for the topology of such manifolds and
knots. In many cases the Euler characteristic, fundamental group and Stiefel-
Whitney classes together form a complete system of invariants for the homo-
topy type of such manifolds, and the possible values of the invariants can be
described explicitly. If the fundamental group is elementary amenable we may
use topological surgery to obtain classifications up to homeomorphism. Surgery
techniques also work well “stably” in dimension 4 (i.e., modulo connected sums
with copies of S? x $?). However, in our situation the fundamental group may
have nonabelian free subgroups and the Euler characteristic is usually the min-
imal possible for the group, and it is not known whether s-cobordisms between
such 4-manifolds are always topologically products. Our strongest results are
characterizations of infrasolvmanifolds (up to homeomorphism) and aspherical
manifolds which fibre over a surface or which admit a geometry of rank > 1
(up to TOP s-cobordism). As a consequence 2-knots whose groups are poly-Z
are determined up to Gluck reconstruction and change of orientations by their
groups alone.

We shall now outline the chapters in somewhat greater detail. The first chapter
is purely algebraic; here we summarize the relevant group theory and present
the notions of amenable group, Hirsch length of an elementary amenable group,
finiteness conditions, criteria for the vanishing of cohomology of a group with
coefficients in a free module, Poincaré duality groups, and Hilbert modules over
the von Neumann algebra of a group. The rest of the book may be divided into
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three parts: general results on homotopy and surgery (Chapters 2-6), geometries
and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-18).

Some of the later arguments are applied in microcosm to 2-complexes and PD3-
complexes in Chapter 2, which presents equivariant cohomology, L?-Betti num-
bers and Poincaré duality. Chapter 3 gives general criteria for two closed 4-
manifolds to be homotopy equivalent, and we show that a closed 4-manifold M
is aspherical if and only if 71 (M) is a PD4-group of type F'F and x(M) = x(r).
We show that if the universal cover of a closed 4-manifold is finitely dominated
then it is contractible or homotopy equivalent to S? or S or the fundamental
group is finite. We also consider at length the relationship between fundamental
group and Euler characteristic for closed 4-manifolds. In Chapter 4 we show
that a closed 4-manifold M fibres homotopically over S' with fibre a PDs-
complex if and only if x(M) =0 and 71(M) is an extension of Z by a finitely
presentable normal subgroup. (There remains the problem of recognizing which
P Ds-complexes are homotopy equivalent to 3-manifolds). The dual problem of
characterizing the total spaces of S'-bundles over 3-dimensional bases seems
more difficult. We give a criterion that applies under some restrictions on the
fundamental group. In Chapter 5 we characterize the homotopy types of total
spaces of surface bundles. (Our results are incomplete if the base is RP?). In
particular, a closed 4-manifold M is simple homotopy equivalent to the total
space of an F-bundle over B (where B and F' are closed surfaces and B is
aspherical) if and only if x(M) = x(B)x(F) and m1(M) is an extension of
m1(B) by a normal subgroup isomorphic to 71 (F'). (The extension should split
if F = RP?). Any such extension is the fundamental group of such a bundle
space; the bundle is determined by the extension of groups in the aspherical
cases and by the group and Stiefel-Whitney classes if the fibre is S? or RP2.
This characterization is improved in Chapter 6, which considers Whitehead
groups and obstructions to constructing s-cobordisms via surgery.

The next seven chapters consider geometries and geometric decompositions.
Chapter 7 introduces the 4-dimensional geometries and demonstrates the limi-
tations of geometric methods in this dimension. It also gives a brief outline of
the connections between geometries, Seifert fibrations and complex surfaces. In
Chapter 8 we show that a closed 4-manifold M is homeomorphic to an infra-
solvmanifold if and only if x(M) = 0 and 71 (M) has a locally nilpotent normal
subgroup of Hirsch length at least 3, and two such manifolds are homeomorphic
if and only if their fundamental groups are isomorphic. Moreover 71 (M) is then
a torsion free virtually poly-Z group of Hirsch length 4 and every such group is
the fundamental group of an infrasolvmanifold. We also consider in detail the
question of when such a manifold is the mapping torus of a self homeomorphism
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of a 3-manifold, and give a direct and elementary derivation of the fundamental
groups of flat 4-manifolds. At the end of this chapter we show that all ori-
entable 4-dimensional infrasolvmanifolds are determined up to diffeomorphism
by their fundamental groups. (The corresponding result in other dimensions
was known).

Chapters 9-12 consider the remaining 4-dimensional geometries, grouped ac-
cording to whether the model is homeomorphic to R*, $? x R?, $% x R or is
compact. Aspherical geometric 4-manifolds are determined up to s-cobordism
by their homotopy type. However there are only partial characterizations of
the groups arising as fundamental groups of H? x HZ?-manifolds, while very
little is known about H*- or H2(C)-manifolds. We show that the homotopy
types of manifolds covered by S? x R? are determined up to finite ambiguity
by their fundamental groups. If the fundamental group is torsion free such a
manifold is s-cobordant to the total space of an S?-bundle over an aspherical
surface. The homotopy types of manifolds covered by S3 x R are determined by
the fundamental group and first nonzero k-invariant; much is known about the
possible fundamental groups, but less is known about which k-invariants are
realized. Moreover, although the fundamental groups are all “good”, so that
in principle surgery may be used to give a classification up to homeomorphism,
the problem of computing surgery obstructions seems very difficult. We con-
clude the geometric section of the book in Chapter 13 by considering geometric
decompositions of 4-manifolds which are also mapping tori or total spaces of
surface bundles, and we characterize the complex surfaces which fibre over S!
or over a closed orientable 2-manifold.

The final five chapters are on 2-knots. Chapter 14 is an overview of knot theory;
in particular it is shown how the classification of higher-dimensional knots may
be largely reduced to the classification of knot manifolds. The knot exterior is
determined by the knot manifold and the conjugacy class of a normal generator
for the knot group, and at most two knots share a given exterior. An essen-
tial step is to characterize 2-knot groups. Kervaire gave homological conditions
which characterize high dimensional knot groups and which 2-knot groups must
satisfy, and showed that any high dimensional knot group with a presentation
of deficiency 1 is a 2-knot group. Bridging the gap between the homological and
combinatorial conditions appears to be a delicate task. In Chapter 15 we inves-
tigate 2-knot groups with infinite normal subgroups which have no noncyclic
free subgroups. We show that under mild coherence hypotheses such 2-knot
groups usually have nontrivial abelian normal subgroups, and we determine all
2-knot groups with finite commutator subgroup. In Chapter 16 we show that if
there is an abelian normal subgroup of rank > 1 then the knot manifold is either
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s-cobordant to a SL x E!-manifold or is homeomorphic to an infrasolvmanifold.
In Chapter 17 we characterize the closed 4-manifolds obtained by surgery on
certain 2-knots, and show that just eight of the 4-dimensional geometries are
realised by knot manifolds. We also consider when the knot manifold admits
a complex structure. The final chapter considers when a fibred 2-knot with
geometric fibre is determined by its exterior. We settle this question when the
monodromy has finite order or when the fibre is R3/Z3 or is a coset space of
the Lie group Nil3.

This book arose out of two earlier books of mine, on “2-Knots and their Groups”
and “The Algebraic Characterization of Geometric 4-Manifolds”, published by
Cambridge University Press for the Australian Mathematical Society and for
the London Mathematical Society, respectively. About a quarter of the present
text has been taken from these books.! However the arguments have been
improved in many cases, notably in using Bowditch’s homological criterion for
virtual surface groups to streamline the results on surface bundles, using L?-
methods instead of localization, completing the characterization of mapping
tori, relaxing the hypotheses on torsion or on abelian normal subgroups in
the fundamental group and in deriving the results on 2-knot groups from the
work on 4-manifolds. The main tools used here beyond what can be found in
Algebraic Topology [Sp] are cohomology of groups, equivariant Poincaré duality
and (to a lesser extent) L2-(co)homology. Our references for these are the books
Homological Dimension of Discrete Groups [Bi], Surgery on Compact Manifolds
[W1] and L?-Invariants: Theory and Applications to Geometry and K -Theory
[Lii], respectively. We also use properties of 3-manifolds (for the construction
of examples) and calculations of Whitehead groups and surgery obstructions.

This work has been supported in part by ARC small grants, enabling visits
by Steve Plotnick, Mike Dyer, Charles Thomas and Fang Fuquan. I would
like to thank them all for their advice, and in particular Steve Plotnick for
the collaboration reported in Chapter 18. I would also like to thank Robert
Bieri, Robin Cobb, Peter Linnell and Steve Wilson for their collaboration, and
Warren Dicks, William Dunbar, Ross Geoghegan, F.T.Farrell, lan Hambleton,
Derek Holt, K.F.Lai, Eamonn O’Brien, Peter Scott and Shmuel Weinberger for
their correspondance and advice on aspects of this work.

Jonathan Hillman

!See the following Acknowledgment for a summary of the textual borrowings.
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Chapter 1

Group theoretic preliminaries

The key algebraic idea used in this book is to study the homology groups
of covering spaces as modules over the group ring of the group of covering
transformations. In this chapter we shall summarize the relevant notions from
group theory, in particular, the Hirsch-Plotkin radical, amenable groups, Hirsch
length, finiteness conditions, the connection between ends and the vanishing of
cohomology with coefficients in a free module, Poincaré duality groups and
Hilbert modules.

Our principal references for group theory are [Bi], [DD] and [Ro].

1.1 Group theoretic notation and terminology

We shall write Z for the ring of integers, and also the free (abelian) group of
rank 1. We may otherwise write Z for an infinite cyclic group with no specified
generator. We shall also identify the units Z* = {41}, the field Fo and Z/27,
when convenient. Let F(r) be the free group of rank r.

Let G be a group. Then G’ and (G denote the commutator subgroup and
centre of G, respectively. The outer automorphism group of G is Out(G) =
Aut(G)/Inn(G), where Inn(G) = G/CG is the subgroup of Aut(G) consist-
ing of conjugations by elements of G. If H is a subgroup of G let Ng(H)
and Cg(H) denote the normalizer and centralizer of H in G, respectively.
The subgroup H is a characteristic subgroup of G if it is preserved under all
automorphisms of G. In particular, I(G) = {g € G | In > 0, g" € G'}
is a characteristic subgroup of G, and the quotient G/I(G) is a torsion-free
abelian group of rank f1(G). A group G is indicable if there is an epimorphism
p:G—Z,orif G=1.1f S is a subset of G then (S) and ((S))s (or just
((S))) are the subgroup generated by S and the normal closure of S in G (the
intersection of the normal subgroups of G which contain S), respectively.

If P and @ are classes of groups let PQ denote the class of (“P by Q”) groups
G which have a normal subgroup H in P such that the quotient G/H is in
@, and let /P denote the class of (“locally P”) groups such that each finitely
generated subgroup is in the class P. In particular, if F' is the class of finite
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4 Chapter 1: Group theoretic preliminaries

groups £F is the class of locally finite groups. In any group the union of all
the locally-finite normal subgroups is the unique maximal locally-finite normal
subgroup. Clearly there are no nontrivial homomorphisms from such a group to
a torsion-free group. Let poly- P be the class of groups with a finite composition
series such that each subquotient is in P. Thus if Ab is the class of abelian
groups poly- Ab is the class of solvable groups.

Let P be a class of groups which is closed under taking subgroups of finite
index. A group is virtually P if it has a subgroup of finite index in P. Let vP
be the class of groups which are virtually P. Thus a virtually poly-Z group is
one which has a subgroup of finite index with a composition series whose factors
are all infinite cyclic. The number of infinite cyclic factors is independent of the
choice of finite index subgroup or composition series, and is called the Hirsch
length of the group. We shall also say that a space virtually has some property
if it has a finite regular covering space with that property.

If p: G — Q is an epimorphism with kernel N we shall say that G is an
extension of @ = G/N by the normal subgroup N. The action of G on N
by conjugation determines a homomorphism from G to Aut(/N) with kernel
Ca(N) and hence a homomorphism from G/N to Out(N) = Aut(N)/Inn(N).
If G/N = 7Z the extension splits: a choice of element ¢ in G which projects to a
generator of G/N determines a right inverse to p. Let 6 be the automorphism
of N determined by conjugation by ¢ in G. Then G is isomorphic to the
semidirect product N Xy Z. Every automorphism of N arises in this way, and
automorphisms whose images in Out(N) are conjugate determine isomorphic
semidirect products. In particular, G = N x Z if 6 is an inner automorphism.

Lemma 1.1 Let 6 and ¢ automorphisms of a group G such that H,(0;Q) —1
and Hi(¢;Q) — 1 are automorphisms of H1(G;Q) = (G/G’) ® Q. Then the
semidirect products mg = G' Xg Z and wy = G Xy Z are isomorphic if and only
if 0 is conjugate to ¢ or ¢~' in Out(G).

Proof Let ¢t and u be fixed elements of my and 74, respectively, which map
to 1 in Z. Since Hy(mg; Q) = Hi(my; Q) = @Q the image of G in each group
is characteristic. Hence an isomorphism h : mp — 74 induces an isomorphism
e : Z — Z of the quotients, for some e = £1, and so h(t) = u®g for some g in
G. Therefore h(0(h=1(5)))) = h(th=t(j)t™1) = ugjg tu¢ = ¢¢(gjg~') for all
j in G. Thus 6 is conjugate to ¢¢ in Out(G).

Conversely, if § and ¢¢ are conjugate in Out(G) there is an f in Aut(G) and
a g in G such that 0(j) = f~1¢°f(gjg~') for all j in G. Hence F(j) = f(5)
for all j in G and F(t) = u®f(g) defines an isomorphism F' : mg — 7. O

Geometry & Topology Monographs, Volume 5 (2002)



1.2 Matrix groups 5

A subgroup K of a group G is ascendant if there is an increasing sequence of
subgroups N,, indexed by ordinals < 3, such that Ny = K, N, is normal in
Noq1 if o < 3, Ng = Uq<p N, for all limit ordinals § < Jand No=G. If Jis
finite K is subnormalin G. Such ascendant series are well suited to arguments
by transfinite induction.

1.2 Matrix groups
In this section we shall recall some useful facts about matrices over Z.

Lemma 1.2 Let p be an odd prime. Then the kernel of the reduction modulo
(p) homomorphism from SL(n,Z) to SL(n,F,) is torsion-free.

Proof This follows easily from the observation that if A is an integral matrix
and k = p¥q with ¢ not divisible by p then (I+p"A)* = I+kp" A mod (p*"+),
and kp” # 0 mod (p? ™) if r > 1. ]

Similarly, the kernel of reduction mod (4) is torsion-free.

Since SL(n,F,) has order (ngg_l(p” —p")/(p— 1), it follows that the order
of any finite subgroup of SL(n,Z) must divide the highest common factor of
these numbers, as p varies over all odd primes. In particular, finite subgroups
of SL(2,7) have order dividing 24, and so are solvable.

Let A= (9%¢), B=(Y7) and R = (9}). Then A*> = B* = —I and
A* = BS = I. The matrices A and R generate a dihedral group of order 8,
while B and R generate a dihedral group of order 12.

Theorem 1.3 Let G be a nontrivial finite subgroup of GL(2,7Z). Then G is
conjugate to one of the cyclic groups generated by A, A> = —I, B, B2, R or
RA, or to one of the dihedral groups generated by {A, R}, {—I, R}, {A%, RA},
{B,R}, {B* R} or {B*> RB}. If G # (—I,) then Ngy,27)(G) is finite.

Proof If M € GL(2,Z) has finite order then its characteristic polynomial has
cyclotomic factors. If the characteristic polynomial is (X +1)? then M = F1.
(This uses the finite order of M.) If the characteristic polynomial is X2 — 1
then M is conjugate to R or RA. If the characteristic polynomial is X2 + 1,
X2 - X +1 or X2+ X +1 then it is irreducible, and the corresponding ring of
algebraic numbers is a PID. Since any Z-torsion-free module over such a ring
is free it follows easily that M is conjugate to A, B or B2.

The normalizers in SL(2,7Z) of the subgroups generated by A, B or B? are
easily seen to be finite cyclic. Since G N SL(2,7Z) is solvable it must be cyclic
also. As it has index at most 2 in G the rest of the theorem follows easily. O
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6 Chapter 1: Group theoretic preliminaries

Although the 12 groups listed in the theorem represent distinct conjugacy
classes in GL(2,7Z), some of these conjugacy classes coalesce in GL(2,R). (For
instance, R and RA are conjugate in GL(Q,Z[%}).)

Corollary 1.3.1 Let G be a locally finite subgroup of GL(2,Q). Then G is
finite, and is conjugate to one of the above subgroups of GL(2,Z).

Proof Let L be a finitely generated subgroup of rank 2 in Q2. If G is finite
then UgeqgL is finitely generated, G-invariant and of rank 2, and so G is
conjugate to a subgroup of GL(2,7Z). In general, as the finite subgroups of G
have bounded order G' must be finite. m|

Theorem 1.3 also follows from the fact that PSL(2,Z) = SL(2,Z)/(xI) is
a free product (Z/27) x (Z/3Z), generated by the images of A and B. (In
fact (A,B | A2 = B3 A* = 1) is a presentation for SL(2,Z).) Moreover,
SL(2,Z) = PSL(2,Z) is freely generated by the images of ABA™1B~1 = (21)
and A'B71AB = (11), while the abelianizations are generated by the images
of AB=(19) [Ro, §6.2].

The groups arising as extensions of such groups G by Z? are the flat 2-orbifold
groups, or 2-dimensional crystallographic groups. In three cases H?(G;Z?) #
0, and there are in fact 17 isomorphism classes of such groups.

Let A = Z[t,t™1] be the ring of integral Laurent polynomials. The next theorem
is a special case of a classical result of Latimer and MacDuffee.

Theorem 1.4 There is a 1-1 correspondance between conjugacy classes of
matrices in GL(n,Z) with irreducible characteristic polynomial A(t) and iso-
morphism classes of ideals in A/(A(t)). The set of such ideal classes is finite.

Proof Let A € GL(n,Z) have characteristic polynomial A(¢) and let R =
A/(A(t)). As A(A) =0, by the Cayley-Hamilton Theorem, we may define an
R-module M4 with underlying abelian group Z" by t.z = A(z) for all z € Z".
As R is a domain and has rank n as an abelian group, M4 is torsion-free and of
rank 1 as an R-module, and so is isomorphic to an ideal of R. Conversely every
R-ideal arises in this way. The isomorphism of abelian groups underlying an
R-isomorphism between two such modules M, and Mp determines a matrix
C € GL(n,Z) such that CA = BC. The final assertion follows from the
Jordan-Zassenhaus Theorem. |
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1.3 The Hirsch-Plotkin radical 7

1.3 The Hirsch-Plotkin radical

The Hirsch-Plotkin radical v/G of a group G is its maximal locally-nilpotent
normal subgroup; in a virtually poly-Z group every subgroup is finitely gen-
erated, and so v/G is then the maximal nilpotent normal subgroup. If H is
normal in G then v/H is normal in G also, since it is a characteristic subgroup
of H, and in particular it is a subgroup of VG.

For each natural number ¢ > 1 let I'; be the group with presentation
(x,y,2 | vz = zz, yz = 2y, xy = 2%yx).

Every such group I'y is torsion-free and nilpotent of Hirsch length 3.

Theorem 1.5 Let G be a finitely generated torsion-free nilpotent group of
Hirsch length h(G) < 4. Then either

(1) G is free abelian; or
(2) h(G)=3 and G =T for some q > 1; or
(3) h(G)=4, (G=7Z? and G =T, x Z for some q > 1; or
(4) h(G)=4,(G=7 and G/(G =T for some q > 1.
In the latter case G has characteristic subgroups which are free abelian of rank

1, 2 and 3. In all cases G is an extension of 7Z by a free abelian normal
subgroup.

Proof The centre (G is nontrivial and the quotient G/(G is again torsion-
free nilpotent [Ro, Proposition 5.2.19]. We may assume that G is not abelian,
and hence that G /(G is not cyclic. Hence h(G/(G) > 2, so h(G) > 3 and
1 < h(¢G) < h(G) — 2. In all cases (G is free abelian.

If h(G) = 3 then (G = Z and G/(G = Z*. On choosing elements x and y
representing a basis of G/(G and z generating (G we quickly find that G is
isomorphic to one of the groups I'y, and thus is an extension of Z by Z2.

If h(G) = 4 and (G = Z? then G/CG = 7%, so G’ < (G. Since G may be
generated by elements z,y,t and v where = and y represent a basis of G/(G
and ¢t and u are central it follows easily that G’ is infinite cyclic. Therefore
(G is not contained in G’ and G has an infinite cyclic direct factor. Hence
G 2T, x Z, for some ¢ > 1, and thus is an extension of Z by Z3.

The remaining possibility is that A(G) = 4 and (G = Z. In this case G/(G
is torsion-free nilpotent of Hirsch length 3. If G/(G were abelian G’ would

Geometry & Topology Monographs, Volume 5 (2002)



8 Chapter 1: Group theoretic preliminaries

also be infinite cyclic, and the pairing from G/(G x G/(G into G’ defined by
the commutator would be nondegenerate and skewsymmetric. But there are no
such pairings on free abelian groups of odd rank. Therefore G/(G = T, for
some ¢q > 1.

Let (G be the preimage in G of ((G/¢G). Then (»G = Z? and is a characteris-
tic subgroup of G, so C((2@) is also characteristic in G. The quotient G /(G
acts by conjugation on (2G. Since Aut(Z?) = GL(2,7Z) is virtually free and
G/(G 2 T,/(T, = 7Z? and since (oG # (G it follows that h(Ce((G)) = 3.
Since Cg((2@G) is nilpotent and has centre of rank > 2 it is abelian, and so
Cc((G) = 7Z3. The preimage in G of the torsion subgroup of G/Cg((G)
is torsion-free, nilpotent of Hirsch length 3 and virtually abelian and hence is
abelian. Therefore G/Cq((2G) = Z. O

Theorem 1.6 Let w be a torsion-free virtually poly-Z group of Hirsch length
4. Then h(\/m) > 3.

Proof Let S be a solvable normal subgroup of finite index in . Then the
lowest nontrivial term of the derived series of S is an abelian subgroup which
is characteristic in S and so normal in 7. Hence /7 # 1. If h(y/7) < 2 then
VT = 7 or Z*. Suppose 7 has an infinite cyclic normal subgroup A. On
replacing 7 by a normal subgroup o of finite index we may assume that A is
central and that /A is poly-Z. Let B be the preimage in o of a nontrivial
abelian normal subgroup of o/A. Then B is nilpotent (since A is central and
B/A is abelian) and h(B) > 1 (since B/A # 1 and o/A is torsion-free). Hence
h(vm) 2 h(y/o) > 1.

If 7 has a normal subgroup N 2 Z? then Aut(N) = GL(2,Z) is virtually free,
and so the kernel of the natural map from 7 to Aut(NN) is nontrivial. Hence
h(Cx(N)) > 3. Since h(w/N) = 2 the quotient 7/N is virtually abelian, and
so Cr(N) is virtually nilpotent.

In all cases we must have h(y/7) > 3. O

1.4 Amenable groups

The class of amenable groups arose first in connection with the Banach-Tarski
paradox. A group is amenable if it admits an invariant mean for bounded C-
valued functions [Pi]. There is a more geometric characterization of finitely
presentable amenable groups that is more convenient for our purposes. Let X
be a finite cell-complex with universal cover X. Then X is an increasing union
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1.4 Amenable groups 9

of finite subcomplexes X; C X1 C X = Un>1X,, such that X; is the union
of Nj < oo translates of some fundamental domain D for G = m(X). Let N;
be the number of translates of D which meet the frontier of X; in X. The
sequence {X,} is a Folner exhaustion for X if lim(N;/Nj) =0, and m1(X) is
amenable if and only if X has a Fglner exhaustion. This class contains all finite
groups and Z, and is closed under the operations of extension, increasing union,
and under the formation of sub- and quotient groups. (However nonabelian free
groups are not amenable.)

The subclass EG generated from finite groups and Z by the operations of
extension and increasing union is the class of elementary amenable groups. We
may construct this class as follows. Let Uy = 1 and U; be the class of finitely
generated virtually abelian groups. If U, has been defined for some ordinal «
let Up+1 = (LU4)U; and if U, has been defined for all ordinals less than some
limit ordinal 8 let Ug = Uy<gUq. Let k be the first uncountable ordinal. Then
EG =1(U,.

This class is well adapted to arguments by transfinite induction on the ordinal
a(G) = min{a|G € U,}. It is closed under extension (in fact UyUs C Uqyp)
and increasing union, and under the formation of sub- and quotient groups. As
U, contains every countable elementary amenable group, Uy = (U, = EG if
A > k. Torsion groups in FG are locally finite and elementary amenable free
groups are cyclic. Every locally-finite by virtually solvable group is elementary
amenable; however this inclusion is proper.

For example, let Z*> be the free abelian group with basis {z; | i € Z} and let G
be the subgroup of Aut(Z>) generated by {e; | i € Z}, where e;(x;) = x;+Tit1
and e;(x;) = z; if j # ¢. Then G is the increasing union of subgroups iso-
morphic to groups of upper triangular matrices, and so is locally nilpotent.
However it has no nontrivial abelian normal subgroups. If we let ¢ be the
automorphism of G defined by ¢(e;) = e;41 for all i then G x4 Z is a finitely
generated torsion-free elementary amenable group which is not virtually solv-
able.

It can be shown (using the Fglner condition) that finitely generated groups
of subexponential growth are amenable. The class SG generated from such
groups by extensions and increasing unions contains EG (since finite groups and
finitely generated abelian groups have polynomial growth), and is the largest
class of groups over which topological surgery techniques are known to work in
dimension 4 [FT95]. There is a finitely presentable group in SG which is not
elementary amenable [Gr98], and a finitely presentable amenable group which
is not in SG [BV05].

Geometry & Topology Monographs, Volume 5 (2002)



10 Chapter 1: Group theoretic preliminaries

A group is restrained if it has no noncyclic free subgroup. Amenable groups
are restrained, but there are finitely presentable restrained groups which are
not amenable [OS02, LM16]. There are also infinite finitely generated torsion
groups [Ro, §14.2]. These are restrained, but are not elementary amenable. No
known example is also finitely presentable.

1.5 Hirsch length

In this section we shall use transfinite induction to extend the notion of Hirsch
length (as a measure of the size of a solvable group) to elementary amenable
groups, and to establish the basic properties of this invariant.

Lemma 1.7 Let G be a finitely generated infinite elementary amenable group.
Then G has normal subgroups K < H such that G/H is finite, H/K is free
abelian of positive rank and the action of G/H on H/K by conjugation is
effective.

Proof We may show that G has a normal subgroup K such that G/K is
an infinite virtually abelian group, by transfinite induction on a(G). We may
assume that G/K has no nontrivial finite normal subgroup. If H is a subgroup
of G which contains K and is such that H/K is a maximal abelian normal
subgroup of G/K then H and K satisfy the above conditions. a

In particular, finitely generated infinite elementary amenable groups are virtu-
ally indicable.

If G isin U; let h(G) be the rank of an abelian subgroup of finite index in G.
If h(G) has been defined for all G in U, and H is in (U, let

h(H) =lubfh(F)|F < H, F € U,}.

Finally, if G is in Uyy1, so has a normal subgroup H in (U, with G/H in Uy,
let h(G) =h(H)+ h(G/H).
Theorem 1.8 Let G be an elementary amenable group. Then

(1) h(Q) is well defined;

(2) If H is a subgroup of G then h(H) < h(G);

(3) h(G) =1lub{h(F) | F isa finitely generated subgroup of G};

(4) if H is a normal subgroup of G then h(G) = h(H)+ h(G/H).
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1.5 Hirsch length 11

Proof We shall prove all four assertions simultaneously by induction on a(G).
They are clearly true when a(G) = 1. Suppose that they hold for all groups in
U, and that o(G) = a+ 1. If G is in LU, so is any subgroup, and (1) and (2)
are immediate, while (3) follows since it holds for groups in U, and since each
finitely generated subgroup of G is in U,. To prove (4) we may assume that
h(H) is finite, for otherwise h(G) = h(H) + h(G/H) = oo, by (2). Therefore
by (3) there is a finitely generated subgroup J < H with h(J) = h(H). Given
a finitely generated subgroup @ of G/H we may choose a finitely generated
subgroup F' of G containing J and whose image in G/H is Q). Since F is
finitely generated it is in U, and so h(F) = h(H) + h(Q). Taking least upper
bounds over all such @ we have h(G) > h(H) + h(G/H). On the other hand
if F'is any U,-subgroup of G then h(F) = h(FNH)+ h(FH/H), since (4)
holds for F', and so h(G) < h(H) + h(G/H). Thus (4) holds for G also.

Now suppose that G is not in £U,, but has a normal subgroup K in ¢U, such
that G/K isin U;. If K, is another such subgroup then (4) holds for K and K;
by the hypothesis of induction and so h(K) = h(K NK;)+ h(KK;/K). Since
we also have h(G/K) = h(G/KK;)+h(KK,/K) and h(G/K1) = h(G/KK;)+
h(KKy/K,) it follows that h(K1)+h(G/K;y) = h(K)+h(G/K) and so h(G) is
well defined. Property (2) follows easily, as any subgroup of G is an extension
of a subgroup of G/K by a subgroup of K. Property (3) holds for K by the
hypothesis of induction. Therefore if h(K) is finite K has a finitely generated
subgroup J with h(J) = h(K). Since G/K is finitely generated there is a
finitely generated subgroup F' of G containing J and such that FK/K = G/K.
Clearly h(F') = h(G). If h(K) is infinite then for every n > 0 there is a finitely
generated subgroup J, of K with h(J,) > n. In either case, (3) also holds
for G. If H is a normal subgroup of G then H and G/H are also in Uy41,
while HNK and KH/H = K/HNK are in U, and HK/K = H/HNK and
G/HK are in U;. Therefore

h(H) + h(G/H) = W(HNK) + h(HK/K) + h(HK/H) + h(G/HK)
— W(HNK)+h(HK/H) + h(HK/K) + h(G/HK).

Since K is in U, and G/K isin U; this sum gives h(G) = h(K) + h(G/K)
and so (4) holds for G. This completes the inductive step. O

Let A(G) be the maximal locally-finite normal subgroup of G.

Theorem 1.9 There are functions d and M from Zxq to Z>o such that if G
is an elementary amenable group of Hirsch length at most h and A(G) is its
maximal locally finite normal subgroup then G/A(G) has a maximal solvable
normal subgroup of derived length < d(h) and index < M (h).
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12 Chapter 1: Group theoretic preliminaries

Proof We argue by induction on h. Since an elementary amenable group
has Hirsch length 0 if and only if it is locally finite we may set d(0) = 0 and
M(0) = 1. Assume that the result is true for all such groups with Hirsch length
< h and that G is an elementary amenable group with h(G) = h + 1.

Suppose first that G is finitely generated. Then by Lemma 1.7 there are normal
subgroups K < H in G such that G/H is finite, H/K is free abelian of rank
r > 1 and the action of G/H on H/K by conjugation is effective. (Note
that r = h(G/K) < h(G) = h+ 1.) Since the kernel of the natural map
from GL(r,Z) to GL(r,F3) is torsion-free, by Lemma 1.2, we see that G/H
embeds in GL(r,F3) and so has order < 3. Since h(K) = h(G) — r < h the
inductive hypothesis applies for K, so it has a normal subgroup L containing
A(K) and of index < M(h) such that L/A(K) has derived length < d(h) and
is the maximal solvable normal subgroup of K/A(K). As A(K) and L are
characteristic in K they are normal in G. (In particular, A(K) = K N A(G).)
The centralizer of K/L in H/L is a normal solvable subgroup of G/L with
index < [K : L)![G : H] and derived length < 2. Set M (h+ 1) = M(h)!3(+D?
and d(h+1) = M(h+ 1)+ 2+ d(h). Then G.A(G) has a maximal solvable
normal subgroup of index < M (h + 1) and derived length < d(h + 1) (since it
contains the preimage of the centralizer of K/L in H/L).

In general, let {G; | i € I} be the set of finitely generated subgroups of G.
By the above argument G; has a normal subgroup H; containing A(G;) and
such that H;/A(G;) is a maximal normal solvable subgroup of G;/A(G;) and
has derived length < d(h+ 1) and index < M(h+1). Let N = max{[G; :
H;] | i € I} and choose o € I such that [Gy : Ho] = N. If G; > G, then
H;NG, < H,. Since [Gy, : Hy| < [Go : HiNGy| = [HiGy : Hi] < [G; : Hy| we
have [G;: H;) = N and H; > H,. It follows easily that if G, < G; < G; then
H; < Hj.

Set J={iel|Hy,<H;} and H=U;cjH;. If x,y € H and g € G then there
are indices i,k and k € J such that x € H;, y € H; and g € G},. Choose [ € J
such that G; contains G; U G; U G}.. Then zy~! and gxg~! arein H; < H,
and so H is a normal subgroup of G'. Moreover if x1,...,zn is a set of coset
representatives for H, in G, then it remains a set of coset representatives for
H in G,andso [G: H]=N.

Let D; be the d(h + 1)th derived subgroup of H;. Then D; is a locally-finite
normal subgroup of G; and so, by an argument similar to that of the above
paragraph U;c s D; is a locally-finite normal subgroup of G. Since the d(h+1)th
derived subgroup of H is contained in U;c;D; (as each iterated commutator
involves only finitely many elements of H) it follows that HA(G)/A(G) =
H/H N A(G) is solvable and of derived length < d(h +1). O
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1.6 Modules and finiteness conditions 13

The above result is from [HL92]. The argument can be simplified to some extent
if G is countable and torsion-free. (In fact a virtually solvable group of finite
Hirsch length and with no nontrivial locally-finite normal subgroup must be
countable [Bi, Lemma 7.9].)

Lemma 1.10 Let G be an elementary amenable group. If h(G) = oo then
for every k > 0 there is a subgroup H of G with k < h(H) < oo.

Proof We shall argue by induction on a(G). The result is vacuously true if
a(G) = 1. Suppose that it is true for all groups in U, and G is in £U,. Since
hG) = Lu.bA{h(F)|F < G, F € Uy} either there is a subgroup F' of G in U,
with h(F) = oo, in which case the result is true by the inductive hypothesis, or
h(G) is the least upper bound of a set of natural numbers and the result is true.
If G isin U,41 then it has a normal subgroup N which is in £U, with quotient
G/N in U;. But then h(N) = h(G) = oo and so N has such a subgroup. 0O

Theorem 1.11 Let G be an elementary amenable group of finite cohomolog-
ical dimension. Then h(G) < c¢.d.G and G is virtually solvable.

Proof Since c.d.G < oo the group G is torsion-free. Let H be a subgroup of
finite Hirsch length. Then H is virtually solvable and c.d.H < ¢.d.G so h(H) <
c.d.G. The theorem now follows from Theorem 1.9 and Lemma 1.10. O

1.6 Modules and finiteness conditions

Let G be a group and w : G — Z* a homomorphism, and let R be a com-
mutative ring. Then § = w(g)g~! defines an anti-involution on R[G]. If L is
a left R[G]-module L shall denote the conjugate right R[G]-module with the
same underlying R-module and R[G]-action given by l.g = g.[, for all [ € L
and g € G. (We shall also use the overline to denote the conjugate of a right
R[G]-module.) The conjugate of a free left (right) module is a free right (left)
module of the same rank.

Let Z¥ denote the G-module with underlying abelian group Z and G-action
given by g.n = w(g)n for all g in G and n in Z.

Lemma 1.12 [WI165] Let G and H be groups such that G is finitely pre-
sentable and there are homomorphisms j : H — G and p : G — H with
pj =idg. Then H is also finitely presentable.
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Proof Since G is finitely presentable there is an epimorphism p : FF — G from
a free group F(X) with a finite basis X onto G, with kernel the normal closure
of a finite set of relators R. We may choose elements w, in F(X) such that
jpp(x) = p(wy), for all z in X. Then p factors through the group K with
presentation (X | R, 'w,,Vz € X), say p = vu. Now uj is clearly onto,
while vuj = pj = tdy, and so v and uj are mutually inverse isomomorphisms.
Therefore H =2 K is finitely presentable. a

A group G is FP, if the augmentation Z[G]-module Z has a projective reso-
lution which is finitely generated in degrees < n, and it is F'P if it has finite
cohomological dimension and is F'P, for n = c.d.G. It is FF if moreover
Z has a finite resolution consisting of finitely generated free Z[G]-modules.
“Finitely generated” is equivalent to F'P;, while “finitely presentable” implies
FP,. Groups which are F'P» are also said to be almost finitely presentable.
(There are F'P groups which are not finitely presentable [BB97].) An elemen-
tary amenable group G is F' Py, if and only if it is virtually F P, and is then
virtually constructible and solvable of finite Hirsch length [Kr93].

If the augmentation Q[r]-module Q has a finite resolution F by finitely gen-
erated projective modules then x(7) = %(—1)"dimg(Q® F;) is independent of
the resolution. (If 7 is the fundamental group of an aspherical finite complex K
then x(m) = x(K).) We may extend this definition to groups ¢ which have a
subgroup 7 of finite index with such a resolution by setting x(o) = x(m)/[o : 7].
(It is not hard to see that this is well defined.)

Let P be a finitely generated projective Z[r]-module. Then P is a direct
summand of Z[r]|", for some r > 0, and so is the image of some idempotent
rxr-matrix M with entries in Z[r|. The Kaplansky rank x(P) is the coefficient
of 1 € 7 in the trace of M. It depends only on P and is strictly positive if
P 0. The group 7 satisfies the Weak Bass Conjecture if K(P) = dimgQ®, P.
There is also a Strong Bass Conjecture, which we shall not formulate here,
although it is invoked in Theorem 3.4. Both conjectures have been confirmed for
linear groups, residually finite groups, solvable groups, groups of cohomological
dimension < 2 over Q and PDs-groups. (See [Ec01] for further details.)

The following result from [BS78] shall be useful.

Theorem 1.13 (Bieri-Strebel) Let G be an F P, group with G/G' infinite.
Then G is an HNN extension with finitely generated base and associated sub-
groups.
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1.6 Modules and finiteness conditions 15

Proof (Sketch — We shall assume that G is finitely presentable.) Let h :
F(m) — G be an epimorphism, and let g; = h(z;) for 1 < i < m. We
may assume that g,, has infinite order modulo ({(g; | 1 < i < m)). Since G
is finitely presentable the kernel of h is the normal closure of finitely many
relators, of weight 0 in the letter x,,. Each such relator is a product of powers
of conjugates of the generators {z; | 1 < i < m} by powers of z,,. Thus we
may assume the relators are contained in (2 zizn’ |1 <i<m, —p < j < p),
for some sufficiently large p. Let U = {(gngigm’ | 1 <i < m, —p < j < p),
and let V = g,,Ug.!. Let B be the subgroup of G generated by U UV and
let G be the HNN extension with base B and associated subgroups U and
V presented by G = (B,s | sus™' = 7(u) Yu € U), where 7 : U — V is
the isomorphism determined by conjugation by ¢,, in G. There are obvious
epimorphisms ¢ : F(m) — G and ¢ : G — G with composite h. It is easy to

see that Ker(h) < Ker(§) and so G 2 G. O

An HNN extension is restrained if and only if it is ascending and the base is
restrained.

A ring R is weakly finite if every onto endomorphism of R™ is an isomorphism,
for all n > 0. (In [H2] the term “SIBN ring” was used instead.) Finitely
generated stably free modules over weakly finite rings have well defined ranks,
and the rank is strictly positive if the module is nonzero. Skew fields are weakly
finite, as are subrings of weakly finite rings. If G is a group its complex group
algebra C[G] is weakly finite, by a result of Kaplansky. (See [Ro84] for a proof.)

A ring R is (regular) coherent if every finitely presentable left R-module has a
(finite) resolution by finitely generated projective R-modules, and is (regular)
noetherian if moreover every finitely generated R-module is finitely presentable.
A group G is regular coherent or regular noetherian if R[G] is regular coherent
or regular noetherian (respectively) for any regular noetherian ring R. It is
coherent as a group if its finitely generated subgroups are finitely presentable.

Lemma 1.14 If G is a group such that Z[G] is coherent then every finitely
generated subgroup of G is F Py.

Proof Let H be a subgroup of G. Since Z[H| < Z[G] is a faithfully flat ring
extension a left Z[H]-module is finitely generated over Z[H] if and only if the
induced module Z[G] @y M is finitely generated over Z[G]. Hence M is FP,
over Z[H] if and only if Z[G] @y M is FP, over Z|G], by induction on n.

If H is finitely generated then the augmentation Z[H|-module Z is finitely
presentable over Z[H|. Hence Z[G] ® i Z is finitely presentable over Z[G|, and
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16 Chapter 1: Group theoretic preliminaries

so is FPy, over Z[G], since that ring is coherent. Hence Z is F Py, over Z[H],
i.e., H is F'Py. O

Thus if either G is coherent (as a group) or Z[G] is coherent (as a ring) every
finitely generated subgroup of G is F'P>. As the latter condition shall usually
suffice for our purposes below, we shall say that such a group is almost coherent.
The connection between these notions has not been much studied.

The class of groups whose integral group ring is regular coherent contains them
trivial group and is closed under generalised free products and HNN extensions
with amalgamation over subgroups whose group rings are regular noetherian
[Wd78, Theorem 19.1]. If [G : H] is finite and G is torsion-free then Z[G] is
regular coherent if and only if Z[H] is. In particular, free groups and surface
groups are coherent and their integral group rings are regular coherent, while
(torsion-free) virtually poly-Z groups are coherent and their integral group
rings are (regular) noetherian.

1.7 Ends and cohomology with free coefficients

A finitely generated group G has 0, 1, 2 or infinitely many ends. It has 0 ends
if and only if it is finite, in which case H°(G;Z[G]) = Z and HY(G;Z[G]) =0
for ¢ > 0. Otherwise H°(G;Z[G]) = 0 and H'(G;Z[G)) is a free abelian group
of rank e(G) — 1, where e(G) is the number of ends of G' [Sp49]. The group G
has more than one end if and only if it is a nontrivial generalised free product
with amalgamation G 2 A x¢ B or an HNN extension A x¢ ¢, where C' is a
finite group. In particular, it has two ends if and only if it is virtually Z if and
only if it has a (maximal) finite normal subgroup F' such that G/F = Z or D,
where D = (Z/27) x (Z/2Z) is the infinite dihedral group [St] - see also [DD].

If G is a group with a normal subgroup N, and A is a left Z[G]-module there
is a Lyndon-Hochschild-Serre spectral sequence (LHSSS) for G as an extension
of G/N by N and with coefficients A:

Ey = HP(G/N; HY(N; A)) = H"™(G; A),

the " differential having bidegree (r,1 —r). (See [Mc, §10.1].) In several
places below, when considering such spectral sequences (e.g., in Theorems 2.12
and 8.1), we use without comment the fact that if M is a left Z[G]-module
and M|; is the underlying abelian group then M ® Z[G] (with the diagonal
G-action) is canonically isomorphic to the induced module M|; ® Z[G].
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1.7 Ends and cohomology with free coefficients 17

Theorem 1.15 [Ro75] If G has a normal subgroup N which is the union of
an increasing sequence of subgroups Ny, such that H*(Ny;Z[G]) =0 for s <r
then H*(G;Z|G]) =0 for s <.

Proof Let s < r. Let f be an s-cocycle for N with coefficients Z[G], and
let f, denote the restriction of f to a cocycle on N,. Then there is an
(s — 1)-cochain g, on N, such that d¢g, = f,. Since 6(gn+1|n, — gn) = 0
and H*"1(N,;Z[G]) = 0 there is an (s — 2)-cochain h,, on N, with 6h, =
Gn+1|N, —gn- Choose an extension h, of h, to Ny11 and let Ggni1 = gnt1—0h.,.
Then §n41|n, = gn and 6gn+1 = fny1. In this way we may extend gy to an
(s — 1)-cochain g on N such that f = d¢g and so H*(N;Z[G]) = 0. The
LHSSS for G as an extension of G/N by N, with coefficients Z[G], now gives
H*(G;Z[G]) =0 for s <. O

Corollary 1.15.1 The hypotheses are satisfied if N is the union of an increas-
ing sequence of F'P, subgroups Ny, such that H*(Ny;Z[N,|) =0 for s < r.
In particular, if N is the union of an increasing sequence of finitely generated,
one-ended subgroups then G has one end.

Proof We have H*(N,;Z[G]) = H*(Nn; Z|Ny]) ® Z|G/Ny| = 0, for all s < r
and all n, since N,, is F'P,. O

If the successive inclusions are finite this corollary may be sharpened further.

Theorem (Gildenhuys-Strebel) Let G = U,>1G, be the union of an in-
creasing sequence of FP, subgroups. Suppose that [Gpt+1 @ Gp] < oo and
H*(Gpn; Z|Gy)) =0 for all s <r and n > 1. If G is not finitely generated then
H*(G; F) =0 for every free Z|G|-module F and all s <. ]

The enunciation of this theorem in [GS81] assumes also that c.d.G, = r for
all n > 1, and concludes that c.d.G = r if and only if G is finitely generated.
However the argument establishes the above assertion.

Theorem 1.16 Let G be a finitely generated group with an infinite restrained
normal subgroup N of infinite index. Then e(G) = 1.

Proof Since N is infinite HY(G;Z[G]) = HY(G/N;HY(N;Z[G])), by the

LHSSS. If N is finitely generated then H'(N;Z[G]) = H'(N;Z[N]) ® Z[G/N],
with the diagonal G//N-action. Since G/N is infinite H'(G;Z[G]) = 0. If
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18 Chapter 1: Group theoretic preliminaries

N is locally one-ended or locally virtually Z and not finitely generated then
H(N;Z|G]) = 0, by Theorem 1.15 and the Gildenhuys-Strebel Theorem, re-
spectively. In all of these cases e(G) = 1.

There remains the possibility that N is locally finite. If e(G) > 1 then G =
Axc B or Axc ¢ with C finite, by Stallings’ characterization of such groups.
Suppose G = A x¢ B. Since N is infinite there is an n € N\ C. We may
suppose that n € A, since elements of finite order in A x- B are conjugate to
elements of A or B [Ro, Theorem 6.4.3]. Let g € B\ C, and let n’ = gng~!.
Since N is normal nn’ € N also. But nn’ = ngng~' has infinite order in G,
by the “uniqueness of normal form” for such groups. This contradicts the fact
that N is locally finite. A similar argument shows that G cannot be A x¢ ¢.
Thus G must have one end. |

In particular, a countable restrained group N is either elementary amenable and
h(N) <1 or is an increasing union of finitely generated, one-ended subgroups.

The second cohomology of a group with free coefficients ( H?(G; R[G]), R = Z
or a field) shall play an important role in our investigations.

Theorem (Farrell) Let G be a finitely presentable group. If G has an ele-
ment of infinite order and R = 7 or is a field then H*(G; R[G]) is either 0 or
R or is not finitely generated. a

Farrell also showed in [Fa74] that if H?(G;F2[G]) & Z/2Z then every finitely
generated subgroup of G with one end has finite index in G'. Hence if G is also
torsion-free then subgroups of infinite index in G are locally free. Bowditch has
since shown that such groups are virtually the fundamental groups of aspherical
closed surfaces ([Bo04] - see §8 below).

We would also like to know when H?(G;Z[G]) is 0 (for G finitely presentable).
In particular, we expect this to be so if G has an elementary amenable, normal
subgroup E such that either h(F) =1 and G/E has one end or h(F) =2 and
[G: E] =00 or h(E) > 3, or if G is an ascending HNN extension over a finitely
generated, one-ended base. Our present arguments for these two cases require
stronger finiteness hypotheses, and each use the following result of [BG85].

Theorem (Brown-Geoghegan) Let G be an HNN extension Bxg4 in which the
base B and associated subgroups I and ¢(I) are FP,. If the homomorphism
from HY(B;Z|G]) to HY(I;Z|G]) induced by restriction is injective for some
q < n then the corresponding homomorphism in the Mayer-Vietoris sequence
is injective, so H(G;Z[G)) is a quotient of HI~Y(I;Z[G)). O
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1.7 Ends and cohomology with free coefficients 19

We begin with the case of “large” elementary amenable normal subgroups.

Theorem 1.17 Let G be a finitely presentable group with a restrained normal
subgroup E of infinite index. Suppose that either E is abelian of rank 1 and
G/E has one end or E is torsion-free, elementary amenable and h(E) > 1 or
FE is almost coherent, locally virtually indicable, and has a finitely generated,
one-ended subgroup. Then H*(G;Z[G]) =0 for s < 2.

Proof If E is abelian of positive rank and G/FE has one end then G is 1-
connected at oo by Theorem 1 of [Mi87], and so H*(G;Z[G]) =0 for s < 2, by
[GMS86].

Suppose next that F is torsion-free, elementary amenable and h(E) > 1. If E
is virtually solvable it has a nontrivial characteristic abelian subgroup A. If A
has rank 1 then E/A is infinite, so G/A has one end, by Theorem 1.16, and then
H*(G;Z|G]) = 0 for s < 2, as before. If A= 7Z? then H?(A;Z[G])) = Z|G/A].
Otherwise, A has Z? as a subgroup of infinite index and so H?(4;Z[G]) = 0.
If E is not virtually solvable H*(E;Z[G]) = 0 for all s [Kr93’, Proposition
3]. (The argument applies even if E is not finitely generated.) In all cases, an
LHSSS argument gives H*(G;Z[G]) =0 for s < 2.

We may assume henceforth that E is almost coherent and is an increasing
union of finitely generated one-ended subgroups E, C E,11--- C E = UE,.
Since FE is locally virtually indicable there are subgroups F,, < E, such that
[En : F,] < oo and which map onto Z. Since E is almost coherent these
subgroups are F'P,. Hence they are HNN extensions over F'P, bases H,, by
Theorem 1.13, and the extensions are ascending, since E is restrained. Since
FE,, has one end H,, is infinite and so has one or two ends.

Suppose that H, has two ends, for all n > 1. Then FE, is elementary amenable,
h(E,) = 2 and [Eny1 : Ep] < oo, for all n > 1. Hence FE is elemen-
tary amenable and h(E) = 2. If E is finitely generated it is F'P» and so
H*(G;Z|G]) = 0 for s < 2, by an LHSSS argument. This is also the case
if E is not finitely generated, for then H*(E;Z[G]) = 0 for s < 2, by the
Gildenhuys-Strebel Theorem, and we may again apply an LHSSS argument.

Otherwise we may assume that H, has one end, for all n > 1. In this case
H*(F,;Z|F,]) = 0 for s < 2, by the Brown-Geoghegan Theorem. Therefore
H*(G;Z|G]) =0 for s <2, by Theorem 1.15. m]

The theorem applies if E is almost coherent and elementary amenable, since
elementary amenable groups are restrained and locally virtually indicable. It
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20 Chapter 1: Group theoretic preliminaries

also applies if E = /G is large enough, since finitely generated nilpotent
groups are virtually poly-Z. Similar arguments show that if h(v/G) > r then
H*(G;Z[G]) = 0 for s < r, and if also [G : v/G] = oo then H"(G;Z[G]) = 0.
Are the hypotheses that £ be almost coherent and locally virtually indicable
necessary? Is it sufficient that E be an increasing union of finitely generated,
one-ended subgroups?

Theorem 1.18 Let G = B*4 be an HNN extension with F'P, base B and
associated subgroups I and ¢(I) = J, and which has a restrained normal
subgroup N < ((B)). Then H*(G;Z[G]) =0 for s < 2 if either

(1) the HNN extension is ascending and B = I = J has one end; or
(2) N is locally virtually Z and G/N has one end; or
(3) N has a finitely generated subgroup with one end.

Proof The first assertion follows immediately from the Brown-Geogeghan
Theorem.

Let t be the stable letter, so that tit—! = ¢(i), for all i € I. Suppose that
NNJ#NNB,andlet b€ NN B\ J. Then b* = ¢t~1bt is in N, since N is
normal in G. Let a be any element of N N B. Since N has no noncyclic free
subgroup there is a word w € F(2) such that w(a,b’) =1 in G. It follows from
Britton’s Lemma that a must be in I, and so N N B = NNI. In particular,
N is the increasing union of copies of N N B.

Hence G/N is an HNN extension with base B/N N B and associated subgroups
I/NNI and J/N N J. Therefore if G/N has one end the latter groups are
infinite, and so B, I and J each have one end. If N is virtually Z then
H*(G;Z[G]) =0 for s < 2, by an LHSSS argument. If N is locally virtually Z
but is not finitely generated then it is the increasing union of a sequence of two-
ended subgroups and H*(N;Z[G]) = 0 for s < 1, by the Gildenhuys-Strebel
Theorem. Since H?(B;Z[G]) = HY(B; H*(N N B;Z[G))) and H?(I;Z[G]) =
HY(I; H3(N N I;Z]G))), the restriction map from H?(B;Z[G]) to H?(I; Z[G])
is injective. If N has a finitely generated, one-ended subgroup N;, we may
assume that Ny < NN B, and so B, I and J also have one end. Moreover
H*(N N B;Z|G]) = 0 for s < 1, by Theorem 1.15. We again see that the
restriction map from H?(B;Z[G]) to H*(I;Z[G]) is injective. The result now
follows in these cases from the Brown-Geoghegan Theorem. a

The final result of this section is Theorem 8.8 of [Bi].

Theorem (Bieri) Let G be a nonabelian group with c¢.d.G = n. Then
c.d.(G <n—1, and if (G has rank n — 1 then G’ is free. |
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1.8 Poincaré duality groups 21

1.8 Poincaré duality groups

A group G isa PD,-groupifitis FP, HP(G;Z[G]) = E:UtIZ’[G}(Z,Z[G]) is 0 for
p # n and H"(G;Z|G]) is infinite cyclic. The “dualizing module” H"(G; Z[G))
is a right Z[G]-module, with G-action determined by a homomorphism w =
wi(G) : G — Z*. The group is orientable (or is a PD; -group) if w is trivial,
ie., if H"(G;Z[G]) is isomorphic to the augmentation module Z. (See [Bi].)

The only PD;-group is Z. Eckmann, Linnell and Miiller showed that every
PDy-group is the fundamental group of an aspherical closed surface. (See
Chapter VI of [DD].) Bowditch has since found a much stronger result, which
must be close to the optimal characterization of such groups [Bo04].

Theorem (Bowditch) Let G be an FP, group and F a field. Then G is
virtually the fundamental group of an aspherical closed surface if and only if
H?(G; F[G]) has a 1-dimensional G-invariant subspace. O

In particular, this theorem applies if H?(G;Z[G]) is infinite cyclic, for then its
image in H?(G;F3[G]) under reduction mod (2) is such a subspace.

The following result corresponds to the fact that an infinite covering space of a
PL n-manifold is homotopy equivalent to a complex of dimension < n [St77].

Theorem (Strebel) Let H be a subgroup of infinite index in a PD,,-group
G. Then c.d.H < n. d

Let S be a ring. If C is a left S-module and R is a subring of S let C|g be
the left R-module underlying C'. If A is a left R-module the abelian group
Hompg(S|gr,A) has a natural left S-module structure given by ((sf)(s’) =
f(s's) for all f € Hompg(S|r,A) and s,s' € S. The groups Hompg(C|g, A)
and Homg(C, Homp(S|r, A)) are naturally isomorphic, for the maps I and J
defined by I(f)(c)(s) = f(sc) and J(0)(c) = O(c)(1) for f: C — A and 0 :
C — Hompg(S, A) are mutually inverse isomorphisms. When K is a subgroup
of 7, R = Z[K] and S = Z[r] we may write C|g for C|g, and the module
Homg g (Z[r]|x, A) is said to be coinduced from A. The above isomorphisms
give rise to Shapiro’s Lemma. In our applications 7/ K shall usually be infinite
cyclic and S is then a twisted Laurent extension of R.

If G is a group and A is a left Z[G]-module let A|; be the Z[G]-module with the
same underlying group and trivial G-action, and let A® = Homz(Z[G], A) be
the module of functions a : G — A with G-action given by (ga)(h) = g.a(hg)
for all g,h € G. Then AhG is coinduced from a module over the trivial group.
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Theorem 1.19 Let w be a PD,, -group with a normal subgroup K such that
n/K is a PD,-group. Then K is a PD,,_.-group if and only if it is F' P, 3.

Proof The condition is clearly necessary. Assume that it holds, and let C be a
resolution of Z by free left Z[K]-modules which are finitely generated in degrees
< 5. After passing to a subgroup of index 2, if necessary, we may assume that
G = /K is orientable. It is sufficient to show that the functors H*(K;—)
from left Z[K]-modules to abelian groups commute with direct limit, for all
s < n, for then K is F'P,_; [Br75], and the result follows from [Bi, Theorem
9.11] (and an LHSSS corner argument to identify the dualizing module). Since
K is F Py, 9 we may assume s > n/2. If A is a left Z[K]-module and W =
Homg g (Z[r], A) then H*(K;A) = H%(m;W) = H,_s(m;W), by Shapiro’s
Lemma and Poincaré duality. Let o : G — 7 be a (setwise) section of the
projection.

Let Ay be the left Z[K]-module with the same underlying group as A and
K -action given by k.a = o(g)ko(g) 'a forall a € A, g € G and k € K. The
Z[K]-epimorphisms p, : W — A, given by py(f) = f(o(g)) for all f € W and
g € G determine an isomorphism W = II;eqA,. Hence they induce Z-linear
isomorphisms H,(K; W) = ,eqHy(K; Ay) for ¢ < [n/2], since C, has finite
[n/2]-skeleton. The Z-linear homomorphisms t,4 : Ay ®zx)] Cqg = A Qzx] Cy
given by t;4(a ® ¢) = w(o(g))a ® a(g)c for all a € A and ¢ € C, induce
isomorphisms H,(K;A,) = H,(K;A) for all ¢ > 0 and g € G. Let uy, =
ta.g(pg ®idc,). Then ugg(fo(h)™' @ o(h)c) = uggn(f @ c¢) for all g,h € G,
feW,ceCy and ¢ > 0. Hence these composites determine isomorphisms of
left Z[G]-modules H,(K;W) = Ag, where Ay = Hy(A ®zk) Cs) = Hy(K; A)
(with trivial G-action) for ¢ < [n/2].

Let D(L) denote the conjugate of a left Z[G]-module L with respect to the
canonical involution. We shall apply the homology LHSSS

E}, = Hp(G; D(Hy(K;W)) = Hpyq(m; W).
Poincaré duality for G and another application of Shapiro’s Lemma now give
Hp(G;D(Ag)) ~ H"P(G, ch) = H"7P(1;Ay), since AqG is coinduced from a
module over the trivial group. If s > [n/2] and p+ ¢ =n — s then ¢ < [n/2]
and so H,(G; AqG) = A, if p =r and is 0 otherwise. Thus the spectral sequence
collapses to give H,, _¢(m; W) = H,,_,_(K; A). Since homology commutes with
direct limits this proves the theorem. O

The finiteness condition cannot be relaxed further when r» = 2 and n = 4, for
Kapovich has given an example of a pair v < 7w with © a PDy-group, w/v a
PDy-group and v finitely generated but not F P, [Ka98].
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The most useful case of this theorem is when G = Z. The argument of the
first paragraph of the theorem shows that if K is any normal subgroup such
that /K = 7 then H"(K; A) = Ho(m; W) = 0, and so c.d.K < n. (This weak
version of Strebel’s Theorem suffices for some of the applications below.)

Let R be a ring. An R-chain complex has finite k-skeleton if it is chain homo-
topy equivalent to a complex P, with P; a finitely generated free R-module
for j < k. If R is a subring of S and C, is an S-chain complex then C; is
R-finitely dominated if Cy|g is chain homotopy equivalent to a finite projec-
tive R-chain complex. The argument of Theorem 1.19 extends easily to the
nonaspherical case as follows. (See Chapter 2 for the definition of PD,,-space.)

Theorem 1.19" Let M be a PD,,-space, p : m1(M) — G be an epimorphism
with G a PD,-group and v = Ker(p). If C.(M)|, has finite [n/2]-skeleton
then C.(M) is Z[v]-finitely dominated and H®(M,;Z[v]) = Hy,—r—s(M,; Z[v]),

for all s. O

If M is aspherical then M, = K(v,1) is a PD,,_,-space, by Theorem 1.19. In
Chapter 4 we shall show that this holds in general.

Corollary 1.19.1 Ifeither r =n—1 or r =n—2 and v is infinite or r = n—3
and v has one end then M is aspherical. a

1.9 Hilbert modules

Let m be a countable group and let #2(7) be the Hilbert space completion of
C[r] with respect to the inner product given by (Xagzg, Lbph) = Sagh,. Left
and right multiplication by elements of 7 determine left and right actions of
C[n] as bounded operators on £2(r). The (left) von Neumann algebra A/ () is
the algebra of bounded operators on £2(7) which are C[r]-linear with respect to
the left action. By the Tomita-Takesaki theorem this is also the bicommutant
in B(¢%(m)) of the right action of C[x], i.e., the set of operators which commute
with every operator which is right C[r]-linear. (See [Su, pages 45-52].) We may
clearly use the canonical involution of C[x| to interchange the roles of left and
right in these definitions.

If e € 7w is the unit element we may define the von Neumann trace on N ()
by the inner product tr(f) = (f(e),e). This extends to square matrices over
N () by taking the sum of the traces of the diagonal entries. A Hilbert N (r)-
module is a Hilbert space M with a unitary left w-action which embeds iso-
metrically and m-equivariantly into the completed tensor product H&¢? (m) for
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some Hilbert space H. It is finitely generated if we may take H = C" for
some integer n. (In this case we do not need to complete the ordinary ten-
sor product over C.) A morphism of Hilbert N (7)-modules is a m-equivariant
bounded linear operator f: M — N. It is a weak isomorphism if it is injective
and has dense image. A bounded 7-linear operator on £?(7)" = C" ® £2(r)
is represented by a matrix whose entries are in N(w). The von Neumann
dimension of a finitely generated Hilbert N (m)-module M is the real num-
ber dimp(z (M) = tr(P) € [0,00), where P is any projection operator on
H @ (*(r) with image m-isometric to M. In particular, dimpy (M) = 0 if
and only if M = 0. The notions of finitely generated Hilbert N (7)-module
and finitely generated projective N (7)-module are essentially equivalent, and
arbitrary N (m)-modules have well-defined dimensions in [0, co] [Lii].

If 7 is residually finite or satisfies the Strong Bass Conjecture and P is a finitely
generated projective Z[r]-module then ¢2(7) ® P = ¢2(x)*(P) [Ec96].

A sequence of bounded maps between Hilbert N (7)-modules

M-—2s NP
is weakly exact at N if Ker(p) is the closure of Im(j). If0 = M - N - P — 0
is weakly exact then j is injective, Ker(p) is the closure of Im(j) and Im(p) is
dense in P, and dimps(x)(N) = dimprr) (M) + dimprr)(P). A finitely gener-
ated Hilbert N (m)-complex Cy is a chain complex of finitely generated Hilbert
N (7)-modules with bounded C|[r]-linear operators as differentials. The re-
duced L?-homology is defined to be I:I]g2)(0*) = Ker(dy,)/Im(dpi1). The pt"
L?-Betti number of C, is then dimN(ﬂ)ﬂéz)(C*). (As the images of the dif-

ferentials need not be closed the unreduced L?-homology modules H;(,z)(C*) =
Ker(d,)/Im(d,+1) are not in general Hilbert modules.)

See [Lii] for more on modules over von Neumann algebras and L? invariants of
complexes and manifolds.

[In this book L2?-Betti number arguments replace the localization arguments
used in [H2]. However we shall recall the definition of safe extension of a group
ring used there. An inclusion of rings Z[G] < S is a safe extension if it is flat, S
is weakly finite and S ®zg) Z = 0. If G has a nontrivial elementary amenable
normal subgroup whose finite subgroups have bounded order and which has no
nontrivial finite normal subgroup then Z[G| has a safe extension.]
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Chapter 2

2-Complexes and PDs;-complexes

This chapter begins with a review of the notation we use for (co)homology
with local coefficients and of the universal coefficient spectral sequence. We
then define the L?-Betti numbers and present some useful vanishing theorems
of Liick and Gromov. These invariants are used in §3, where they are used to
estimate the Euler characteristics of finite [r, m]-complexes and to give a con-
verse to the Cheeger-Gromov-Gottlieb Theorem on aspherical finite complexes.
Some of the arguments and results here may be regarded as representing in
microcosm the bulk of this book; the analogies and connections between 2-
complexes and 4-manifolds are well known. We then review Poincaré duality
and PD,-complexes. In §5-§9 we shall summarize briefly what is known about
the homotopy types of PDs-complexes.

2.1 Notation

Let X be a connected cell complex and let X be its universal covering space. If
H is a normal subgroup of G' = m1(X) we may lift the cellular decomposition of
X to an equivariant cellular decomposition of the corresponding covering space
Xg. The cellular chain complex of Xg with coefficients in a commutative
ring R is then a complex C, = C.(Xp) of left R[G/H]-modules, with respect
to the action of the covering group G/H. A choice of lifts of the g-cells of X
determines a free basis for Cy, for all g, and so C is a complex of free modules.
If X is a finite complex G is finitely presentable and these modules are finitely
generated. If X is finitely dominated, i.e., is a retract of a finite complex, then
G is again finitely presentable, by Lemma 1.12. Moreover the chain complex
of the universal cover is chain homotopy equivalent over R|G| to a complex of
finitely generated projective modules [W165]. The Betti numbers of X with
coefficients in a field F' shall be denoted by S;(X; F) = dimpH;(X; F) (or just
Bi(X). if F = Q).

The i*" equivariant homology module of X with coefficients R[G/H] is the left
module H;(X; R|G/H]) = H;(Cy), which is clearly isomorphic to H;(Xg; R) as
an R-module, with the action of the covering group determining its R[G/H]-

module structure. The i*" equivariant cohomology module of X with coeffi-
cients R[G/H] is the right module H'(X;R[G/H]) = H'(C*), where C* =
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26 Chapter 2: 2-Complexes and P D3-complexes

Hompgjq/m)(Cx, RIG/H]) is the associated cochain complex of right R[G/H]-
modules. More generally, if A and B are right and left Z[G/H]|-modules (re-
spectively) we may define H;(X;A) = H;(A ®z(q/m) Cs) and H" 7 (X;B) =
H" I (Homgz g /m)(Cx, B)). There is a Universal Coefficient Spectral Sequence
(UCSS) relating equivariant homology and cohomology:

EY = Batlyg ,(H,(X: RIG/H)), RIG/H]) = H"(X; RG/H)),

R[G/H]
with 7t" differential d, of bidegree (1 —r,r).

If J is a normal subgroup of G which contains H there is also a Cartan-Leray
spectral sequence relating the homology of Xz and X;:

E2, = TorfIC/H(R(G/ J), Hy(X; RIG/H])) = Hyiq(X; R[G/J)),

with 7t differential d" of bidegree (—r,r — 1). (See [Mc] for more details on
these spectral sequences.)

If M is a cell complex let cpr : M — K (w1 (M), 1) denote the classifying map for
the fundamental group and let fy; : M — P>(M) denote the second stage of the
Postnikov tower for M. (Thus ey = ep,(ayfur-) Amap f: X — K(mi(M),1)
lifts to a map from X to P»(M) if and only if f*ki(M) = 0, where k(M)
is the first k-invariant of M in H3(m(M);m2(M)). In particular, if ki (M) =
0 then cp,(ps) has a cross-section. The algebraic 2-type of M is the triple
[, ma(M), k1(M)]. Two such triples [,IL, k] and [#/,II', k'] (corresponding to
M and M’ respectively) are equivalent if there are isomorphisms « : 7 — 7’
and 8 : II — II' such that S(gm) = a(g)B(m) for all g € # and m € II
and B«x = o*k’ in H3(m;a*II'). Such an equivalence may be realized by
a homotopy equivalence of Py(M) and Py(M’). (The reference [Ba] gives a
detailed treatment of Postnikov factorizations of nonsimple maps and spaces.)
Throughout this book closed manifold shall mean compact, connected TOP
manifold without boundary. Every closed manifold has the homotopy type of
a finite Poincaré duality complex [KS].

2.2 L2-Betti numbers

Let X be a finite complex with fundamental group 7. The L?-Betti numbers
of X are defined by ﬁi@)(X) = dimN(W)(Héz)(f()), where the L2-homology
I:Ii(Q)()?) = EQ(CZ&Q)) is the reduced homology of the Hilbert A (7)-complex
c® =g @7 Cx (X) of square summable chains on X . They are multiplicative

in finite covers, and for ¢ = 0 or 1 depend only on 7. (In particular, ,862) (m)=0
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2.2 L?-Betti numbers 27

if 7 is infinite.) The alternating sum of the L2-Betti numbers is the Euler
characteristic x(X). (See [Lii].)

It may be shown that 61;(2) (X) = dimpr(r Hi(N (7) @77 Cx (X)), and this formu-
lation of the definition applies to arbitrary complexes [CG86, Lii]. In particular,
ﬁi(Q) (m) = dimprr Hi(m; N (7)) is defined for all 7. If X is finitely dominated
then 2,852) (X) < o0, and if also 7 satisfies the Strong Bass Conjecture then
X(X) = E(—l)iﬁfg)(X) [Ec96]. Moreover, ﬂgQ)(X) = B§2)(7r) for s =0 or 1,
and ﬁéz) (X) > 552) (m). (See Theorems 1.35 and 6.54 of [Li].) If 7 = Ax¢ B

the argument for [Lii, Theorem 1.35.5] extends to give B%Q) (m) > ﬁ - ﬁ - ﬁ.

(Similarly for A ¢ ¢.) Thus if ,852) (m) = 0 then e(m) is finite.

Lemma 2.1 Let m = Hx*y be a finitely presentable group which is an ascend-
ing HNN extension with finitely generated base H. Then 552) (m) =0.

Proof Let ¢t be the stable letter and let H,, be the subgroup generated by H
and t", and suppose that H is generated by g elements. Then [r : H,] = n,

S0 552)(Hn) = nﬁf) (m). But each H,, is also finitely presentable and generated
by g + 1 elements. Hence Bf) (Hy,) <g+1, and so 552) (m) = 0. O

In particular, this lemma holds if H is normal in 7 and n/H = Z.

Theorem 2.2 (Liick) Let m be a group with a finitely generated infinite
normal subgroup A such that /A has an element of infinite order. Then

@) =o0.

Proof (Sketch) Let p < m be a subgroup containing A such that p/A = Z.
The terms in the line p + ¢ = 1 of the homology LHSSS for p as an exten-
sion of Z by A with coefficients N (p) have dimension 0, by Lemma 2.1. Since
dimpr(pyM = dimpr(zy (N () @pr(p) M) for any N (p)-module M the correspond-
ing terms for the LHSSS for 7 as an extension of 7/A by A with coefficients
N () also have dimension 0 and the theorem follows. d

This is Theorem 7.2.6 of [Lii]. The hypothesis “7r/A has an element of infinite
order” can be relaxed to “m/A is infinite” [Ga00]. The next result also derives
from [Li]. (The case s =1 is extended further in [PT11].)

Theorem 2.3 Let m be a group with an ascendant subgroup N such that
ﬁz.(Q)(N) =0 for all i < s. Then 61-(2)(71) =0 forall i <s.
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28 Chapter 2: 2-Complexes and P D3-complexes

Proof Let N = Ny < N1 < --- < N3 = 7w be an ascendant sequence. Then
we may show by transfinite induction on « that BZ-(Z) (Ng) =0 for all i < s
and o < 3, using parts (2) and (3) of [Lii, Theorem 7.2] for the passages to
successor ordinals and to limit ordinals, respectively. O

Corollary 2.3.1 (Gromov) Let m be a group with an infinite amenable nor-
mal subgroup A. Then 52(2)(77) =0 for all i.

Proof If A is an infinite amenable group 51(2) (A) =0 for all i [CG&6]. O

Note that the normal closure of an amenable ascendant subgroup is amenable.

2.3 2-Complexes and finitely presentable groups

If a group 7 has a finite presentation P with ¢ generators and r relators then
the deficiency of P is def(P) = g —r, and def(m) is the maximal deficiency of
all finite presentations of . Such a presentation determines a finite 2-complex
C(P) with one 0-cell, g 1-cells and r 2-cells and with m(C(P)) = w. Clearly
def(P) = 1 - x(P) = Bi(C(P)) — B(C(P)) and so def(r) < By(r) — fa(r).
Conversely every finite 2-complex with one 0-cell arises in this way. In general,
any connected finite 2-complex X is homotopy equivalent to one with a single
0-cell, obtained by collapsing a maximal tree 7' in the 1-skeleton X

We shall say that = has geometric dimension at most 2, written g.d.w < 2, if
it is the fundamental group of a finite aspherical 2-complex.

Theorem 2.4 Let X be a connected finite 2-complex with fundamental group
. Then 552) (X) > ﬁéQ) (m), with equality if and only if X is aspherical.

Proof Since we may construct K = K(m, 1) by adjoining cells of dimen-
sion > 3 to X the natural homomorphism Hs(cy) is an epimorphism, and so
@2) (X) > BéQ) (7). Since X is 2-dimensional m5(X) = Hy(X;Z) is a subgroup
of ﬁ2(2)()?), with trivial image in ﬁéz)(k) If moreover ﬂéQ)(X) = Bég)(ﬂ)

then Hj(cx) is an isomorphism [Lii, Lemma 1.13], so m2(X) = 0 and X is
aspherical. O

Corollary 2.4.1 Let w be a finitely presentable group. Then
def(m) <1+ ﬁ?) (m) — 652) (). If equality holds then g.d.w < 2.
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2.3 2-Complexes and finitely presentable groups 29

Proof This follows from the theorem and the L?-Euler characteristic formula,
applied to the 2-complex associated to an optimal presentation for . a

Theorem 2.5 Let 7 be a finitely presentable group such that Bf) (r) = 0.
Then def(m) < 1, with equality if and only if g.d.w < 2 and [a(7) = p1(mw) — 1.

Proof The upper bound and the necessity of the conditions follow as in Corol-
lary 2.4.1. Conversely, if they hold and X is a finite aspherical 2-complex with
71 (X) = 7 then x(X) = 1 — Bi(7) + B2(m) = 0. After collapsing a maximal
tree in X we may assume it has a single 0-cell, and then the presentation read
off the 1- and 2-cells has deficiency 1. m|

This theorem applies if 7 is finitely presentable and is an ascending HNN ex-
tension with finitely generated base H, or has an infinite amenable normal
subgroup. In the latter case BZ-(Q)(W) = 0 for all 7, by Theorem 2.3. Thus if X
is a finite aspherical 2-complex with m1(X) = & then x(X) = 0, and so the
condition fa(m) = f1(m) — 1 is redundant.

[Similarly, if Z[r] has a safe extension ¥ and C, is the equivariant cellular
chain complex of the universal cover X then W ®@zx Cx is a complex of free
left W-modules with bases corresponding to the cells of X. Since V¥ is a safe
extension H;(X; W) = Yy Hi(X;Z[r]) = 0 for all 7, and so again x(X) = 0]

Corollary 2.5.1 Let w be a finitely presentable group with an F'P, normal
subgroup N such that w/N = 7. Then def(mw) =1 if and only if N is free.

Proof If def(w) = 1 then g.d.w < 2, by Theorem 2.5, and so N is free [Bi,
Corollary 8.6]. The converse is clear. |

In fact it suffices to assume that N is finitely generated (rather than FPy)
[Ko06]. (See Corollary 4.3.1 below.)

Let G = F(2)x F(2). Then ¢.d.G = 2 and def(G) < f1(G)—p2(G) = 0. Hence
(u,v,z,y | ur = zu, uy = yu, vr = rv, vy = yv) is an optimal presentation,
and def(G) = 0. The subgroup N generated by u, vz~! and ¥ is normal in G
and G/N = Z, so BP(G) = 0, by Lemma 2.1. However N is not free, since
u and y generate a rank two abelian subgroup. It follows from Corollary 2.5.1
that N is not F'P,, and so F'(2) x F'(2) is not almost coherent.

The next result is a version of the Tits alternative for coherent groups of coho-
mological dimension 2. For each m € Z let Zx,, be the group with presentation
(a,t|tat=t = a™). (Thus Z*g = Z and Zx_1 =7 x_17.)
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30 Chapter 2: 2-Complexes and P D3-complexes

Theorem 2.6 Let 7 be a finitely generated group such that c.d.m = 2. Then
T =2 Z,, for some m # 0 if and only if it is almost coherent and restrained
and w /7 is infinite.

Proof The conditions are easily seen to be necessary. Conversely, if 7 is almost
coherent and m/x" is infinite 7 is an HNN extension with F P, base H, by
Theorem 1.13. The HNN extension must be ascending as 7 has no noncyclic free
subgroup. Hence H?(m;Z[r]) is a quotient of H'(H;Z[r]) = H'(H;Z[H]) ®
Z[n/H], by the Brown-Geoghegan Theorem. Now H?(m;Z[r]) # 0, since 7 is
FPy and c.d.m = 2, and so HY(H;Z[H]) # 0. Since H is restrained it must

have two ends, so H =2 Z and 7 = Zx,, for some m # 0. i

Corollary 2.6.1 Let w be a finitely generated group. Then the following are
equivalent:

(1) w2 Zx,, for some m € Z;

(2) = is torsion-free, elementary amenable, F'P, and h(m) < 2;
(3) = is elementary amenable and c.d.w < 2;

(4) m is almost coherent, amenable and c.d.mw < 2;

(5) m is elementary amenable and def(m) = 1; and

(6) 7 is almost coherent, restrained and def(m) = 1.

Proof Condition (1) clearly implies the others. Suppose (2) holds. We may
assume that h(m) = 2 and h(y/7) = 1 (for otherwise @ = Z, Z% = Z%; or
Zx_17Z = Zx_1). Hence h(w/y/7) = 1, and so w/y/7 is an extension of Z
or D by a finite normal subgroup. If 7/\/m maps onto D then m = A x¢ B,
where [A: C] =[B:C] =2 and h(A) =h(B) =h(C) =1, and so 7 = Z*_;.
But then h(y/m) = 2. Hence we may assume that m maps onto Z, and so 7
is an ascending HNN extension with finitely generated base H, by Theorem
1.13. Since H is torsion-free, elementary amenable and h(H) = 1 it must be
infinite cyclic and so (2) implies (1). If (3) holds 7 is solvable, by Theorems
1.11, and 1.9, and so (1) follows from [Gi79]. If (4) holds then 7 is restrained,
and x(m) = 0 [Ec96], so m/7" is infinite. If def(w) = 1 then 7 is an ascending

HNN extension with finitely generated base, so 59) (r) = 0, by Lemma 2.1.
Hence (4), (5) and (6) each imply (1), by Theorems 2.5 and 2.6. O

If 7 is FPy then (3) = (2) (without invoking [Gi79]). Are these conditions

equivalent to “m is restrained and c.d.w < 2” or “r is restrained and def(w) =
17?7 (Note that if def(7) > 1 then 7 has noncyclic free subgroups [Ro77].)
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2.3 2-Complexes and finitely presentable groups 31

Let X be the class of groups of finite graphs of groups, with all edge and vertex
groups infinite cyclic. A finitely generated, noncyclic group G is in X if and
only if ¢.d.G = 2 and G has an infinite cyclic subgroup H which meets all its
conjugates nontrivially [Kr90’]. Moreover, G is coherent, one ended, def(G) > 1

and ¢.d.G =2 [Kr90’], while ﬂf)(G) =0 [PT11, Theorem 5.12].

Theorem 2.7 Let w be a finitely generated group such that c.d.w = 2. If
7w has a nontrivial normal subgroup E which is either elementary amenable
or almost coherent, locally virtually indicable and restrained then m is in X,
def(G) =1 and either E = Z or ©' is abelian.

Proof Since c.d.F < c.d.w, finitely generated subgroups of F are metabelian,
by Theorems 1.11 and 2.6 and Corollary 2.6.1, and so all words in E of the
form [[g, h], [¢', h']] are trivial. Hence E is metabelian also. Therefore A = v/ E
is nontrivial, and as A is characteristic in F it is normal in 7. Since A is the
union of its finitely generated subgroups, which are torsion-free nilpotent groups
of Hirsch length < 2, it is abelian. If A = Z then [r : C(A)] < 2. Moreover
Cr(A) is free, by Bieri’s Theorem. If Cy(A)’ is cyclic then 7 = Z2 or Zx _1Z; if
Cr(A)" is nonabelian then £ = A = 7. Otherwise c.d.A = ¢.d.C(A) = 2 and
so Cr(A) = A, by Bieri’s Theorem. If A has rank 1 then Aut(A) is abelian,
so 7 < Cr(A) and 7 is metabelian. If A = Z? then 7/A is isomorphic to a
subgroup of GL(2,7Z), and so is virtually free. As A together with an element
t € 7 of infinite order modulo A would generate a subgroup of cohomological
dimension 3, which is impossible, the quotient /A must be finite. Hence
7w 2 7% or Zx_1Z. In all cases 7 is in X [Kr90’, Theorem C]. Since def(G) > 1

and BP(G) =0, we see that def(G) = 1. O

If c.dr =2, {(m # 1 and 7 is nonabelian then (7 = Z and 7’ is free, by Bieri’s
Theorem. On the evidence of his work on 1-relator groups Murasugi conjectured
that if G is a finitely presentable group other than Z? and def(G) > 1 then
(G =Z or 1, and is trivial if def(G) > 1, and he verified this for classical link
groups [Mu65]. Theorems 2.3, 2.5 and 2.7 together imply that if (G is infinite
then def(G) =1 and (G = Z.

It remains an open question whether every finitely presentable group of coho-
mological dimension 2 has geometric dimension 2. The following partial answer
to this question was first obtained by W.Beckmann under the additional as-
sumptions that = is F'F and c.d.m < 2 (see [Dy87']).

Theorem 2.8 Let 7w be a finitely presentable group. Then g.d.m < 2 if and
only if c.d.om < 2 and def(m) = Bi(7) — Pa(m).
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32 Chapter 2: 2-Complexes and P D3-complexes

Proof The necessity of the conditions is clear. Suppose that they hold and
that C(P) is the 2-complex corresponding to a presentation for 7 of maximal

deficiency. The cellular chain complex of C'(P) gives an exact sequence
0 — K =m(C(P)) — Zlr|" — Z|n)? — Z|r] - Z — 0.

Extending coefficients to Q gives a similar exact sequence, with kernel Q ®7 K
on the left. As c.d.qmr < 2 the image of Q[n]" in Q[n]Y is projective, by
Schanuel’s Lemma. Therefore the inclusion of Q ®7 K into Q[r]" splits, and
Q®z K is projective. Moreover dim@@@zm K) =0, and so Q®z K = 0, since
the Weak Bass Conjecture holds for 7 [Ec86]. Since K is free as an abelian
group it imbeds in Q ®z K, and so is also 0. Hence C(P) is contractible, and
so C(P) is aspherical. O

The arguments of this section may easily be extended to other highly connected
finite complexes. A [r,m]f-complex is a finite m-dimensional complex X with
71(X) = 7 and with (m — 1)-connected universal cover X. Such a [T, m] -
complex X is aspherical if and only if 7,,(X) = 0. In that case we shall say
that 7 has geometric dimension at most m, written g.d.m < m.

Theorem 2.4" Let X be a [r, m]s-complex and suppose that 552)(77) =0 for
i <m. Then (—1)"x(X) > 0. If x(X) =0 then X is aspherical. O

In general, the final implication of this theorem cannot be reversed. For S'v S*
is an aspherical [F(2), 1] -complex and 682)(F(2)) =0, but x(S'v St #0.

One of the applications of L%-cohomology in [CG86] was to show that if X is a
finite aspherical complex and 71 (X) has an infinite amenable normal subgroup
A then x(X) = 0. (This generalised a theorem of Gottlieb, who assumed that
A was a central subgroup [Go65].) We may similarly extend Theorem 2.5 to
give a converse to the Cheeger-Gromov extension of Gottlieb’s Theorem.

Theorem 2.5’ Let X be a [r, m]-complex and suppose that w has an infinite
amenable normal subgroup. Then X is aspherical if and only if x(X)=0. O

2.4 Poincaré duality
The main reason for studying PD-complexes is that they represent the ho-

motopy theory of manifolds. However they also arise in situations where the
geometry does not immediately provide a corresponding manifold. For instance,
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2.5 PD3s-complexes 33

under suitable finiteness assumptions an infinite cyclic covering space of a closed
4-manifold with Euler characteristic 0 will be a PD3-complex, but need not be
homotopy equivalent to a closed 3-manifold. (See Chapter 11.)

A PDy-space is a space homotopy equivalent to a cell complex which satisfies
Poincaré duality of formal dimension n with local coefficients. If X is a PD,-
space with fundamental group 7 then C’j(f( ) is Z|r]-finitely dominated, so 7 is
FP,. The PD,-space X is finiteif C,(X) is Z[r]-chain homotopy equivalent to
a finite free Z[rn]-complex. It is a PD,,-complez if it is finitely dominated. This
is so if and only if 7 is finitely presentable [Br72, Br75]. Finite PD,,-complexes
are homotopy equivalent to finite complexes. (Note also that a cell complex
X is finitely dominated if and only if X x S! is finite [Rn95, Proposition 3].)
Although PD,-complexes are most convenient for our purposes, the broader
notion of PD,-space is occasionally useful. All the PD, -complexes that we
consider shall be connected.

Let P be a PD,-complex. We may assume that P = P, U D™, where P,
is a complex of dimension < max{3,n — 1} [WI67]. Let 7 = m(P), w =
wi(P) and 7t = Ker(w), and let P* = P+ be the associated covering
space. If C, = C.(P) the Poincaré duality isomorphism may be described
in terms of a chain homotopy equivalence C* = C,,_,, which induces isomor-
phisms from H’(C*) to H,_;(C.), given by cap product with a generator [P]
of Hy(P;Z") = Hu(Z Qg Cy). From this point of view it is easy to see
that Poincaré duality gives rise to (Z-linear) isomorphisms from H’(P;B) to
H,_;(P;B), where B is any left Z[r]-module of coefficients. (See [W167] or
[W1, Chapter II] for further details.) If P is a Poincaré duality complex then
the L?-Betti numbers also satisfy Poincaré duality. (This does not require that
P De finite or orientable!)

A group G is a PD,,-group (as defined in Chapter 1) if and only if K(G,1) is
a PD,-space. For every n > 4 there are PD, -groups which are not finitely
presentable [Da98].

Dwyer, Stolz and Taylor have extended Strebel’s Theorem to show that if H
is a subgroup of infinite index in 7w then the corresponding covering space Pp
has homological dimension < n; hence if moreover n £ 3 then Py is homotopy
equivalent to a complex of dimension < n [DST96].

2.5 PDj3;-complexes

In this section we shall summarize briefly what is known about PD,,-complexes
of dimension at most 3. It is easy to see that a connected PD;-complex must
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34 Chapter 2: 2-Complexes and P D3-complexes

be homotopy equivalent to S*. The 2-dimensional case is already quite difficult,
but has been settled by Eckmann, Linnell and Miiller, who showed that every
P Dy-complex is homotopy equivalent to a closed surface. (See [DD, Chapter
VI]. This result has been further improved by Bowditch’s Theorem.) There
are PDs-complexes with finite fundamental group which are not homotopy
equivalent to any closed 3-manifold. On the other hand, Turaev’s Theorem
below implies that every PDs-complex with torsion-free fundamental group is
homotopy equivalent to a closed 3-manifold if every P Ds-group is a 3-manifold
group. The latter is so if the Hirsch-Plotkin radical of the group is nontrivial
(see §7 below), but remains open in general.

The fundamental triple of a PDs-complex P is (m1(P),w1(P),cp«[P]). This is
a complete homotopy invariant for such complexes. (See also §6 and §9 below.)

Theorem (Hendriks) Two P Ds-complexes are homotopy equivalent if and
only if their fundamental triples are isomorphic. O

When w;(P) # 0 the class [P] is only well-defined up to sign [Ta08]. (This issue
has no major consequences for us.) Turaev has characterized the possible triples
corresponding to a given finitely presentable group and orientation character,
and has used this result to deduce a basic splitting theorem [Tu90].

Theorem (Turaev) A PDs-complex is indecomposable with respect to con-
nected sum if and only if its fundamental group is indecomposable with respect
to free product. O

Wall asked whether every orientable P Ds-complex whose fundamental group
has infinitely many ends is a proper connected sum [WI167]. Since the funda-
mental group of a PD,-space is F'P» it is the fundamental group of a finite
graph of finitely generated groups in which each vertex group has at most one
end and each edge group is finite [DD, Theorem VI.6.3]. Crisp has given a
substantial partial answer to Wall’s question, based on this observation [Cr00].

Theorem (Crisp) Let P be an indecomposable orientable PDs-complex. If
m1(P) is not virtually free then it has one end, and so P is aspherical. O

The arguments of Turaev and Crisp for these theorems extend to PDs-spaces
in a straightforward manner. In particular, they imply that if P is a PD3-
space then m = m1(P) is virtually torsion-free. However, there is an inde-
composable orientable PDj-complex with m = S3 %55, S3 = F(2) x S3 and
double cover homotopy equivalent to L(3,1)§L(3,1). “Most” indecomposable
PDs-complexes with 7 virtually free have double covers which are homotopy
equivalent to connected sums of S*-manifolds [Hil2].
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2.6 The spherical cases

Let P be a PDs-space with fundamental group 7, and let w = wq(P). The
Hurewicz Theorem, Poincaré duality and a choice of orientation for P together
determine an isomorphism 7o(P) = H(7w;Z[r]). In particular, mo(P) = 0 if
and only if 7 is finite or has one end.

The possible PDs-complexes with 7 finite are well understood.

Theorem 2.9 [WI67] Let X be a PDs-complex with finite fundamental
group F'. Then

(1) X ~ S3, F has cohomological period dividing 4 and X is orientable;
(2) the first nontrivial k-invariant k(X) generates H*(F;7Z) = Z/|F|Z.

(3) the homotopy type of X is determined by F' and the orbit of k(X) under
Out(F) x {£1}.

Proof Since the universal cover X is also a finite P D3-complex it is homotopy
equivalent to S3. A standard Gysin sequence argument shows that F has
cohomological period dividing 4. Suppose that X is nonorientable, and let C' be
a cyclic subgroup of F' generated by an orientation reversing element. Let Z be

the nontrivial infinite cyclic Z[C]-module. Then H*(X¢;Z) = Hy(X¢;Z) = C,
by Poincaré duality. But H 2(X¢;7Z) = H*(C;7Z) = 0, since the classifying map
from X¢ = X/C to K(C,1) is 3-connected. Therefore X must be orientable

and F must act trivially on m3(X) = Hs(X;Z).

The image of the orientation class of X generates Hs(F;Z) = Z/|F|Z. The
Bockstein 3 : H3(F;Q/Z) — H*(F;Z) is an isomorphism, since H9(F;Q) = 0
for ¢ > 0, and the bilinear pairing from H3(F;Z) x H*(F;Z) to Q/Z given by
(h,c) = B~ Y(c)(h) is nonsingular. Each generator g of H3(F;Z) determines
an unique k, € HY(F;Z) such that S71(k,)(g) = ﬁ mod Z. The element
corresponding to cx.[X] is the first nontrivial k-invariant of X [Th67]. Inner
automorphisms of F' act trivially on H*(F;Z), while changing the orientation
of X corresponds to multiplication by —1. Thus the orbit of k(X) under
Out(F) x {£1} is the significant invariant.

We may construct the third stage of the Postnikov tower for X by adjoining
cells of dimension greater than 4 to X . The natural inclusion j : X — P3(X)
is then 4-connected. If X; is another such PDs-complex and 6 : m1(X;) — F
is an isomorphism which identifies the k-invariants then there is a 4-connected
map ji : X1 — P3(X) inducing €, which is homotopic to a map with image
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in the 4-skeleton of P3(X), and so there is a map h: X; — X such that j; is
homotopic to jh. The map h induces isomorphisms on m; for ¢ < 3, since j
and j; are 4-connected, and so the lift & : Xi~B3 5 X~Sisa homotopy
equivalence, by the theorems of Hurewicz and Whitehead. Thus h is itself a
homotopy equivalence. m]

The list of finite groups with cohomological period dividing 4 is well known.
Each such group F and generator k € H*(F;Z) is realized by some PD; -
complex [Sw60, WI167]. (See also Chapter 11 below.) In particular, there is
an unique homotopy type of PDs-complexes with fundamental group Ss, but
there is no 3-manifold with this fundamental group [Mi57].

The fundamental group of a PDs-complex P has two ends if and only if P~
52, and then P is homotopy equivalent to one of the four S? x E!'-manifolds
52 x S, 82%x St RP? x S' or RP3RP3. The following simple lemma leads
to an alternative characterization of RP? x S*.

Lemma 2.10 Let X bea finite-dimensional complex with a connected regular
covering space X and covering group C Aut(X/X) If H, (X Z) = 0 for

q #m then Heipmi1(C;Z) = Hs(C Hm( ;7)), for all s >> 0.

Proof The lemma follows by devissage applied to the homology of C*()? ,
considered as a chain complex over Z[C]. (In fact s > dim(X)—m suffices.) O

Theorem 2.11 Let P be a PDs-space whose fundamental group m has a
nontrivial finite normal subgroup N . Then either P is homotopy equivalent to
RP? x S! or 7 is finite.

Proof We may clearly assume that  is infinite. Then Hq(lg; Z)=0for q > 2,
by Poincaré duality. Let II = mo(P). The augmentation sequence

0— A(r) = Z[r] = Z — 0
gives rise to a short exact sequence
0 — Homy(Z[n], Zlx]) — Homg(A(T), Zlx]) — H'(m; Z[x]) — 0.

Let f : A(m) — Z[n] be a homomorphism and ¢ be a central element of 7.

Then f.¢(i) = f(i)¢ = ¢f(i) = f(¢i) = f(i¢) and so (f.C—[)(i) = f(i(C—1)) =
if(¢—1) for all i € A(w). Hence f.( — f is the restriction of a homomorphism
from Z[r] to Z[n]. Thus central elements of 7 act trivially on H!(m;Z[x]).
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If n € N the centraliser v = C((n)) has finite index in 7, and so the covering
space P, is again a PD3-complex with universal covering space P. Therefore
IT = H(y;Z[y]) as a (left) Z[y]-module. In particular, II is a free abelian
group. Since n is central in v it acts trivially on H'(v;Z[y]) and hence via
w(n) on II. Suppose first that w(n) = 1. Then Lemma 2.10 (with X = P,

X=Pand m= 2) gives an exact sequence
0—Z/o(n)Z =11 =11 =0,

where o(n) is the order of n and the right hand homomorphism is multiplication
by o(n), since n acts trivially on II. As II is torsion-free we must have n = 1.

Therefore if n € N is nontrivial it has order 2 and w(n) = —1. In this case
Lemma 2.10 gives an exact sequence

0-II—-1II—Z/2Z -0,

where the left hand homomorphism is multiplication by 2. Since II is a free
abelian group it must be infinite cyclic. Hence P ~ S? and ]5/ (Z)2Z) ~
RP?. The theorem now follows, since any self homotopy equivalence of RP? is
homotopic to the identity (compare [W167, Theorem 4.4]). ]

If P is any PDs-complex and Cy({(g)) is infinite, for some g € 7, then ¢g? = 1,
w(g) = —1 and Cx((g)) has two ends [Cr00]. In fact, Cr({g)) = (g) x Z [Hil7’].

If m1(P) has a finitely generated infinite normal subgroup of infinite index then
it has one end, and so P is aspherical. We shall discuss this case next.

2.7 PDjs-groups

As a consequence of the work of Turaev and Crisp the study of PDjs-complexes
reduces largely to the study of PDs-groups. It is not yet known whether all such
groups are 3-manifold groups, or even whether they must be finitely presentable.
The fundamental groups of aspherical 3-manifolds which are Seifert fibred or are
finitely covered by surface bundles may be characterized among all PDs-groups
in simple group-theoretic terms.

Theorem 2.12 Let G be a PDs-group with a nontrivial F'P» normal sub-
group N of infinite index. Then either

(1) N=Z and G/N is virtually a PDs-group; or
(2) N isa PDy-group and G/N has two ends.

Geometry & Topology Monographs, Volume 5 (2002)



38 Chapter 2: 2-Complexes and P D3-complexes

Proof Let e be the number of ends of N. If N is free then H3(G;Z[G]) =
H?(G/N;H'(N;Z[G])). Since N is finitely generated and G/N is FP, this
is in turn isomorphic to H?(G/N;Z[G/N])¢~1). Since G is a PDs-group we
must have e — 1 = 1 and so N = Z. We then have H?(G/N;Z[G/N]) =
H3(G;2[G)) = Z*(%) . Hence G/N is virtually a PDy-group, by Bowditch’s
Theorem.

Otherwise c¢.d.N = 2 and so e = 1 or co. The LHSSS gives an isomorphism
HA(GZIG]) = H'(G/N:ZIG/N)) & H'(N;ZIN]) = H'(G/N;ZIG/N)¥ .
Hence either e = 1 or H'(G/N;Z[G/N]) = 0. But in the latter case we
have H3(G;Z[G]) = H?*(G/N;Z|G/N]) ® HY(N;Z[N]) and so H3(G;Z[G))
is either 0 or infinite dimensional. Therefore e = 1, and so H3(G;Z[G]) =
H'(G/N;Z|G/N])® H*(N;Z|N]). Hence G/N has two ends and H?(N;Z[N]
~ 7wGIN 50 N is a P Dy-group. O

We shall strengthen this result in Theorem 2.17 below.

Corollary 2.12.1 A PDsjs-space P is homotopy equivalent to the mapping
torus of a self homeomorphism of a closed surface if and only if there is an
epimorphism ¢ : w1 (P) — Z with finitely generated kernel.

Proof This follows from Theorems 1.19, 2.11 and 2.12. a

If 71(P) is infinite and is a nontrivial direct product then P is homotopy
equivalent to the product of S! with a closed surface.

Theorem 2.13 Let G be a PD3-group. If S is an almost coherent, restrained,
locally virtually indicable subgroup then S is virtually solvable. If S has infinite
index in G it is virtually abelian.

Proof Suppose first that S has finite index in G, and so is again a PDs3-
group. Since S is virtually indicable we may assume without loss of generality
that 31(S) > 0. Then S is an ascending HNN extension Hx, with finitely
generated base. Since G is almost coherent H is finitely presentable, and since
H3(S;7[S]) = 7*1(5) it follows from [BG85, Lemma 3.4] that H is normal in
S and S/H = Z. Hence H is a PDy-group, by Theorem 2.12. Since H has no
noncyclic free subgroup it is virtually Z? and so S and G are virtually poly-Z.

If [G: S] = oo then ¢.d.S < 2, by Strebel’s Theorem. Let J be a finitely
generated subgroup of S. Then J is F'P, and virtually indicable, and hence
is virtually solvable, by Theorem 2.6 and its Corollary. Since J contains a
PDy-group [KKO05, Corollary 1.4], it is virtually abelian. Hence S is virtually
abelian also. |
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As the fundamental groups of virtually Haken 3-manifolds are coherent and lo-
cally virtually indicable, this implies the Tits alternative for such groups [EJ73].
A slight modification of the argument gives the following corollary.

Corollary 2.13.1 A PDs-group G is virtually poly-Z if and only if it is
coherent, restrained and has a subgroup of finite index with infinite abelianiza-
tion. |

If 51(G) > 2 the hypothesis of coherence is redundant, for there is then an
epimorphism p : G — Z with finitely generated kernel [BNS87, Theorem D],
and the kernel is then F'P, by Theorem 1.19.

The argument of Theorem 2.13 and its corollary extend to show by induction
on m that a PD,,-group is virtually poly-Z if and only if it is restrained and
every finitely generated subgroup is F'P,,—1 and virtually indicable.

Theorem 2.14 Let G be a PDs-group. Then G is the fundamental group of
an aspherical Seifert fibred 3-manifold or a Sol®-manifold if and only if VG # 1.
Moreover

(1) h(vVG) =1 if and only if G is the group of an H? x E'- or SL-manifold;
(2) h(v/G) =2 if and only if G is the group of a Sol®-manifold;
(3) h(V/G) =3 if and only if G is the group of an E*- or Nil®-manifold.

Proof The necessity of the conditions is clear. (See [Sc83’], or §2 and §3 of
Chapter 7 below.) Certainly h(v/G) < c.d.v/G < 3. Moreover c.d./G = 3
if and only if [G : v/G] is finite, by Strebel’s Theorem. Hence G is virtually
nilpotent if and only if h(v/G) = 3. If h(v/G) = 2 then /G is locally abelian,
and hence abelian. Moreover /G must be finitely generated, for otherwise
c.d/G = 3. Thus VG = Z? and case (2) follows from Theorem 2.12.

Suppose now that h(v/G) =1 and let C' = Cg(v/G). Then VG is torsion-free
abelian of rank 1, so Aut(v/G) is isomorphic to a subgroup of Q*. If G/C is
infinite then c.d.C’' < 2, by Strebel’s Theorem. Moreover, Aut(v/G) is infinite,
so VG % 7. Therefore C is abelian, by [Bi, Theorem 8.8], and hence G is
solvable. But then h(v/G) > 1, which is contrary to our hypothesis. Therefore
G/C' is isomorphic to a finite subgroup of Q* = Z*° & (Z/2Z) and so has order
at most 2. In particular, if A is an infinite cyclic subgroup of v/G then A is
normal in G, and so G/A is virtually a PDy-group, by Theorem 2.12. If G/A
is a PDy-group then G is the fundamental group of an S'-bundle over a closed
surface. In general, a finite torsion-free extension of the fundamental group of
a closed Seifert fibred 3-manifold is again the fundamental group of a closed

Seifert fibred 3-manifold, by [Sc83] and [Zi, §63]. O
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The heart of this result is the deep theorem of Bowditch. The weaker character-
ization of fundamental groups of Sol®-manifolds and aspherical Seifert fibred
3-manifolds as PDs-groups G such that VG # 1 and G has a subgroup of
finite index with infinite abelianization is much easier to prove [H2]. There is
as yet no comparable characterization of the groups of H>-manifolds, although
it may be conjectured that these are exactly the PD3-groups with no noncyclic
abelian subgroups. (It has been recently shown that every closed H?-manifold
is finitely covered by a mapping torus [Agl3].)

Ni3- and SL-manifolds are orientable, and so their groups are PD;r -groups.
This can also be seen algebraically, as every such group has a characteristic
subgroup H which is a nonsplit central extension of a PD;r -group 8 by Z. An
automorphism of such a group H must be orientation preserving.

Theorem 2.14 implies that if a PDjs-group G is not virtually poly-Z then its
maximal elementary amenable normal subgroup is Z or 1. For this subgroup
is virtually solvable, by Theorem 1.11, and if it is nontrivial then so is V/G.

Lemma 2.15 Let G be a group such that c.d.G = 2 and let K be an ascendant
F P, subgroup of G. Then either |G : K] is finite or K is free.

Proof We may assume that K is not free, and so c.d. K = ¢.d.G = 2. Suppose
first that K is normal in G. Then G/K is locally finite [Bi, Corollary 8.6], and
so G is the increasing union of a (possibly finite) sequence of F'P, subgroups
K =Uy < Uy < ... such that [Uj41 : Uj] is finite, for all ¢ > 0. It follows
from the Kurosh subgroup theorem that if U < V are finitely generated groups
and [V : U] is finite then V has strictly fewer indecomposable factors than U
unless both groups are indecomposable. (See [Sc76, Lemma 1.4]). Hence if K
is a nontrivial free product then [G : K] is finite. Otherwise K has one end,
and so H*(U;; Z|U;]) = 0 for s <1 and ¢ > 0. Since K is F'P,, the successive
indices are finite and c.d.U; = 2 = ¢.d.G for all ¢ > 0 the union is finitely
generated, by the Gildenhuys-Strebel Theorem. Hence the sequence terminates
and [G : K] is again finite.

If K =Ky< K; <---< K3= G is an ascendant sequence then [K,41 : K]
is finite for all «, by the argument just given. Let w be the union of the finite
ordinals in 3. Then Uy, K, is finitely generated, by the Gildenhuys-Strebel
Theorem, and so w is finite. Hence the chain is finite, and so [G : K] < co. O

Theorem 2.16 Let G be a PDs-group with an ascending sequence of sub-
groups Ky < Kj < ... such that K, is normal in K41 for all n > 0. If
K = K is one-ended and F P, then the sequence is finite and either [K,, : K]
or |G : K] is finite, for all n > 0.
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Proof Suppose that [K; : K] and [G : K] are both infinite. Since K has one
end it is not free and so c.d.K = c.d. K1 = 2, by Strebel’s Theorem. Hence there
is a free Z[K1]-module W such that H?(K;; W) # 0 [Bi, Proposition 5.1]. Since
K is FP, and has one end HY(K;W) =0 for ¢=0 or 1 and H?(K;W) is an
induced Z[K1/K]-module. Since [K; : K] is infinite H°(K/K; H*(K;W)) =
[Bi, Lemma 8.1]. The LHSSS for K; as an extension of K;/K by K now gives
H"(K1; W) =0 for r < 2, which is a contradiction. A similar argument applies
to the other terms of the sequence.

Suppose that [K, : K] is finite for all n > 0 and let K= Unso K. If cdK =2
then [K : K] < 0o, by Lemma 2.15. Thus the sequence must be finite. O

Corollary 2.16.1 Let G be a PDs-group with an F'P, subgroup H which
has one end and is of infinite index in G. Let Hy = H and H;y1 = N¢(H;)
for i > 0. Then H= UH is F'Py and has one end, and either c.d. H =2 and
Ng(H) = H or [G: H] < 0o and G is virtually the group of a surface bundle.

Proof This follows immediately from Theorems 2.12 and 2.16. |

Corollary 2.16.2 If G has a subgroup H which is a P Ds-group with x(H) =
0 (respectively, < 0) then either it has such a subgroup which is its own nor-
malizer in G or it is virtually the group of a surface bundle.

Proof IfAc.d.ﬁI = 2 then [ﬁ : H] < o0, so H is a PDs-group, and X(H) =
[H - H)x(H). O

When y(H) < 0 the corollary follows easily from the finite divisibility of x(H),
but something like Theorem 2.16 seems necessary when x(H) = 0.

Theorem 2.17 Let G be a PDs-group with a nontrivial F' Py subgroup H
which is ascendant and of infinite index in G. Then either H = 7 and H is
normal in G or G is virtually poly-Z or H is a PDy-group, |G : Ng(H)| < oo
and Ng(H)/H has two ends.

Proof Let H = Hy < Hy < --- < H5 = G be an ascendant sequence and let
v = mln{a <3| [Ha H] oo}, Let H = Ua<yHo. Then h.d.H <2 and so
[G: H] = oo. Hence c.d.H < 2 also, by Strebel’s Theorem, and so either H is
free or [H : H] < 00, by Lemma 2.15.

If H is not free then c.d.H = 2 and H is F P>, normal and of infinite index
in Hy. Therefore [G : Hy] < oo and so H, is a PD3-group, by Theorem 2.16.
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Hence H is a PDsy-group and H,/ H has two ends, by Theorem 2.12. Since
[H : H] < oo it follows easily that H is a PDs-group, |G : Ng(H)] < co and
Ng(H)/H has two ends.

If H = F(r) for some r > 1 then ~ and [H : H] are finite, since [H, : H]
divides x(H) = 1—r for all n < . A similar argument shows that H./ H is not
locally finite. Let K be a finitely generated subgroup of H, which contains H
as a subgroup of infinite index. Then K/H is virtually free [Bi, Theorem 8.4],
and so K is finitely presentable. In particular, x(K) = x(H)x(K/H). Now
X(K) < 0 [KKO5, §9]. Since x(H) < 0 this is only possible if y(K/H) > 0,
and so K/ H is virtually Z. Hence we may assume that H, is the union of an
increasing sequence Ng = H < N; < ... of finitely generated subgroups with
N;/H virtually Z, for i > 1. For each i > 1 the group N; is F Py, ¢.d.N; =2,
H*(Ny; Z[IN;]) = 0 for s < 1 and [Nyy1 : IVg] is finite. Therefore H., is finitely
generated, by the Gildenhuys-Strebel Theorem.

In particular, H, is virtually a semidirect product H x Z, and so it is F'Py
and c.d.H, = 2. Hence H, is a PDy-group, by the earlier argument. But
PDs-groups do not have normal subgroups such as H. Therefore if H is free
it is infinite cyclic: H = Z. Since v/H, is characteristic in H, it is normal
in Hy 1, for each o < 3. Transfinite induction now shows that H < vG.
Therefore either VG = Z, so H = 7 and is normal in G, or G is virtually
poly-Z, by Theorem 2.14. a

If H is a PDs-group Ng(H) is the fundamental group of a 3-manifold which is
double covered by the mapping torus of a surface homeomorphism. There are
however Nil3-manifolds whose groups have no normal PDy-subgroup (although
they always have subnormal copies of Z?).

The original version of this result assumed that H is subnormal in G. (See
[BHI1] for a proof not using [Bo04] or [KKO05].)

2.8 Subgroups of PDj3-groups and 3-manifold groups

The central role played by incompressible surfaces in the geometric study of
Haken 3-manifolds suggests strongly the importance of studying subgroups of
infinite index in PDs-groups. Such subgroups have cohomological dimension
< 2, by Strebel’s Theorem.

There are substantial constraints on 3-manifold groups and their subgroups. Ev-
ery finitely generated subgroup of a 3-manifold group is the fundamental group
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of a compact 3-manifold (possibly with boundary), by Scott’s Core Theorem
[Sc73], and thus is finitely presentable and is either a 3-manifold group or has
finite geometric dimension 2 or is a free group. Aspherical closed 3-manifolds
are Haken, hyperbolic or Seifert fibred, by the work of Perelman [B-P]. The
groups of such 3-manifolds are residually finite [He87], and the centralizer of
any element in the group is finitely generated [JS]. Solvable subgroups of such
groups are virtually poly-Z [EJ73].

In contrast, any group of finite geometric dimension 2 is the fundamental group
of a compact aspherical 4-manifold with boundary, obtained by attaching 1- and
2-handles to D*. On applying the reflection group trick of Davis [Da83] to the
boundary we see that each such group embeds in a PDy-group. For instance,
the product of two nonabelian P Dy -groups contains a copy of F'(2) x F(2), and
so is a PDI—group which is not almost coherent. No PDj-group containing
a Baumslag-Solitar group (w,t | tzPt~1 = 29) is residually finite, since this
property is inherited by subgroups. Thus the question of which groups of finite
geometric dimension 2 are subgroups of PDg-groups is critical.

Kapovich and Kleiner have given an algebraic Core Theorem, showing that
every one-ended F'P, subgroup H in a PDjs-group G is the “ambient group” of
a PDs-pair (H,S) [KKO05]. Using this the argument of [Kr90a] may be adapted
to show that every strictly increasing sequence of centralizers in G has length at
most 4 [Hi06]. (The finiteness of such sequences and the fact that centralizers
in G are finitely generated or rank 1 abelian are due to Castel [Ca07].) With
the earlier work of Kropholler and Roller [KR88, KR89, Kr90, Kr93]| it follows
that if G has a subgroup H = Z? and v/G = 1 then it splits over a subgroup
commensurate with H. It also follows easily from the algebraic Core Theorem
that if a subgroup H is an X-group then H = 71(N) for some Seifert fibred
3-manifold N with N # (). In particular, no nontrivial Baumslag-Solitar
relation holds in G [Ca07].

The geometric conclusions of Theorem 2.14 and the coherence of 3-manifold
groups suggest that Theorems 2.12 and 2.17 should hold under the weaker
hypothesis that N be finitely generated. (Compare Theorem 1.19.) It is known
that F'(2) x F(2) is not a subgroup of any PD3-group [KR89]. This may be
regarded as a weak coherence result.

Is there a characterization of virtual PDs-groups parallel to Bowditch’s Theo-
rem? (It may be relevant that homology n-manifolds are manifolds for n < 2.
There is no direct analogue in high dimensions. For every k > 6 there are
F Py, groups G with H*(G;Z[G]) = Z but which are not virtually torsion-free
[FS93].)
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2.9 my(P) as a Z[r|-module

Let P be a PDs-space with fundamental group 7 and orientation character
w. If 7 is finite then w = 0, m(P) = 0 and cp.[P] € H3(m;Z) is essentially
equivalent to the first nontrivial k-invariant of P, as outlined in Theorem 2.9.
Suppose that 7 is infinite. If IV is another PD3-space and there is an isomor-
phism 6 : v = m(N) — 7 such that wi(N) = 0*w then mo(N) = 6*my(P) as
Z[v]-modules. If moreover ki(N) = 6*k1(P) (modulo automorphisms of the
pair (v,m2(N))) then Py(N) =~ P,(P). Since we may construct these Postnikov
2-stages by adjoining cells of dimension > 4 it follows that there is a map
f+ N — P such that m(f) = 0 and m(f) is an isomorphism. The homology
of the universal covering spaces N and P is 0 above degree 2, and so f is a
homotopy equivalence, by the Whitehead Theorem. Thus the homotopy type
of P is determined by the triple (m,w,k1(P)). One may ask how cp.[P] and
k1(P) determine each other.

There is a facile answer: in Turaev’s realization theorem for homotopy triples
the element of Hs(m;Z") is used to construct a cell complex X by attaching
2- and 3-cells to the 2-skeleton of K(m,1). If Ci is the cellular chain complex
of X then k;1(X) is the class of

0 — m(X) = C2/0Cs — C1 — Cy - Z — 0

in H3(m;ma(X)) = E$t%[ﬂ](Z,W2(X)). Conversely, a class k € Emt%[ﬂ](Z, IT)
corresponds to an extension

0—=1— Dy — Dy — Dy —7Z — 0,

with D; and Dy finitely generated free Z[r]-modules. Let D, be the complex
Dy — Dy — Dy, with augmentation ¢ to Z. If kK = ki(P) for a PDs3-
complex P then Tor?m (Z¥,D,) = H3(Py(P);Z") = Z (where Tor denotes
hyperhomology), and the augmentation then determines a class in Hg(m; Z")
(up to sign). Can these connections be made more explicit? Is there a natural
homomorphism from H3(w; HY(7; Z[x])) to Hz(m;Z™)?

If P is an orientable 3-manifold which is the connected sum of a 3-manifold
whose fundamental group is free of rank r with s > 1 aspherical 3-manifolds
then mo(P) is a finitely generated free Z[r]-module of rank r + s — 1 [Sw73].
We shall give a direct homological argument that applies for PDs-spaces with
torsion-free fundamental group, and we shall also compute H?(P;mo(P)) for
such spaces. (This cohomology group arises in studying homotopy classes of
self homotopy equivalences of P [HL74].)
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Theorem 2.18 Let P be a PDs-space with torsion-free fundamental group
7 and orientation character w = wy(P). Then

(1) if w is a nontrivial free group mo(P) is finitely generated and of projective
dimension 1 as a left Z[r]-module and H?(P;my(P)) is infinite cyclic;

(2) if 7 is not free ma(P) is a finitely generated free Z[n]-module, c.d.w = 3,
Hs(cp; Z*) is a monomorphism and H?(P;ms(P)) = 0;

(3) P is homotopy equivalent to a finite PDs-complex if and only if m is
finitely presentable and FF'.

Proof Two applications of Poincaré duality give, firstly, mo(P) = H!(7; Z[n])
and then H?(P;my(P)) = Hi(P; H'(m;Z[x])) = Hy(m; H' (7; Z[x])). Since 7 is
F P, it is accessible, and so m 2 7§, where G is a finite graph of groups with
all vertex groups finite or one-ended and all edge groups finite [DD, Theorem
VI.6.3]. There is an associated Mayer-Vietoris presentation

0 — BZ[G\7] = BZ[G\7] — H(;Z[r]) — 0,

where the sums involve only the finite vertex groups G, (and edge groups Ge)
[Ch76, Theorem 2]. If 7 is free of rank r > 0 we may assume there is one
vertex, with trivial vertex group, and r edges. The above presentation is then

0 — Z[r] = Z[x]" — H(m;Z[r]) — 0.

On applying the functor — ®z(,) Z, the left hand homomorphism becomes the
trivial homomorphism from Z — Z". Hence

HA(P;my(P)) & Hi(m; H'(m: Zlr])) = Tori™ (B (m: Z[x)), Z) = 2,
by the exact sequence of T'or. Moreover ma(P) has projective dimension 1. As
7 is finitely presentable and projective Z[F(r)]-modules are free [Ba64], P is

homotopy equivalent to a finite PD3s-complex [W165]. (In fact P is homotopy
equivalent to a connected sum of copies of S? x S and S?xS!.)

If 7 is torsion-free but not free then we may assume that the vertex groups
are finitely generated and have one end, and the edge groups are trivial. Hence
H(m;Z[x]) is a free right Z[r]-module with basis corresponding to the edges
of G, and so H?(P;m(P)) = 0. We may assume that P is 3-dimensional and
C.(P) is chain homotopy equivalent to a finitely generated projective Z[r]-
complex
0—>C3—>Cy—Cy— Cy—0,
where C; is free if ¢ < 2. Let Zs be the module of 2-cycles. Then the sequences
022y —>Cy—>C1 —Cy—>7Z—0
and 0— Cs — Zy — my(P)—0
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are exact, since Hs(P;Z) = 0. Attaching 3-cells to P along a basis for my(P)
gives an aspherical 3-dimensional complex K with fundamental group 7. The
inclusion of P into K may be identified with cp, and clearly induces monomor-
phisms H3(P; A) — Hs(m; A) for any coefficient module A. Hence c.d.m = 3.

If 7 is F'F there is a finite free resolution
0— D3 — Dy — Dy — Dy — 7Z — 0.

Therefore Z is finitely generated and stably free, by Schanuel’s Lemma. Since
ma(P) is free Zs = my(P)@®C3 and so Cj is also stably free. Hence if moreover 7
is finitely presentable then P is homotopy equivalent to a finite PD3-complex.
The converse is clear, by the above construction of K(m, 1) ~ K. d

We may remove the condition that 7 be torsion-free.

Corollary 2.18.1 If P is a PDs-space then mo(P) is finitely presentable as a
Z[r]-module. Moreover, H?(P;mo(P)) is a finitely generated abelian group of
rank 1, if 7 is infinite and virtually free, and is finite otherwise. If w is infinite
but not torsion-free the projective dimension of ma(P) is infinite.

Proof The first assertion follows from the theorem, since 7 is virtually torsion-
free, by Crisp’s Theorem. The second follows easily from the Mayer-Vietoris
presentation for H'(m;Z[r]). If 7 is infinite and mo(P) has finite projective
dimension then so does Zs, and so c.d.w < oo, and then 7 is torsion-free. O

Crisp uses an ingenious combinatorial argument based on the Mayer-Vietoris
presentation for H'(7;Z[r]) together with Lemma 2.10 to show that if P is
indecomposable, orientable and not aspherical the vertex groups must all be
finite, and so m is virtually free. Elementary group theory then leads to the
near-determination of the groups of such PD3s-complexes [Hil2]. (It is not yet
clear what are the indecomposable non-orientable P Ds-complexes.)
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Chapter 3

Homotopy invariants of
PD,-complexes

The homotopy type of a 4-manifold M is largely determined (through Poincaré
duality) by its algebraic 2-type and orientation character. In many cases the
formally weaker invariants 71 (M), wi (M) and x(M) already suffice. In §1 we
give criteria in such terms for a degree-1 map between PD,-complexes to be a
homotopy equivalence, and for a PD4-complex to be aspherical. We then show
in §2 that if the universal covering space of a PD4-complex is homotopy equiv-
alent to a finite complex then it is either compact, contractible, or homotopy
equivalent to S? or S3. In §3 we obtain estimates for the minimal Euler charac-
teristic of PDy-complexes with fundamental group of cohomological dimension
at most 2 and determine the second homotopy groups of PD4-complexes real-
izing the minimal value. The class of such groups includes all surface groups
and classical link groups, and the groups of many other (bounded) 3-manifolds.
The minima are realized by s-parallelizable PL 4-manifolds. In §4 we show that
if x(M) = 0 then m; (M) satisfies some stringent constraints, and in the final
section we define the reduced intersection pairing.

3.1 Homotopy equivalence and asphericity

Many of the results of this section depend on the following lemma, in conjunc-
tion with use of the Euler characteristic to compute the rank of the surgery
kernel. (Lemma 3.1 and Theorem 3.2 derive from [W], Lemmas 2.2 and 2.3].)

Lemma 3.1 Let R be a ring and C\ be a finite chain complex of projective
R-modules. If H;(C,) =0 for i < q and HI"'(Hompg(Cy, B)) = 0 for any left
R-module B then H,(Cy) is projective. If moreover H;(C,) =0 for i > q then

Hq(C’*) ® @izq—H (2) Ci = GBiEq (2) Ci.

Proof We may assume without loss of generality that ¢ = 0 and C; = 0
for i < 0. We may factor 9; : C1 — Cy through B = Imod; as 01 = j3,
where [ is an epimorphism and j is the natural inclusion of the submodule
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B. Since jB0, = 0102 = 0 and j is injective 02 = 0. Hence 5 is a 1-
cocycle of the complex Hompg(Cy, B). Since H'(Hompg(Cy, B)) = 0 there is
a homomorphism ¢ : Cy — B such that § = 001 = ¢j8. Since § is an
epimorphism ¢j = idp and so B is a direct summand of Cy. This proves the
first assertion.

The second assertion follows by an induction on the length of the complex. O

Theorem 3.2 Let M and N be finite PD4-complexes. A map f: M — N
is a homotopy equivalence if and only if 71(f) is an isomorphism, f*w;(N) =
w1 (M), f«[M] = +[N] and x(M) = x(N).

Proof The conditions are clearly necessary. Suppose that they hold. Up
to homotopy type we may assume that f is a cellular inclusion of finite cell
complexes, and so M is a subcomplex of N. We may also identify (M) with
7 =m(N). Let Co(M), C,(N) and D, be the cellular chain complexes of M,

N and (Kf , M), respectively. Then the sequence
0—Cy(M)— Ci(N)— D,—0
is a short exact sequence of finitely generated free Z[r]-chain complexes.

By the projection formula f.(f*a N [M]) = a N fi[M] = +a N [N] for any
cohomology class a € H*(N;Z[r]). Since M and N satisfy Poincaré du-
ality it follows that f induces split surjections on homology and split injec-
tions on cohomology. Hence H,(D,) is the “surgery kernel” in degree ¢ — 1,
and the duality isomorphisms induce isomorphisms from H"(Homgz (Dx, B))
to He_r(D.« ® B), where B is any left Z[r]-module. Since f induces iso-
morphisms on homology and cohomology in degrees < 1, with any coeffi-
cients, the hypotheses of Lemma 3.1 are satisfied for the Z[r]-chain com-
plex D,, with ¢ = 3, and so H3(D,.) = Ker(ma(f)) is projective. Moreover
H3(Dy) & D, pyaDi = D, epen, Pi- Thus H3(D,) is a stably free Z[r]-module
of rank y(E, M) = x(M) — x(E) = 0. Hence Hs(D,) = 0, since group rings
are weakly finite, and so f is a homotopy equivalence. |

If M and N are merely finitely dominated, rather than finite, then H3(D,) is a
finitely generated projective Z[r|-module such that Z ®z,) H3(Dx) = 0. If the
Wall finiteness obstructions satisfy f.o(M) = o(N) in Ko(Z[x]) then Hz(D.)
is stably free, and the theorem remains true. The theorem holds as stated
for arbitrary PDy-spaces if m satisfies the Weak Bass Conjecture. (Similar
comments apply elsewhere in this section.)

We shall see that when IV is aspherical and f = ¢j; we may drop the hypotheses
that f*w; (V) = w1 (M) and f has degree £1.
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Corollary 3.2.1 [Ha87] Let N be orientable. Then a map f: N — N which
induces automorphisms of m(N) and H4(N;Z) is a homotopy equivalence. O

Any self-map of a geometric manifold of semisimple type (e.g., an H*-, H2(C)-
or H? x H2-manifold) with nonzero degree is a homotopy equivalence [Re96].

If X is a cell complex with fundamental group 7 then mo(X) = Ha(X;Z[n]),

by the Hurewicz Theorem for X, and so there is an evaluation homomorphism
ev: H*(X;Z[x]) — Homgjz(m2(X), Z[x]). The latter module may be identified

with HO(m; H 2(5( ;Z|r])), the m-invariant subgroup of the cohomology of X
with coefficients Z[n].

Lemma 3.3 Let M be a PDs-space with fundamental group m and let Il =
mo(M). Then 11 = H?(M;Z[r|) and there is an exact sequence
0 — H?(m; Z[r]) — H*(M; Z[r]) —— Homgy(IL, Z[r]) — H3(m; Z[x]) — 0.

Proof This follows from the Hurewicz Theorem, Poincaré duality and the
UCSS, since H3(M;Z[r]) & H,(M;Z) = 0. O

Exactness of much of this sequence can be derived without the UCSS. When 7 is
finite the sequence reduces to the isomorphism 7o (M) = Homyy (m2(M), Z[x]).

Let ev(® : H(Qz)(ﬂ) — Homyy (ma(M),%(r)) be the analogous evaluation

defined on the wunreduced LZ?-cohomology by ev®(f)(z) = Bf(g~'2)g for
all square summable 2-cocycles f and all 2-cycles z representing elements of
Hy(X; Z[r]) = ma(M). Part of the next theorem is implicit in [Ec94].

Theorem 3.4 Let M be a PD,-complex with fundamental group w. Then
(1) if ﬂf) (m) =0 and either M is finite or m satisfies the Strong Bass Con-
jecture then x(M) > 0;
(2) Ker(ev®) is closed;
3) if BP(M) = B (xr) then H2(cpr; Z[n)) + H(m; Zlx]) — H2(M;Z[x]) is

an isomorphism.

Proof Since M is a PDj-complex ,81-(2)(M) = Bii)i(M), for all 7. If M is
finite or 7 satisfies the Strong Bass Conjecture then y (M) is the alternating
sum of the L?-Betti numbers [Ec96]. Therefore if, moreover, B§2) () =0 then

x(M) =265 + P (M) > 0.
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Let z € C’g(]Téf ) be a 2-cycle and f € CéQ)UTI/ ) a square-summable 2-cocycle. As
llev@ (£)(2)|l2 < |If]l2]|2]|2, the map f +— ev®(f)(z) is continuous, for fixed
z. Hence if f = limf, and ev®(f,) =0 for all n then ev?(f) =0.

The inclusion Z[r] < ¢*(7) induces a homomorphism from the exact sequence
of Lemma 3.3 to the corresponding sequence with coefficients ¢2(r). (See [Ec94,
§1.4]. Note that we may identify HO(W;H2(M; A)) with Homg(m2(M), A)
for A = Z[r] or £2(x) since M is l-connected.) As Ker(ev®) is closed and
ev® (5g)(z) = ev®(g)(dz) = 0 for any square summable 1-chain g, the ho-

momorphism ev® factors through the reduced L2-cohomology FI?Q)(M ). If
ﬁg) (M) = ﬁém(ﬂ') the classifying map ¢y : M — K(m, 1) induces weak isomor-
phisms on reduced L?-cohomology H €2) () = H Ez)(M ) for ¢ < 2. In particular,
the image of ﬁé) (7) is dense in ﬁé)(M) Since ev(® is trivial on H(22) (m) and
Ker(ev?) is closed it follows that ev® = 0. Since the natural homomorphism
from Homgq (w2 (M), Z[r]) to Homyy (ma(M),%(7)) is a monomorphism it
follows that ev = 0 also and so H?(cp; Z[r]) is an isomorphism. O

This gives a complete and natural criterion for asphericity (which we state as a
separate theorem to retain the enumeration of the original version of this book).

Theorem 3.5 Let M be a PD4-complex with fundamental group w. Then
M is aspherical if and only if H®(m; Z]r]) = 0 for s < 2 and 652) (M) = g) (7).

Proof The conditions are clearly necessary. If they hold then H?(M;Z[r])
H?(m;Z[r]) = 0 and so M is aspherical, by Poincaré duality.

o m

Is it possible to replace the hypothesis “Béz)(M ) = ,6’52) (m)” by “Bo(MT) =
Bo(Ker(wy(M)))”, where py : M+ — M is the orientation cover? It is easy to
find examples to show that the homological conditions on 7 cannot be relaxed
further.

Corollary 3.5.1 The PDs-complex M is finite and aspherical if and only if
7 Is a finitely presentable PDy-group of type FF and x(M) = x(n). ]

If Ba(m) # 0 this follows from Theorem 3.2. For we may assume 7 and M are
orientable, on replacing 7 by K = Ker(w;(M)) NKer(w;i(r)) and M by Mg.
As Hs(cpr;Z) is onto it is an isomorphism, so ¢p; has degree 1, by Poincaré
duality. Is M always aspherical if 7 is a PDy-group and x(M) = x(m)?
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Corollary 3.5.2 If x(M) = 5%2)(70 =0 and H*(m;Z[r]) = 0 for s < 2 then
M is aspherical and w is a PDy-group. a

Corollary 3.5.3 If = 7" then x(M) >0, and is 0 only if r =1, 2 or 4.
Proof If r > 2 then H*(m;Z[rn]) =0 for s < 2. O

Theorem 3.5 implies that if 7 is a PDys-group and x (M) = x(m) then cps.[M] is
nonzero. If x(M) > x(m) this need not be true. Given any finitely presentable
group 7 there is a finite 2-complex K with 71(K) = w. The boundary of a
regular neighbourhood N of some embedding of K in R® is a closed orientable
4-manifold M with 71 (M) = w. As the inclusion of M into N is 2-connected
and K is a deformation retract of N the classifying map cjs factors through cg
and so induces the trivial homomorphism on homology in degrees > 2. However
if M and 7 are orientable and [B2(M) < 2f5(w) then cp; must have nonzero
degree, for the image of H?(rm; Q) in H?(M;Q) then cannot be self-orthogonal

under cup-product.
Theorem 3.6 Let m be a PDy-group of type FF. Then def(m) < 1— %X(ﬂ').

Proof Suppose that 7 has a presentation of deficiency d > 1 — %X(ﬂ'), and let
X be the corresponding finite 2-complex. Then

B2 () = B2 () < B2(X) = 8P () = x(X) = 1 — d.
Since 552) (m) — 2ﬁ§2) (m) = x(m) and x(mw) > 2 — 2d it follows that 552)(7r) <

d — 1. Hence ﬁf) (X) = 0. Therefore X is aspherical, by Theorem 2.4, and so
c.d.m < 2. But this contradicts the hypothesis that 7 is a PDy-group. a

Note that if x(7) is odd the conclusion does not imply that def(r) < —3x(r).
An old conjecture of H.Hopf asserts that if M is an aspherical smooth 2k-
manifold then (—1)*y (M) > 0. The first open case is when k = 2. If Hopf’s
conjecture is true then def(m;(M)) < 0. Is def(w) < 0 for every PDy-group
7?7 This bound is best possible for groups with xy = 0, since the presentation
{a,b | ba® = a®b?, b%a = a®b>) gives a Cappell-Shaneson 2-knot group Z3 x4 Z.

The hypothesis on orientation characters in Theorem 3.2 is often redundant.
Theorem 3.7 Let f : M — N be a 2-connected map between finite PD,-
complexes with x(M) = x(N). If H*(N;Fs) # 0 then f*wi(N) = w;(M),

and if moreover N is orientable and H*(N;Q) # 0 then f is a homotopy
equivalence.
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Proof Since f is 2-connected H?(f;Fs) is injective, and since y (M) = x(N)
it is an isomorphism. Since H?(N;Fs) # 0, the nondegeneracy of Poincaré
duality implies that H*(f;F3) # 0, and so f is a Fa-(co)homology equivalence.
Since w (M) is characterized by the Wu formula = U w; (M) = Sq'z for all
in H3(M;Fy), it follows that f*wi(N) = wy(M).

If H2(N;Q) # 0 then H?(N;Z) has positive rank and H?(N;Fs) # 0, so N
orientable implies M orientable. We may then repeat the above argument with
integral coefficients, to conclude that f has degree +1. The result then follows
from Theorem 3.2. |

The argument breaks down if, for instance, M = S'xS3 is the nonorientable
S3-bundle over S', N = S! x §3 and f is the composite of the projection of
M onto S! followed by the inclusion of a factor.

If M and N are closed 4-manifolds with isomorphic algebraic 2-types then
there is a 3-connected map f : M — P,(N). The restriction of such a map
to M, = M\ D* is homotopic to a map f, : M, — N which induces isomor-
phisms on 7; for @ < 2. In particular, x(M) = x(N). Thus if f, extends
to a map from M to N we may be able to apply Theorem 3.2. However we
usually need more information on how the top cell is attached. In fact the
triple (Po(M), w1 (M), far«[M]) is a complete invariant of the homotopy type
[BB08]. (However which triples are thus realized is unknown.) Can fas.[M] be
replaced here by a more explicit “primary” invariant, such as the equivariant
intersection pairing on ma(M)? (See also [Hi20].)

The following criterion arises in studying the homotopy types of circle bundles
over 3-manifolds. (See Chapter 4.)

Theorem 3.8 Let F be a PDs-complex with fundamental group © and such
that H4(fE;Zw1(E)) is a monomorphism. A PDj-complex M is homotopy
equivalent to E if and only if there is an isomorphism 6 from 7i(M) to w
such that wi(M) = wi(FE)0, there is a lift ¢ : M — P(FE) of Ocpr such that
e.[M] = £fu.[E] and x(M) = x(E).

Proof The conditions are clearly necessary. Conversely, suppose that they
hold. We shall adapt to our situation the arguments of Hendriks in analyzing
the obstructions to the existence of a degree 1 map between P Ds-complexes
realizing a given homomorphism of fundamental groups. For simplicity of no-
tation we shall write Z for Z*1(®) and also for Z*1()(= ¢*Z), and use 6§ to
identify 71 (M) with 7 and K(m(M),1) with K(m,1). We may suppose the
sign of the fundamental class [M] is so chosen that ¢.[M] = fr.[FE].
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Let E, = E\ D*. Then Py(E,) = P»(E) and may be constructed as the union
of E, with cells of dimension > 4. Let

h: Z ®gpm ma(Pa(Ey), Bo) — Hy(Po(E,), Eo; Z)

be the wi(FE)-twisted relative Hurewicz homomorphism, and let 0 be the con-
necting homomorphism from m4(P2(E,), E,) to m3(FE,) in the exact sequence of
homotopy for the pair (Px(E,), E,). Then h and 0 are isomorphisms since fg,
is 3-connected, and so the homomorphism 7g : Hy(P2(E); Z) — Z @zx 73(E,)
given by the composite of the inclusion

Hy(Po(E); Z) = Hi(Pa(E,); Z) — Hy(Po(Ey), Ev; L)

with h~! and 1 ®@z[x O is a monomorphism. Similarly M, = M \ D* may
be viewed as a subspace of P»(M,) and there is a monomorphism 7p; from
Hy(Py(M);Z) to Z ®gzjx m3(M,). These monomorphisms are natural with re-
spect to maps defined on the 3-skeleta (i.e., E, and M,).

The classes T7p(fr«[E]) and 7a(far«[M]) are the images of the primary ob-
structions to retracting E onto E, and M onto M,, under the Poincaré du-
ality isomorphisms from H*(E, E,;n3(E,)) to Ho(E \ EO;% ®zm T3(Eo)) =
Z Qzn 73(E,) and H*(M, My; w3(M,)) to Z ®7(x m3(M,), respectively. Since
M, is homotopy equivalent to a cell complex of dimension < 3 the restriction of
¢ to M, is homotopic to a map from M, to E,. Let ¢; be the homomorphism
from m3(M,) to m3(E,) induced by ¢é[M,. Then (1 ®ppy &)7mar(far«[M]) =
TE(fE«[E]). It follows as in [Hn77] that the obstruction to extending &M, :
M, — E, to a map d from M to F is trivial.

Since fp«dy«[M] = ¢,[M] = fp«[E] and fg. is a monomorphism in degree 4 the

map d has degree 1, and so is a homotopy equivalence, by Theorem 3.2. O

If there is such a lift ¢ then ¢},0*k1(E) = 0 and 6.care[M] = cp«[E].

3.2 Finitely dominated covering spaces

In this section we shall show that if a PD,-complex M has a finitely domi-
nated, infinite regular covering space then either M is aspherical or its universal
covering space is homotopy equivalent to S? or S3. In Chapters 4 and 5 we
shall see that such manifolds are close to being total spaces of fibre bundles.

Theorem 3.9 Let M be a PD,-complex with fundamental group m, and let

M,, be the covering space associated to v = Ker(p), where p: 7 — G is an
epimorphism. Suppose that M, is finitely dominated. Then
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(1) G has finitely many ends;
(2) if M, is acyclic then it is contractible and M is aspherical;

(3) if G has one end and v is infinite and F'P3 then M is aspherical and M,
is homotopy equivalent to an aspherical closed surface or to S*;

(4) if G has one end and v is finite then M, ~ S? or RP? or is acyclic;
(5) G has two ends if and only if M,, is a PD3s-complex.

Proof We may clearly assume that G is infinite. As Z[G]| has no nonzero
left ideal (i.e., submodule) which is finitely generated as an abelian group
Homgq(Hy(M,;Z),Z|G]) = 0 for all ¢ > 0, and so the bottom row of the
UCSS for the covering p is 0. From Poincaré duality and the UCSS we find
that Hy(M,;Z) = H°(G;Z[G]) = 0 and HY(G;Z[G]) = H3(M,;Z). As this
group is finitely generated, and as G is infinite, G has one or two ends. Simi-
larly, H?(G;Z|G]) is finitely generated and so is Z or 0.

If M, is acyclic Dy = Z[G] @z C,(M) is a resolution of the augmentation
Z|G]-module Z and HY(D,) = Hy_4(M,;Z). Hence G is a PD4-group, and
so Hy(M;Z) = Hy(M,:Z[v]) = H=5(M,;Z[v]) = 0 for s > 0, by Theorem
1.19’. Thus M, is contractible and so M is aspherical. Suppose that G has
one end. If H?(G;Z[G]) = 7Z then G is virtually a PDy-group, by Bowditch’s
Theorem, and so M, is a PDy-complex [Go79]. In general, C*(M )|, is chain
homotopy equivalent to a finitely generated projective Z[v]|-chain complex P,
and H3(M,;Z) = Hy(M,;Z) = 0. If v is F'P; then the augmentation Z[v]-
module Z has a free resolution F) which is finitely generated in degrees < 3.
On applying Schanuel’s Lemma to the exact sequences

02y PP —>P—~7Z—0
and 0—>0F;—>F —>F —Fy—~7Z—0

derived from these two chain complexes we find that Zs is finitely generated as a
Z|v]-module. Hence IT = mo(M) = mo(M,) is also finitely generated as a Z[v|-
module and so Hom(II, Z[n]) = 0. If moreover v is infinite then H*(m; Z[r]) =
0 for s < 2, s0 Il = 0, by Lemma 3.3, and M is aspherical. If H%(G;Z[G]) = 0
a spectral sequence corner argument then shows that H?(G;Z[G]) & Z and
M, ~ S*. (See the following theorem.)

If v is finite but M, is not acyclic then the universal covering space M is
also finitely dominated but not contractible, and II = Hy(M;Z) is a nontrivial

finitely generated abelian group, while Hg(M; Z) = Hy(M;Z) =0. If C is a
finite cyclic subgroup of 7 there are isomorphisms H,4+3(C;Z) = H,(C;1I), for
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all n > 4, by Lemma 2.10. Suppose that C' acts trivially on II. Then if n is odd
this isomorphism reduces to 0 = II/|C|II. Since II is finitely generated, this
implies that multiplication by |C| is an isomorphism. On the other hand, if n is
even we have Z/|C|Z = {a € I1 | |Cla = 0}. Hence we must have C' = 1. Now
since 1T is finitely generated any torsion subgroup of Aut(II) is finite. (Let T be
the torsion subgroup of II and suppose that II/7" has rank r. Then the natural
homomorphism from Aut(II) to Aut(II/T) has finite kernel, and its image is
isomorphic to a subgroup of GL(r,Z), which is virtually torsion-free.) Hence
as 7 is infinite it must have elements of infinite order. Since H?(r;Z[r]) =11,
by Lemma 3.3, it is a finitely generated abelian group. Therefore it must be
infinite cyclic [Fa74, Corollary 5.2]. Hence M =~ S? and v has order at most 2,
so M, ~ S? or RP?.

Suppose now that M, is a PDs-complex. After passing to a finite covering of
M , if necessary, we may assume that M, is orientable. Then H'(G;Z[G]) =
H3(M,;Z), and so G has two ends. Conversely, if G has two ends we may
assume that G = 7Z, after passing to a finite covering of M , if necessary. Hence
M, is a PDs-complex [Go79]. O

The hypotheses that M be a PDj-complex and M, be finitely dominated can
be relaxed to requiring that M be a PDy-space and C.(M) be Z[v]-finitely
dominated, and the appeal to [Go79] can be avoided. (See Theorem 4.1.) Tt
can be shown that the hypothesis in (3) that v be FP3 is redundant if M is a
finite PDy4-space. (See [Hil3b].)

Corollary 3.9.1 The covering space M, is homotopy equivalent to a closed
surface if and only if it is finitely dominated and H?*(G;Z[G]) = Z. O

In this case M has a finite covering space which is homotopy equivalent to the
total space of a surface bundle over an aspherical closed surface. (See Chapter
5.)

Corollary 3.9.2 The covering space M,, is homotopy equivalent to S* if and
only if it is finitely dominated, G has one end, H*(G;Z[G]) = 0 and v is a
nontrivial finitely generated free group.

Proof If M, ~ S! then it is finitely dominated and M is aspherical, and the
conditions on G follow from the LHSSS. The converse follows from part (3) of
Theorem 3.9, since v is infinite and FP. O
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In fact any finitely generated free normal subgroup F of a PD,,-group m must
be infinite cyclic. For n/FCr(F) embeds in Out(F), so v.c.d.n/FCr(F) <
v.c.d.Out(F(r)) < oo. If F is nonabelian then Cr(F)NF = 1 and so 7/F
is an extension of 7/FC(F) by Cr(F). Hence v.c.d.w/F < oco. Since F is
finitely generated 7/F is F P,,. Hence we may apply [Bi, Theorem 9.11], and
an LHSSS corner argument gives a contradiction.

In the simply connected case “finitely dominated”, “homotopy equivalent to a
finite complex” and “having finitely generated homology” are all equivalent.

Corollary 3.9.3 If H*(M ; Z) is finitely generated then either M is aspherical
or M is homotopy equivalent to S? or S® or w1 (M) is finite. ]

This was first stated (for 71 (M) satisfying a homological finiteness condition)
in [Ku78]. We shall examine the spherical cases more closely in Chapters 10 and
11. (The arguments in these chapters may apply also to PD,,-complexes with
universal covering space homotopy equivalent to S~ ! or $”~2. The analogues
in higher codimensions appear to be less accessible.)

The following variation on the aspherical case shall be used in Theorem 4.8,
but belongs naturally here.

Theorem 3.10 Let v be a nontrivial F' Py normal subgroup of infinite index
in a PDy-group m, and let G = w/v. Then either

(1) v isa PDs-group and G has two ends;
(2) v isa PDy-group and G is virtually a PDy-group; or
(3) v=7Z, H(G;Z[G]) =0 for s # 3 and H3(G;Z[G]) &£ Z.

Proof Since c.d.v < 4, by Strebel’s Theorem, v is F'P and hence G is F Py.
The E3 terms of the LHSSS with coefficients Q[n| can then be expressed as
BN = HP(G;Q[G)) @ H(v; Q[v)). If HI(G;Q[G]) and H*(v;Q[v]) are the first
nonzero such cohomology groups then Egk persists to E,. Hence j+k =4
and H’(G;Q[G]) and H* 7/ (v;Q[v]) each have dimension 1 over Q, since 7 is
a PDg-group. If j =1 then G has two ends and so is virtually Z, and then v
is a PDs-group [Bi, Theorem 9.11]. If j = 2 then v and G are virtually PDs-
groups, by Bowditch’s Theorem. Since v is torsion-free it is then a PDy-group.
The only remaining possibility is (3). ad

In case (1) 7 has a subgroup of index < 2 which is a semidirect product H xgZ

with v < H and [H : v] < co. Is it sufficient that v be F'P» (as in Theorem
1.19)? Must the quotient 7/v be virtually a PDs-group in case (3)?
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Corollary 3.10.1 If K is FP, and is ascendant in v where v is an FPj
normal subgroup of infinite index in the PD,-group © then K is a PDy-group
for some k < 4.

Proof This follows from Theorem 3.10 together with Theorem 2.17. a

What happens if we drop the hypothesis that the covering be regular? It follows
easily from Theorem 2.18 that a PD3-complex has a finitely dominated infinite
covering space if and only if its fundamental group has one or two ends [Hi08].
We might conjecture that if a PDy-complex M has a finitely dominated infinite
covering space M then either M is aspherical or M is homotopy equivalent
to S2 or 83 or M has a finite covering space which is homotopy equivalent
to the mapping torus of a self homotopy equivalence of a PDs-complex. (In
particular, m1(M) has one or two ends.) In [Hi08] we extend the arguments
of Theorem 3.9 to show that if 7r1(]\/4\ ) is F'P3 and ascendant in 7 the only
other possibility is that 771(]\7) has two ends, h(y/7) = 1 and H?(m;Z[n]) is
not finitely generated. This paper also considers in more detail F'P ascendant
subgroups of PD4-groups, corresponding to the aspherical case.

3.3 Minimizing the Euler characteristic

It is well known that every finitely presentable group is the fundamental group
of some closed orientable 4-manifold. Such manifolds are far from unique, for
the Euler characteristic may be made arbitrarily large by taking connected
sums with simply connected manifolds. Following Hausmann and Weinberger
[HW85], we may define an invariant for any finitely presentable group = by

q(m) = min{x(M)|M is a PDy complex with m (M) = 7}.

We may also define related invariants ¢X where the minimum is taken over the
class of PD4-complexes whose normal fibration has an X -reduction. There
are the following basic estimates for ¢°¢, which is defined in terms of PDI—
complexes.

Lemma 3.11 Let m be a finitely presentable group with a subgroup H of
finite index and let F' be a field. Then

(1) 1=PB1(H;F)+ Bo(H; F) < [ : H|(1 — defr);
(2) 2—2B1(H;F)+ B2(H; F) < [ : Hjg"%(m);
(3) ¢°“(m) < 2(1 —def(n));

Geometry & Topology Monographs, Volume 5 (2002)



58 Chapter 3: Homotopy invariants of PD4-complexes

(4) if all cup products of pairs of elements of H?(m; F) are trivial then
% () = 2(1 — Bi(m; F) + Bo(m; F)), and if moreover H*(m;Fy) = 0
then q(m) > 2(1 — By (m;Fa) + Bo(m;Fy)) also.

Proof Let C be the 2-complex corresponding to a presentation for m of max-
imal deficiency and let C'i be the covering space associated to the subgroup
H. Then x(C) =1 —defr and x(Cy) = [7 : H]x(7). Condition (1) follows
since B1(H; F) = p1(Cu; F) and Bo(H; F) < Bo(Cuis F).

Condition (2) follows similarly on considering the Euler characteristics of a
PDj -complex M with (M) = 7 and of the associated covering space My .

The boundary of a regular neighbourhood of a PL embedding of C in R® is a
closed orientable 4-manifold realizing the upper bound in (3).

The image of H?(m;F) in H?(M;F) has dimension (a(m;F), and is self-
annihilating under cup-product if H*(m; F) = 0. In that case Bo(M;F) >
2B2(m; F'), which implies the first part of (4). The final observation follows
since all PD,,-complexes are orientable over Fs. O

Condition (2) was used in [HW85] to give examples of finitely presentable su-
perperfect groups which are not fundamental groups of homology 4-spheres.
(See Chapter 14 below.)

If 7 is a finitely presentable, orientable PD4-group we see immediately that
¢°%(r) = x(n). Multiplicativity then implies that ¢(7) = x(7) if K(m,1) is a
finite PD4-complex.

For groups of cohomological dimension at most 2 we can say more.

Theorem 3.12 Let X be a PD4-complex with fundamental group m such
that c.d.w < 2, and let Cy, = C(X;Z[r]). Then

(1) C, is Z[r]-chain homotopy equivalent to D, ® L[2]@ D*~*, where D, is a
projective resolution of 7, L[2] is a finitely generated projective module
L concentrated in degree 2 and D*~* is the conjugate dual of D,., shifted
to terminate in degree 2;

(2) m(X) = Le H?(m; Zlx));
(3) x(X) = 2x(m), with equality if and only if L = 0;
() Homs (P ZI), Zl)) = 0.
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Proof The chain complex C, gives a resolution of the augmentation module
0 — Im(35) = C1 — Cy = Z — 0.

Let D, be the corresponding chain complex with Dy = Cy, D; = C; and
Dy = Im(ag). Since c.d.w < 2 and Dy and D; are projective modules D5 is
projective, by Schanuel’s Lemma. Therefore the epimorphism from Cs to Ds
splits, and so C is a direct sum Cy = D@ (C/D),. Since X is a PDs-complex
C, is chain homotopy equivalent to C*~*. The first two assertions follow easily.

On taking homology with simple coefficients Q, we see that x(X) = 2x(w) +
dimgQ®, L. Hence x(X) > 2x(m). Since 7 satisfies the Weak Bass Conjecture
[Ec86] and L is projective, L = 0 if and only if dimgQ ®, L = 0.

Let 6 : Dy — Dj be the inclusion. Then H2(r;Z[r]) = Cok(é"), where 6 is
the conjugate transpose of §. Hence Homg(H?(m; Z[n)), Z[x]) = Ker(611).
But 6'f = §, which is injective, and so Homg)(H?(m; Z[x]), Z[r]) = 0. O

The appeal to the Weak Bass Conjecture may be avoided if X and K(m,1) are
homotopy equivalent to finite complexes. For then L is stably free, and so is 0
if and only if Z ®z;) L = 0, since group rings are weakly finite.

Similar arguments may be used to prove the following variation.

Addendum Suppose that c.d.pm < 2 for some ring R. Then R ® mo(M) =
P& H?(7; R[r]), where P is a projective R[r]-module, and x(M) > 2x(7; R) =
2(1 = B1(m; R) + P2(m; R)). If R is a subring of Q then x(M) = 2x(m; R) if
and only if wo(M) = H?(m; Z[r)). O

There are many natural examples of 4-manifolds with 71 (M) = 7 having non-
trivial torsion and such that c.d.om < 2 and x(M) = 2x(7). (See Chapters 10

and 11.) However all the known examples satisfy v.c.d.m < 2.

Corollary 3.12.1 If Hy(m;Fg) # 0 the Hurewicz homomorphism from mwo(M)
to Ho(M;F9) is nonzero.

Proof By the addendum to the theorem, Hy(M;F3) has dimension at least
2fB2(m), and so cannot be isomorphic to Ha(m;F2) unless both are 0. O

Corollary 3.12.2 If 7w = m;(P) where P is an aspherical finite 2-complex then
q(m) = 2x(P). The minimum is realized by an s-parallelizable PL 4-manifold.
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Proof If we choose a PL embedding j : P — R, the boundary of a regular
neighbourhood N of j(P) is an s-parallelizable PL 4-manifold with fundamen-
tal group 7 and with Euler characteristic 2y(P). O

By Theorem 2.8 a finitely presentable group is the fundamental group of an
aspherical finite 2-complex if and only if it has cohomological dimension < 2
and is efficient, i.e. has a presentation of deficiency [;(m; Q) — Sa(m; Q). It is
not known whether every finitely presentable group of cohomological dimension
2 is efficient.

In Chapter 5 we shall see that if P is an aspherical closed surface and M is
a closed 4-manifold with (M) = 7 then x(M) = q(n) if and only if M is
homotopy equivalent to the total space of an S?-bundle over P. The homotopy
types of such minimal 4-manifolds for = may be distinguished by their Stiefel-
Whitney classes. Note that if 7 is orientable then S? x P is a minimal 4-
manifold for 7 which is both s-parallelizable and also a projective algebraic
complex surface. Note also that the conjugation of the module structure in the
theorem involves the orientation character of M which may differ from that of
the PDy-group 7.

Corollary 3.12.3 If w is the group of an unsplittable u-component 1-link
then q(m) = 0. O

If 7 is the group of a p-component n-link with n > 2 then Hs(m; Q) = 0 and
so q(m) = 2(1 — p), with equality if and only if 7 is the group of a 2-link. (See
Chapter 14.)

Corollary 3.12.4 If 7 is an extension of Z by a finitely generated free normal
subgroup then ¢(m) = 0. O

In Chapter 4 we shall see that if M is a closed 4-manifold with 71 (M) such an
extension then x (M) = ¢(n) if and only if M is homotopy equivalent to a man-
ifold which fibres over S* with fibre a closed 3-manifold with free fundamental
group, and then 7 and w; (M) determine the homotopy type.

Finite generation of the normal subgroup is essential; F(2) is an extension of
Z by F(o0), and q(F(2)) = 2(F(2)) = —2.

Let 7w be the fundamental group of a closed orientable 3-manifold. Then 7 =
Fxv where F is free of rank r and v has no infinite cyclic free factors. Moreover
v = m(N) for some closed orientable 3-manifold N. If M is the closed 4-
manifold obtained by surgery on {n}xS* in N x S then M = Mo#(§"(S* x S3)
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is a smooth s-parallelisable 4-manifold with m (M) =2 7 and x(M) =2(1—r).
Hence ¢°%(7) = 2(1 —r), by part (4) of Lemma 3.11.

The arguments of Theorem 3.12 give stronger results in this case also.

Theorem 3.13 Let w be a finitely presentable PDs-group, and let M be
a PD,-complex with fundamental group w. Then q(m) = 2, and there are
finitely generated projective Z[r|-modules P and P’ such that mwo(M) @& P =
Ker(g,) ® P’, where ¢, : Z|w] — Z is the ring epimorphism defined by €,(g) =
w1 (M)(g)wi(m)(g), for all g € 7.

Proof Let N be a PDs-complex with fundamental group 7. We may suppose
that N = N,UD?, where N,N D3 = 52. Let X = N, x S'US? x D?. Then X
is a PD4-complex, x(X) =2 and m(X) = 7. Hence ¢(7) < 2. On the other
hand, ¢(7) > 2 by part (4) of Lemma 3.11, and so g(7) = 2.

Let C; = Ci(M;Z[r]), H; = Hi(C4) and Hj = Hj(HomZ[ﬂ(C’*,Z[ 1), and

for any left Z[r]-module L let 'L = Eazt ] , to simplify the notation.
Since 7 has one end, the chain complex Cl glves exact sequences

0—-Cy—C3—7Zy— Hy— 0 (3.1)

and 0272y —Cy—C1 —Cy—7Z— 0. (3.2)

Since m is a PDj3-group the augmentation module Z has a finite projective

resolution of length 3. On comparing sequence 3.2 with such a resolution and

applying Schanuel’s lemma we find that Z, is a finitely generated projective
Z[r]-module. Since 7 has one end, the UCSS reduces to an exact sequence

0— H? =5 "Hy - €37 — H? = e'Hy — 0 (3.3)

and isomorphisms H* = ¢?H, and e3Hy = e*Hy = 0. Poincaré duality for M
implies that H2 =0 and H* = Z. Hence sequence 3.3 reduces to

0— H? = "Hy - €37 — 0 (3.4)

and e' Hy = 0. On dualizing the sequence 3.1 and conjugating we get an exact
sequence of left modules

0= eVHy = eVZy — e9C5 = e0Cy — e2Hy =27 — 0. (3.5)

Schanuel’s lemma again implies that eOH, is a finitely generated projective
module. Now my(M) = H?, by Poincaré duality for M, and e3Z = 7Zwi(7)
since 7 is a PDs-group. Hence €37 = 7%, and the final assertion follows from
sequence 3.4 and Schanuel’s Lemma. O

Geometry & Topology Monographs, Volume 5 (2002)



62 Chapter 3: Homotopy invariants of PD4-complexes

The invariant ¢°(7) has been determined for 7 a 3-manifold group with no 2-
torsion [SW21]. Does Theorem 3.13 extend to all free products of PDs-groups?

There has been some related work estimating the difference x(M) — |o(M)|
where M is a closed orientable 4-manifold M with 7(M) = = and where
o(M) is the signature of M. In particular, this difference is always > 0 if

@ () = 0. (See [JK93] and [Lii, Chapter 7.§3].) The minimum value of this
difference (p(m) = min{x(M) — |o(M)|}) is another numerical invariant of =,
which is studied in [Ko94].

3.4 Euler Characteristic 0

In this section we shall consider the interaction of the fundamental group and
Euler characteristic from another point of view. We shall assume that x(M) =0
and show that if 7 is an ascending HNN extension then it satisfies some very
stringent conditions. The groups Zx*,, shall play an important role. We shall
approach our main result via several lemmas.

We begin with a simple observation relating Euler characteristic and fundamen-
tal group which shall be invoked in several of the later chapters. Recall that if
G is a group then I(G) is the minimal normal subgroup such that G/I(G) is
free abelian.

Lemma 3.14 Let M be a PDj-space with x(M) < 0. If M is orientable
then H'(M;Z) # 0 and so © = w1 (M) maps onto Z. If H'(M;Z) =0 then 7
maps onto D.

Proof The covering space My corresponding to W = Ker(w;(M)) is ori-
entable and x(Mw) = 2 — 281 (Mw) + Bo(Mw ) = [r : W]x(M) < 0. Therefore
B1(W) = Bi(Mw) > 0 and so W/I(W) = Z", for some r > 0. Since I(W)
is characteristic in W it is normal in w. As [r: W] < 2 it follows easily that
m/I(W) maps onto Z or D. O

Note that if M = RP*RP*, then x(M) = 0 and 7(M) = D, but m(M)
does not map onto Z.

Lemma 3.15 Let M be a PD} -complex such that x(M) = 0 and © = 71(M)
is an extension of Z%,, by a finite normal subgroup F', for some m # 0. Then
the abelian subgroups of F are cyclic. If F' # 1 then 7 has a subgroup of finite
index which is a central extension of Z+, by a nontrivial finite cyclic group,
where n is a power of m.
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Proof Let M be the infinite cyclic covering space corresponding to the sub-
group I(m). Since M is compact and A = Z[Z] is noetherian the groups
Hl(]\/i\, Z) = H;(M;A) are finitely generated as A-modules. Since M is ori-
entable, x(M) = 0 and H;(M;Z) has rank 1 they are A-torsion modules,
by the Wang sequence for the projection of M onto M. Now Hg(]\/i; Z) =
Exth (I(m)/I(m),A), by Poincaré duality. There is an exact sequence

0—=T— I(m)/I(r) — I(Zx%n) 2 A/(t —m) — 0,

where T is a finite A-module. Therefore Ext}(I(w)/I(r)’,A) = A/(t—m) and
so Hy(I(m);Z) is a quotient of A/(mt — 1), which is isomorphic to Z[1] as a
group. Now I(m)/Ker(f) = Z[X] also, and H(Z[1];Z) = Z| L] ANZ[] = 0.
(See [Ro, page 334].) Hence Hy(I(w);Z) is finite, by an LHSSS argument, and
so is cyclic, of order relatively prime to m.

Let ¢t in 7 generate 7w/I(m) = Z. Let A be a maximal abelian subgroup of
F and let C = Cr(A). Then ¢ = [r : C] is finite, since F' is finite and
normal in 7. In particular, ¢t¢ is in C' and C maps onto Z, with kernel J,
say. Since J is an extension of Z[%] by a finite normal subgroup its centre
¢J has finite index in J. Therefore the subgroup G generated by (J and t4¢
has finite index in 7, and there is an epimorphism f from G onto Zx,,q, with
kernel A. Moreover I(G) = f~Y(I(Z%ma)) is abelian, and is an extension of
Z[X] by the finite abelian group A. Hence it is isomorphic to A & Z[-1]. (See
[Ro, page 106].) Now Hz(I(G);Z) is cyclic of order prime to m. On the other
hand Hy(I(G);Z) = (AN A) & (A® Z[1]) and so A must be cyclic.

If ' # 1 then A is cyclic, nontrivial, central in G and G/A = Zx*,q. |

Lemma 3.16 Let M be a finite PD,-complex with fundamental group .
Suppose that m has a nontrivial finite cyclic central subgroup F with quotient
G = n/F such that g.d.G =2, e(G) =1 and def(G) = 1. Then x(M) > 0. If
X(M) =0 and E = F)[G] is a weakly finite ring for some prime p dividing |F|
then  is virtually Z>.

Proof Let M be the covering space of M with group F', and let ¢, be the
number of g-cells of M, for ¢ > 0. Let C, = C,(M;E) = F, ® C,(M) be
the equivariant cellular chain complex of M with coefficients F, and let H, =
Hy(M;Z) = Hy(M;F,). For any left E-module H let e/H = ExtL(H,Z).

Since M is connected and F is cyclic Hy = Hy = F, and since G has one end
Poincaré duality and the UCSS give H3 = Hy = 0, an exact sequence

0 — e’F, — Hy — eHy — *Hy — Hy — ¢'Hy — 0
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and an isomorphism e?Hs 2 F,. Since g.d.G = 2 and def(G) = 1 the augmen-
tation module has a resolution
0=E =T 525 F, =0
The chain complex C, gives four exact sequences
0—+21 —-Cy—Cy—F,—=0,
0= 2y —Cy— 21 —TF,—0,
0— By —Zy— Hy — 0
and 0—-Cy —C3— By —0.
Using Schanuel’s Lemma several times we find that the cycle submodules 7
and Zy are stably free, of stable ranks ¢; — ¢g and cs — ¢1 + ¢g, respectively.
Dualizing the last two sequences gives two new sequences
0= e"By = %05 — 2Cy — e'By = 0
and 0— e’Hy — €°Zy — "By — ' Hy — 0,

~

and an isomorphism e'By =2 e?Hy = F,. Further applications of Schanuel’s
Lemma show that e’Bs is stably free of rank c3 — ¢4, and hence that e"H, is
stably free of rank co —c; +c¢p — (c3 —cs) = x(M). Since = maps onto the field
[F,, the rank must be non-negative, and so x(M) > 0.

If x(M) =0 and = = F,[G] is a weakly finite ring then e’Hy = 0 and so
eQIFp = e¢2H, is a submodule of F, = H;y. Moreover it cannot be 0, for otherwise
the UCSS would give Hy = 0 and then H; = 0, which is impossible. Therefore
62Fp =T,.

Since G is torsion-free and indicable it must be a PDy-group [DD, Theorem
V.12.2]. Since def(G) = 1 it follows that G = Z? or Z x_; Z, and hence that
7 is also virtually Z2. a

The hypothesis “Z = F)[G] is weakly finite” is satisfied if G is sofic [ES04]. In
particular, this is so if G’ is finitely generated, for then G’ is free, by Corollary
4.3.1 below, and so G is residually finite, and hence sofic. (There are at present
no known examples of groups which are not sofic!)

We may now give the main result of this section.

Theorem 3.17 Let M be a finite PD,-complex whose fundamental group m
is an ascending HNN extension with finitely generated base B. Then x(M) > 0,
and hence q(m) > 0. If x(M) =0 and B is F' P, and finitely ended then either
7 has two ends or = Z#y, or Z sy X(Z/2Z) for some m # 0 or £1 or 7 is
virtually Z? or M is aspherical.

Geometry & Topology Monographs, Volume 5 (2002)



3.4 FEuler Characteristic 0 65

Proof The L? Euler characteristic formula gives x(M) = 552) (M) > 0, since
Bi(Q)(M) = 32(2)(77) =0 for =0 or 1, by Lemma 2.1.

Let ¢ : B — B be the monomorphism determining m = Bx*4. If B is finite
then ¢ is an automorphism and so 7 has two ends. If B is F P, and has one
end then H*(m;Z[r]) = 0 for s < 2, by the Brown-Geoghegan Theorem. If
moreover x(M) =0 then M is aspherical, by Corollary 3.5.2.

If B has two ends then it is an extension of Z or D by a finite normal subgroup
F. As ¢ must map F isomorphically to itself, F' is normal in 7, and is the
maximal finite normal subgroup of . Moreover n/F = Zx,,, for some m # 0,
if B/F 27, and is a semidirect product Z %, x(Z/27), with a presentation
{a,t,u | tat™! = a™ tut™! = ua”, u® = 1, vau = a~1), for some m # 0 and
some 7 € Z, if B/F = D. (On replacing t by al"/?lt, if necessary, we may
assume that r =0 or 1.)

Suppose first that M is orientable, and that ' # 1. Then 7 has a subgroup
o of finite index which is a central extension of Zx,,« by a finite cyclic group,
for some g > 1, by Lemma 3.15. Let p be a prime dividing q. Since Z*,,q is a
torsion-free solvable group the ring = = F),[Z%,,¢| has a skew field of fractions
L, which as a right Z-module is the direct limit of the system {Zy | 0 # 0 € =},
where each =y = =, the index set is ordered by right divisibility (6 < ¢#) and
the map from =y to Zgp sends £ to ¢ [KLMS8S]. In particular, = is a weakly
finite ring and so = is virtually Z?, by Lemma 3.16.

If M is nonorientable then either wi(M)|r is injective, so m = Z *,, X(Z/27),
or 7 is virtually Z2. O

Is M still aspherical if B is assumed only finitely generated and one ended?

Corollary 3.17.1 Let M be a finite PD4-complex such that x(M) =0 and
m = w1 (M) is almost coherent and restrained. Then either m has two ends or
T Ty, or Zxm x(Z)27) for some m # 0 or +1 or « is virtually Z* or M
is aspherical.

Proof Let nt = Ker(wi(M)). Then 7" maps onto Z, by Lemma 3.14, and so
is an ascending HNN extension 7+ 2 Bk, with finitely generated base B. Since
7 is almost coherent B is F' P, and since m has no nonabelian free subgroup
B has at most two ends. Hence Lemma 3.16 and Theorem 3.17 apply, so either
7 has two ends or M is aspherical or 1 & Zx,, or Z %, x(Z/2Z) for some
m # 0 or £1. In the latter case /7 is isomorphic to a subgroup of the additive
rationals Q, and /7 = Cr(y/7). Hence the image of 7 in Aut(y/7) < Q* is
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infinite. Therefore 7 maps onto Z and so is an ascending HNN extension Bxg,
and we may again use Theorem 3.17. a

Does this corollary hold without the hypothesis that = be almost coherent?

There are nine groups which are virtually Z? and are fundamental groups of
PDy-complexes with Euler characteristic 0. (See Chapter 11.) Are any of the
groups Z *, x(Z/2Z) with |m| > 1 realized by PD4-complexes with y = 07
If 7 is restrained and M is aspherical must 7 be virtually poly-Z? (Aspheri-
cal 4-manifolds with virtually poly-Z fundamental groups are characterized in
Chapter 8.)

Let G is a group with a presentation of deficiency d and w : G — {£1} be
a homomorphism, and let (z;, 1 < i< m | r;, 1 <j < n) be a presentation
for G with m —n = d. We may assume that w(x;) = +1 for i < m — 1. Let
X =fm(Stx D3) if w=1and X = (™ (S x D3))j(S'x D3) otherwise. The
relators r; may be represented by disjoint orientation preserving embeddings
of S in 0X, and so we may attach 2-handles along product neighbourhoods,
to get a bounded 4-manifold Y with m(Y) = G, wi(Y) = w and x(Y) =
1 —d. Doubling Y gives a closed 4-manifold M with x(M) = 2(1 — d) and
(m1 (M), w1 (M)) isomorphic to (G, w).

Since the groups Zx,, have deficiency 1 it follows that any homomorphism
w : Z%py — {£1} may be realized as the orientation character of a closed 4-
manifold M with m (M) = Zx,, and x(M) = 0. In the orientable case such
manifolds are determined up to homeomorphism by 7 and wy [HKT09].

3.5 The intersection pairing

Let X be a PD4-complex with fundamental group 7 and let w = wy(X). In
this section it shall be convenient to work with left modules. Thus if L is a left
Z[r]-module we shall let LT = H omy (L, Z[r]) be the conjugate dual module.

If L is free, stably free or projective so is L.

Let H = H2(X;Z[r]) and II = m2(X), and let D : H — II and ev: H — II'
be the Poincaré duality isomorphism and the evaluation homomorphism, re-
spectively. The cohomology intersection pairing A : H x H — Z[r] is defined
by A(u,v) = ev(v)(D(u)), for all u,v € H. This pairing is w-hermitian:
Mgu, hv) = g\ (u,v)h and A(v,u) = A(u,v) for all u,v € H and g,h € .
Since A(u,e) =0 for all w € H and e € E = H?(m; Z[r]) the pairing A induces
a pairing A\x : H/E x H/E — Z|r], which we shall call the reduced intersec-
tion pairing. The adjoint homomorphism Ax : H/E — (H/E)! is given by
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Ax (W) ([u]) = Au,v) = ev(v)(D(u)), for all u,v € H. It is a monomorphism,
and \x is nonsingular if Ax is an isomorphism.

Lemma 3.18 Let X be a PDs-complex with fundamental group =, and let
E = H?(m; Z[~x)).

(1) If \x is nonsingular then H3(m;Z[r]) embeds as a submodule of ET;
(2) if Ax is nonsingular and H?(cx;Z[r]) splits then ET = H3(m; Z[x]);

(3) if H3(m;Z[r]) = 0 then Ay is nonsingular;

(4) if H3(m;Z[n]) = 0 and 11 is a finitely generated projective Z[r]-module

then £ = 0;
(5) if m is infinite and H'(m;Z[r]) and II are projective then c.d.m = 4.

Proof Let p : II — II/D(FE) and ¢q: H — H/E be the canonical epimor-
phisms. Poincaré duality induces an isomorphism ~ : H/E = II/D(FE). It is
straightforward to verify that p' ('yT)*l:\ xq = ev. If Ax is nonsingular then Ay
is an isomorphism, and so Coker(p’) = Coker(ev). The first assertion follows
easily, since Coker(p') < ET.

If moreover H?(cx;Z[n]) splits then so does p, and so ET = Coker(p').

If H?(m;Z[x]) = 0 then ev is an epimorphism and so p' is an epimorphism.
Since p' is also a monomorphism it is an isomorphism. Since ev and ¢ are
epimorphisms with the same kernel it folows that Ax = ~f(p")~!, and so Ax
is also an isomorphism.

If 1T is finitely generated and projective then so is IIf, and IT 2 ITT. If moreover
H3(m; Z[x]) = 0 then 1 = H = EQTIT. Hence F is also finitely generated and
projective, and E = ETt = 0.

If H'(m;Z[n]) and II are projective then we may obtain a projective resolution
of Z of length 4 from C, = C.(X) by replacing C3 and Cy by Cs @& II and
Cy & H(7; Z[r]), respectively, and modifying d3 and 04 appropriately. Since
H3(X;Z[r]) & HY(m; Z[r]) it is also projective. It follows from the UCSS that
H*(m;Z[x]) # 0. Hence c.d.m = 4. O

In particular, the cohomology intersection pairing is nonsingular if and only if
H?(m; Z[w]) = H3(m; Z[n]) = 0. If X is a 4-manifold counting intersections of
generic immersions of S? in X gives an equivalent pairing on II.

We do not know whether the hypotheses in this lemma can be simplified. For in-
stance, is H2(m; Z[x])! always 07 Does “II projective” imply that H3(r; Z[r]) =
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0?7 Projectivity of TIT and H?(m;Z[r]) = 0 together do not imply this. For
if 7 is a PD3 -group and w = w; () there are finitely generated projective
Z|r]-modules P and P’ such that I1® P = A(w) @ P’, where A(w) is the aug-
mentation ideal of Z[r], by Theorem 3.13, and so T is projective. However
H3(m; Z[n]) 2 Z # 0.

The module II is finitely generated if and only if 7 is of type F'P3. As observed
in the proof of Theorem 2.18, if 7 is a free product of infinite cyclic groups and
groups with one end and is not a free group then H'!(7;Z[r]) is a free Z[r]-
module. An argument similar to that for part(5) of the lemma shows that
c.d.m <5 if and only if 7 is torsion-free and p.d.z;; Il < 2.

If Y is a second PD4-complex we write Ax = Ay if there is an isomorphism
0 : 71 = m(Y) such that wi(X) = wi(Y)# and a Z[r]-module isomorphism
O : m(X) = 6*mo(Y) inducing an isometry of cohomology intersection pair-
ings. If f: X — Y is a 2-connected degree-1 map the “surgery kernel”
Ks(f) = Ker(ma(f)) and “surgery cokernel” K2(f) = Cok(H?2(f;Z[r])) are
finitely generated and projective, and are stably free if X and Y are finite
complexes [WI, Lemma 2.2]. (See also Theorem 3.2 above.) Moreover cap
product with [X] induces an isomorphism from K?2(f) to K2(f). The pairing
Ar = Alg2(p)xk2(y) is nonsingular [W1, Theorem 5.2].
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Chapter 4

Mapping tori and circle bundles

Stallings showed that if M is a 3-manifold and f : M — S' a map which
induces an epimorphism f, : m (M) — Z with infinite kernel K then f is
homotopic to a bundle projection if and only if M is irreducible and K is
finitely generated. Farrell gave an analogous characterization in dimensions
> 6, with the hypotheses that the homotopy fibre of f is finitely dominated
and a torsion invariant 7(f) € Wh(m(M)) is 0. The corresponding results
in dimensions 4 and 5 are constrained by the present limitations of geometric
topology in these dimensions. (In fact there are counter-examples to the most
natural 4-dimensional analogue of Farrell’s theorem [We87].)

Quinn showed that if the base B and homotopy fibre F of a fibration p : M — B
are finitely dominated then the total space M is a Poincaré duality complex
if and only if both the base and fibre are Poincaré duality complexes. (The
paper [Go79] gives an elegant proof for the case when M, B and F are finite
complexes. The general case follows on taking products with copies of S! to
reduce to the finite case and using the Kiinneth theorem.)

We shall begin by giving a purely homological proof of a version of this result,
for the case when M and B are PD-spaces and B = K(G,1) is aspherical.
The homotopy fibre F' is then the covering space associated to the kernel of the
induced epimorphism from (M) to G. Our algebraic approach requires only
that the equivariant chain complex of F' have finite [n/2]-skeleton. In the next
two sections we use the finiteness criterion of Ranicki and the fact that Novikov
rings associated to finitely generated groups are weakly finite to sharpen this
finiteness hypotheses when B = S', corresponding to infinite cyclic covers of
M. The main result of §4.4 is a 4-dimensional homotopy fibration theorem
with hypotheses similar to those of Stallings and a conclusion similar to that
of Gottlieb and Quinn. The next two sections consider products of 3-manifolds
with S' and covers associated to ascendant subgroups.

We shall treat fibrations of PD4-complexes over surfaces in Chapter 5, by a
different, more direct method. In the final section of this chapter we consider
instead bundles with fibre S'. We give conditions for a PDs-complex to fibre
over a PDs-complex with homotopy fibre S, and show that these conditions
are sufficient if the fundamental group of the base is torsion-free but not free.
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4.1 PD,-covers of PD,-spaces

Let M be a PD,-space and p : 7 = m (M) — G an epimorphism with G a
PD,-group, and let M, be the covering space corresponding to v = Ker(p). If
M is aspherical and v is F'Py, 9 then v is a PDy_,-group and M, = K(v,1)
is a PD,,_,-space [Bi, Theorem 9.11]. In general, there are isomorphisms
HY(M,;Zlv]) = Hp—r—q(M,;Z[v]), by Theorem 1.19". However in the nonas-
pherical case it is not clear that there are such isomorphisms induced by cap
product with a class in H,_,(M,;Z[v]). If M is a PD,-complex and v is
finitely presentable M, is finitely dominated, and we could apply the Gottlieb-
Quinn Theorem to conclude that M, is a PD,_,-complex. We shall give
instead a purely homological argument which does not require 7w or v to be
finitely presentable, and so applies under weaker finiteness hypotheses.

A group G is a weak PD,-group if H"(G;Z[G]) is infinite cyclic if ¢ = r and is
0 otherwise [Ba80]. If r < 2 an F'P, group is a weak PD,-group if and only if
it is virtually a PD,-group. This is easy for r < 1 and is due to Bowditch when
r = 2 [Bo04]. Barge has given a simple homological argument to show that if G
is a weak PD,-group, M is a PD,-space and ng € H"(M;Z[G]) is the image
of a generator of H"(G;Z[G]) then cap product with [M,] = ng N [M] induces
isomorphisms with simple coefficients [Ba80]. We shall extend his argument
to the case of arbitrary local coefficients, using coinduced modules to transfer
arguments about subgroups and covering spaces to contexts where Poincaré
duality applies.

All tensor products N ® P in the following theorem are taken over Z.

Theorem 4.1 Let M be a PD,-space and p : m = 71 (M) — G an epimor-
phism with G a weak PD,-group, and let v = Ker(p). If C\.(M) is Z[v]-finitely
dominated then M, is a PD,,_,-space.

Proof Let C, be a finitely generated projective Z[r]-chain complex which is
chain homotopy equivalent to C'*(]\Aj ). Since C*(M ) is Z[v]-finitely dominated
there is a finitely generated projective Z[v|-chain complex E, and a pair of Z[v]-
linear chain homomorphisms 6 : E, — C,|, and ¢ : C,|, — E, such that ¢ ~
Ic, and ¢0 ~ I, . Let C? = Homg(Cy, Z[r]) and E? = Homyy,(Ey, Z[v)),

—

and let Z[r| = Homgy,(Z[r]|,, Z[v]) be the module coinduced from Z[v]. Then

—

there are isomorphisms ¥ : HY(E*) = HY(Cy;Z[n]), determined by 6 and
Shapiro’s Lemma.

The complex Z[G] @z Cx is an augmented complex of finitely generated pro-
jective Z[G]-modules with finitely generated integral homology. Therefore G
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is of type F Py [St96, Theorem 3.1]. Hence the augmentation Z[G]-module
Z has a resolution A, by finitely generated projective Z|G|-modules. Let
AY = Homgq(Ay, Z|G]) and let n € H"(A*) = H"(G;Z[G]) be a generator.
Let e¢c : Cy — A, be a chain map corresponding to the projection of p onto
G, and let ng = exn € H"(Cy; Z|G]). The augmentation A, — Z determines
a chain homotopy equivalence p: C, ® Ay —» CL ®Z = C,. Let 0 : G — 7 be
a set-theoretic section.

We may define cup-products relating the cohomology of M, and M, as follows.
Let e : Z[n]®Z[G] — Z[r] be the pairing given by e(a®g) = o(g).a(o(g)~?) for
all a : Z[r] — Z[v] and g € G. Then e is independent of the choice of section o

and is Z[r]-linear with respect to the diagonal left m-action on Z/[\W] ®Z[G]. Let
d:Cy — C,®C, be a m-equivariant diagonal, with respect to the diagonal left
m-action on C, @ Cy, and let j = (1®ecg)d : Cr — C, ® A,. Then pj = Idg,
and so j is a chain homotopy equivalence. We define the cup-product [f]Ung in
HPH(C?) = B (M3 Z[a]) by [f]Une = exd*(B([]) x16) = exi*(¥((f]) x1)
for all [f] € HP(E*) = HP(M,; Z[v]).

If C is aleft Z[r]-module let D = Homgy,)(C|,,Z[r]) have the left G-action
determined by (gA)(c) = o(g)\(o(g)~'c) for all c € C and g € G. If C is free
with basis {¢;|1 < i < n} there is an isomorphism of left Z[G]-modules © : D =
Z[x]"[1 given by ©(N)(g) = (a(9)-Ao(g) " c1),- -, 0(9)- Ao (g) en)), for all
A€ D and g € G, and so D is coinduced from a module over the trivial group.

Let DY = Homyy,(Cylv, Z[r]) and let p : E* ® Z|G] — D* be the Z-linear
cochain homomorphism defined by p(f®g)(c) = o(g) fé(o(g)~te) forall ¢ € Cy,
Ae D? fe Fl ge G and all gq. Then the G-action on D? and p are
independent of the choice of section o, and p is Z[G]-linear if E? ® Z[G] has
the left G-action given by ¢g(f ® ¢') = f ® g¢’ for all g,¢' € G and f € E1.

If X € D7 then \,(E,) is a finitely generated Z[v]|-submodule of Z[r]. Hence
there is a family of homomorphisms {f, € E9g € F'}, where F is a finite
subset of G, such that A,(e) = Xycrfy(e)o(g) for all e € E;. Let \j(e) =
o(g) L fy(¢o(g)0(e))o(g) for all e € By and g € F. Let ®(\) = Syepdy @ g €
E?1®Z|G]. Then ® is a Z-linear cochain homomorphism. Moreover [p®(\)] =
] for all [X] € HI(D*) and [®p(f )] = [f @g] for all [fg] € HI(E* RZIG]),
and so p is a chain homotopy equivalence. (It is not clear that ® is Z[G]-linear
on the cochain level, but we shall not need to know this).

We now compare the hypercohomology of G with coefficients in the cochain
complexes E* ® Z[G] and D*. On one side we have H"(G; E* @ Z[G]) =
Hyy (Homgg (Ax, E* ® Z[G])), which may be identified with Hy,(E* @ A*)
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since A, is finitely generated for all ¢ > 0. This is in turn isomorphic to
H""(E*) ® H"(G;Z|G]) = H" " (E*), since G acts trivially on E* and is a
weak PD,-group.

On the other side we have H"(G; D*) = H{y,,(Homgg)(A«, D*)). The cochain
homomorphism p induces a morphism of double complexes from E* ® A* to
Homgq(Ax, D*) by pP(f @ a)(a) = p(f ® a(a)) € DP for all f € EP, a € A
and a € A, and all p,q > 0. Let pP([f]) = [p""(f x n)] € HP*"(G; D*) for
all [f] € HP(E*). Then pP : HP(E*) — HPT"(G; D*) is an isomorphism, since
[f] = [f x n] is an isomorphism and p is a chain homotopy equivalence. Since
C) is a finitely generated projective Z[r]-module DP is a direct summand of a
coinduced module. Therefore H'(G; DP) = 0 for all i > 0, while H%(G; DP) =
Homg(Cp, Z[x]), for all p > 0. Hence H"(G; D*) = H"(C*) for all n.

Let f € EP, a € A, and ¢ € (), and suppose that n(a) = ¥ngg. Since
#F)@)(0) = p(f ©1(a))(c) = Sngo(g) fé(o(g) ) = ([f)Un)(c,a) it follows
that the homomorphisms from HP(E*) to HP*"(C*) given by cup-product with
7¢ are isomorphisms for all p.

Let [M] € Hp(M;Z") be a fundamental class for M, and let [M,] = ngN[M] €
H, .(M;Z* ® Z|G)) = H,_,(M,;Z*). Then cap product with [M,] induces
isomorphisms HP(M,; Z[v]) = H,—r—p(M,;Z[v]) for all p, since cN[M,] =
(cUng)N[M] in Hy—p—p(M;Z[r])) = Hy—p—p(My; Z]v]) = Hn,r,p(ﬂ; Z) for
c € HP(M,;Z[v]). Thus M, is a PD,,_,-space. O

Theorems 1.19” and 4.1 together give the following version of the Gottlieb-
Quinn Theorem for covering spaces.

Corollary 4.1.1 Let M be a PD,,-space and p: m = m(M) — G an epimor-
phism with G a PD,-group, and let v = Ker(p). Then M, is a PD,,_,-space
if and only if C(M)|, has finite [n/2]-skeleton.

Proof The conditions are clearly necessary. Conversely, if M,, has finite [n/2]-
skeleton then C, is Z[v]-finitely dominated, by Theorem 1.19’, and hence is a
PD,,_,-space, by Theorem 4.1. O

Corollary 4.1.2 The space M, is a PD,_,-complex if and only if it is ho-
motopy equivalent to a complex with finite [n/2]-skeleton and v is finitely
presentable. o

Corollary 4.1.3 If 7 is a PD,-group M isa PD,,_,-complex if and only if
H,(M;Z) is finitely generated for all ¢ < [n/2]. O
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Stark used [St96, Theorem 3.1] with the Gottlieb-Quinn Theorem to deduce
that if M is a PD,-complex and v.c.d.w/v < oo then 7/v is of type vFP,
and therefore is virtually a PD-group. Is there a purely algebraic argument to
show that if M is a PD,-space, v is a normal subgroup of m and C.(M) is
Z|v]-finitely dominated then 7 /v must be a weak PD-group?

4.2 Novikov rings and Ranicki’s criterion

The results of the above section apply in particular when G = Z. In this
case however we may use an alternative finiteness criterion of Ranicki to get a
slightly stronger result, which can be shown to be best possible. The results of
this section are based on joint work with Kochloukova (in [HK07]).

Let m be a group, p : m — Z an epimorphism with kernel v and ¢t € 7 an element
such that p(t) = 1. Let o : v — v be the automorphism determined by a(h) =
tht=! for all h in v. This automorphism extends to a ring automorphism (also
denoted by «) of the group ring R = Z[v], and the ring S = Z[r] may then be
viewed as a twisted Laurent extension, Z[r] = Z[v]4[t,t~!]. The Novikov ring

—

Z[r], associated to m and p is the ring of (twisted) Laurent series Yisakit!
for some a € Z, with coefficients x; in Z[v]. Multiplication of such series is
determined by conjugation in T if g € v then tg = (tgt~Y)t. If 7 is ﬁnltely

generated the Novikov rings Z[ ], are weakly finite [Ko0O6]. Let S, = Z[ I,
and S = Zlr|_,.

An a-twisted endomorphism of an R-module E is an additive function h : £ —
E such that h(re) = a(r)h(e) for all e € E and r € R, and h is an a-twisted
automorphism if it is bijective. Such an endomorphlsm h extends to a- -twisted
endomorphisms of the modules S ®g F, E+ = 5’+ ®pr E and E, =9 Qr E
by h(s®e) = tst™! @ h(e) for all e € E and s € S, Sy or S_, respectively.
In particular, left multiplication by ¢ determines a-twisted automorphisms of
S®pFE, E+ and E_ which commute with h.

If E is finitely generated then 1 — ¢t~'h is an automorphism of E_, with in-
verse given by a geometric series: (1 — t~'h)~! = S0t 7FRF. (If E is not
finitely generated this series may not give a function with values in E_, and
t —h = t(1 — t7'h) may not be surjective). Similarly, if k is an a~!-twisted
endomorphism of E then 1 —tk is an automorphism of E’+.

If P, is a chain complex with an endomorphism §: P, — P, let P,[1] be the
suspension and C(8), be the mapping cone. Thus C(8), = P,—1 & P,, and
9q(p,p') = (—0p, B(p) + 0p'), and there is a short exact sequence

0— P. = C(B)x — Pi[l] — 0.
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The connecting homomorphisms in the associated long exact sequence of ho-
mology are induced by §. The algebraic mapping torus of an a-twisted self
chain homotopy equivalence h of an R-chain complex F, is the mapping cone
C(1 —t71h) of the endomorphism 1 —¢~'h of the S-chain complex S ®p E.

Lemma 4.2 Let E, be a projective chain complex over R which is finitely
generated in degrees < ii and let h : E, — E, be an a-twisted chain homotopy
equivalence. Then Hy(S— ®5C(1 —t71h),) =0 for ¢ < d.

Proof There is a short exact sequence
0= S®prE,—C(1—2"'h), = S®pE.[l] —0.
Since F, is a complex of projective R-modules the sequence
0= B, — 8 ®sC1—t""h), — E,_[1] >0
obtained by extending coefficients is exact. Since 1—t~1'h induces isomorphisms
on E,_ for ¢ < d it induces isomorphisms on homology in degrees < d and an

epimorphism on homology in degree d. Therefore Hq(§_ ®sC(1—t"th),) =0
for g < d, by the long exact sequence of homology. a

The next theorem is our refinement of Ranicki’s finiteness criterion [HKO07].

Theorem 4.3 Let C, be a finitely generated projective S-chain complex.
Then i'C, has finite d-skeleton if and only if Hq(Si ®s Cy) =0 for ¢ < d.

Proof We may assume without loss of generality that Cj is a finitely generated
free S-module for all ¢ < d+ 1, with basis X; = {cgi}icr(q)- We may also
assume that 0 ¢ 0;(X;) for i < d+ 1, where 0; : C; — C;_; is the differential
of the complex. Let hy be the a®!-twisted automorphisms of i'C, induced by
multiplication by 2l in C,. Let

fo(ZFregs) = (0,28 @ regy) € (SR Cu) ® (S @R Cy).
Then f, defines S-chain homotopy equivalences from C, to each of C(1—z"1h)
and C(1 — zh_).

Suppose first that k, : i'C, — E, and g« By — i'C, are chain homotopy equiv-
alences, where F, is a projective R-chain complex which is finitely generated
in degrees < d. Then 64 = k,hig, are a®!-twisted self homotopy equiva-
lences of E,, and C(1—2z"'h,) and C(1 — zh_) are chain homotopy equivalent
to C(1 — z70;) and C(1 — 26_), respectively. Therefore Hq(g_ ®s Cy) =
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Hy(S_ ©5C(1—2710,)) =0 and Hy(Sy ©5Cy) = Hy(S, ®5C(1—260_)) =0
for ¢ < d, by Lemma 5, applied twice.
Conversely, suppose that Hl(gi ®sCy) =0 for all i < k. Adapting an idea from

[BR8S8], we shall define inductively a support function suppx for A € U;<q11C;
with values finite subsets of {27};ez so that

(1) suppx(0) =0;

(2) if x € Xo then suppx(27x) = 27;

(3) if z € X; for 1 <i<d+1 then suppx(2’x) = 27.suppx (0;(x));

(4) ifs=3; rjzl € S, where r; € R, suppx (sz) = Uy, zosuppx (27 2);

(5) fo<i<d+land A=} g, cx, So@ then

suppx (A) = Us, £0,0e X, SUPPX (S2.%).

Then suppx (0;(\)) C suppx(A) for all A € C; and all 1 < i < d+ 1. Since
X = Uj<q+1X; is finite there is a positive integer b such that

Usex, icdar1suppx () € {2/} bejch.

Define two subcomplexes C* and C~ of C which are 0 in degrees i > d + 2 as
follows:

(1) if i < d+1 an element A € C; is in CV if and only if suppx(\) C
{#7}j>-p; and

(2) ifi<d+1anelement A € C; isin C~ ifand only if suppx (\) C {27} ;<.
Then Ujcgp1 X; C (CHH 0 (¢4 and so (1)l U (0-)ld+1] = ¢ld+1]
where the upper index % denotes the %-skeleton. Moreover (CH)d+1 s a
complex of free finitely generated Rg[z]-modules, (C7)[4+1 is a complex of
free finitely generated Rq[z~']-modules, (CH)4H1 0 (C~)l4+1 is a complex of
free finitely generated R-modules and

C[d+1] =S ®Ra[z] (C+)[d+1] =5 ®Ra[z*1] (0_)[d+1]'
Furthermore there is a Mayer-Vietoris exact sequence
0 — (CHl+ A (cHldH o (oh)ld+l g (om)ld+Ht o old+) g,

Thus the (d+ 1)-skeletons of C', C* and C~ satisfy “algebraic transversality”
in the sense of [Rn95]. To prove the theorem it suffices to show that C* and
C~ are each chain homotopy equivalent over R to a complex of projective R-
modules which is finitely generated in degrees < d. As in [Rn95] there is an
exact sequence of R,[z~!]-module chain complexes

0 — (CT)H] 5 Ol g R, [[27Y] @, o1y (CT)EY 5 ogCletl g,
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Let 7 denot the inclusion of (C~)*+1 into the central term. Inclusions on each
component define a chain homomorphism

j (eI n e () g Ral[71] @, o1y (C7)

such that the mapping cones of 7 and j are chain equivalent R-module chain
complexes. The map induced by ¢ in homology is an epimorphism in degree d
and an isomorphism in degree < d, since Hy(S_ ®g Cl4+t1) =0 for i < d. In
particular all homologies in degrees < d of the mapping cone of i are 0. Hence
all homologies of the mapping cone of j are 0 in degrees < d. Then (C’*)[d“]
is homotopy equivalent over R to a chain complex of projectives over R whose
k-skeleton is a summand of (CT) N (C~)l¥. This completes the proof. O

The argument for the converse is entirely due to Kochloukova.

As an application we shall give a quick proof of Kochloukova’s improvement of
Corollary 2.5.1.

Corollary 4.3.1 [Ko06] Let 7 be a finitely presentable group with a finitely
generated normal subgroup N such that w/N = Z. Then def(m) = 1 if and
only if N is free.

Proof Let X be the finite 2-complex corresponding to an optimal presentation
of w. If def(G) = 1 then x(X) = 0 and X is aspherical, by Theorem 2.5. Hence
C, = C.(X) is a finite free resolution of the augmentation module Z. Let A
be the two Novikov rings corresponding to the two epimorphisms £p : 7 — Z
with kernel N. Then H;(A4 ®gz-Cx) = 0 for j < 1, by Theorem 4.3. But then
Hy(Ax @z Cy) is stably free, by Lemma 3.1. Since x(A+ ®z(r Cx) = x(Cx) =
X(X) = 0 and the rings A4 are weakly finite [Ko06] these modules are 0. Thus
Hj(As ®zjx Ck) = 0 for all j, and so C.l, is chain homotopy equivalent to a
finite projective Z[v]-complex [Rn95, Theorem 2]. In particular, N is F'P, and
hence is free [Bi, Corollary 8.6].

The converse is clear. O

4.3 Infinite cyclic covers

The mapping torus of a self homotopy equivalence f : X — X is the space
M(f) = X x [0,1]/ ~, where (z,0) ~ (f(x),1) for all z € X. The function
p([x,t]) = ™ defines a map p: M(f) — S! with homotopy fibre X, and the
induced homomorphism p, : 7 (M (f)) — Z is an epimorphism if X is path-
connected. Conversely, let E be a connected cell complex and let f: E — St
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4.3 Infinite cyclic covers 77

be a map which induces an epimorphism f, : 1 (E) — Z, with kernel v. Then
E, = Exg R ={(r,y) € ExR| f(x) = e¥¥}, and E ~ M(¢), where
¢ : B, — E, is the generator of the covering group given by ¢(z,y) = (z,y+1)
for all (z,y) in E,.

Theorem 4.4 Let M be a finite PD,,-space with fundamental group m and
let p: m — Z be an epimorphism with kernel v. Then M, is a PD,,1-space if
and only if x(M) =0 and C.(M,) = C.(M)|, has finite [(n — 1)/2]-skeleton.
Proof If M, isa PD,_;-space then C\(M,) is Z[v]-finitely dominated [Br72].
In particular, H,(M;A) = H.(M,;Z) is finitely generated. The augmentation
A-module Z has a short free resolution 0 - A - A — Z — 0, and it follows
easily from the exact sequence of homology for this coefficient sequence that
X(M) =0 [Mi68]. Thus the conditions are necessary.

Suppose that they hold. Let Ay be the two Novikov rings corresponding to
the two epimorphisms +p : 7 — Z with kernel v. Then H;(A+ ®z(x Cx) =0
for j < [(n —1)/2], by Theorem 4.3. Hence H;(At+ ®gzj5 Cx) = 0 for j >
n—[(n—1)/2], by duality. If n is even there is one possible nonzero module, in
degree m = n/2. But then H,,(A+ ®z(; Cs) is stably free, by the finiteness of
M and Lemma 3.1. Since x(A+ ®zr Cx) = x(Cx) = x(M) = 0 and the rings
A are weakly finite [Ko06] these modules are 0. Thus H;(A+ ®z(x Cx) = 0
for all j, and so C|, is chain homotopy equivalent to a finite projective Z[v]-
complex, by Theorem 4.4. Thus the result follows from Theorem 4.1. O

When n is odd [n/2] = [(n — 1)/2], so the finiteness condition on M, agrees
with that of Corollary 4.1.1 (for G = Z), but it is slightly weaker if n is even.
Examples constructed by elementary surgery on simple n-knots show that the
FPy,—1)/2) condition is best possible, even when 7 = 7Z and v = 1.

Corollary 4.4.1 Under the same hypotheses on M and 7, if n # 4 then M,
is a PD,,_1-complex if and only if it is homotopy equivalent to a complex with
finite [(n — 1)/2]-skeleton.

Proof If n <3 every PD,,_1-space is a PD,_1-complex, while if n > 5 then
[(n—1)/2] > 2 and so v is finitely presentable. O

If n < 3 we need only assume that M is a PD,-space and v is finitely generated.

It remains an open question whether every P Ds-space is finitely dominated.
The arguments of [Tu90] and [Cr00] on the factorization of PD3z-complexes
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into connected sums are essentially homological, and so every P Ds-space is a
connected sum of aspherical PDs-spaces and a PDs-complex with virtually
free fundamental group. Thus the question of whether every PDs-space is
finitely dominated reduces to whether every PDs-group is finitely presentable.

4.4 The case n =14

If M(f) is the mapping torus of a self homotopy equivalence of a P Ds-space
then x(M) =0 and 7 (M) is an extension of Z by a finitely generated normal
subgroup. These conditions characterize such mapping tori, by Theorem 4.4.
We shall summarize various related results in the following theorem.

Theorem 4.5 Let M be a finite PDy-space whose fundamental group m is
an extension of Z by a finitely generated normal subgroup v. Then

(1) x(M) > 0, with equality if and only if Ho(M,;Q) is finitely generated;
(2) x(M) =0 if and only if M, is a PDs-space;

(3) if x(M) =0 then M is aspherical if and only if v is a PDs-group if and
only if v has one end;

(4) if M is aspherical then x(M) = 0 if and only if v is a PDs-group if and
only if v is FPs.

Proof Since C,(M) is finitely dominated and QA = Q[t,t!] is noetherian
the homology groups Hy(M,;Q) are finitely generated as QA-modules. Since
v is finitely generated they are finite dimensional as Q-vector spaces if g < 2,
and hence also if ¢ > 2, by Poincaré duality. Now Hy(M,;Q) = Q" @ (QA)®
for some r,s > 0, by the Structure Theorem for modules over a PID. It follows
easily from the Wang sequence for the covering projection from M, to M, that
X(M)=s2>0.

The space M, is a PDs-space if and only if x(M) = 0, by Theorem 4.4.

Since M is aspherical if and only if M, is aspherical, (3) follows from (2) and
the facts that PDj3-groups have one end and a PDs-space is aspherical if and
only if its fundamental group has one end.

If M is aspherical and x(M) = 0 then v is a PD3-group. If v is a PDs-group
itis F'P. If M is aspherical and v is F'P, then v is a PDj3-group, by Theorem
1.19 (or Theorem 4.4), and so x(M) = 0. O
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In particular, if x(M) = 0 then ¢g(7) = 0. This observation and the bound
X(M) > 0 were given in Theorem 3.17. (They also follow on counting bases for
the cellular chain complex of M, and extending coefficients to Q(¢).)

If x(M) =0 and v is finitely presentable then M, is a PDs-complex. However
M, need not be homotopy equivalent to a finite complex. If M is a simple PD4-
complex and a generator of Aut(M, /M) = w/v has finite order in the group of
self homotopy equivalences of M, then M is finitely covered by a simple PDy-
complex homotopy equivalent to M, x S'. In this case M, must be homotopy
finite [Rn86].

If 1= v xZisa PDy-group with v finitely generated then x(7) = 0 if and
only if v is F'P,, by Theorem 4.5. However the latter conditions need not hold.
Let F' be the orientable surface of genus 2. Then G = 71(F') has a presentation
(a1,ag,b1,bs | [a1,b1] = [a2,b2]). The group m = G x G is a PDy4-group, and
the subgroup v < 7 generated by the images of (a1,a;) and the six elements
(z,1) and (1,z), for x = ag, by or be, is normal in 7, with quotient 7 /v = Z.
However x(7) =4 # 0 and so v cannot be F'P,.

It can be shown that the finitely generated subgroup N of F(2) x F(2) defined
after Theorem 2.4 has one end. However H?(F(2) x F(2); Z[F(2) x F(2)]) # 0.
(Note that ¢(F(2) x F(2)) =2, by Corollary 3.12.2.)

Corollary 4.5.1 Let M be a finite PDy-space with x(M) = 0 and whose
fundamental group 7 is an extension of Z by a normal subgroup v. If m has an
infinite cyclic normal subgroup C which is not contained in v then the covering
space M, with fundamental group v is a PDs-complex.

Proof We may assume without loss of generality that M is orientable and
that C is central in 7. Since 7/v is torsion-free CNyr =1, and so Cv = C x v
has finite index in w. Thus by passing to a finite cover we may assume that
m = C X v. Hence v is finitely presentable and so Theorem 4.5 applies. O

Since v has one or two ends if it has an infinite cyclic normal subgroup, Corol-
lary 4.5.1 remains true if C < v and v is finitely presentable. In this case v is
the fundamental group of a Seifert fibred 3-manifold, by Theorem 2.14.

Corollary 4.5.2 Let M be a finite PDy-space with x(M) = 0 and whose
fundamental group m is an extension of Z by a finitely generated normal sub-
group v. If v is finite then it has cohomological period dividing 4. If v has
one end then M is aspherical and so © is a PDy-group. If v has two ends then
v=7Z,7®(Z/2Z) or D. If moreover v is finitely presentable the covering
space M, with fundamental group v is a PDs-complex.

Geometry & Topology Monographs, Volume 5 (2002)
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Proof The final hypothesis is only needed if v is one-ended, as finite groups
and groups with two ends are finitely presentable. If v is finite then M ~ S3
and so the first assertion holds. (See Chapter 11 for more details.) If v has one
end we may use Theorem 4.5. If v has two ends and its maximal finite normal
subgroup is nontrivial then v = Z & (Z/2Z), by Theorem 2.11 ( applied to the
PDs3-complex M,). Otherwise v =2 Z or D. O

In Chapter 6 we shall strengthen this Corollary to obtain a fibration theorem
for 4-manifolds with torsion-free elementary amenable fundamental group.

Corollary 4.5.3 Let M be a finite PDy-space with x(M) = 0 and whose
fundamental group 7 is an extension of Z by a normal subgroup v = F(r).
Then M is homotopy equivalent to a closed PL 4-manifold which fibres over
the circle, with fibre #"S' x S? if wi(M)|, is trivial, and " S'xS? otherwise.
The bundle is determined by the homotopy type of M .

Proof Since M, is a PDs-complex with free fundamental group it is homotopy
equivalent to N = 7St x S2 if wy(M)|, is trivial and to #7S1xS? otherwise.
Every self homotopy equivalence of a connected sum of S%-bundles over S! is
homotopic to a self-homeomorphism, and homotopy implies isotopy for such
manifolds [La]. Thus M is homotopy equivalent to such a fibred 4-manifold,
and the bundle is determined by the homotopy type of M. a

The homotopy types of such mapping tori are determined by 7, w1 (M) and the
orbit of wa(M) under the action of Out(w). It is easy to see that Homeo(V)
maps onto Out(F(r), and all such triples (7, w;,w2) are realized [Hi20].

Corollary 4.5.4 Let M be a finite PDys-space with x(M) = 0 and whose
fundamental group 7 is an extension of Z by a torsion-free normal subgroup v
which is the fundamental group of a closed 3-manifold N. Then M is homotopy
equivalent to the mapping torus of a self homeomorphism of N .

Proof There is a homotopy equivalence f : N — M,, by Turaev’s Theorem.
(See §5 of Chapter 2.) The indecomposable factors of N are either Haken, hy-
perbolic or Seifert fibred 3-manifolds, by the Geometrization Conjecture (see
[B-P]). Let t : M, — M, be the generator of the covering transformations.
Then there is a self homotopy equivalence v : N — N such that fu ~tf. As
each aspherical factor of N has the property that self homotopy equivalences
are homotopic to PL homeomorphisms (by [Hm|, Mostow rigidity or [Sc83]),
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and a similar result holds for #"(S! x S2) (by [La]), u is homotopic to a home-
omorphism [HL74], and so M is homotopy equivalent to the mapping torus of
this homeomorphism. a

The hypothesis that M be finite is redundant in each of the last two corollaries,
since Ko(Z[r]) = 0. (See Theorem 6.3.) All known PDs-complexes with
torsion-free fundamental group are homotopy equivalent to 3-manifolds.

If the irreducible connected summands of the closed 3-manifold N = #;N; are
P?-irreducible and sufficiently large or have fundamental group Z then every
self homotopy equivalence of IV is realized by an unique isotopy class of home-
omorphisms [HL74]. However if N is not aspherical then it admits nontrivial
self-homeomorphisms (“rotations about 2-spheres”) which induce the identity
on v, and so such bundles are not determined by the group alone.

Let f: M — E be a homotopy equivalence, where F is a finite PD4-complex
with yx(E) = 0 and fundamental group 7 = v x Z, where v is finitely pre-
sentable. Then w1 (M) = f*wi(E) and cp, f.[M] = +cp,[E] in Hy(m; Z21F).
Conversely, if x(M) = 0 and there is an isomorphism 6 : 71 (M) = 7 such that
wi (M) = 0fw and 6y.cpr[M] = cgi[E] then E, and M, are PDs-complexes,
by Theorem 4.5. A Wang sequence argument as in the next theorem shows
that the fundamental triples of F, and M, are isomorphic, and so they are
homotopy equivalent, by Hendrik’s Theorem. What additional conditions are
needed to determine the homotopy type of such mapping tori? Our next result
is a partial step in this direction.

Theorem 4.6 Let E be a finite PD4-complex with x(E) = 0 and whose
fundamental group 7 is an extension of Z by a finitely presentable normal sub-
group v which is not virtually free. Let Il = H?(w;Z|n]). A PDy-complex M
is homotopy equivalent to E if and only if x(M) = 0, there is an isomorphism
6 from (M) to 7 such that wi(M) = w1 (E)0, 6* k(M) and ki(E) gener-
ate the same subgroup of H?(m;II) under the action of Out(m) X Autz(II),
and there is a lift ¢ : M — P»(E) of Ocpr such that ¢é.[M] = +fg.[FE] in
Hy(Py(E); 2 (P))

Proof The conditions are clearly necessary. Suppose that they hold. The in-
finite cyclic covering spaces N = E,, and M, are PDs-complexes, by Theorem
4.5, and m(E) = II and me(M) = 6*II, by Theorem 3.4. The maps ¢y and
cp induce a homomorphism between the Wang sequence for the fibration of
E over S' and the corresponding Wang sequence for K(m,1). Since v is not
virtually free Hs(cn;Z%* ) is a monomorphism. Hence Hy(cg;Z**¥)) and «a
fortiori Hy(fg; Z“’l(E)) are monomorphisms, and so Theorem 3.8 applies. O
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As observed in the first paragraph of §9 of Chapter 2, the conditions on 6 and
the k-invariants also imply that M, ~ E,,.

The original version of this book gave an exposition of the extension of Barge’s
argument to local coefficients for the case when G = Z, instead of the present
Theorem 4.1, and used this together with an L?-argument, instead of the
present Theorem 4.3, to establish the results corresponding to Theorem 4.5
for the case when v was FP5.

4.5 Products

If M = N x S', where N is a closed 3-manifold, then x(M) = 0, Z is a
direct factor of 71 (M), w1 (M) is trivial on this factor and the Pin~-condition
wy = w? holds. These conditions almost characterize such products up to
homotopy equivalence. We need also a constraint on the other direct factor of
the fundamental group.

Theorem 4.7 Let M be a finite PD4-complex whose fundamental group m
has no 2-torsion. Then M is homotopy equivalent to a product N x S, where
N is a closed 3-manifold, if and only if x(M) = 0, wa(M) = w(M)? and
there is an isomorphism 6 :  — v x Z such that wy(M)0~ Y|z = 0, where v is
a (2-torsion-free) 3-manifold group.

Proof The conditions are clearly necessary, since the Pin~-condition holds
for 3-manifolds.

If these conditions hold then the covering space M, with fundamental group v
is a PDj3-complex, by Theorem 4.5 above. Since v is a 3-manifold group and
has no 2-torsion it is a free product of cyclic groups and groups of aspherical
closed 3-manifolds. Hence there is a homotopy equivalence h : M, — N,
where N is a connected sum of lens spaces and aspherical closed 3-manifolds,
by Turaev’s Theorem. (See §5 of Chapter 2.) Let ¢ generate the covering
group Aut(M/M,) = Z. Then there is a self homotopy equivalence ¢ : N — N
such that ©¥h ~ h¢, and M is homotopy equivalent to the mapping torus
M(v). We may assume that v fixes a basepoint and induces the identity on
m1(N), since w1 (M) = v x Z. Moreover 1 preserves the local orientation, since
w1 (M)0~ 1tz = 0. Since v has no element of order 2 there are no two-sided
projective planes in N, and so % is homotopic to a rotation about a 2-sphere
[Hn]. Since wo(M) = wq(M)? the rotation is homotopic to the identity and so
M is homotopy equivalent to N x S*. O
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Let p be an essential map from S to SO(3), and let M = M(7), where
7: 5% x St — 5% x S is the twist map, given by 7(z,y) = (p(y)(z),y) for
all (x,y) in S2 x S'. Then m (M) =2 Z x Z, x(M) = 0, and w;(M) = 0,
but we(M) # wi(M)? = 0, so M is not homotopy equivalent to a product.
(Clearly however M (72) = S% x S! x St.)

To what extent are the constraints on v necessary? There are orientable 4-
manifolds which are homotopy equivalent to products N x S where v = 71 ()
is finite and is not a 3-manifold group. (See Chapter 11.) Theorem 4.1 implies
that M is homotopy equivalent to a product of an aspherical PDs-complex
with S! if and only if x(M) =0 and 71(M) = v x Z where v has one end.

There are 4-manifolds which are simple homotopy equivalent to S* x RP3 (and
thus satisfy the hypotheses of our theorem) but which are not homeomorphic
to mapping tori [We87].

4.6 Ascendant subgroups

In this brief section we shall give another characterization of aspherical PDy-
complexes with finite covering spaces which are homotopy equivalent to map-
ping tori.

Theorem 4.8 Let M be a PDy-complex. Then M is aspherical and has a
finite cover which is homotopy equivalent to a mapping torus if and only if
X(M) =0 and m = 7w (M) has an ascendant F P3 subgroup G of infinite index
and such that H*(G;Z[G]) = 0 for s < 2. In that case G is a PDs-group,
[ : Nz(G)] < 00 and e(N;(G)/G) = 2.

Proof The conditions are clearly necessary. Suppose that they hold and
that G = Gog < G1 < -+ < G3 = 7 is an ascendant sequence. Let v =
min{«a | [G4 : G] = oo}. Transfinite induction using the LHSSS with coefficients
Z|r] and Theorem 1.15 shows that H*(m; Z[r]) = 0 for s < 2. If + is finite then

52) (G,) = 0, since it has a finitely generated normal subgroup of infinite index
[Ga00]. Otherwise v is the first infinite ordinal, and [G41 : G;] < oo for all
j < ~y. In this case 6%2)(67’”) = ﬂ@(G)/[Gn : G| and so limy, s B%Q)(Gn) = 0.
It then follows from [Lii, Theorems 6.13 and 6.54(7)] that Biz)(Gv) =0. In
either case it then follows that B%Q)(GQ) = 0 for all v < a < 3, by Theorem
2.3 (which is part of [Lii, Theorem 7.2]). Hence M is aspherical, by Theorem
3.5.
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On the other hand H*(G,; W) = 0 for s < 3 and any free Z[G,]|-module W,
so c.d.Gy = 4. Hence |7 : G,] < 00, by Strebel’s Theorem. Therefore G is a
PDy-group. In particular, it is finitely generated and so v < oco. If y=p5+1
then [Gs : G] < oo. It follows easily that [1 : N;(G)] < co. Hence G is a
PDs-group and N (G)/G has two ends, by Theorem 3.10. O

The hypotheses on G could be replaced by “G is a PDs-group”, for then
[r: G] = 0o, by Theorem 3.12.

Theorem 5.8 below gives an analogue for PDy-complexes M such that x(M) =
0 and 71 (M) has an 