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Preface ix

Preface

Every closed surface admits a geometry of constant curvature, and may be
classified topologically either by its fundamental group or by its Euler charac-
teristic and orientation character. Closed 3-manifolds have decompositions into
geometric pieces, and are determined up to homeomorphism by invariants asso-
ciated with the fundamental group (whereas the Euler characteristic is always
0). In dimension 4 the Euler characteristic and fundamental group are largely
independent, and the class of closed 4-manifolds which admit a geometric de-
composition is rather restricted. For instance, there are only 11 such manifolds
with finite fundamental group. On the other hand, many complex surfaces ad-
mit geometric structures, as do all the manifolds arising from surgery on twist
spun simple knots.

The goal of this book is to characterize algebraically the closed 4-manifolds
that fibre nontrivially or admit geometries, or which are obtained by surgery
on 2-knots, and to provide a reference for the topology of such manifolds and
knots. In many cases the Euler characteristic, fundamental group and Stiefel-
Whitney classes together form a complete system of invariants for the homo-
topy type of such manifolds, and the possible values of the invariants can be
described explicitly. If the fundamental group is elementary amenable we may
use topological surgery to obtain classifications up to homeomorphism. Surgery
techniques also work well “stably” in dimension 4 (i.e., modulo connected sums
with copies of S? x $?). However, in our situation the fundamental group may
have nonabelian free subgroups and the Euler characteristic is usually the min-
imal possible for the group, and it is not known whether s-cobordisms between
such 4-manifolds are always topologically products. Our strongest results are
characterizations of infrasolvmanifolds (up to homeomorphism) and aspherical
manifolds which fibre over a surface or which admit a geometry of rank > 1
(up to TOP s-cobordism). As a consequence 2-knots whose groups are poly-Z
are determined up to Gluck reconstruction and change of orientations by their
groups alone.

We shall now outline the chapters in somewhat greater detail. The first chapter
is purely algebraic; here we summarize the relevant group theory and present
the notions of amenable group, Hirsch length of an elementary amenable group,
finiteness conditions, criteria for the vanishing of cohomology of a group with
coefficients in a free module, Poincaré duality groups, and Hilbert modules over
the von Neumann algebra of a group. The rest of the book may be divided into
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three parts: general results on homotopy and surgery (Chapters 2-6), geometries
and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-18).

Some of the later arguments are applied in microcosm to 2-complexes and PD3-
complexes in Chapter 2, which presents equivariant cohomology, L?-Betti num-
bers and Poincaré duality. Chapter 3 gives general criteria for two closed 4-
manifolds to be homotopy equivalent, and we show that a closed 4-manifold M
is aspherical if and only if 71 (M) is a PD4-group of type F'F and x(M) = x(r).
We show that if the universal cover of a closed 4-manifold is finitely dominated
then it is contractible or homotopy equivalent to S? or S or the fundamental
group is finite. We also consider at length the relationship between fundamental
group and Euler characteristic for closed 4-manifolds. In Chapter 4 we show
that a closed 4-manifold M fibres homotopically over S' with fibre a PDs-
complex if and only if x(M) =0 and 71(M) is an extension of Z by a finitely
presentable normal subgroup. (There remains the problem of recognizing which
P Ds-complexes are homotopy equivalent to 3-manifolds). The dual problem of
characterizing the total spaces of S'-bundles over 3-dimensional bases seems
more difficult. We give a criterion that applies under some restrictions on the
fundamental group. In Chapter 5 we characterize the homotopy types of total
spaces of surface bundles. (Our results are incomplete if the base is RP?). In
particular, a closed 4-manifold M is simple homotopy equivalent to the total
space of an F-bundle over B (where B and F' are closed surfaces and B is
aspherical) if and only if x(M) = x(B)x(F) and m1(M) is an extension of
m1(B) by a normal subgroup isomorphic to 71 (F'). (The extension should split
if F = RP?). Any such extension is the fundamental group of such a bundle
space; the bundle is determined by the extension of groups in the aspherical
cases and by the group and Stiefel-Whitney classes if the fibre is S? or RP2.
This characterization is improved in Chapter 6, which considers Whitehead
groups and obstructions to constructing s-cobordisms via surgery.

The next seven chapters consider geometries and geometric decompositions.
Chapter 7 introduces the 4-dimensional geometries and demonstrates the limi-
tations of geometric methods in this dimension. It also gives a brief outline of
the connections between geometries, Seifert fibrations and complex surfaces. In
Chapter 8 we show that a closed 4-manifold M is homeomorphic to an infra-
solvmanifold if and only if x(M) = 0 and 71 (M) has a locally nilpotent normal
subgroup of Hirsch length at least 3, and two such manifolds are homeomorphic
if and only if their fundamental groups are isomorphic. Moreover 71 (M) is then
a torsion free virtually poly-Z group of Hirsch length 4 and every such group is
the fundamental group of an infrasolvmanifold. We also consider in detail the
question of when such a manifold is the mapping torus of a self homeomorphism
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of a 3-manifold, and give a direct and elementary derivation of the fundamental
groups of flat 4-manifolds. At the end of this chapter we show that all ori-
entable 4-dimensional infrasolvmanifolds are determined up to diffeomorphism
by their fundamental groups. (The corresponding result in other dimensions
was known).

Chapters 9-12 consider the remaining 4-dimensional geometries, grouped ac-
cording to whether the model is homeomorphic to R*, $? x R?, $% x R or is
compact. Aspherical geometric 4-manifolds are determined up to s-cobordism
by their homotopy type. However there are only partial characterizations of
the groups arising as fundamental groups of H? x HZ?-manifolds, while very
little is known about H*- or H2(C)-manifolds. We show that the homotopy
types of manifolds covered by S? x R? are determined up to finite ambiguity
by their fundamental groups. If the fundamental group is torsion free such a
manifold is s-cobordant to the total space of an S?-bundle over an aspherical
surface. The homotopy types of manifolds covered by S3 x R are determined by
the fundamental group and first nonzero k-invariant; much is known about the
possible fundamental groups, but less is known about which k-invariants are
realized. Moreover, although the fundamental groups are all “good”, so that
in principle surgery may be used to give a classification up to homeomorphism,
the problem of computing surgery obstructions seems very difficult. We con-
clude the geometric section of the book in Chapter 13 by considering geometric
decompositions of 4-manifolds which are also mapping tori or total spaces of
surface bundles, and we characterize the complex surfaces which fibre over S!
or over a closed orientable 2-manifold.

The final five chapters are on 2-knots. Chapter 14 is an overview of knot theory;
in particular it is shown how the classification of higher-dimensional knots may
be largely reduced to the classification of knot manifolds. The knot exterior is
determined by the knot manifold and the conjugacy class of a normal generator
for the knot group, and at most two knots share a given exterior. An essen-
tial step is to characterize 2-knot groups. Kervaire gave homological conditions
which characterize high dimensional knot groups and which 2-knot groups must
satisfy, and showed that any high dimensional knot group with a presentation
of deficiency 1 is a 2-knot group. Bridging the gap between the homological and
combinatorial conditions appears to be a delicate task. In Chapter 15 we inves-
tigate 2-knot groups with infinite normal subgroups which have no noncyclic
free subgroups. We show that under mild coherence hypotheses such 2-knot
groups usually have nontrivial abelian normal subgroups, and we determine all
2-knot groups with finite commutator subgroup. In Chapter 16 we show that if
there is an abelian normal subgroup of rank > 1 then the knot manifold is either
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s-cobordant to a SL x E!-manifold or is homeomorphic to an infrasolvmanifold.
In Chapter 17 we characterize the closed 4-manifolds obtained by surgery on
certain 2-knots, and show that just eight of the 4-dimensional geometries are
realised by knot manifolds. We also consider when the knot manifold admits
a complex structure. The final chapter considers when a fibred 2-knot with
geometric fibre is determined by its exterior. We settle this question when the
monodromy has finite order or when the fibre is R3/Z3 or is a coset space of
the Lie group Nil3.

This book arose out of two earlier books of mine, on “2-Knots and their Groups”
and “The Algebraic Characterization of Geometric 4-Manifolds”, published by
Cambridge University Press for the Australian Mathematical Society and for
the London Mathematical Society, respectively. About a quarter of the present
text has been taken from these books.! However the arguments have been
improved in many cases, notably in using Bowditch’s homological criterion for
virtual surface groups to streamline the results on surface bundles, using L?-
methods instead of localization, completing the characterization of mapping
tori, relaxing the hypotheses on torsion or on abelian normal subgroups in
the fundamental group and in deriving the results on 2-knot groups from the
work on 4-manifolds. The main tools used here beyond what can be found in
Algebraic Topology [Sp] are cohomology of groups, equivariant Poincaré duality
and (to a lesser extent) L2-(co)homology. Our references for these are the books
Homological Dimension of Discrete Groups [Bi], Surgery on Compact Manifolds
[W1] and L?-Invariants: Theory and Applications to Geometry and K -Theory
[Lii], respectively. We also use properties of 3-manifolds (for the construction
of examples) and calculations of Whitehead groups and surgery obstructions.

This work has been supported in part by ARC small grants, enabling visits
by Steve Plotnick, Mike Dyer, Charles Thomas and Fang Fuquan. I would
like to thank them all for their advice, and in particular Steve Plotnick for
the collaboration reported in Chapter 18. I would also like to thank Robert
Bieri, Robin Cobb, Peter Linnell and Steve Wilson for their collaboration, and
Warren Dicks, William Dunbar, Ross Geoghegan, F.T.Farrell, lan Hambleton,
Derek Holt, K.F.Lai, Eamonn O’Brien, Peter Scott and Shmuel Weinberger for
their correspondance and advice on aspects of this work.

Jonathan Hillman

!See the following Acknowledgment for a summary of the textual borrowings.
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Chapter 1

Group theoretic preliminaries

The key algebraic idea used in this book is to study the homology groups
of covering spaces as modules over the group ring of the group of covering
transformations. In this chapter we shall summarize the relevant notions from
group theory, in particular, the Hirsch-Plotkin radical, amenable groups, Hirsch
length, finiteness conditions, the connection between ends and the vanishing of
cohomology with coefficients in a free module, Poincaré duality groups and
Hilbert modules.

Our principal references for group theory are [Bi], [DD] and [Ro].

1.1 Group theoretic notation and terminology

We shall write Z for the ring of integers, and also the free (abelian) group of
rank 1. We may otherwise write Z for an infinite cyclic group with no specified
generator. We shall also identify the units Z* = {41}, the field Fo and Z/27,
when convenient. Let F(r) be the free group of rank r.

Let G be a group. Then G’ and (G denote the commutator subgroup and
centre of G, respectively. The outer automorphism group of G is Out(G) =
Aut(G)/Inn(G), where Inn(G) = G/CG is the subgroup of Aut(G) consist-
ing of conjugations by elements of G. If H is a subgroup of G let Ng(H)
and Cg(H) denote the normalizer and centralizer of H in G, respectively.
The subgroup H is a characteristic subgroup of G if it is preserved under all
automorphisms of G. In particular, I(G) = {g € G | In > 0, g" € G'}
is a characteristic subgroup of G, and the quotient G/I(G) is a torsion-free
abelian group of rank f1(G). A group G is indicable if there is an epimorphism
p:G—Z,orif G=1.1f S is a subset of G then (S) and ((S))s (or just
((S))) are the subgroup generated by S and the normal closure of S in G (the
intersection of the normal subgroups of G which contain S), respectively.

If P and @ are classes of groups let PQ denote the class of (“P by Q”) groups
G which have a normal subgroup H in P such that the quotient G/H is in
@, and let /P denote the class of (“locally P”) groups such that each finitely
generated subgroup is in the class P. In particular, if F' is the class of finite
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4 Chapter 1: Group theoretic preliminaries

groups £F is the class of locally finite groups. In any group the union of all
the locally-finite normal subgroups is the unique maximal locally-finite normal
subgroup. Clearly there are no nontrivial homomorphisms from such a group to
a torsion-free group. Let poly- P be the class of groups with a finite composition
series such that each subquotient is in P. Thus if Ab is the class of abelian
groups poly- Ab is the class of solvable groups.

Let P be a class of groups which is closed under taking subgroups of finite
index. A group is virtually P if it has a subgroup of finite index in P. Let vP
be the class of groups which are virtually P. Thus a virtually poly-Z group is
one which has a subgroup of finite index with a composition series whose factors
are all infinite cyclic. The number of infinite cyclic factors is independent of the
choice of finite index subgroup or composition series, and is called the Hirsch
length of the group. We shall also say that a space virtually has some property
if it has a finite regular covering space with that property.

If p: G — Q is an epimorphism with kernel N we shall say that G is an
extension of @ = G/N by the normal subgroup N. The action of G on N
by conjugation determines a homomorphism from G to Aut(/N) with kernel
Ca(N) and hence a homomorphism from G/N to Out(N) = Aut(N)/Inn(N).
If G/N = 7Z the extension splits: a choice of element ¢ in G which projects to a
generator of G/N determines a right inverse to p. Let 6 be the automorphism
of N determined by conjugation by ¢ in G. Then G is isomorphic to the
semidirect product N Xy Z. Every automorphism of N arises in this way, and
automorphisms whose images in Out(N) are conjugate determine isomorphic
semidirect products. In particular, G = N x Z if 6 is an inner automorphism.

Lemma 1.1 Let 6 and ¢ automorphisms of a group G such that H,(0;Q) —1
and Hi(¢;Q) — 1 are automorphisms of H1(G;Q) = (G/G’) ® Q. Then the
semidirect products mg = G' Xg Z and wy = G Xy Z are isomorphic if and only
if 0 is conjugate to ¢ or ¢~' in Out(G).

Proof Let ¢t and u be fixed elements of my and 74, respectively, which map
to 1 in Z. Since Hy(mg; Q) = Hi(my; Q) = @Q the image of G in each group
is characteristic. Hence an isomorphism h : mp — 74 induces an isomorphism
e : Z — Z of the quotients, for some e = £1, and so h(t) = u®g for some g in
G. Therefore h(0(h=1(5)))) = h(th=t(j)t™1) = ugjg tu¢ = ¢¢(gjg~') for all
j in G. Thus 6 is conjugate to ¢¢ in Out(G).

Conversely, if § and ¢¢ are conjugate in Out(G) there is an f in Aut(G) and
a g in G such that 0(j) = f~1¢°f(gjg~') for all j in G. Hence F(j) = f(5)
for all j in G and F(t) = u®f(g) defines an isomorphism F' : mg — 7. O
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1.2 Matrix groups 5

A subgroup K of a group G is ascendant if there is an increasing sequence of
subgroups N,, indexed by ordinals < 3, such that Ny = K, N, is normal in
Noq1 if o < 3, Ng = Uq<p N, for all limit ordinals § < Jand No=G. If Jis
finite K is subnormalin G. Such ascendant series are well suited to arguments
by transfinite induction.

1.2 Matrix groups
In this section we shall recall some useful facts about matrices over Z.

Lemma 1.2 Let p be an odd prime. Then the kernel of the reduction modulo
(p) homomorphism from SL(n,Z) to SL(n,F,) is torsion-free.

Proof This follows easily from the observation that if A is an integral matrix
and k = p¥q with ¢ not divisible by p then (I+p"A)* = I+kp" A mod (p*"+),
and kp” # 0 mod (p? ™) if r > 1. ]

Similarly, the kernel of reduction mod (4) is torsion-free.

Since SL(n,F,) has order (ngg_l(p” —p")/(p— 1), it follows that the order
of any finite subgroup of SL(n,Z) must divide the highest common factor of
these numbers, as p varies over all odd primes. In particular, finite subgroups
of SL(2,7) have order dividing 24, and so are solvable.

Let A= (9%¢), B=(Y7) and R = (9}). Then A*> = B* = —I and
A* = BS = I. The matrices A and R generate a dihedral group of order 8,
while B and R generate a dihedral group of order 12.

Theorem 1.3 Let G be a nontrivial finite subgroup of GL(2,7Z). Then G is
conjugate to one of the cyclic groups generated by A, A> = —I, B, B2, R or
RA, or to one of the dihedral groups generated by {A, R}, {—I, R}, {A%, RA},
{B,R}, {B* R} or {B*> RB}. If G # (—I,) then Ngy,27)(G) is finite.

Proof If M € GL(2,Z) has finite order then its characteristic polynomial has
cyclotomic factors. If the characteristic polynomial is (X +1)? then M = F1.
(This uses the finite order of M.) If the characteristic polynomial is X2 — 1
then M is conjugate to R or RA. If the characteristic polynomial is X2 + 1,
X2 - X +1 or X2+ X +1 then it is irreducible, and the corresponding ring of
algebraic numbers is a PID. Since any Z-torsion-free module over such a ring
is free it follows easily that M is conjugate to A, B or B2.

The normalizers in SL(2,7Z) of the subgroups generated by A, B or B? are
easily seen to be finite cyclic. Since G N SL(2,7Z) is solvable it must be cyclic
also. As it has index at most 2 in G the rest of the theorem follows easily. O
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6 Chapter 1: Group theoretic preliminaries

Although the 12 groups listed in the theorem represent distinct conjugacy
classes in GL(2,7Z), some of these conjugacy classes coalesce in GL(2,R). (For
instance, R and RA are conjugate in GL(Q,Z[%}).)

Corollary 1.3.1 Let G be a locally finite subgroup of GL(2,Q). Then G is
finite, and is conjugate to one of the above subgroups of GL(2,Z).

Proof Let L be a finitely generated subgroup of rank 2 in Q2. If G is finite
then UgeqgL is finitely generated, G-invariant and of rank 2, and so G is
conjugate to a subgroup of GL(2,7Z). In general, as the finite subgroups of G
have bounded order G' must be finite. m|

Theorem 1.3 also follows from the fact that PSL(2,Z) = SL(2,Z)/(xI) is
a free product (Z/27) x (Z/3Z), generated by the images of A and B. (In
fact (A,B | A2 = B3 A* = 1) is a presentation for SL(2,Z).) Moreover,
SL(2,Z) = PSL(2,Z) is freely generated by the images of ABA™1B~1 = (21)
and A'B71AB = (11), while the abelianizations are generated by the images
of AB=(19) [Ro, §6.2].

The groups arising as extensions of such groups G by Z? are the flat 2-orbifold
groups, or 2-dimensional crystallographic groups. In three cases H?(G;Z?) #
0, and there are in fact 17 isomorphism classes of such groups.

Let A = Z[t,t™1] be the ring of integral Laurent polynomials. The next theorem
is a special case of a classical result of Latimer and MacDuffee.

Theorem 1.4 There is a 1-1 correspondance between conjugacy classes of
matrices in GL(n,Z) with irreducible characteristic polynomial A(t) and iso-
morphism classes of ideals in A/(A(t)). The set of such ideal classes is finite.

Proof Let A € GL(n,Z) have characteristic polynomial A(¢) and let R =
A/(A(t)). As A(A) =0, by the Cayley-Hamilton Theorem, we may define an
R-module M4 with underlying abelian group Z" by t.z = A(z) for all z € Z".
As R is a domain and has rank n as an abelian group, M4 is torsion-free and of
rank 1 as an R-module, and so is isomorphic to an ideal of R. Conversely every
R-ideal arises in this way. The isomorphism of abelian groups underlying an
R-isomorphism between two such modules M, and Mp determines a matrix
C € GL(n,Z) such that CA = BC. The final assertion follows from the
Jordan-Zassenhaus Theorem. |
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1.3 The Hirsch-Plotkin radical 7

1.3 The Hirsch-Plotkin radical

The Hirsch-Plotkin radical v/G of a group G is its maximal locally-nilpotent
normal subgroup; in a virtually poly-Z group every subgroup is finitely gen-
erated, and so v/G is then the maximal nilpotent normal subgroup. If H is
normal in G then v/H is normal in G also, since it is a characteristic subgroup
of H, and in particular it is a subgroup of VG.

For each natural number ¢ > 1 let I'; be the group with presentation
(x,y,2 | vz = zz, yz = 2y, xy = 2%yx).

Every such group I'y is torsion-free and nilpotent of Hirsch length 3.

Theorem 1.5 Let G be a finitely generated torsion-free nilpotent group of
Hirsch length h(G) < 4. Then either

(1) G is free abelian; or
(2) h(G)=3 and G =T for some q > 1; or
(3) h(G)=4, (G=7Z? and G =T, x Z for some q > 1; or
(4) h(G)=4,(G=7 and G/(G =T for some q > 1.
In the latter case G has characteristic subgroups which are free abelian of rank

1, 2 and 3. In all cases G is an extension of 7Z by a free abelian normal
subgroup.

Proof The centre (G is nontrivial and the quotient G/(G is again torsion-
free nilpotent [Ro, Proposition 5.2.19]. We may assume that G is not abelian,
and hence that G /(G is not cyclic. Hence h(G/(G) > 2, so h(G) > 3 and
1 < h(¢G) < h(G) — 2. In all cases (G is free abelian.

If h(G) = 3 then (G = Z and G/(G = Z*. On choosing elements x and y
representing a basis of G/(G and z generating (G we quickly find that G is
isomorphic to one of the groups I'y, and thus is an extension of Z by Z2.

If h(G) = 4 and (G = Z? then G/CG = 7%, so G’ < (G. Since G may be
generated by elements z,y,t and v where = and y represent a basis of G/(G
and ¢t and u are central it follows easily that G’ is infinite cyclic. Therefore
(G is not contained in G’ and G has an infinite cyclic direct factor. Hence
G 2T, x Z, for some ¢ > 1, and thus is an extension of Z by Z3.

The remaining possibility is that A(G) = 4 and (G = Z. In this case G/(G
is torsion-free nilpotent of Hirsch length 3. If G/(G were abelian G’ would
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8 Chapter 1: Group theoretic preliminaries

also be infinite cyclic, and the pairing from G/(G x G/(G into G’ defined by
the commutator would be nondegenerate and skewsymmetric. But there are no
such pairings on free abelian groups of odd rank. Therefore G/(G = T, for
some ¢q > 1.

Let (G be the preimage in G of ((G/¢G). Then (»G = Z? and is a characteris-
tic subgroup of G, so C((2@) is also characteristic in G. The quotient G /(G
acts by conjugation on (2G. Since Aut(Z?) = GL(2,7Z) is virtually free and
G/(G 2 T,/(T, = 7Z? and since (oG # (G it follows that h(Ce((G)) = 3.
Since Cg((2@G) is nilpotent and has centre of rank > 2 it is abelian, and so
Cc((G) = 7Z3. The preimage in G of the torsion subgroup of G/Cg((G)
is torsion-free, nilpotent of Hirsch length 3 and virtually abelian and hence is
abelian. Therefore G/Cq((2G) = Z. O

Theorem 1.6 Let w be a torsion-free virtually poly-Z group of Hirsch length
4. Then h(\/m) > 3.

Proof Let S be a solvable normal subgroup of finite index in . Then the
lowest nontrivial term of the derived series of S is an abelian subgroup which
is characteristic in S and so normal in 7. Hence /7 # 1. If h(y/7) < 2 then
VT = 7 or Z*. Suppose 7 has an infinite cyclic normal subgroup A. On
replacing 7 by a normal subgroup o of finite index we may assume that A is
central and that /A is poly-Z. Let B be the preimage in o of a nontrivial
abelian normal subgroup of o/A. Then B is nilpotent (since A is central and
B/A is abelian) and h(B) > 1 (since B/A # 1 and o/A is torsion-free). Hence
h(vm) 2 h(y/o) > 1.

If 7 has a normal subgroup N 2 Z? then Aut(N) = GL(2,Z) is virtually free,
and so the kernel of the natural map from 7 to Aut(NN) is nontrivial. Hence
h(Cx(N)) > 3. Since h(w/N) = 2 the quotient 7/N is virtually abelian, and
so Cr(N) is virtually nilpotent.

In all cases we must have h(y/7) > 3. O

1.4 Amenable groups

The class of amenable groups arose first in connection with the Banach-Tarski
paradox. A group is amenable if it admits an invariant mean for bounded C-
valued functions [Pi]. There is a more geometric characterization of finitely
presentable amenable groups that is more convenient for our purposes. Let X
be a finite cell-complex with universal cover X. Then X is an increasing union
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1.4 Amenable groups 9

of finite subcomplexes X; C X1 C X = Un>1X,, such that X; is the union
of Nj < oo translates of some fundamental domain D for G = m(X). Let N;
be the number of translates of D which meet the frontier of X; in X. The
sequence {X,} is a Folner exhaustion for X if lim(N;/Nj) =0, and m1(X) is
amenable if and only if X has a Fglner exhaustion. This class contains all finite
groups and Z, and is closed under the operations of extension, increasing union,
and under the formation of sub- and quotient groups. (However nonabelian free
groups are not amenable.)

The subclass EG generated from finite groups and Z by the operations of
extension and increasing union is the class of elementary amenable groups. We
may construct this class as follows. Let Uy = 1 and U; be the class of finitely
generated virtually abelian groups. If U, has been defined for some ordinal «
let Up+1 = (LU4)U; and if U, has been defined for all ordinals less than some
limit ordinal 8 let Ug = Uy<gUq. Let k be the first uncountable ordinal. Then
EG =1(U,.

This class is well adapted to arguments by transfinite induction on the ordinal
a(G) = min{a|G € U,}. It is closed under extension (in fact UyUs C Uqyp)
and increasing union, and under the formation of sub- and quotient groups. As
U, contains every countable elementary amenable group, Uy = (U, = EG if
A > k. Torsion groups in FG are locally finite and elementary amenable free
groups are cyclic. Every locally-finite by virtually solvable group is elementary
amenable; however this inclusion is proper.

For example, let Z*> be the free abelian group with basis {z; | i € Z} and let G
be the subgroup of Aut(Z>) generated by {e; | i € Z}, where e;(x;) = x;+Tit1
and e;(x;) = z; if j # ¢. Then G is the increasing union of subgroups iso-
morphic to groups of upper triangular matrices, and so is locally nilpotent.
However it has no nontrivial abelian normal subgroups. If we let ¢ be the
automorphism of G defined by ¢(e;) = e;41 for all i then G x4 Z is a finitely
generated torsion-free elementary amenable group which is not virtually solv-
able.

It can be shown (using the Fglner condition) that finitely generated groups
of subexponential growth are amenable. The class SG generated from such
groups by extensions and increasing unions contains EG (since finite groups and
finitely generated abelian groups have polynomial growth), and is the largest
class of groups over which topological surgery techniques are known to work in
dimension 4 [FT95]. There is a finitely presentable group in SG which is not
elementary amenable [Gr98], and a finitely presentable amenable group which
is not in SG [BV05].

Geometry & Topology Monographs, Volume 5 (2002)



10 Chapter 1: Group theoretic preliminaries

A group is restrained if it has no noncyclic free subgroup. Amenable groups
are restrained, but there are finitely presentable restrained groups which are
not amenable [OS02, LM16]. There are also infinite finitely generated torsion
groups [Ro, §14.2]. These are restrained, but are not elementary amenable. No
known example is also finitely presentable.

1.5 Hirsch length

In this section we shall use transfinite induction to extend the notion of Hirsch
length (as a measure of the size of a solvable group) to elementary amenable
groups, and to establish the basic properties of this invariant.

Lemma 1.7 Let G be a finitely generated infinite elementary amenable group.
Then G has normal subgroups K < H such that G/H is finite, H/K is free
abelian of positive rank and the action of G/H on H/K by conjugation is
effective.

Proof We may show that G has a normal subgroup K such that G/K is
an infinite virtually abelian group, by transfinite induction on a(G). We may
assume that G/K has no nontrivial finite normal subgroup. If H is a subgroup
of G which contains K and is such that H/K is a maximal abelian normal
subgroup of G/K then H and K satisfy the above conditions. a

In particular, finitely generated infinite elementary amenable groups are virtu-
ally indicable.

If G isin U; let h(G) be the rank of an abelian subgroup of finite index in G.
If h(G) has been defined for all G in U, and H is in (U, let

h(H) =lubfh(F)|F < H, F € U,}.

Finally, if G is in Uyy1, so has a normal subgroup H in (U, with G/H in Uy,
let h(G) =h(H)+ h(G/H).
Theorem 1.8 Let G be an elementary amenable group. Then

(1) h(Q) is well defined;

(2) If H is a subgroup of G then h(H) < h(G);

(3) h(G) =1lub{h(F) | F isa finitely generated subgroup of G};

(4) if H is a normal subgroup of G then h(G) = h(H)+ h(G/H).
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1.5 Hirsch length 11

Proof We shall prove all four assertions simultaneously by induction on a(G).
They are clearly true when a(G) = 1. Suppose that they hold for all groups in
U, and that o(G) = a+ 1. If G is in LU, so is any subgroup, and (1) and (2)
are immediate, while (3) follows since it holds for groups in U, and since each
finitely generated subgroup of G is in U,. To prove (4) we may assume that
h(H) is finite, for otherwise h(G) = h(H) + h(G/H) = oo, by (2). Therefore
by (3) there is a finitely generated subgroup J < H with h(J) = h(H). Given
a finitely generated subgroup @ of G/H we may choose a finitely generated
subgroup F' of G containing J and whose image in G/H is Q). Since F is
finitely generated it is in U, and so h(F) = h(H) + h(Q). Taking least upper
bounds over all such @ we have h(G) > h(H) + h(G/H). On the other hand
if F'is any U,-subgroup of G then h(F) = h(FNH)+ h(FH/H), since (4)
holds for F', and so h(G) < h(H) + h(G/H). Thus (4) holds for G also.

Now suppose that G is not in £U,, but has a normal subgroup K in ¢U, such
that G/K isin U;. If K, is another such subgroup then (4) holds for K and K;
by the hypothesis of induction and so h(K) = h(K NK;)+ h(KK;/K). Since
we also have h(G/K) = h(G/KK;)+h(KK,/K) and h(G/K1) = h(G/KK;)+
h(KKy/K,) it follows that h(K1)+h(G/K;y) = h(K)+h(G/K) and so h(G) is
well defined. Property (2) follows easily, as any subgroup of G is an extension
of a subgroup of G/K by a subgroup of K. Property (3) holds for K by the
hypothesis of induction. Therefore if h(K) is finite K has a finitely generated
subgroup J with h(J) = h(K). Since G/K is finitely generated there is a
finitely generated subgroup F' of G containing J and such that FK/K = G/K.
Clearly h(F') = h(G). If h(K) is infinite then for every n > 0 there is a finitely
generated subgroup J, of K with h(J,) > n. In either case, (3) also holds
for G. If H is a normal subgroup of G then H and G/H are also in Uy41,
while HNK and KH/H = K/HNK are in U, and HK/K = H/HNK and
G/HK are in U;. Therefore

h(H) + h(G/H) = W(HNK) + h(HK/K) + h(HK/H) + h(G/HK)
— W(HNK)+h(HK/H) + h(HK/K) + h(G/HK).

Since K is in U, and G/K isin U; this sum gives h(G) = h(K) + h(G/K)
and so (4) holds for G. This completes the inductive step. O

Let A(G) be the maximal locally-finite normal subgroup of G.

Theorem 1.9 There are functions d and M from Zxq to Z>o such that if G
is an elementary amenable group of Hirsch length at most h and A(G) is its
maximal locally finite normal subgroup then G/A(G) has a maximal solvable
normal subgroup of derived length < d(h) and index < M (h).
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12 Chapter 1: Group theoretic preliminaries

Proof We argue by induction on h. Since an elementary amenable group
has Hirsch length 0 if and only if it is locally finite we may set d(0) = 0 and
M(0) = 1. Assume that the result is true for all such groups with Hirsch length
< h and that G is an elementary amenable group with h(G) = h + 1.

Suppose first that G is finitely generated. Then by Lemma 1.7 there are normal
subgroups K < H in G such that G/H is finite, H/K is free abelian of rank
r > 1 and the action of G/H on H/K by conjugation is effective. (Note
that r = h(G/K) < h(G) = h+ 1.) Since the kernel of the natural map
from GL(r,Z) to GL(r,F3) is torsion-free, by Lemma 1.2, we see that G/H
embeds in GL(r,F3) and so has order < 3. Since h(K) = h(G) — r < h the
inductive hypothesis applies for K, so it has a normal subgroup L containing
A(K) and of index < M(h) such that L/A(K) has derived length < d(h) and
is the maximal solvable normal subgroup of K/A(K). As A(K) and L are
characteristic in K they are normal in G. (In particular, A(K) = K N A(G).)
The centralizer of K/L in H/L is a normal solvable subgroup of G/L with
index < [K : L)![G : H] and derived length < 2. Set M (h+ 1) = M(h)!3(+D?
and d(h+1) = M(h+ 1)+ 2+ d(h). Then G.A(G) has a maximal solvable
normal subgroup of index < M (h + 1) and derived length < d(h + 1) (since it
contains the preimage of the centralizer of K/L in H/L).

In general, let {G; | i € I} be the set of finitely generated subgroups of G.
By the above argument G; has a normal subgroup H; containing A(G;) and
such that H;/A(G;) is a maximal normal solvable subgroup of G;/A(G;) and
has derived length < d(h+ 1) and index < M(h+1). Let N = max{[G; :
H;] | i € I} and choose o € I such that [Gy : Ho] = N. If G; > G, then
H;NG, < H,. Since [Gy, : Hy| < [Go : HiNGy| = [HiGy : Hi] < [G; : Hy| we
have [G;: H;) = N and H; > H,. It follows easily that if G, < G; < G; then
H; < Hj.

Set J={iel|Hy,<H;} and H=U;cjH;. If x,y € H and g € G then there
are indices i,k and k € J such that x € H;, y € H; and g € G},. Choose [ € J
such that G; contains G; U G; U G}.. Then zy~! and gxg~! arein H; < H,
and so H is a normal subgroup of G'. Moreover if x1,...,zn is a set of coset
representatives for H, in G, then it remains a set of coset representatives for
H in G,andso [G: H]=N.

Let D; be the d(h + 1)th derived subgroup of H;. Then D; is a locally-finite
normal subgroup of G; and so, by an argument similar to that of the above
paragraph U;c s D; is a locally-finite normal subgroup of G. Since the d(h+1)th
derived subgroup of H is contained in U;c;D; (as each iterated commutator
involves only finitely many elements of H) it follows that HA(G)/A(G) =
H/H N A(G) is solvable and of derived length < d(h +1). O
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1.6 Modules and finiteness conditions 13

The above result is from [HL92]. The argument can be simplified to some extent
if G is countable and torsion-free. (In fact a virtually solvable group of finite
Hirsch length and with no nontrivial locally-finite normal subgroup must be
countable [Bi, Lemma 7.9].)

Lemma 1.10 Let G be an elementary amenable group. If h(G) = oo then
for every k > 0 there is a subgroup H of G with k < h(H) < oo.

Proof We shall argue by induction on a(G). The result is vacuously true if
a(G) = 1. Suppose that it is true for all groups in U, and G is in £U,. Since
hG) = Lu.bA{h(F)|F < G, F € Uy} either there is a subgroup F' of G in U,
with h(F) = oo, in which case the result is true by the inductive hypothesis, or
h(G) is the least upper bound of a set of natural numbers and the result is true.
If G isin U,41 then it has a normal subgroup N which is in £U, with quotient
G/N in U;. But then h(N) = h(G) = oo and so N has such a subgroup. 0O

Theorem 1.11 Let G be an elementary amenable group of finite cohomolog-
ical dimension. Then h(G) < c¢.d.G and G is virtually solvable.

Proof Since c.d.G < oo the group G is torsion-free. Let H be a subgroup of
finite Hirsch length. Then H is virtually solvable and c.d.H < ¢.d.G so h(H) <
c.d.G. The theorem now follows from Theorem 1.9 and Lemma 1.10. O

1.6 Modules and finiteness conditions

Let G be a group and w : G — Z* a homomorphism, and let R be a com-
mutative ring. Then § = w(g)g~! defines an anti-involution on R[G]. If L is
a left R[G]-module L shall denote the conjugate right R[G]-module with the
same underlying R-module and R[G]-action given by l.g = g.[, for all [ € L
and g € G. (We shall also use the overline to denote the conjugate of a right
R[G]-module.) The conjugate of a free left (right) module is a free right (left)
module of the same rank.

Let Z¥ denote the G-module with underlying abelian group Z and G-action
given by g.n = w(g)n for all g in G and n in Z.

Lemma 1.12 [WI165] Let G and H be groups such that G is finitely pre-
sentable and there are homomorphisms j : H — G and p : G — H with
pj =idg. Then H is also finitely presentable.
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Proof Since G is finitely presentable there is an epimorphism p : FF — G from
a free group F(X) with a finite basis X onto G, with kernel the normal closure
of a finite set of relators R. We may choose elements w, in F(X) such that
jpp(x) = p(wy), for all z in X. Then p factors through the group K with
presentation (X | R, 'w,,Vz € X), say p = vu. Now uj is clearly onto,
while vuj = pj = tdy, and so v and uj are mutually inverse isomomorphisms.
Therefore H =2 K is finitely presentable. a

A group G is FP, if the augmentation Z[G]-module Z has a projective reso-
lution which is finitely generated in degrees < n, and it is F'P if it has finite
cohomological dimension and is F'P, for n = c.d.G. It is FF if moreover
Z has a finite resolution consisting of finitely generated free Z[G]-modules.
“Finitely generated” is equivalent to F'P;, while “finitely presentable” implies
FP,. Groups which are F'P» are also said to be almost finitely presentable.
(There are F'P groups which are not finitely presentable [BB97].) An elemen-
tary amenable group G is F' Py, if and only if it is virtually F P, and is then
virtually constructible and solvable of finite Hirsch length [Kr93].

If the augmentation Q[r]-module Q has a finite resolution F by finitely gen-
erated projective modules then x(7) = %(—1)"dimg(Q® F;) is independent of
the resolution. (If 7 is the fundamental group of an aspherical finite complex K
then x(m) = x(K).) We may extend this definition to groups ¢ which have a
subgroup 7 of finite index with such a resolution by setting x(o) = x(m)/[o : 7].
(It is not hard to see that this is well defined.)

Let P be a finitely generated projective Z[r]-module. Then P is a direct
summand of Z[r]|", for some r > 0, and so is the image of some idempotent
rxr-matrix M with entries in Z[r|. The Kaplansky rank x(P) is the coefficient
of 1 € 7 in the trace of M. It depends only on P and is strictly positive if
P 0. The group 7 satisfies the Weak Bass Conjecture if K(P) = dimgQ®, P.
There is also a Strong Bass Conjecture, which we shall not formulate here,
although it is invoked in Theorem 3.4. Both conjectures have been confirmed for
linear groups, residually finite groups, solvable groups, groups of cohomological
dimension < 2 over Q and PDs-groups. (See [Ec01] for further details.)

The following result from [BS78] shall be useful.

Theorem 1.13 (Bieri-Strebel) Let G be an F P, group with G/G' infinite.
Then G is an HNN extension with finitely generated base and associated sub-
groups.
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1.6 Modules and finiteness conditions 15

Proof (Sketch — We shall assume that G is finitely presentable.) Let h :
F(m) — G be an epimorphism, and let g; = h(z;) for 1 < i < m. We
may assume that g,, has infinite order modulo ({(g; | 1 < i < m)). Since G
is finitely presentable the kernel of h is the normal closure of finitely many
relators, of weight 0 in the letter x,,. Each such relator is a product of powers
of conjugates of the generators {z; | 1 < i < m} by powers of z,,. Thus we
may assume the relators are contained in (2 zizn’ |1 <i<m, —p < j < p),
for some sufficiently large p. Let U = {(gngigm’ | 1 <i < m, —p < j < p),
and let V = g,,Ug.!. Let B be the subgroup of G generated by U UV and
let G be the HNN extension with base B and associated subgroups U and
V presented by G = (B,s | sus™' = 7(u) Yu € U), where 7 : U — V is
the isomorphism determined by conjugation by ¢,, in G. There are obvious
epimorphisms ¢ : F(m) — G and ¢ : G — G with composite h. It is easy to

see that Ker(h) < Ker(§) and so G 2 G. O

An HNN extension is restrained if and only if it is ascending and the base is
restrained.

A ring R is weakly finite if every onto endomorphism of R™ is an isomorphism,
for all n > 0. (In [H2] the term “SIBN ring” was used instead.) Finitely
generated stably free modules over weakly finite rings have well defined ranks,
and the rank is strictly positive if the module is nonzero. Skew fields are weakly
finite, as are subrings of weakly finite rings. If G is a group its complex group
algebra C[G] is weakly finite, by a result of Kaplansky. (See [Ro84] for a proof.)

A ring R is (regular) coherent if every finitely presentable left R-module has a
(finite) resolution by finitely generated projective R-modules, and is (regular)
noetherian if moreover every finitely generated R-module is finitely presentable.
A group G is regular coherent or regular noetherian if R[G] is regular coherent
or regular noetherian (respectively) for any regular noetherian ring R. It is
coherent as a group if its finitely generated subgroups are finitely presentable.

Lemma 1.14 If G is a group such that Z[G] is coherent then every finitely
generated subgroup of G is F Py.

Proof Let H be a subgroup of G. Since Z[H| < Z[G] is a faithfully flat ring
extension a left Z[H]-module is finitely generated over Z[H] if and only if the
induced module Z[G] @y M is finitely generated over Z[G]. Hence M is FP,
over Z[H] if and only if Z[G] @y M is FP, over Z|G], by induction on n.

If H is finitely generated then the augmentation Z[H|-module Z is finitely
presentable over Z[H|. Hence Z[G] ® i Z is finitely presentable over Z[G|, and
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16 Chapter 1: Group theoretic preliminaries

so is FPy, over Z[G], since that ring is coherent. Hence Z is F Py, over Z[H],
i.e., H is F'Py. O

Thus if either G is coherent (as a group) or Z[G] is coherent (as a ring) every
finitely generated subgroup of G is F'P>. As the latter condition shall usually
suffice for our purposes below, we shall say that such a group is almost coherent.
The connection between these notions has not been much studied.

The class of groups whose integral group ring is regular coherent contains them
trivial group and is closed under generalised free products and HNN extensions
with amalgamation over subgroups whose group rings are regular noetherian
[Wd78, Theorem 19.1]. If [G : H] is finite and G is torsion-free then Z[G] is
regular coherent if and only if Z[H] is. In particular, free groups and surface
groups are coherent and their integral group rings are regular coherent, while
(torsion-free) virtually poly-Z groups are coherent and their integral group
rings are (regular) noetherian.

1.7 Ends and cohomology with free coefficients

A finitely generated group G has 0, 1, 2 or infinitely many ends. It has 0 ends
if and only if it is finite, in which case H°(G;Z[G]) = Z and HY(G;Z[G]) =0
for ¢ > 0. Otherwise H°(G;Z[G]) = 0 and H'(G;Z[G)) is a free abelian group
of rank e(G) — 1, where e(G) is the number of ends of G' [Sp49]. The group G
has more than one end if and only if it is a nontrivial generalised free product
with amalgamation G 2 A x¢ B or an HNN extension A x¢ ¢, where C' is a
finite group. In particular, it has two ends if and only if it is virtually Z if and
only if it has a (maximal) finite normal subgroup F' such that G/F = Z or D,
where D = (Z/27) x (Z/2Z) is the infinite dihedral group [St] - see also [DD].

If G is a group with a normal subgroup N, and A is a left Z[G]-module there
is a Lyndon-Hochschild-Serre spectral sequence (LHSSS) for G as an extension
of G/N by N and with coefficients A:

Ey = HP(G/N; HY(N; A)) = H"™(G; A),

the " differential having bidegree (r,1 —r). (See [Mc, §10.1].) In several
places below, when considering such spectral sequences (e.g., in Theorems 2.12
and 8.1), we use without comment the fact that if M is a left Z[G]-module
and M|; is the underlying abelian group then M ® Z[G] (with the diagonal
G-action) is canonically isomorphic to the induced module M|; ® Z[G].
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1.7 Ends and cohomology with free coefficients 17

Theorem 1.15 [Ro75] If G has a normal subgroup N which is the union of
an increasing sequence of subgroups Ny, such that H*(Ny;Z[G]) =0 for s <r
then H*(G;Z|G]) =0 for s <.

Proof Let s < r. Let f be an s-cocycle for N with coefficients Z[G], and
let f, denote the restriction of f to a cocycle on N,. Then there is an
(s — 1)-cochain g, on N, such that d¢g, = f,. Since 6(gn+1|n, — gn) = 0
and H*"1(N,;Z[G]) = 0 there is an (s — 2)-cochain h,, on N, with 6h, =
Gn+1|N, —gn- Choose an extension h, of h, to Ny11 and let Ggni1 = gnt1—0h.,.
Then §n41|n, = gn and 6gn+1 = fny1. In this way we may extend gy to an
(s — 1)-cochain g on N such that f = d¢g and so H*(N;Z[G]) = 0. The
LHSSS for G as an extension of G/N by N, with coefficients Z[G], now gives
H*(G;Z[G]) =0 for s <. O

Corollary 1.15.1 The hypotheses are satisfied if N is the union of an increas-
ing sequence of F'P, subgroups Ny, such that H*(Ny;Z[N,|) =0 for s < r.
In particular, if N is the union of an increasing sequence of finitely generated,
one-ended subgroups then G has one end.

Proof We have H*(N,;Z[G]) = H*(Nn; Z|Ny]) ® Z|G/Ny| = 0, for all s < r
and all n, since N,, is F'P,. O

If the successive inclusions are finite this corollary may be sharpened further.

Theorem (Gildenhuys-Strebel) Let G = U,>1G, be the union of an in-
creasing sequence of FP, subgroups. Suppose that [Gpt+1 @ Gp] < oo and
H*(Gpn; Z|Gy)) =0 for all s <r and n > 1. If G is not finitely generated then
H*(G; F) =0 for every free Z|G|-module F and all s <. ]

The enunciation of this theorem in [GS81] assumes also that c.d.G, = r for
all n > 1, and concludes that c.d.G = r if and only if G is finitely generated.
However the argument establishes the above assertion.

Theorem 1.16 Let G be a finitely generated group with an infinite restrained
normal subgroup N of infinite index. Then e(G) = 1.

Proof Since N is infinite HY(G;Z[G]) = HY(G/N;HY(N;Z[G])), by the

LHSSS. If N is finitely generated then H'(N;Z[G]) = H'(N;Z[N]) ® Z[G/N],
with the diagonal G//N-action. Since G/N is infinite H'(G;Z[G]) = 0. If
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18 Chapter 1: Group theoretic preliminaries

N is locally one-ended or locally virtually Z and not finitely generated then
H(N;Z|G]) = 0, by Theorem 1.15 and the Gildenhuys-Strebel Theorem, re-
spectively. In all of these cases e(G) = 1.

There remains the possibility that N is locally finite. If e(G) > 1 then G =
Axc B or Axc ¢ with C finite, by Stallings’ characterization of such groups.
Suppose G = A x¢ B. Since N is infinite there is an n € N\ C. We may
suppose that n € A, since elements of finite order in A x- B are conjugate to
elements of A or B [Ro, Theorem 6.4.3]. Let g € B\ C, and let n’ = gng~!.
Since N is normal nn’ € N also. But nn’ = ngng~' has infinite order in G,
by the “uniqueness of normal form” for such groups. This contradicts the fact
that N is locally finite. A similar argument shows that G cannot be A x¢ ¢.
Thus G must have one end. |

In particular, a countable restrained group N is either elementary amenable and
h(N) <1 or is an increasing union of finitely generated, one-ended subgroups.

The second cohomology of a group with free coefficients ( H?(G; R[G]), R = Z
or a field) shall play an important role in our investigations.

Theorem (Farrell) Let G be a finitely presentable group. If G has an ele-
ment of infinite order and R = 7 or is a field then H*(G; R[G]) is either 0 or
R or is not finitely generated. a

Farrell also showed in [Fa74] that if H?(G;F2[G]) & Z/2Z then every finitely
generated subgroup of G with one end has finite index in G'. Hence if G is also
torsion-free then subgroups of infinite index in G are locally free. Bowditch has
since shown that such groups are virtually the fundamental groups of aspherical
closed surfaces ([Bo04] - see §8 below).

We would also like to know when H?(G;Z[G]) is 0 (for G finitely presentable).
In particular, we expect this to be so if G has an elementary amenable, normal
subgroup E such that either h(F) =1 and G/E has one end or h(F) =2 and
[G: E] =00 or h(E) > 3, or if G is an ascending HNN extension over a finitely
generated, one-ended base. Our present arguments for these two cases require
stronger finiteness hypotheses, and each use the following result of [BG85].

Theorem (Brown-Geoghegan) Let G be an HNN extension Bxg4 in which the
base B and associated subgroups I and ¢(I) are FP,. If the homomorphism
from HY(B;Z|G]) to HY(I;Z|G]) induced by restriction is injective for some
q < n then the corresponding homomorphism in the Mayer-Vietoris sequence
is injective, so H(G;Z[G)) is a quotient of HI~Y(I;Z[G)). O
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1.7 Ends and cohomology with free coefficients 19

We begin with the case of “large” elementary amenable normal subgroups.

Theorem 1.17 Let G be a finitely presentable group with a restrained normal
subgroup E of infinite index. Suppose that either E is abelian of rank 1 and
G/E has one end or E is torsion-free, elementary amenable and h(E) > 1 or
FE is almost coherent, locally virtually indicable, and has a finitely generated,
one-ended subgroup. Then H*(G;Z[G]) =0 for s < 2.

Proof If E is abelian of positive rank and G/FE has one end then G is 1-
connected at oo by Theorem 1 of [Mi87], and so H*(G;Z[G]) =0 for s < 2, by
[GMS86].

Suppose next that F is torsion-free, elementary amenable and h(E) > 1. If E
is virtually solvable it has a nontrivial characteristic abelian subgroup A. If A
has rank 1 then E/A is infinite, so G/A has one end, by Theorem 1.16, and then
H*(G;Z|G]) = 0 for s < 2, as before. If A= 7Z? then H?(A;Z[G])) = Z|G/A].
Otherwise, A has Z? as a subgroup of infinite index and so H?(4;Z[G]) = 0.
If E is not virtually solvable H*(E;Z[G]) = 0 for all s [Kr93’, Proposition
3]. (The argument applies even if E is not finitely generated.) In all cases, an
LHSSS argument gives H*(G;Z[G]) =0 for s < 2.

We may assume henceforth that E is almost coherent and is an increasing
union of finitely generated one-ended subgroups E, C E,11--- C E = UE,.
Since FE is locally virtually indicable there are subgroups F,, < E, such that
[En : F,] < oo and which map onto Z. Since E is almost coherent these
subgroups are F'P,. Hence they are HNN extensions over F'P, bases H,, by
Theorem 1.13, and the extensions are ascending, since E is restrained. Since
FE,, has one end H,, is infinite and so has one or two ends.

Suppose that H, has two ends, for all n > 1. Then FE, is elementary amenable,
h(E,) = 2 and [Eny1 : Ep] < oo, for all n > 1. Hence FE is elemen-
tary amenable and h(E) = 2. If E is finitely generated it is F'P» and so
H*(G;Z|G]) = 0 for s < 2, by an LHSSS argument. This is also the case
if E is not finitely generated, for then H*(E;Z[G]) = 0 for s < 2, by the
Gildenhuys-Strebel Theorem, and we may again apply an LHSSS argument.

Otherwise we may assume that H, has one end, for all n > 1. In this case
H*(F,;Z|F,]) = 0 for s < 2, by the Brown-Geoghegan Theorem. Therefore
H*(G;Z|G]) =0 for s <2, by Theorem 1.15. m]

The theorem applies if E is almost coherent and elementary amenable, since
elementary amenable groups are restrained and locally virtually indicable. It
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20 Chapter 1: Group theoretic preliminaries

also applies if E = /G is large enough, since finitely generated nilpotent
groups are virtually poly-Z. Similar arguments show that if h(v/G) > r then
H*(G;Z[G]) = 0 for s < r, and if also [G : v/G] = oo then H"(G;Z[G]) = 0.
Are the hypotheses that £ be almost coherent and locally virtually indicable
necessary? Is it sufficient that E be an increasing union of finitely generated,
one-ended subgroups?

Theorem 1.18 Let G = B*4 be an HNN extension with F'P, base B and
associated subgroups I and ¢(I) = J, and which has a restrained normal
subgroup N < ((B)). Then H*(G;Z[G]) =0 for s < 2 if either

(1) the HNN extension is ascending and B = I = J has one end; or
(2) N is locally virtually Z and G/N has one end; or
(3) N has a finitely generated subgroup with one end.

Proof The first assertion follows immediately from the Brown-Geogeghan
Theorem.

Let t be the stable letter, so that tit—! = ¢(i), for all i € I. Suppose that
NNJ#NNB,andlet b€ NN B\ J. Then b* = ¢t~1bt is in N, since N is
normal in G. Let a be any element of N N B. Since N has no noncyclic free
subgroup there is a word w € F(2) such that w(a,b’) =1 in G. It follows from
Britton’s Lemma that a must be in I, and so N N B = NNI. In particular,
N is the increasing union of copies of N N B.

Hence G/N is an HNN extension with base B/N N B and associated subgroups
I/NNI and J/N N J. Therefore if G/N has one end the latter groups are
infinite, and so B, I and J each have one end. If N is virtually Z then
H*(G;Z[G]) =0 for s < 2, by an LHSSS argument. If N is locally virtually Z
but is not finitely generated then it is the increasing union of a sequence of two-
ended subgroups and H*(N;Z[G]) = 0 for s < 1, by the Gildenhuys-Strebel
Theorem. Since H?(B;Z[G]) = HY(B; H*(N N B;Z[G))) and H?(I;Z[G]) =
HY(I; H3(N N I;Z]G))), the restriction map from H?(B;Z[G]) to H?(I; Z[G])
is injective. If N has a finitely generated, one-ended subgroup N;, we may
assume that Ny < NN B, and so B, I and J also have one end. Moreover
H*(N N B;Z|G]) = 0 for s < 1, by Theorem 1.15. We again see that the
restriction map from H?(B;Z[G]) to H*(I;Z[G]) is injective. The result now
follows in these cases from the Brown-Geoghegan Theorem. a

The final result of this section is Theorem 8.8 of [Bi].

Theorem (Bieri) Let G be a nonabelian group with c¢.d.G = n. Then
c.d.(G <n—1, and if (G has rank n — 1 then G’ is free. |
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1.8 Poincaré duality groups 21

1.8 Poincaré duality groups

A group G isa PD,-groupifitis FP, HP(G;Z[G]) = E:UtIZ’[G}(Z,Z[G]) is 0 for
p # n and H"(G;Z|G]) is infinite cyclic. The “dualizing module” H"(G; Z[G))
is a right Z[G]-module, with G-action determined by a homomorphism w =
wi(G) : G — Z*. The group is orientable (or is a PD; -group) if w is trivial,
ie., if H"(G;Z[G]) is isomorphic to the augmentation module Z. (See [Bi].)

The only PD;-group is Z. Eckmann, Linnell and Miiller showed that every
PDy-group is the fundamental group of an aspherical closed surface. (See
Chapter VI of [DD].) Bowditch has since found a much stronger result, which
must be close to the optimal characterization of such groups [Bo04].

Theorem (Bowditch) Let G be an FP, group and F a field. Then G is
virtually the fundamental group of an aspherical closed surface if and only if
H?(G; F[G]) has a 1-dimensional G-invariant subspace. O

In particular, this theorem applies if H?(G;Z[G]) is infinite cyclic, for then its
image in H?(G;F3[G]) under reduction mod (2) is such a subspace.

The following result corresponds to the fact that an infinite covering space of a
PL n-manifold is homotopy equivalent to a complex of dimension < n [St77].

Theorem (Strebel) Let H be a subgroup of infinite index in a PD,,-group
G. Then c.d.H < n. d

Let S be a ring. If C is a left S-module and R is a subring of S let C|g be
the left R-module underlying C'. If A is a left R-module the abelian group
Hompg(S|gr,A) has a natural left S-module structure given by ((sf)(s’) =
f(s's) for all f € Hompg(S|r,A) and s,s' € S. The groups Hompg(C|g, A)
and Homg(C, Homp(S|r, A)) are naturally isomorphic, for the maps I and J
defined by I(f)(c)(s) = f(sc) and J(0)(c) = O(c)(1) for f: C — A and 0 :
C — Hompg(S, A) are mutually inverse isomorphisms. When K is a subgroup
of 7, R = Z[K] and S = Z[r] we may write C|g for C|g, and the module
Homg g (Z[r]|x, A) is said to be coinduced from A. The above isomorphisms
give rise to Shapiro’s Lemma. In our applications 7/ K shall usually be infinite
cyclic and S is then a twisted Laurent extension of R.

If G is a group and A is a left Z[G]-module let A|; be the Z[G]-module with the
same underlying group and trivial G-action, and let A® = Homz(Z[G], A) be
the module of functions a : G — A with G-action given by (ga)(h) = g.a(hg)
for all g,h € G. Then AhG is coinduced from a module over the trivial group.
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Theorem 1.19 Let w be a PD,, -group with a normal subgroup K such that
n/K is a PD,-group. Then K is a PD,,_.-group if and only if it is F' P, 3.

Proof The condition is clearly necessary. Assume that it holds, and let C be a
resolution of Z by free left Z[K]-modules which are finitely generated in degrees
< 5. After passing to a subgroup of index 2, if necessary, we may assume that
G = /K is orientable. It is sufficient to show that the functors H*(K;—)
from left Z[K]-modules to abelian groups commute with direct limit, for all
s < n, for then K is F'P,_; [Br75], and the result follows from [Bi, Theorem
9.11] (and an LHSSS corner argument to identify the dualizing module). Since
K is F Py, 9 we may assume s > n/2. If A is a left Z[K]-module and W =
Homg g (Z[r], A) then H*(K;A) = H%(m;W) = H,_s(m;W), by Shapiro’s
Lemma and Poincaré duality. Let o : G — 7 be a (setwise) section of the
projection.

Let Ay be the left Z[K]-module with the same underlying group as A and
K -action given by k.a = o(g)ko(g) 'a forall a € A, g € G and k € K. The
Z[K]-epimorphisms p, : W — A, given by py(f) = f(o(g)) for all f € W and
g € G determine an isomorphism W = II;eqA,. Hence they induce Z-linear
isomorphisms H,(K; W) = ,eqHy(K; Ay) for ¢ < [n/2], since C, has finite
[n/2]-skeleton. The Z-linear homomorphisms t,4 : Ay ®zx)] Cqg = A Qzx] Cy
given by t;4(a ® ¢) = w(o(g))a ® a(g)c for all a € A and ¢ € C, induce
isomorphisms H,(K;A,) = H,(K;A) for all ¢ > 0 and g € G. Let uy, =
ta.g(pg ®idc,). Then ugg(fo(h)™' @ o(h)c) = uggn(f @ c¢) for all g,h € G,
feW,ceCy and ¢ > 0. Hence these composites determine isomorphisms of
left Z[G]-modules H,(K;W) = Ag, where Ay = Hy(A ®zk) Cs) = Hy(K; A)
(with trivial G-action) for ¢ < [n/2].

Let D(L) denote the conjugate of a left Z[G]-module L with respect to the
canonical involution. We shall apply the homology LHSSS

E}, = Hp(G; D(Hy(K;W)) = Hpyq(m; W).
Poincaré duality for G and another application of Shapiro’s Lemma now give
Hp(G;D(Ag)) ~ H"P(G, ch) = H"7P(1;Ay), since AqG is coinduced from a
module over the trivial group. If s > [n/2] and p+ ¢ =n — s then ¢ < [n/2]
and so H,(G; AqG) = A, if p =r and is 0 otherwise. Thus the spectral sequence
collapses to give H,, _¢(m; W) = H,,_,_(K; A). Since homology commutes with
direct limits this proves the theorem. O

The finiteness condition cannot be relaxed further when r» = 2 and n = 4, for
Kapovich has given an example of a pair v < 7w with © a PDy-group, w/v a
PDy-group and v finitely generated but not F P, [Ka98].
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The most useful case of this theorem is when G = Z. The argument of the
first paragraph of the theorem shows that if K is any normal subgroup such
that /K = 7 then H"(K; A) = Ho(m; W) = 0, and so c.d.K < n. (This weak
version of Strebel’s Theorem suffices for some of the applications below.)

Let R be a ring. An R-chain complex has finite k-skeleton if it is chain homo-
topy equivalent to a complex P, with P; a finitely generated free R-module
for j < k. If R is a subring of S and C, is an S-chain complex then C; is
R-finitely dominated if Cy|g is chain homotopy equivalent to a finite projec-
tive R-chain complex. The argument of Theorem 1.19 extends easily to the
nonaspherical case as follows. (See Chapter 2 for the definition of PD,,-space.)

Theorem 1.19" Let M be a PD,,-space, p : m1(M) — G be an epimorphism
with G a PD,-group and v = Ker(p). If C.(M)|, has finite [n/2]-skeleton
then C.(M) is Z[v]-finitely dominated and H®(M,;Z[v]) = Hy,—r—s(M,; Z[v]),

for all s. O

If M is aspherical then M, = K(v,1) is a PD,,_,-space, by Theorem 1.19. In
Chapter 4 we shall show that this holds in general.

Corollary 1.19.1 Ifeither r =n—1 or r =n—2 and v is infinite or r = n—3
and v has one end then M is aspherical. a

1.9 Hilbert modules

Let m be a countable group and let #2(7) be the Hilbert space completion of
C[r] with respect to the inner product given by (Xagzg, Lbph) = Sagh,. Left
and right multiplication by elements of 7 determine left and right actions of
C[n] as bounded operators on £2(r). The (left) von Neumann algebra A/ () is
the algebra of bounded operators on £2(7) which are C[r]-linear with respect to
the left action. By the Tomita-Takesaki theorem this is also the bicommutant
in B(¢%(m)) of the right action of C[x], i.e., the set of operators which commute
with every operator which is right C[r]-linear. (See [Su, pages 45-52].) We may
clearly use the canonical involution of C[x| to interchange the roles of left and
right in these definitions.

If e € 7w is the unit element we may define the von Neumann trace on N ()
by the inner product tr(f) = (f(e),e). This extends to square matrices over
N () by taking the sum of the traces of the diagonal entries. A Hilbert N (r)-
module is a Hilbert space M with a unitary left w-action which embeds iso-
metrically and m-equivariantly into the completed tensor product H&¢? (m) for
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some Hilbert space H. It is finitely generated if we may take H = C" for
some integer n. (In this case we do not need to complete the ordinary ten-
sor product over C.) A morphism of Hilbert N (7)-modules is a m-equivariant
bounded linear operator f: M — N. It is a weak isomorphism if it is injective
and has dense image. A bounded 7-linear operator on £?(7)" = C" ® £2(r)
is represented by a matrix whose entries are in N(w). The von Neumann
dimension of a finitely generated Hilbert N (m)-module M is the real num-
ber dimp(z (M) = tr(P) € [0,00), where P is any projection operator on
H @ (*(r) with image m-isometric to M. In particular, dimpy (M) = 0 if
and only if M = 0. The notions of finitely generated Hilbert N (7)-module
and finitely generated projective N (7)-module are essentially equivalent, and
arbitrary N (m)-modules have well-defined dimensions in [0, co] [Lii].

If 7 is residually finite or satisfies the Strong Bass Conjecture and P is a finitely
generated projective Z[r]-module then ¢2(7) ® P = ¢2(x)*(P) [Ec96].

A sequence of bounded maps between Hilbert N (7)-modules

M-—2s NP
is weakly exact at N if Ker(p) is the closure of Im(j). If0 = M - N - P — 0
is weakly exact then j is injective, Ker(p) is the closure of Im(j) and Im(p) is
dense in P, and dimps(x)(N) = dimprr) (M) + dimprr)(P). A finitely gener-
ated Hilbert N (m)-complex Cy is a chain complex of finitely generated Hilbert
N (7)-modules with bounded C|[r]-linear operators as differentials. The re-
duced L?-homology is defined to be I:I]g2)(0*) = Ker(dy,)/Im(dpi1). The pt"
L?-Betti number of C, is then dimN(ﬂ)ﬂéz)(C*). (As the images of the dif-

ferentials need not be closed the unreduced L?-homology modules H;(,z)(C*) =
Ker(d,)/Im(d,+1) are not in general Hilbert modules.)

See [Lii] for more on modules over von Neumann algebras and L? invariants of
complexes and manifolds.

[In this book L2?-Betti number arguments replace the localization arguments
used in [H2]. However we shall recall the definition of safe extension of a group
ring used there. An inclusion of rings Z[G] < S is a safe extension if it is flat, S
is weakly finite and S ®zg) Z = 0. If G has a nontrivial elementary amenable
normal subgroup whose finite subgroups have bounded order and which has no
nontrivial finite normal subgroup then Z[G| has a safe extension.]
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Chapter 2

2-Complexes and PDs;-complexes

This chapter begins with a review of the notation we use for (co)homology
with local coefficients and of the universal coefficient spectral sequence. We
then define the L?-Betti numbers and present some useful vanishing theorems
of Liick and Gromov. These invariants are used in §3, where they are used to
estimate the Euler characteristics of finite [r, m]-complexes and to give a con-
verse to the Cheeger-Gromov-Gottlieb Theorem on aspherical finite complexes.
Some of the arguments and results here may be regarded as representing in
microcosm the bulk of this book; the analogies and connections between 2-
complexes and 4-manifolds are well known. We then review Poincaré duality
and PD,-complexes. In §5-§9 we shall summarize briefly what is known about
the homotopy types of PDs-complexes.

2.1 Notation

Let X be a connected cell complex and let X be its universal covering space. If
H is a normal subgroup of G' = m1(X) we may lift the cellular decomposition of
X to an equivariant cellular decomposition of the corresponding covering space
Xg. The cellular chain complex of Xg with coefficients in a commutative
ring R is then a complex C, = C.(Xp) of left R[G/H]-modules, with respect
to the action of the covering group G/H. A choice of lifts of the g-cells of X
determines a free basis for Cy, for all g, and so C is a complex of free modules.
If X is a finite complex G is finitely presentable and these modules are finitely
generated. If X is finitely dominated, i.e., is a retract of a finite complex, then
G is again finitely presentable, by Lemma 1.12. Moreover the chain complex
of the universal cover is chain homotopy equivalent over R|G| to a complex of
finitely generated projective modules [W165]. The Betti numbers of X with
coefficients in a field F' shall be denoted by S;(X; F) = dimpH;(X; F) (or just
Bi(X). if F = Q).

The i*" equivariant homology module of X with coefficients R[G/H] is the left
module H;(X; R|G/H]) = H;(Cy), which is clearly isomorphic to H;(Xg; R) as
an R-module, with the action of the covering group determining its R[G/H]-

module structure. The i*" equivariant cohomology module of X with coeffi-
cients R[G/H] is the right module H'(X;R[G/H]) = H'(C*), where C* =
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26 Chapter 2: 2-Complexes and P D3-complexes

Hompgjq/m)(Cx, RIG/H]) is the associated cochain complex of right R[G/H]-
modules. More generally, if A and B are right and left Z[G/H]|-modules (re-
spectively) we may define H;(X;A) = H;(A ®z(q/m) Cs) and H" 7 (X;B) =
H" I (Homgz g /m)(Cx, B)). There is a Universal Coefficient Spectral Sequence
(UCSS) relating equivariant homology and cohomology:

EY = Batlyg ,(H,(X: RIG/H)), RIG/H]) = H"(X; RG/H)),

R[G/H]
with 7t" differential d, of bidegree (1 —r,r).

If J is a normal subgroup of G which contains H there is also a Cartan-Leray
spectral sequence relating the homology of Xz and X;:

E2, = TorfIC/H(R(G/ J), Hy(X; RIG/H])) = Hyiq(X; R[G/J)),

with 7t differential d" of bidegree (—r,r — 1). (See [Mc] for more details on
these spectral sequences.)

If M is a cell complex let cpr : M — K (w1 (M), 1) denote the classifying map for
the fundamental group and let fy; : M — P>(M) denote the second stage of the
Postnikov tower for M. (Thus ey = ep,(ayfur-) Amap f: X — K(mi(M),1)
lifts to a map from X to P»(M) if and only if f*ki(M) = 0, where k(M)
is the first k-invariant of M in H3(m(M);m2(M)). In particular, if ki (M) =
0 then cp,(ps) has a cross-section. The algebraic 2-type of M is the triple
[, ma(M), k1(M)]. Two such triples [,IL, k] and [#/,II', k'] (corresponding to
M and M’ respectively) are equivalent if there are isomorphisms « : 7 — 7’
and 8 : II — II' such that S(gm) = a(g)B(m) for all g € # and m € II
and B«x = o*k’ in H3(m;a*II'). Such an equivalence may be realized by
a homotopy equivalence of Py(M) and Py(M’). (The reference [Ba] gives a
detailed treatment of Postnikov factorizations of nonsimple maps and spaces.)
Throughout this book closed manifold shall mean compact, connected TOP
manifold without boundary. Every closed manifold has the homotopy type of
a finite Poincaré duality complex [KS].

2.2 L2-Betti numbers

Let X be a finite complex with fundamental group 7. The L?-Betti numbers
of X are defined by ﬁi@)(X) = dimN(W)(Héz)(f()), where the L2-homology
I:Ii(Q)()?) = EQ(CZ&Q)) is the reduced homology of the Hilbert A (7)-complex
c® =g @7 Cx (X) of square summable chains on X . They are multiplicative

in finite covers, and for ¢ = 0 or 1 depend only on 7. (In particular, ,862) (m)=0
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2.2 L?-Betti numbers 27

if 7 is infinite.) The alternating sum of the L2-Betti numbers is the Euler
characteristic x(X). (See [Lii].)

It may be shown that 61;(2) (X) = dimpr(r Hi(N (7) @77 Cx (X)), and this formu-
lation of the definition applies to arbitrary complexes [CG86, Lii]. In particular,
ﬁi(Q) (m) = dimprr Hi(m; N (7)) is defined for all 7. If X is finitely dominated
then 2,852) (X) < o0, and if also 7 satisfies the Strong Bass Conjecture then
X(X) = E(—l)iﬁfg)(X) [Ec96]. Moreover, ﬂgQ)(X) = B§2)(7r) for s =0 or 1,
and ﬁéz) (X) > 552) (m). (See Theorems 1.35 and 6.54 of [Li].) If 7 = Ax¢ B

the argument for [Lii, Theorem 1.35.5] extends to give B%Q) (m) > ﬁ - ﬁ - ﬁ.

(Similarly for A ¢ ¢.) Thus if ,852) (m) = 0 then e(m) is finite.

Lemma 2.1 Let m = Hx*y be a finitely presentable group which is an ascend-
ing HNN extension with finitely generated base H. Then 552) (m) =0.

Proof Let ¢t be the stable letter and let H,, be the subgroup generated by H
and t", and suppose that H is generated by g elements. Then [r : H,] = n,

S0 552)(Hn) = nﬁf) (m). But each H,, is also finitely presentable and generated
by g + 1 elements. Hence Bf) (Hy,) <g+1, and so 552) (m) = 0. O

In particular, this lemma holds if H is normal in 7 and n/H = Z.

Theorem 2.2 (Liick) Let m be a group with a finitely generated infinite
normal subgroup A such that /A has an element of infinite order. Then

@) =o0.

Proof (Sketch) Let p < m be a subgroup containing A such that p/A = Z.
The terms in the line p + ¢ = 1 of the homology LHSSS for p as an exten-
sion of Z by A with coefficients N (p) have dimension 0, by Lemma 2.1. Since
dimpr(pyM = dimpr(zy (N () @pr(p) M) for any N (p)-module M the correspond-
ing terms for the LHSSS for 7 as an extension of 7/A by A with coefficients
N () also have dimension 0 and the theorem follows. d

This is Theorem 7.2.6 of [Lii]. The hypothesis “7r/A has an element of infinite
order” can be relaxed to “m/A is infinite” [Ga00]. The next result also derives
from [Li]. (The case s =1 is extended further in [PT11].)

Theorem 2.3 Let m be a group with an ascendant subgroup N such that
ﬁz.(Q)(N) =0 for all i < s. Then 61-(2)(71) =0 forall i <s.
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28 Chapter 2: 2-Complexes and P D3-complexes

Proof Let N = Ny < N1 < --- < N3 = 7w be an ascendant sequence. Then
we may show by transfinite induction on « that BZ-(Z) (Ng) =0 for all i < s
and o < 3, using parts (2) and (3) of [Lii, Theorem 7.2] for the passages to
successor ordinals and to limit ordinals, respectively. O

Corollary 2.3.1 (Gromov) Let m be a group with an infinite amenable nor-
mal subgroup A. Then 52(2)(77) =0 for all i.

Proof If A is an infinite amenable group 51(2) (A) =0 for all i [CG&6]. O

Note that the normal closure of an amenable ascendant subgroup is amenable.

2.3 2-Complexes and finitely presentable groups

If a group 7 has a finite presentation P with ¢ generators and r relators then
the deficiency of P is def(P) = g —r, and def(m) is the maximal deficiency of
all finite presentations of . Such a presentation determines a finite 2-complex
C(P) with one 0-cell, g 1-cells and r 2-cells and with m(C(P)) = w. Clearly
def(P) = 1 - x(P) = Bi(C(P)) — B(C(P)) and so def(r) < By(r) — fa(r).
Conversely every finite 2-complex with one 0-cell arises in this way. In general,
any connected finite 2-complex X is homotopy equivalent to one with a single
0-cell, obtained by collapsing a maximal tree 7' in the 1-skeleton X

We shall say that = has geometric dimension at most 2, written g.d.w < 2, if
it is the fundamental group of a finite aspherical 2-complex.

Theorem 2.4 Let X be a connected finite 2-complex with fundamental group
. Then 552) (X) > ﬁéQ) (m), with equality if and only if X is aspherical.

Proof Since we may construct K = K(m, 1) by adjoining cells of dimen-
sion > 3 to X the natural homomorphism Hs(cy) is an epimorphism, and so
@2) (X) > BéQ) (7). Since X is 2-dimensional m5(X) = Hy(X;Z) is a subgroup
of ﬁ2(2)()?), with trivial image in ﬁéz)(k) If moreover ﬂéQ)(X) = Bég)(ﬂ)

then Hj(cx) is an isomorphism [Lii, Lemma 1.13], so m2(X) = 0 and X is
aspherical. O

Corollary 2.4.1 Let w be a finitely presentable group. Then
def(m) <1+ ﬁ?) (m) — 652) (). If equality holds then g.d.w < 2.
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2.3 2-Complexes and finitely presentable groups 29

Proof This follows from the theorem and the L?-Euler characteristic formula,
applied to the 2-complex associated to an optimal presentation for . a

Theorem 2.5 Let 7 be a finitely presentable group such that Bf) (r) = 0.
Then def(m) < 1, with equality if and only if g.d.w < 2 and [a(7) = p1(mw) — 1.

Proof The upper bound and the necessity of the conditions follow as in Corol-
lary 2.4.1. Conversely, if they hold and X is a finite aspherical 2-complex with
71 (X) = 7 then x(X) = 1 — Bi(7) + B2(m) = 0. After collapsing a maximal
tree in X we may assume it has a single 0-cell, and then the presentation read
off the 1- and 2-cells has deficiency 1. m|

This theorem applies if 7 is finitely presentable and is an ascending HNN ex-
tension with finitely generated base H, or has an infinite amenable normal
subgroup. In the latter case BZ-(Q)(W) = 0 for all 7, by Theorem 2.3. Thus if X
is a finite aspherical 2-complex with m1(X) = & then x(X) = 0, and so the
condition fa(m) = f1(m) — 1 is redundant.

[Similarly, if Z[r] has a safe extension ¥ and C, is the equivariant cellular
chain complex of the universal cover X then W ®@zx Cx is a complex of free
left W-modules with bases corresponding to the cells of X. Since V¥ is a safe
extension H;(X; W) = Yy Hi(X;Z[r]) = 0 for all 7, and so again x(X) = 0]

Corollary 2.5.1 Let w be a finitely presentable group with an F'P, normal
subgroup N such that w/N = 7. Then def(mw) =1 if and only if N is free.

Proof If def(w) = 1 then g.d.w < 2, by Theorem 2.5, and so N is free [Bi,
Corollary 8.6]. The converse is clear. |

In fact it suffices to assume that N is finitely generated (rather than FPy)
[Ko06]. (See Corollary 4.3.1 below.)

Let G = F(2)x F(2). Then ¢.d.G = 2 and def(G) < f1(G)—p2(G) = 0. Hence
(u,v,z,y | ur = zu, uy = yu, vr = rv, vy = yv) is an optimal presentation,
and def(G) = 0. The subgroup N generated by u, vz~! and ¥ is normal in G
and G/N = Z, so BP(G) = 0, by Lemma 2.1. However N is not free, since
u and y generate a rank two abelian subgroup. It follows from Corollary 2.5.1
that N is not F'P,, and so F'(2) x F'(2) is not almost coherent.

The next result is a version of the Tits alternative for coherent groups of coho-
mological dimension 2. For each m € Z let Zx,, be the group with presentation
(a,t|tat=t = a™). (Thus Z*g = Z and Zx_1 =7 x_17.)
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30 Chapter 2: 2-Complexes and P D3-complexes

Theorem 2.6 Let 7 be a finitely generated group such that c.d.m = 2. Then
T =2 Z,, for some m # 0 if and only if it is almost coherent and restrained
and w /7 is infinite.

Proof The conditions are easily seen to be necessary. Conversely, if 7 is almost
coherent and m/x" is infinite 7 is an HNN extension with F P, base H, by
Theorem 1.13. The HNN extension must be ascending as 7 has no noncyclic free
subgroup. Hence H?(m;Z[r]) is a quotient of H'(H;Z[r]) = H'(H;Z[H]) ®
Z[n/H], by the Brown-Geoghegan Theorem. Now H?(m;Z[r]) # 0, since 7 is
FPy and c.d.m = 2, and so HY(H;Z[H]) # 0. Since H is restrained it must

have two ends, so H =2 Z and 7 = Zx,, for some m # 0. i

Corollary 2.6.1 Let w be a finitely generated group. Then the following are
equivalent:

(1) w2 Zx,, for some m € Z;

(2) = is torsion-free, elementary amenable, F'P, and h(m) < 2;
(3) = is elementary amenable and c.d.w < 2;

(4) m is almost coherent, amenable and c.d.mw < 2;

(5) m is elementary amenable and def(m) = 1; and

(6) 7 is almost coherent, restrained and def(m) = 1.

Proof Condition (1) clearly implies the others. Suppose (2) holds. We may
assume that h(m) = 2 and h(y/7) = 1 (for otherwise @ = Z, Z% = Z%; or
Zx_17Z = Zx_1). Hence h(w/y/7) = 1, and so w/y/7 is an extension of Z
or D by a finite normal subgroup. If 7/\/m maps onto D then m = A x¢ B,
where [A: C] =[B:C] =2 and h(A) =h(B) =h(C) =1, and so 7 = Z*_;.
But then h(y/m) = 2. Hence we may assume that m maps onto Z, and so 7
is an ascending HNN extension with finitely generated base H, by Theorem
1.13. Since H is torsion-free, elementary amenable and h(H) = 1 it must be
infinite cyclic and so (2) implies (1). If (3) holds 7 is solvable, by Theorems
1.11, and 1.9, and so (1) follows from [Gi79]. If (4) holds then 7 is restrained,
and x(m) = 0 [Ec96], so m/7" is infinite. If def(w) = 1 then 7 is an ascending

HNN extension with finitely generated base, so 59) (r) = 0, by Lemma 2.1.
Hence (4), (5) and (6) each imply (1), by Theorems 2.5 and 2.6. O

If 7 is FPy then (3) = (2) (without invoking [Gi79]). Are these conditions

equivalent to “m is restrained and c.d.w < 2” or “r is restrained and def(w) =
17?7 (Note that if def(7) > 1 then 7 has noncyclic free subgroups [Ro77].)
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2.3 2-Complexes and finitely presentable groups 31

Let X be the class of groups of finite graphs of groups, with all edge and vertex
groups infinite cyclic. A finitely generated, noncyclic group G is in X if and
only if ¢.d.G = 2 and G has an infinite cyclic subgroup H which meets all its
conjugates nontrivially [Kr90’]. Moreover, G is coherent, one ended, def(G) > 1

and ¢.d.G =2 [Kr90’], while ﬂf)(G) =0 [PT11, Theorem 5.12].

Theorem 2.7 Let w be a finitely generated group such that c.d.w = 2. If
7w has a nontrivial normal subgroup E which is either elementary amenable
or almost coherent, locally virtually indicable and restrained then m is in X,
def(G) =1 and either E = Z or ©' is abelian.

Proof Since c.d.F < c.d.w, finitely generated subgroups of F are metabelian,
by Theorems 1.11 and 2.6 and Corollary 2.6.1, and so all words in E of the
form [[g, h], [¢', h']] are trivial. Hence E is metabelian also. Therefore A = v/ E
is nontrivial, and as A is characteristic in F it is normal in 7. Since A is the
union of its finitely generated subgroups, which are torsion-free nilpotent groups
of Hirsch length < 2, it is abelian. If A = Z then [r : C(A)] < 2. Moreover
Cr(A) is free, by Bieri’s Theorem. If Cy(A)’ is cyclic then 7 = Z2 or Zx _1Z; if
Cr(A)" is nonabelian then £ = A = 7. Otherwise c.d.A = ¢.d.C(A) = 2 and
so Cr(A) = A, by Bieri’s Theorem. If A has rank 1 then Aut(A) is abelian,
so 7 < Cr(A) and 7 is metabelian. If A = Z? then 7/A is isomorphic to a
subgroup of GL(2,7Z), and so is virtually free. As A together with an element
t € 7 of infinite order modulo A would generate a subgroup of cohomological
dimension 3, which is impossible, the quotient /A must be finite. Hence
7w 2 7% or Zx_1Z. In all cases 7 is in X [Kr90’, Theorem C]. Since def(G) > 1

and BP(G) =0, we see that def(G) = 1. O

If c.dr =2, {(m # 1 and 7 is nonabelian then (7 = Z and 7’ is free, by Bieri’s
Theorem. On the evidence of his work on 1-relator groups Murasugi conjectured
that if G is a finitely presentable group other than Z? and def(G) > 1 then
(G =Z or 1, and is trivial if def(G) > 1, and he verified this for classical link
groups [Mu65]. Theorems 2.3, 2.5 and 2.7 together imply that if (G is infinite
then def(G) =1 and (G = Z.

It remains an open question whether every finitely presentable group of coho-
mological dimension 2 has geometric dimension 2. The following partial answer
to this question was first obtained by W.Beckmann under the additional as-
sumptions that = is F'F and c.d.m < 2 (see [Dy87']).

Theorem 2.8 Let 7w be a finitely presentable group. Then g.d.m < 2 if and
only if c.d.om < 2 and def(m) = Bi(7) — Pa(m).
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32 Chapter 2: 2-Complexes and P D3-complexes

Proof The necessity of the conditions is clear. Suppose that they hold and
that C(P) is the 2-complex corresponding to a presentation for 7 of maximal

deficiency. The cellular chain complex of C'(P) gives an exact sequence
0 — K =m(C(P)) — Zlr|" — Z|n)? — Z|r] - Z — 0.

Extending coefficients to Q gives a similar exact sequence, with kernel Q ®7 K
on the left. As c.d.qmr < 2 the image of Q[n]" in Q[n]Y is projective, by
Schanuel’s Lemma. Therefore the inclusion of Q ®7 K into Q[r]" splits, and
Q®z K is projective. Moreover dim@@@zm K) =0, and so Q®z K = 0, since
the Weak Bass Conjecture holds for 7 [Ec86]. Since K is free as an abelian
group it imbeds in Q ®z K, and so is also 0. Hence C(P) is contractible, and
so C(P) is aspherical. O

The arguments of this section may easily be extended to other highly connected
finite complexes. A [r,m]f-complex is a finite m-dimensional complex X with
71(X) = 7 and with (m — 1)-connected universal cover X. Such a [T, m] -
complex X is aspherical if and only if 7,,(X) = 0. In that case we shall say
that 7 has geometric dimension at most m, written g.d.m < m.

Theorem 2.4" Let X be a [r, m]s-complex and suppose that 552)(77) =0 for
i <m. Then (—1)"x(X) > 0. If x(X) =0 then X is aspherical. O

In general, the final implication of this theorem cannot be reversed. For S'v S*
is an aspherical [F(2), 1] -complex and 682)(F(2)) =0, but x(S'v St #0.

One of the applications of L%-cohomology in [CG86] was to show that if X is a
finite aspherical complex and 71 (X) has an infinite amenable normal subgroup
A then x(X) = 0. (This generalised a theorem of Gottlieb, who assumed that
A was a central subgroup [Go65].) We may similarly extend Theorem 2.5 to
give a converse to the Cheeger-Gromov extension of Gottlieb’s Theorem.

Theorem 2.5’ Let X be a [r, m]-complex and suppose that w has an infinite
amenable normal subgroup. Then X is aspherical if and only if x(X)=0. O

2.4 Poincaré duality
The main reason for studying PD-complexes is that they represent the ho-

motopy theory of manifolds. However they also arise in situations where the
geometry does not immediately provide a corresponding manifold. For instance,
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2.5 PD3s-complexes 33

under suitable finiteness assumptions an infinite cyclic covering space of a closed
4-manifold with Euler characteristic 0 will be a PD3-complex, but need not be
homotopy equivalent to a closed 3-manifold. (See Chapter 11.)

A PDy-space is a space homotopy equivalent to a cell complex which satisfies
Poincaré duality of formal dimension n with local coefficients. If X is a PD,-
space with fundamental group 7 then C’j(f( ) is Z|r]-finitely dominated, so 7 is
FP,. The PD,-space X is finiteif C,(X) is Z[r]-chain homotopy equivalent to
a finite free Z[rn]-complex. It is a PD,,-complez if it is finitely dominated. This
is so if and only if 7 is finitely presentable [Br72, Br75]. Finite PD,,-complexes
are homotopy equivalent to finite complexes. (Note also that a cell complex
X is finitely dominated if and only if X x S! is finite [Rn95, Proposition 3].)
Although PD,-complexes are most convenient for our purposes, the broader
notion of PD,-space is occasionally useful. All the PD, -complexes that we
consider shall be connected.

Let P be a PD,-complex. We may assume that P = P, U D™, where P,
is a complex of dimension < max{3,n — 1} [WI67]. Let 7 = m(P), w =
wi(P) and 7t = Ker(w), and let P* = P+ be the associated covering
space. If C, = C.(P) the Poincaré duality isomorphism may be described
in terms of a chain homotopy equivalence C* = C,,_,, which induces isomor-
phisms from H’(C*) to H,_;(C.), given by cap product with a generator [P]
of Hy(P;Z") = Hu(Z Qg Cy). From this point of view it is easy to see
that Poincaré duality gives rise to (Z-linear) isomorphisms from H’(P;B) to
H,_;(P;B), where B is any left Z[r]-module of coefficients. (See [W167] or
[W1, Chapter II] for further details.) If P is a Poincaré duality complex then
the L?-Betti numbers also satisfy Poincaré duality. (This does not require that
P De finite or orientable!)

A group G is a PD,,-group (as defined in Chapter 1) if and only if K(G,1) is
a PD,-space. For every n > 4 there are PD, -groups which are not finitely
presentable [Da98].

Dwyer, Stolz and Taylor have extended Strebel’s Theorem to show that if H
is a subgroup of infinite index in 7w then the corresponding covering space Pp
has homological dimension < n; hence if moreover n £ 3 then Py is homotopy
equivalent to a complex of dimension < n [DST96].

2.5 PDj3;-complexes

In this section we shall summarize briefly what is known about PD,,-complexes
of dimension at most 3. It is easy to see that a connected PD;-complex must
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34 Chapter 2: 2-Complexes and P D3-complexes

be homotopy equivalent to S*. The 2-dimensional case is already quite difficult,
but has been settled by Eckmann, Linnell and Miiller, who showed that every
P Dy-complex is homotopy equivalent to a closed surface. (See [DD, Chapter
VI]. This result has been further improved by Bowditch’s Theorem.) There
are PDs-complexes with finite fundamental group which are not homotopy
equivalent to any closed 3-manifold. On the other hand, Turaev’s Theorem
below implies that every PDs-complex with torsion-free fundamental group is
homotopy equivalent to a closed 3-manifold if every P Ds-group is a 3-manifold
group. The latter is so if the Hirsch-Plotkin radical of the group is nontrivial
(see §7 below), but remains open in general.

The fundamental triple of a PDs-complex P is (m1(P),w1(P),cp«[P]). This is
a complete homotopy invariant for such complexes. (See also §6 and §9 below.)

Theorem (Hendriks) Two P Ds-complexes are homotopy equivalent if and
only if their fundamental triples are isomorphic. O

When w;(P) # 0 the class [P] is only well-defined up to sign [Ta08]. (This issue
has no major consequences for us.) Turaev has characterized the possible triples
corresponding to a given finitely presentable group and orientation character,
and has used this result to deduce a basic splitting theorem [Tu90].

Theorem (Turaev) A PDs-complex is indecomposable with respect to con-
nected sum if and only if its fundamental group is indecomposable with respect
to free product. O

Wall asked whether every orientable P Ds-complex whose fundamental group
has infinitely many ends is a proper connected sum [WI167]. Since the funda-
mental group of a PD,-space is F'P» it is the fundamental group of a finite
graph of finitely generated groups in which each vertex group has at most one
end and each edge group is finite [DD, Theorem VI.6.3]. Crisp has given a
substantial partial answer to Wall’s question, based on this observation [Cr00].

Theorem (Crisp) Let P be an indecomposable orientable PDs-complex. If
m1(P) is not virtually free then it has one end, and so P is aspherical. O

The arguments of Turaev and Crisp for these theorems extend to PDs-spaces
in a straightforward manner. In particular, they imply that if P is a PD3-
space then m = m1(P) is virtually torsion-free. However, there is an inde-
composable orientable PDj-complex with m = S3 %55, S3 = F(2) x S3 and
double cover homotopy equivalent to L(3,1)§L(3,1). “Most” indecomposable
PDs-complexes with 7 virtually free have double covers which are homotopy
equivalent to connected sums of S*-manifolds [Hil2].
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2.6 The spherical cases

Let P be a PDs-space with fundamental group 7, and let w = wq(P). The
Hurewicz Theorem, Poincaré duality and a choice of orientation for P together
determine an isomorphism 7o(P) = H(7w;Z[r]). In particular, mo(P) = 0 if
and only if 7 is finite or has one end.

The possible PDs-complexes with 7 finite are well understood.

Theorem 2.9 [WI67] Let X be a PDs-complex with finite fundamental
group F'. Then

(1) X ~ S3, F has cohomological period dividing 4 and X is orientable;
(2) the first nontrivial k-invariant k(X) generates H*(F;7Z) = Z/|F|Z.

(3) the homotopy type of X is determined by F' and the orbit of k(X) under
Out(F) x {£1}.

Proof Since the universal cover X is also a finite P D3-complex it is homotopy
equivalent to S3. A standard Gysin sequence argument shows that F has
cohomological period dividing 4. Suppose that X is nonorientable, and let C' be
a cyclic subgroup of F' generated by an orientation reversing element. Let Z be

the nontrivial infinite cyclic Z[C]-module. Then H*(X¢;Z) = Hy(X¢;Z) = C,
by Poincaré duality. But H 2(X¢;7Z) = H*(C;7Z) = 0, since the classifying map
from X¢ = X/C to K(C,1) is 3-connected. Therefore X must be orientable

and F must act trivially on m3(X) = Hs(X;Z).

The image of the orientation class of X generates Hs(F;Z) = Z/|F|Z. The
Bockstein 3 : H3(F;Q/Z) — H*(F;Z) is an isomorphism, since H9(F;Q) = 0
for ¢ > 0, and the bilinear pairing from H3(F;Z) x H*(F;Z) to Q/Z given by
(h,c) = B~ Y(c)(h) is nonsingular. Each generator g of H3(F;Z) determines
an unique k, € HY(F;Z) such that S71(k,)(g) = ﬁ mod Z. The element
corresponding to cx.[X] is the first nontrivial k-invariant of X [Th67]. Inner
automorphisms of F' act trivially on H*(F;Z), while changing the orientation
of X corresponds to multiplication by —1. Thus the orbit of k(X) under
Out(F) x {£1} is the significant invariant.

We may construct the third stage of the Postnikov tower for X by adjoining
cells of dimension greater than 4 to X . The natural inclusion j : X — P3(X)
is then 4-connected. If X; is another such PDs-complex and 6 : m1(X;) — F
is an isomorphism which identifies the k-invariants then there is a 4-connected
map ji : X1 — P3(X) inducing €, which is homotopic to a map with image
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in the 4-skeleton of P3(X), and so there is a map h: X; — X such that j; is
homotopic to jh. The map h induces isomorphisms on m; for ¢ < 3, since j
and j; are 4-connected, and so the lift & : Xi~B3 5 X~Sisa homotopy
equivalence, by the theorems of Hurewicz and Whitehead. Thus h is itself a
homotopy equivalence. m]

The list of finite groups with cohomological period dividing 4 is well known.
Each such group F and generator k € H*(F;Z) is realized by some PD; -
complex [Sw60, WI167]. (See also Chapter 11 below.) In particular, there is
an unique homotopy type of PDs-complexes with fundamental group Ss, but
there is no 3-manifold with this fundamental group [Mi57].

The fundamental group of a PDs-complex P has two ends if and only if P~
52, and then P is homotopy equivalent to one of the four S? x E!'-manifolds
52 x S, 82%x St RP? x S' or RP3RP3. The following simple lemma leads
to an alternative characterization of RP? x S*.

Lemma 2.10 Let X bea finite-dimensional complex with a connected regular
covering space X and covering group C Aut(X/X) If H, (X Z) = 0 for

q #m then Heipmi1(C;Z) = Hs(C Hm( ;7)), for all s >> 0.

Proof The lemma follows by devissage applied to the homology of C*()? ,
considered as a chain complex over Z[C]. (In fact s > dim(X)—m suffices.) O

Theorem 2.11 Let P be a PDs-space whose fundamental group m has a
nontrivial finite normal subgroup N . Then either P is homotopy equivalent to
RP? x S! or 7 is finite.

Proof We may clearly assume that  is infinite. Then Hq(lg; Z)=0for q > 2,
by Poincaré duality. Let II = mo(P). The augmentation sequence

0— A(r) = Z[r] = Z — 0
gives rise to a short exact sequence
0 — Homy(Z[n], Zlx]) — Homg(A(T), Zlx]) — H'(m; Z[x]) — 0.

Let f : A(m) — Z[n] be a homomorphism and ¢ be a central element of 7.

Then f.¢(i) = f(i)¢ = ¢f(i) = f(¢i) = f(i¢) and so (f.C—[)(i) = f(i(C—1)) =
if(¢—1) for all i € A(w). Hence f.( — f is the restriction of a homomorphism
from Z[r] to Z[n]. Thus central elements of 7 act trivially on H!(m;Z[x]).
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If n € N the centraliser v = C((n)) has finite index in 7, and so the covering
space P, is again a PD3-complex with universal covering space P. Therefore
IT = H(y;Z[y]) as a (left) Z[y]-module. In particular, II is a free abelian
group. Since n is central in v it acts trivially on H'(v;Z[y]) and hence via
w(n) on II. Suppose first that w(n) = 1. Then Lemma 2.10 (with X = P,

X=Pand m= 2) gives an exact sequence
0—Z/o(n)Z =11 =11 =0,

where o(n) is the order of n and the right hand homomorphism is multiplication
by o(n), since n acts trivially on II. As II is torsion-free we must have n = 1.

Therefore if n € N is nontrivial it has order 2 and w(n) = —1. In this case
Lemma 2.10 gives an exact sequence

0-II—-1II—Z/2Z -0,

where the left hand homomorphism is multiplication by 2. Since II is a free
abelian group it must be infinite cyclic. Hence P ~ S? and ]5/ (Z)2Z) ~
RP?. The theorem now follows, since any self homotopy equivalence of RP? is
homotopic to the identity (compare [W167, Theorem 4.4]). ]

If P is any PDs-complex and Cy({(g)) is infinite, for some g € 7, then ¢g? = 1,
w(g) = —1 and Cx((g)) has two ends [Cr00]. In fact, Cr({g)) = (g) x Z [Hil7’].

If m1(P) has a finitely generated infinite normal subgroup of infinite index then
it has one end, and so P is aspherical. We shall discuss this case next.

2.7 PDjs-groups

As a consequence of the work of Turaev and Crisp the study of PDjs-complexes
reduces largely to the study of PDs-groups. It is not yet known whether all such
groups are 3-manifold groups, or even whether they must be finitely presentable.
The fundamental groups of aspherical 3-manifolds which are Seifert fibred or are
finitely covered by surface bundles may be characterized among all PDs-groups
in simple group-theoretic terms.

Theorem 2.12 Let G be a PDs-group with a nontrivial F'P» normal sub-
group N of infinite index. Then either

(1) N=Z and G/N is virtually a PDs-group; or
(2) N isa PDy-group and G/N has two ends.
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Proof Let e be the number of ends of N. If N is free then H3(G;Z[G]) =
H?(G/N;H'(N;Z[G])). Since N is finitely generated and G/N is FP, this
is in turn isomorphic to H?(G/N;Z[G/N])¢~1). Since G is a PDs-group we
must have e — 1 = 1 and so N = Z. We then have H?(G/N;Z[G/N]) =
H3(G;2[G)) = Z*(%) . Hence G/N is virtually a PDy-group, by Bowditch’s
Theorem.

Otherwise c¢.d.N = 2 and so e = 1 or co. The LHSSS gives an isomorphism
HA(GZIG]) = H'(G/N:ZIG/N)) & H'(N;ZIN]) = H'(G/N;ZIG/N)¥ .
Hence either e = 1 or H'(G/N;Z[G/N]) = 0. But in the latter case we
have H3(G;Z[G]) = H?*(G/N;Z|G/N]) ® HY(N;Z[N]) and so H3(G;Z[G))
is either 0 or infinite dimensional. Therefore e = 1, and so H3(G;Z[G]) =
H'(G/N;Z|G/N])® H*(N;Z|N]). Hence G/N has two ends and H?(N;Z[N]
~ 7wGIN 50 N is a P Dy-group. O

We shall strengthen this result in Theorem 2.17 below.

Corollary 2.12.1 A PDsjs-space P is homotopy equivalent to the mapping
torus of a self homeomorphism of a closed surface if and only if there is an
epimorphism ¢ : w1 (P) — Z with finitely generated kernel.

Proof This follows from Theorems 1.19, 2.11 and 2.12. a

If 71(P) is infinite and is a nontrivial direct product then P is homotopy
equivalent to the product of S! with a closed surface.

Theorem 2.13 Let G be a PD3-group. If S is an almost coherent, restrained,
locally virtually indicable subgroup then S is virtually solvable. If S has infinite
index in G it is virtually abelian.

Proof Suppose first that S has finite index in G, and so is again a PDs3-
group. Since S is virtually indicable we may assume without loss of generality
that 31(S) > 0. Then S is an ascending HNN extension Hx, with finitely
generated base. Since G is almost coherent H is finitely presentable, and since
H3(S;7[S]) = 7*1(5) it follows from [BG85, Lemma 3.4] that H is normal in
S and S/H = Z. Hence H is a PDy-group, by Theorem 2.12. Since H has no
noncyclic free subgroup it is virtually Z? and so S and G are virtually poly-Z.

If [G: S] = oo then ¢.d.S < 2, by Strebel’s Theorem. Let J be a finitely
generated subgroup of S. Then J is F'P, and virtually indicable, and hence
is virtually solvable, by Theorem 2.6 and its Corollary. Since J contains a
PDy-group [KKO05, Corollary 1.4], it is virtually abelian. Hence S is virtually
abelian also. |
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As the fundamental groups of virtually Haken 3-manifolds are coherent and lo-
cally virtually indicable, this implies the Tits alternative for such groups [EJ73].
A slight modification of the argument gives the following corollary.

Corollary 2.13.1 A PDs-group G is virtually poly-Z if and only if it is
coherent, restrained and has a subgroup of finite index with infinite abelianiza-
tion. |

If 51(G) > 2 the hypothesis of coherence is redundant, for there is then an
epimorphism p : G — Z with finitely generated kernel [BNS87, Theorem D],
and the kernel is then F'P, by Theorem 1.19.

The argument of Theorem 2.13 and its corollary extend to show by induction
on m that a PD,,-group is virtually poly-Z if and only if it is restrained and
every finitely generated subgroup is F'P,,—1 and virtually indicable.

Theorem 2.14 Let G be a PDs-group. Then G is the fundamental group of
an aspherical Seifert fibred 3-manifold or a Sol®-manifold if and only if VG # 1.
Moreover

(1) h(vVG) =1 if and only if G is the group of an H? x E'- or SL-manifold;
(2) h(v/G) =2 if and only if G is the group of a Sol®-manifold;
(3) h(V/G) =3 if and only if G is the group of an E*- or Nil®-manifold.

Proof The necessity of the conditions is clear. (See [Sc83’], or §2 and §3 of
Chapter 7 below.) Certainly h(v/G) < c.d.v/G < 3. Moreover c.d./G = 3
if and only if [G : v/G] is finite, by Strebel’s Theorem. Hence G is virtually
nilpotent if and only if h(v/G) = 3. If h(v/G) = 2 then /G is locally abelian,
and hence abelian. Moreover /G must be finitely generated, for otherwise
c.d/G = 3. Thus VG = Z? and case (2) follows from Theorem 2.12.

Suppose now that h(v/G) =1 and let C' = Cg(v/G). Then VG is torsion-free
abelian of rank 1, so Aut(v/G) is isomorphic to a subgroup of Q*. If G/C is
infinite then c.d.C’' < 2, by Strebel’s Theorem. Moreover, Aut(v/G) is infinite,
so VG % 7. Therefore C is abelian, by [Bi, Theorem 8.8], and hence G is
solvable. But then h(v/G) > 1, which is contrary to our hypothesis. Therefore
G/C' is isomorphic to a finite subgroup of Q* = Z*° & (Z/2Z) and so has order
at most 2. In particular, if A is an infinite cyclic subgroup of v/G then A is
normal in G, and so G/A is virtually a PDy-group, by Theorem 2.12. If G/A
is a PDy-group then G is the fundamental group of an S'-bundle over a closed
surface. In general, a finite torsion-free extension of the fundamental group of
a closed Seifert fibred 3-manifold is again the fundamental group of a closed

Seifert fibred 3-manifold, by [Sc83] and [Zi, §63]. O
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The heart of this result is the deep theorem of Bowditch. The weaker character-
ization of fundamental groups of Sol®-manifolds and aspherical Seifert fibred
3-manifolds as PDs-groups G such that VG # 1 and G has a subgroup of
finite index with infinite abelianization is much easier to prove [H2]. There is
as yet no comparable characterization of the groups of H>-manifolds, although
it may be conjectured that these are exactly the PD3-groups with no noncyclic
abelian subgroups. (It has been recently shown that every closed H?-manifold
is finitely covered by a mapping torus [Agl3].)

Ni3- and SL-manifolds are orientable, and so their groups are PD;r -groups.
This can also be seen algebraically, as every such group has a characteristic
subgroup H which is a nonsplit central extension of a PD;r -group 8 by Z. An
automorphism of such a group H must be orientation preserving.

Theorem 2.14 implies that if a PDjs-group G is not virtually poly-Z then its
maximal elementary amenable normal subgroup is Z or 1. For this subgroup
is virtually solvable, by Theorem 1.11, and if it is nontrivial then so is V/G.

Lemma 2.15 Let G be a group such that c.d.G = 2 and let K be an ascendant
F P, subgroup of G. Then either |G : K] is finite or K is free.

Proof We may assume that K is not free, and so c.d. K = ¢.d.G = 2. Suppose
first that K is normal in G. Then G/K is locally finite [Bi, Corollary 8.6], and
so G is the increasing union of a (possibly finite) sequence of F'P, subgroups
K =Uy < Uy < ... such that [Uj41 : Uj] is finite, for all ¢ > 0. It follows
from the Kurosh subgroup theorem that if U < V are finitely generated groups
and [V : U] is finite then V has strictly fewer indecomposable factors than U
unless both groups are indecomposable. (See [Sc76, Lemma 1.4]). Hence if K
is a nontrivial free product then [G : K] is finite. Otherwise K has one end,
and so H*(U;; Z|U;]) = 0 for s <1 and ¢ > 0. Since K is F'P,, the successive
indices are finite and c.d.U; = 2 = ¢.d.G for all ¢ > 0 the union is finitely
generated, by the Gildenhuys-Strebel Theorem. Hence the sequence terminates
and [G : K] is again finite.

If K =Ky< K; <---< K3= G is an ascendant sequence then [K,41 : K]
is finite for all «, by the argument just given. Let w be the union of the finite
ordinals in 3. Then Uy, K, is finitely generated, by the Gildenhuys-Strebel
Theorem, and so w is finite. Hence the chain is finite, and so [G : K] < co. O

Theorem 2.16 Let G be a PDs-group with an ascending sequence of sub-
groups Ky < Kj < ... such that K, is normal in K41 for all n > 0. If
K = K is one-ended and F P, then the sequence is finite and either [K,, : K]
or |G : K] is finite, for all n > 0.
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Proof Suppose that [K; : K] and [G : K] are both infinite. Since K has one
end it is not free and so c.d.K = c.d. K1 = 2, by Strebel’s Theorem. Hence there
is a free Z[K1]-module W such that H?(K;; W) # 0 [Bi, Proposition 5.1]. Since
K is FP, and has one end HY(K;W) =0 for ¢=0 or 1 and H?(K;W) is an
induced Z[K1/K]-module. Since [K; : K] is infinite H°(K/K; H*(K;W)) =
[Bi, Lemma 8.1]. The LHSSS for K; as an extension of K;/K by K now gives
H"(K1; W) =0 for r < 2, which is a contradiction. A similar argument applies
to the other terms of the sequence.

Suppose that [K, : K] is finite for all n > 0 and let K= Unso K. If cdK =2
then [K : K] < 0o, by Lemma 2.15. Thus the sequence must be finite. O

Corollary 2.16.1 Let G be a PDs-group with an F'P, subgroup H which
has one end and is of infinite index in G. Let Hy = H and H;y1 = N¢(H;)
for i > 0. Then H= UH is F'Py and has one end, and either c.d. H =2 and
Ng(H) = H or [G: H] < 0o and G is virtually the group of a surface bundle.

Proof This follows immediately from Theorems 2.12 and 2.16. |

Corollary 2.16.2 If G has a subgroup H which is a P Ds-group with x(H) =
0 (respectively, < 0) then either it has such a subgroup which is its own nor-
malizer in G or it is virtually the group of a surface bundle.

Proof IfAc.d.ﬁI = 2 then [ﬁ : H] < o0, so H is a PDs-group, and X(H) =
[H - H)x(H). O

When y(H) < 0 the corollary follows easily from the finite divisibility of x(H),
but something like Theorem 2.16 seems necessary when x(H) = 0.

Theorem 2.17 Let G be a PDs-group with a nontrivial F' Py subgroup H
which is ascendant and of infinite index in G. Then either H = 7 and H is
normal in G or G is virtually poly-Z or H is a PDy-group, |G : Ng(H)| < oo
and Ng(H)/H has two ends.

Proof Let H = Hy < Hy < --- < H5 = G be an ascendant sequence and let
v = mln{a <3| [Ha H] oo}, Let H = Ua<yHo. Then h.d.H <2 and so
[G: H] = oo. Hence c.d.H < 2 also, by Strebel’s Theorem, and so either H is
free or [H : H] < 00, by Lemma 2.15.

If H is not free then c.d.H = 2 and H is F P>, normal and of infinite index
in Hy. Therefore [G : Hy] < oo and so H, is a PD3-group, by Theorem 2.16.
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Hence H is a PDsy-group and H,/ H has two ends, by Theorem 2.12. Since
[H : H] < oo it follows easily that H is a PDs-group, |G : Ng(H)] < co and
Ng(H)/H has two ends.

If H = F(r) for some r > 1 then ~ and [H : H] are finite, since [H, : H]
divides x(H) = 1—r for all n < . A similar argument shows that H./ H is not
locally finite. Let K be a finitely generated subgroup of H, which contains H
as a subgroup of infinite index. Then K/H is virtually free [Bi, Theorem 8.4],
and so K is finitely presentable. In particular, x(K) = x(H)x(K/H). Now
X(K) < 0 [KKO5, §9]. Since x(H) < 0 this is only possible if y(K/H) > 0,
and so K/ H is virtually Z. Hence we may assume that H, is the union of an
increasing sequence Ng = H < N; < ... of finitely generated subgroups with
N;/H virtually Z, for i > 1. For each i > 1 the group N; is F Py, ¢.d.N; =2,
H*(Ny; Z[IN;]) = 0 for s < 1 and [Nyy1 : IVg] is finite. Therefore H., is finitely
generated, by the Gildenhuys-Strebel Theorem.

In particular, H, is virtually a semidirect product H x Z, and so it is F'Py
and c.d.H, = 2. Hence H, is a PDy-group, by the earlier argument. But
PDs-groups do not have normal subgroups such as H. Therefore if H is free
it is infinite cyclic: H = Z. Since v/H, is characteristic in H, it is normal
in Hy 1, for each o < 3. Transfinite induction now shows that H < vG.
Therefore either VG = Z, so H = 7 and is normal in G, or G is virtually
poly-Z, by Theorem 2.14. a

If H is a PDs-group Ng(H) is the fundamental group of a 3-manifold which is
double covered by the mapping torus of a surface homeomorphism. There are
however Nil3-manifolds whose groups have no normal PDy-subgroup (although
they always have subnormal copies of Z?).

The original version of this result assumed that H is subnormal in G. (See
[BHI1] for a proof not using [Bo04] or [KKO05].)

2.8 Subgroups of PDj3-groups and 3-manifold groups

The central role played by incompressible surfaces in the geometric study of
Haken 3-manifolds suggests strongly the importance of studying subgroups of
infinite index in PDs-groups. Such subgroups have cohomological dimension
< 2, by Strebel’s Theorem.

There are substantial constraints on 3-manifold groups and their subgroups. Ev-
ery finitely generated subgroup of a 3-manifold group is the fundamental group
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of a compact 3-manifold (possibly with boundary), by Scott’s Core Theorem
[Sc73], and thus is finitely presentable and is either a 3-manifold group or has
finite geometric dimension 2 or is a free group. Aspherical closed 3-manifolds
are Haken, hyperbolic or Seifert fibred, by the work of Perelman [B-P]. The
groups of such 3-manifolds are residually finite [He87], and the centralizer of
any element in the group is finitely generated [JS]. Solvable subgroups of such
groups are virtually poly-Z [EJ73].

In contrast, any group of finite geometric dimension 2 is the fundamental group
of a compact aspherical 4-manifold with boundary, obtained by attaching 1- and
2-handles to D*. On applying the reflection group trick of Davis [Da83] to the
boundary we see that each such group embeds in a PDy-group. For instance,
the product of two nonabelian P Dy -groups contains a copy of F'(2) x F(2), and
so is a PDI—group which is not almost coherent. No PDj-group containing
a Baumslag-Solitar group (w,t | tzPt~1 = 29) is residually finite, since this
property is inherited by subgroups. Thus the question of which groups of finite
geometric dimension 2 are subgroups of PDg-groups is critical.

Kapovich and Kleiner have given an algebraic Core Theorem, showing that
every one-ended F'P, subgroup H in a PDjs-group G is the “ambient group” of
a PDs-pair (H,S) [KKO05]. Using this the argument of [Kr90a] may be adapted
to show that every strictly increasing sequence of centralizers in G has length at
most 4 [Hi06]. (The finiteness of such sequences and the fact that centralizers
in G are finitely generated or rank 1 abelian are due to Castel [Ca07].) With
the earlier work of Kropholler and Roller [KR88, KR89, Kr90, Kr93]| it follows
that if G has a subgroup H = Z? and v/G = 1 then it splits over a subgroup
commensurate with H. It also follows easily from the algebraic Core Theorem
that if a subgroup H is an X-group then H = 71(N) for some Seifert fibred
3-manifold N with N # (). In particular, no nontrivial Baumslag-Solitar
relation holds in G [Ca07].

The geometric conclusions of Theorem 2.14 and the coherence of 3-manifold
groups suggest that Theorems 2.12 and 2.17 should hold under the weaker
hypothesis that N be finitely generated. (Compare Theorem 1.19.) It is known
that F'(2) x F(2) is not a subgroup of any PD3-group [KR89]. This may be
regarded as a weak coherence result.

Is there a characterization of virtual PDs-groups parallel to Bowditch’s Theo-
rem? (It may be relevant that homology n-manifolds are manifolds for n < 2.
There is no direct analogue in high dimensions. For every k > 6 there are
F Py, groups G with H*(G;Z[G]) = Z but which are not virtually torsion-free
[FS93].)
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2.9 my(P) as a Z[r|-module

Let P be a PDs-space with fundamental group 7 and orientation character
w. If 7 is finite then w = 0, m(P) = 0 and cp.[P] € H3(m;Z) is essentially
equivalent to the first nontrivial k-invariant of P, as outlined in Theorem 2.9.
Suppose that 7 is infinite. If IV is another PD3-space and there is an isomor-
phism 6 : v = m(N) — 7 such that wi(N) = 0*w then mo(N) = 6*my(P) as
Z[v]-modules. If moreover ki(N) = 6*k1(P) (modulo automorphisms of the
pair (v,m2(N))) then Py(N) =~ P,(P). Since we may construct these Postnikov
2-stages by adjoining cells of dimension > 4 it follows that there is a map
f+ N — P such that m(f) = 0 and m(f) is an isomorphism. The homology
of the universal covering spaces N and P is 0 above degree 2, and so f is a
homotopy equivalence, by the Whitehead Theorem. Thus the homotopy type
of P is determined by the triple (m,w,k1(P)). One may ask how cp.[P] and
k1(P) determine each other.

There is a facile answer: in Turaev’s realization theorem for homotopy triples
the element of Hs(m;Z") is used to construct a cell complex X by attaching
2- and 3-cells to the 2-skeleton of K(m,1). If Ci is the cellular chain complex
of X then k;1(X) is the class of

0 — m(X) = C2/0Cs — C1 — Cy - Z — 0

in H3(m;ma(X)) = E$t%[ﬂ](Z,W2(X)). Conversely, a class k € Emt%[ﬂ](Z, IT)
corresponds to an extension

0—=1— Dy — Dy — Dy —7Z — 0,

with D; and Dy finitely generated free Z[r]-modules. Let D, be the complex
Dy — Dy — Dy, with augmentation ¢ to Z. If kK = ki(P) for a PDs3-
complex P then Tor?m (Z¥,D,) = H3(Py(P);Z") = Z (where Tor denotes
hyperhomology), and the augmentation then determines a class in Hg(m; Z")
(up to sign). Can these connections be made more explicit? Is there a natural
homomorphism from H3(w; HY(7; Z[x])) to Hz(m;Z™)?

If P is an orientable 3-manifold which is the connected sum of a 3-manifold
whose fundamental group is free of rank r with s > 1 aspherical 3-manifolds
then mo(P) is a finitely generated free Z[r]-module of rank r + s — 1 [Sw73].
We shall give a direct homological argument that applies for PDs-spaces with
torsion-free fundamental group, and we shall also compute H?(P;mo(P)) for
such spaces. (This cohomology group arises in studying homotopy classes of
self homotopy equivalences of P [HL74].)
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Theorem 2.18 Let P be a PDs-space with torsion-free fundamental group
7 and orientation character w = wy(P). Then

(1) if w is a nontrivial free group mo(P) is finitely generated and of projective
dimension 1 as a left Z[r]-module and H?(P;my(P)) is infinite cyclic;

(2) if 7 is not free ma(P) is a finitely generated free Z[n]-module, c.d.w = 3,
Hs(cp; Z*) is a monomorphism and H?(P;ms(P)) = 0;

(3) P is homotopy equivalent to a finite PDs-complex if and only if m is
finitely presentable and FF'.

Proof Two applications of Poincaré duality give, firstly, mo(P) = H!(7; Z[n])
and then H?(P;my(P)) = Hi(P; H'(m;Z[x])) = Hy(m; H' (7; Z[x])). Since 7 is
F P, it is accessible, and so m 2 7§, where G is a finite graph of groups with
all vertex groups finite or one-ended and all edge groups finite [DD, Theorem
VI.6.3]. There is an associated Mayer-Vietoris presentation

0 — BZ[G\7] = BZ[G\7] — H(;Z[r]) — 0,

where the sums involve only the finite vertex groups G, (and edge groups Ge)
[Ch76, Theorem 2]. If 7 is free of rank r > 0 we may assume there is one
vertex, with trivial vertex group, and r edges. The above presentation is then

0 — Z[r] = Z[x]" — H(m;Z[r]) — 0.

On applying the functor — ®z(,) Z, the left hand homomorphism becomes the
trivial homomorphism from Z — Z". Hence

HA(P;my(P)) & Hi(m; H'(m: Zlr])) = Tori™ (B (m: Z[x)), Z) = 2,
by the exact sequence of T'or. Moreover ma(P) has projective dimension 1. As
7 is finitely presentable and projective Z[F(r)]-modules are free [Ba64], P is

homotopy equivalent to a finite PD3s-complex [W165]. (In fact P is homotopy
equivalent to a connected sum of copies of S? x S and S?xS!.)

If 7 is torsion-free but not free then we may assume that the vertex groups
are finitely generated and have one end, and the edge groups are trivial. Hence
H(m;Z[x]) is a free right Z[r]-module with basis corresponding to the edges
of G, and so H?(P;m(P)) = 0. We may assume that P is 3-dimensional and
C.(P) is chain homotopy equivalent to a finitely generated projective Z[r]-
complex
0—>C3—>Cy—Cy— Cy—0,
where C; is free if ¢ < 2. Let Zs be the module of 2-cycles. Then the sequences
022y —>Cy—>C1 —Cy—>7Z—0
and 0— Cs — Zy — my(P)—0
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are exact, since Hs(P;Z) = 0. Attaching 3-cells to P along a basis for my(P)
gives an aspherical 3-dimensional complex K with fundamental group 7. The
inclusion of P into K may be identified with cp, and clearly induces monomor-
phisms H3(P; A) — Hs(m; A) for any coefficient module A. Hence c.d.m = 3.

If 7 is F'F there is a finite free resolution
0— D3 — Dy — Dy — Dy — 7Z — 0.

Therefore Z is finitely generated and stably free, by Schanuel’s Lemma. Since
ma(P) is free Zs = my(P)@®C3 and so Cj is also stably free. Hence if moreover 7
is finitely presentable then P is homotopy equivalent to a finite PD3-complex.
The converse is clear, by the above construction of K(m, 1) ~ K. d

We may remove the condition that 7 be torsion-free.

Corollary 2.18.1 If P is a PDs-space then mo(P) is finitely presentable as a
Z[r]-module. Moreover, H?(P;mo(P)) is a finitely generated abelian group of
rank 1, if 7 is infinite and virtually free, and is finite otherwise. If w is infinite
but not torsion-free the projective dimension of ma(P) is infinite.

Proof The first assertion follows from the theorem, since 7 is virtually torsion-
free, by Crisp’s Theorem. The second follows easily from the Mayer-Vietoris
presentation for H'(m;Z[r]). If 7 is infinite and mo(P) has finite projective
dimension then so does Zs, and so c.d.w < oo, and then 7 is torsion-free. O

Crisp uses an ingenious combinatorial argument based on the Mayer-Vietoris
presentation for H'(7;Z[r]) together with Lemma 2.10 to show that if P is
indecomposable, orientable and not aspherical the vertex groups must all be
finite, and so m is virtually free. Elementary group theory then leads to the
near-determination of the groups of such PD3s-complexes [Hil2]. (It is not yet
clear what are the indecomposable non-orientable P Ds-complexes.)
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Chapter 3

Homotopy invariants of
PD,-complexes

The homotopy type of a 4-manifold M is largely determined (through Poincaré
duality) by its algebraic 2-type and orientation character. In many cases the
formally weaker invariants 71 (M), wi (M) and x(M) already suffice. In §1 we
give criteria in such terms for a degree-1 map between PD,-complexes to be a
homotopy equivalence, and for a PD4-complex to be aspherical. We then show
in §2 that if the universal covering space of a PD4-complex is homotopy equiv-
alent to a finite complex then it is either compact, contractible, or homotopy
equivalent to S? or S3. In §3 we obtain estimates for the minimal Euler charac-
teristic of PDy-complexes with fundamental group of cohomological dimension
at most 2 and determine the second homotopy groups of PD4-complexes real-
izing the minimal value. The class of such groups includes all surface groups
and classical link groups, and the groups of many other (bounded) 3-manifolds.
The minima are realized by s-parallelizable PL 4-manifolds. In §4 we show that
if x(M) = 0 then m; (M) satisfies some stringent constraints, and in the final
section we define the reduced intersection pairing.

3.1 Homotopy equivalence and asphericity

Many of the results of this section depend on the following lemma, in conjunc-
tion with use of the Euler characteristic to compute the rank of the surgery
kernel. (Lemma 3.1 and Theorem 3.2 derive from [W], Lemmas 2.2 and 2.3].)

Lemma 3.1 Let R be a ring and C\ be a finite chain complex of projective
R-modules. If H;(C,) =0 for i < q and HI"'(Hompg(Cy, B)) = 0 for any left
R-module B then H,(Cy) is projective. If moreover H;(C,) =0 for i > q then

Hq(C’*) ® @izq—H (2) Ci = GBiEq (2) Ci.

Proof We may assume without loss of generality that ¢ = 0 and C; = 0
for i < 0. We may factor 9; : C1 — Cy through B = Imod; as 01 = j3,
where [ is an epimorphism and j is the natural inclusion of the submodule
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B. Since jB0, = 0102 = 0 and j is injective 02 = 0. Hence 5 is a 1-
cocycle of the complex Hompg(Cy, B). Since H'(Hompg(Cy, B)) = 0 there is
a homomorphism ¢ : Cy — B such that § = 001 = ¢j8. Since § is an
epimorphism ¢j = idp and so B is a direct summand of Cy. This proves the
first assertion.

The second assertion follows by an induction on the length of the complex. O

Theorem 3.2 Let M and N be finite PD4-complexes. A map f: M — N
is a homotopy equivalence if and only if 71(f) is an isomorphism, f*w;(N) =
w1 (M), f«[M] = +[N] and x(M) = x(N).

Proof The conditions are clearly necessary. Suppose that they hold. Up
to homotopy type we may assume that f is a cellular inclusion of finite cell
complexes, and so M is a subcomplex of N. We may also identify (M) with
7 =m(N). Let Co(M), C,(N) and D, be the cellular chain complexes of M,

N and (Kf , M), respectively. Then the sequence
0—Cy(M)— Ci(N)— D,—0
is a short exact sequence of finitely generated free Z[r]-chain complexes.

By the projection formula f.(f*a N [M]) = a N fi[M] = +a N [N] for any
cohomology class a € H*(N;Z[r]). Since M and N satisfy Poincaré du-
ality it follows that f induces split surjections on homology and split injec-
tions on cohomology. Hence H,(D,) is the “surgery kernel” in degree ¢ — 1,
and the duality isomorphisms induce isomorphisms from H"(Homgz (Dx, B))
to He_r(D.« ® B), where B is any left Z[r]-module. Since f induces iso-
morphisms on homology and cohomology in degrees < 1, with any coeffi-
cients, the hypotheses of Lemma 3.1 are satisfied for the Z[r]-chain com-
plex D,, with ¢ = 3, and so H3(D,.) = Ker(ma(f)) is projective. Moreover
H3(Dy) & D, pyaDi = D, epen, Pi- Thus H3(D,) is a stably free Z[r]-module
of rank y(E, M) = x(M) — x(E) = 0. Hence Hs(D,) = 0, since group rings
are weakly finite, and so f is a homotopy equivalence. |

If M and N are merely finitely dominated, rather than finite, then H3(D,) is a
finitely generated projective Z[r|-module such that Z ®z,) H3(Dx) = 0. If the
Wall finiteness obstructions satisfy f.o(M) = o(N) in Ko(Z[x]) then Hz(D.)
is stably free, and the theorem remains true. The theorem holds as stated
for arbitrary PDy-spaces if m satisfies the Weak Bass Conjecture. (Similar
comments apply elsewhere in this section.)

We shall see that when IV is aspherical and f = ¢j; we may drop the hypotheses
that f*w; (V) = w1 (M) and f has degree £1.
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Corollary 3.2.1 [Ha87] Let N be orientable. Then a map f: N — N which
induces automorphisms of m(N) and H4(N;Z) is a homotopy equivalence. O

Any self-map of a geometric manifold of semisimple type (e.g., an H*-, H2(C)-
or H? x H2-manifold) with nonzero degree is a homotopy equivalence [Re96].

If X is a cell complex with fundamental group 7 then mo(X) = Ha(X;Z[n]),

by the Hurewicz Theorem for X, and so there is an evaluation homomorphism
ev: H*(X;Z[x]) — Homgjz(m2(X), Z[x]). The latter module may be identified

with HO(m; H 2(5( ;Z|r])), the m-invariant subgroup of the cohomology of X
with coefficients Z[n].

Lemma 3.3 Let M be a PDs-space with fundamental group m and let Il =
mo(M). Then 11 = H?(M;Z[r|) and there is an exact sequence
0 — H?(m; Z[r]) — H*(M; Z[r]) —— Homgy(IL, Z[r]) — H3(m; Z[x]) — 0.

Proof This follows from the Hurewicz Theorem, Poincaré duality and the
UCSS, since H3(M;Z[r]) & H,(M;Z) = 0. O

Exactness of much of this sequence can be derived without the UCSS. When 7 is
finite the sequence reduces to the isomorphism 7o (M) = Homyy (m2(M), Z[x]).

Let ev(® : H(Qz)(ﬂ) — Homyy (ma(M),%(r)) be the analogous evaluation

defined on the wunreduced LZ?-cohomology by ev®(f)(z) = Bf(g~'2)g for
all square summable 2-cocycles f and all 2-cycles z representing elements of
Hy(X; Z[r]) = ma(M). Part of the next theorem is implicit in [Ec94].

Theorem 3.4 Let M be a PD,-complex with fundamental group w. Then
(1) if ﬂf) (m) =0 and either M is finite or m satisfies the Strong Bass Con-
jecture then x(M) > 0;
(2) Ker(ev®) is closed;
3) if BP(M) = B (xr) then H2(cpr; Z[n)) + H(m; Zlx]) — H2(M;Z[x]) is

an isomorphism.

Proof Since M is a PDj-complex ,81-(2)(M) = Bii)i(M), for all 7. If M is
finite or 7 satisfies the Strong Bass Conjecture then y (M) is the alternating
sum of the L?-Betti numbers [Ec96]. Therefore if, moreover, B§2) () =0 then

x(M) =265 + P (M) > 0.

Geometry & Topology Monographs, Volume 5 (2002)



50 Chapter 3: Homotopy invariants of PD4-complexes

Let z € C’g(]Téf ) be a 2-cycle and f € CéQ)UTI/ ) a square-summable 2-cocycle. As
llev@ (£)(2)|l2 < |If]l2]|2]|2, the map f +— ev®(f)(z) is continuous, for fixed
z. Hence if f = limf, and ev®(f,) =0 for all n then ev?(f) =0.

The inclusion Z[r] < ¢*(7) induces a homomorphism from the exact sequence
of Lemma 3.3 to the corresponding sequence with coefficients ¢2(r). (See [Ec94,
§1.4]. Note that we may identify HO(W;H2(M; A)) with Homg(m2(M), A)
for A = Z[r] or £2(x) since M is l-connected.) As Ker(ev®) is closed and
ev® (5g)(z) = ev®(g)(dz) = 0 for any square summable 1-chain g, the ho-

momorphism ev® factors through the reduced L2-cohomology FI?Q)(M ). If
ﬁg) (M) = ﬁém(ﬂ') the classifying map ¢y : M — K(m, 1) induces weak isomor-
phisms on reduced L?-cohomology H €2) () = H Ez)(M ) for ¢ < 2. In particular,
the image of ﬁé) (7) is dense in ﬁé)(M) Since ev(® is trivial on H(22) (m) and
Ker(ev?) is closed it follows that ev® = 0. Since the natural homomorphism
from Homgq (w2 (M), Z[r]) to Homyy (ma(M),%(7)) is a monomorphism it
follows that ev = 0 also and so H?(cp; Z[r]) is an isomorphism. O

This gives a complete and natural criterion for asphericity (which we state as a
separate theorem to retain the enumeration of the original version of this book).

Theorem 3.5 Let M be a PD4-complex with fundamental group w. Then
M is aspherical if and only if H®(m; Z]r]) = 0 for s < 2 and 652) (M) = g) (7).

Proof The conditions are clearly necessary. If they hold then H?(M;Z[r])
H?(m;Z[r]) = 0 and so M is aspherical, by Poincaré duality.

o m

Is it possible to replace the hypothesis “Béz)(M ) = ,6’52) (m)” by “Bo(MT) =
Bo(Ker(wy(M)))”, where py : M+ — M is the orientation cover? It is easy to
find examples to show that the homological conditions on 7 cannot be relaxed
further.

Corollary 3.5.1 The PDs-complex M is finite and aspherical if and only if
7 Is a finitely presentable PDy-group of type FF and x(M) = x(n). ]

If Ba(m) # 0 this follows from Theorem 3.2. For we may assume 7 and M are
orientable, on replacing 7 by K = Ker(w;(M)) NKer(w;i(r)) and M by Mg.
As Hs(cpr;Z) is onto it is an isomorphism, so ¢p; has degree 1, by Poincaré
duality. Is M always aspherical if 7 is a PDy-group and x(M) = x(m)?
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Corollary 3.5.2 If x(M) = 5%2)(70 =0 and H*(m;Z[r]) = 0 for s < 2 then
M is aspherical and w is a PDy-group. a

Corollary 3.5.3 If = 7" then x(M) >0, and is 0 only if r =1, 2 or 4.
Proof If r > 2 then H*(m;Z[rn]) =0 for s < 2. O

Theorem 3.5 implies that if 7 is a PDys-group and x (M) = x(m) then cps.[M] is
nonzero. If x(M) > x(m) this need not be true. Given any finitely presentable
group 7 there is a finite 2-complex K with 71(K) = w. The boundary of a
regular neighbourhood N of some embedding of K in R® is a closed orientable
4-manifold M with 71 (M) = w. As the inclusion of M into N is 2-connected
and K is a deformation retract of N the classifying map cjs factors through cg
and so induces the trivial homomorphism on homology in degrees > 2. However
if M and 7 are orientable and [B2(M) < 2f5(w) then cp; must have nonzero
degree, for the image of H?(rm; Q) in H?(M;Q) then cannot be self-orthogonal

under cup-product.
Theorem 3.6 Let m be a PDy-group of type FF. Then def(m) < 1— %X(ﬂ').

Proof Suppose that 7 has a presentation of deficiency d > 1 — %X(ﬂ'), and let
X be the corresponding finite 2-complex. Then

B2 () = B2 () < B2(X) = 8P () = x(X) = 1 — d.
Since 552) (m) — 2ﬁ§2) (m) = x(m) and x(mw) > 2 — 2d it follows that 552)(7r) <

d — 1. Hence ﬁf) (X) = 0. Therefore X is aspherical, by Theorem 2.4, and so
c.d.m < 2. But this contradicts the hypothesis that 7 is a PDy-group. a

Note that if x(7) is odd the conclusion does not imply that def(r) < —3x(r).
An old conjecture of H.Hopf asserts that if M is an aspherical smooth 2k-
manifold then (—1)*y (M) > 0. The first open case is when k = 2. If Hopf’s
conjecture is true then def(m;(M)) < 0. Is def(w) < 0 for every PDy-group
7?7 This bound is best possible for groups with xy = 0, since the presentation
{a,b | ba® = a®b?, b%a = a®b>) gives a Cappell-Shaneson 2-knot group Z3 x4 Z.

The hypothesis on orientation characters in Theorem 3.2 is often redundant.
Theorem 3.7 Let f : M — N be a 2-connected map between finite PD,-
complexes with x(M) = x(N). If H*(N;Fs) # 0 then f*wi(N) = w;(M),

and if moreover N is orientable and H*(N;Q) # 0 then f is a homotopy
equivalence.
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Proof Since f is 2-connected H?(f;Fs) is injective, and since y (M) = x(N)
it is an isomorphism. Since H?(N;Fs) # 0, the nondegeneracy of Poincaré
duality implies that H*(f;F3) # 0, and so f is a Fa-(co)homology equivalence.
Since w (M) is characterized by the Wu formula = U w; (M) = Sq'z for all
in H3(M;Fy), it follows that f*wi(N) = wy(M).

If H2(N;Q) # 0 then H?(N;Z) has positive rank and H?(N;Fs) # 0, so N
orientable implies M orientable. We may then repeat the above argument with
integral coefficients, to conclude that f has degree +1. The result then follows
from Theorem 3.2. |

The argument breaks down if, for instance, M = S'xS3 is the nonorientable
S3-bundle over S', N = S! x §3 and f is the composite of the projection of
M onto S! followed by the inclusion of a factor.

If M and N are closed 4-manifolds with isomorphic algebraic 2-types then
there is a 3-connected map f : M — P,(N). The restriction of such a map
to M, = M\ D* is homotopic to a map f, : M, — N which induces isomor-
phisms on 7; for @ < 2. In particular, x(M) = x(N). Thus if f, extends
to a map from M to N we may be able to apply Theorem 3.2. However we
usually need more information on how the top cell is attached. In fact the
triple (Po(M), w1 (M), far«[M]) is a complete invariant of the homotopy type
[BB08]. (However which triples are thus realized is unknown.) Can fas.[M] be
replaced here by a more explicit “primary” invariant, such as the equivariant
intersection pairing on ma(M)? (See also [Hi20].)

The following criterion arises in studying the homotopy types of circle bundles
over 3-manifolds. (See Chapter 4.)

Theorem 3.8 Let F be a PDs-complex with fundamental group © and such
that H4(fE;Zw1(E)) is a monomorphism. A PDj-complex M is homotopy
equivalent to E if and only if there is an isomorphism 6 from 7i(M) to w
such that wi(M) = wi(FE)0, there is a lift ¢ : M — P(FE) of Ocpr such that
e.[M] = £fu.[E] and x(M) = x(E).

Proof The conditions are clearly necessary. Conversely, suppose that they
hold. We shall adapt to our situation the arguments of Hendriks in analyzing
the obstructions to the existence of a degree 1 map between P Ds-complexes
realizing a given homomorphism of fundamental groups. For simplicity of no-
tation we shall write Z for Z*1(®) and also for Z*1()(= ¢*Z), and use 6§ to
identify 71 (M) with 7 and K(m(M),1) with K(m,1). We may suppose the
sign of the fundamental class [M] is so chosen that ¢.[M] = fr.[FE].
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Let E, = E\ D*. Then Py(E,) = P»(E) and may be constructed as the union
of E, with cells of dimension > 4. Let

h: Z ®gpm ma(Pa(Ey), Bo) — Hy(Po(E,), Eo; Z)

be the wi(FE)-twisted relative Hurewicz homomorphism, and let 0 be the con-
necting homomorphism from m4(P2(E,), E,) to m3(FE,) in the exact sequence of
homotopy for the pair (Px(E,), E,). Then h and 0 are isomorphisms since fg,
is 3-connected, and so the homomorphism 7g : Hy(P2(E); Z) — Z @zx 73(E,)
given by the composite of the inclusion

Hy(Po(E); Z) = Hi(Pa(E,); Z) — Hy(Po(Ey), Ev; L)

with h~! and 1 ®@z[x O is a monomorphism. Similarly M, = M \ D* may
be viewed as a subspace of P»(M,) and there is a monomorphism 7p; from
Hy(Py(M);Z) to Z ®gzjx m3(M,). These monomorphisms are natural with re-
spect to maps defined on the 3-skeleta (i.e., E, and M,).

The classes T7p(fr«[E]) and 7a(far«[M]) are the images of the primary ob-
structions to retracting E onto E, and M onto M,, under the Poincaré du-
ality isomorphisms from H*(E, E,;n3(E,)) to Ho(E \ EO;% ®zm T3(Eo)) =
Z Qzn 73(E,) and H*(M, My; w3(M,)) to Z ®7(x m3(M,), respectively. Since
M, is homotopy equivalent to a cell complex of dimension < 3 the restriction of
¢ to M, is homotopic to a map from M, to E,. Let ¢; be the homomorphism
from m3(M,) to m3(E,) induced by ¢é[M,. Then (1 ®ppy &)7mar(far«[M]) =
TE(fE«[E]). It follows as in [Hn77] that the obstruction to extending &M, :
M, — E, to a map d from M to F is trivial.

Since fp«dy«[M] = ¢,[M] = fp«[E] and fg. is a monomorphism in degree 4 the

map d has degree 1, and so is a homotopy equivalence, by Theorem 3.2. O

If there is such a lift ¢ then ¢},0*k1(E) = 0 and 6.care[M] = cp«[E].

3.2 Finitely dominated covering spaces

In this section we shall show that if a PD,-complex M has a finitely domi-
nated, infinite regular covering space then either M is aspherical or its universal
covering space is homotopy equivalent to S? or S3. In Chapters 4 and 5 we
shall see that such manifolds are close to being total spaces of fibre bundles.

Theorem 3.9 Let M be a PD,-complex with fundamental group m, and let

M,, be the covering space associated to v = Ker(p), where p: 7 — G is an
epimorphism. Suppose that M, is finitely dominated. Then

Geometry & Topology Monographs, Volume 5 (2002)



54 Chapter 3: Homotopy invariants of PD4-complexes

(1) G has finitely many ends;
(2) if M, is acyclic then it is contractible and M is aspherical;

(3) if G has one end and v is infinite and F'P3 then M is aspherical and M,
is homotopy equivalent to an aspherical closed surface or to S*;

(4) if G has one end and v is finite then M, ~ S? or RP? or is acyclic;
(5) G has two ends if and only if M,, is a PD3s-complex.

Proof We may clearly assume that G is infinite. As Z[G]| has no nonzero
left ideal (i.e., submodule) which is finitely generated as an abelian group
Homgq(Hy(M,;Z),Z|G]) = 0 for all ¢ > 0, and so the bottom row of the
UCSS for the covering p is 0. From Poincaré duality and the UCSS we find
that Hy(M,;Z) = H°(G;Z[G]) = 0 and HY(G;Z[G]) = H3(M,;Z). As this
group is finitely generated, and as G is infinite, G has one or two ends. Simi-
larly, H?(G;Z|G]) is finitely generated and so is Z or 0.

If M, is acyclic Dy = Z[G] @z C,(M) is a resolution of the augmentation
Z|G]-module Z and HY(D,) = Hy_4(M,;Z). Hence G is a PD4-group, and
so Hy(M;Z) = Hy(M,:Z[v]) = H=5(M,;Z[v]) = 0 for s > 0, by Theorem
1.19’. Thus M, is contractible and so M is aspherical. Suppose that G has
one end. If H?(G;Z[G]) = 7Z then G is virtually a PDy-group, by Bowditch’s
Theorem, and so M, is a PDy-complex [Go79]. In general, C*(M )|, is chain
homotopy equivalent to a finitely generated projective Z[v]|-chain complex P,
and H3(M,;Z) = Hy(M,;Z) = 0. If v is F'P; then the augmentation Z[v]-
module Z has a free resolution F) which is finitely generated in degrees < 3.
On applying Schanuel’s Lemma to the exact sequences

02y PP —>P—~7Z—0
and 0—>0F;—>F —>F —Fy—~7Z—0

derived from these two chain complexes we find that Zs is finitely generated as a
Z|v]-module. Hence IT = mo(M) = mo(M,) is also finitely generated as a Z[v|-
module and so Hom(II, Z[n]) = 0. If moreover v is infinite then H*(m; Z[r]) =
0 for s < 2, s0 Il = 0, by Lemma 3.3, and M is aspherical. If H%(G;Z[G]) = 0
a spectral sequence corner argument then shows that H?(G;Z[G]) & Z and
M, ~ S*. (See the following theorem.)

If v is finite but M, is not acyclic then the universal covering space M is
also finitely dominated but not contractible, and II = Hy(M;Z) is a nontrivial

finitely generated abelian group, while Hg(M; Z) = Hy(M;Z) =0. If C is a
finite cyclic subgroup of 7 there are isomorphisms H,4+3(C;Z) = H,(C;1I), for
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all n > 4, by Lemma 2.10. Suppose that C' acts trivially on II. Then if n is odd
this isomorphism reduces to 0 = II/|C|II. Since II is finitely generated, this
implies that multiplication by |C| is an isomorphism. On the other hand, if n is
even we have Z/|C|Z = {a € I1 | |Cla = 0}. Hence we must have C' = 1. Now
since 1T is finitely generated any torsion subgroup of Aut(II) is finite. (Let T be
the torsion subgroup of II and suppose that II/7" has rank r. Then the natural
homomorphism from Aut(II) to Aut(II/T) has finite kernel, and its image is
isomorphic to a subgroup of GL(r,Z), which is virtually torsion-free.) Hence
as 7 is infinite it must have elements of infinite order. Since H?(r;Z[r]) =11,
by Lemma 3.3, it is a finitely generated abelian group. Therefore it must be
infinite cyclic [Fa74, Corollary 5.2]. Hence M =~ S? and v has order at most 2,
so M, ~ S? or RP?.

Suppose now that M, is a PDs-complex. After passing to a finite covering of
M , if necessary, we may assume that M, is orientable. Then H'(G;Z[G]) =
H3(M,;Z), and so G has two ends. Conversely, if G has two ends we may
assume that G = 7Z, after passing to a finite covering of M , if necessary. Hence
M, is a PDs-complex [Go79]. O

The hypotheses that M be a PDj-complex and M, be finitely dominated can
be relaxed to requiring that M be a PDy-space and C.(M) be Z[v]-finitely
dominated, and the appeal to [Go79] can be avoided. (See Theorem 4.1.) Tt
can be shown that the hypothesis in (3) that v be FP3 is redundant if M is a
finite PDy4-space. (See [Hil3b].)

Corollary 3.9.1 The covering space M, is homotopy equivalent to a closed
surface if and only if it is finitely dominated and H?*(G;Z[G]) = Z. O

In this case M has a finite covering space which is homotopy equivalent to the
total space of a surface bundle over an aspherical closed surface. (See Chapter
5.)

Corollary 3.9.2 The covering space M,, is homotopy equivalent to S* if and
only if it is finitely dominated, G has one end, H*(G;Z[G]) = 0 and v is a
nontrivial finitely generated free group.

Proof If M, ~ S! then it is finitely dominated and M is aspherical, and the
conditions on G follow from the LHSSS. The converse follows from part (3) of
Theorem 3.9, since v is infinite and FP. O
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In fact any finitely generated free normal subgroup F of a PD,,-group m must
be infinite cyclic. For n/FCr(F) embeds in Out(F), so v.c.d.n/FCr(F) <
v.c.d.Out(F(r)) < oo. If F is nonabelian then Cr(F)NF = 1 and so 7/F
is an extension of 7/FC(F) by Cr(F). Hence v.c.d.w/F < oco. Since F is
finitely generated 7/F is F P,,. Hence we may apply [Bi, Theorem 9.11], and
an LHSSS corner argument gives a contradiction.

In the simply connected case “finitely dominated”, “homotopy equivalent to a
finite complex” and “having finitely generated homology” are all equivalent.

Corollary 3.9.3 If H*(M ; Z) is finitely generated then either M is aspherical
or M is homotopy equivalent to S? or S® or w1 (M) is finite. ]

This was first stated (for 71 (M) satisfying a homological finiteness condition)
in [Ku78]. We shall examine the spherical cases more closely in Chapters 10 and
11. (The arguments in these chapters may apply also to PD,,-complexes with
universal covering space homotopy equivalent to S~ ! or $”~2. The analogues
in higher codimensions appear to be less accessible.)

The following variation on the aspherical case shall be used in Theorem 4.8,
but belongs naturally here.

Theorem 3.10 Let v be a nontrivial F' Py normal subgroup of infinite index
in a PDy-group m, and let G = w/v. Then either

(1) v isa PDs-group and G has two ends;
(2) v isa PDy-group and G is virtually a PDy-group; or
(3) v=7Z, H(G;Z[G]) =0 for s # 3 and H3(G;Z[G]) &£ Z.

Proof Since c.d.v < 4, by Strebel’s Theorem, v is F'P and hence G is F Py.
The E3 terms of the LHSSS with coefficients Q[n| can then be expressed as
BN = HP(G;Q[G)) @ H(v; Q[v)). If HI(G;Q[G]) and H*(v;Q[v]) are the first
nonzero such cohomology groups then Egk persists to E,. Hence j+k =4
and H’(G;Q[G]) and H* 7/ (v;Q[v]) each have dimension 1 over Q, since 7 is
a PDg-group. If j =1 then G has two ends and so is virtually Z, and then v
is a PDs-group [Bi, Theorem 9.11]. If j = 2 then v and G are virtually PDs-
groups, by Bowditch’s Theorem. Since v is torsion-free it is then a PDy-group.
The only remaining possibility is (3). ad

In case (1) 7 has a subgroup of index < 2 which is a semidirect product H xgZ

with v < H and [H : v] < co. Is it sufficient that v be F'P» (as in Theorem
1.19)? Must the quotient 7/v be virtually a PDs-group in case (3)?

Geometry & Topology Monographs, Volume 5 (2002)



3.3 Minimizing the Euler characteristic 57

Corollary 3.10.1 If K is FP, and is ascendant in v where v is an FPj
normal subgroup of infinite index in the PD,-group © then K is a PDy-group
for some k < 4.

Proof This follows from Theorem 3.10 together with Theorem 2.17. a

What happens if we drop the hypothesis that the covering be regular? It follows
easily from Theorem 2.18 that a PD3-complex has a finitely dominated infinite
covering space if and only if its fundamental group has one or two ends [Hi08].
We might conjecture that if a PDy-complex M has a finitely dominated infinite
covering space M then either M is aspherical or M is homotopy equivalent
to S2 or 83 or M has a finite covering space which is homotopy equivalent
to the mapping torus of a self homotopy equivalence of a PDs-complex. (In
particular, m1(M) has one or two ends.) In [Hi08] we extend the arguments
of Theorem 3.9 to show that if 7r1(]\/4\ ) is F'P3 and ascendant in 7 the only
other possibility is that 771(]\7) has two ends, h(y/7) = 1 and H?(m;Z[n]) is
not finitely generated. This paper also considers in more detail F'P ascendant
subgroups of PD4-groups, corresponding to the aspherical case.

3.3 Minimizing the Euler characteristic

It is well known that every finitely presentable group is the fundamental group
of some closed orientable 4-manifold. Such manifolds are far from unique, for
the Euler characteristic may be made arbitrarily large by taking connected
sums with simply connected manifolds. Following Hausmann and Weinberger
[HW85], we may define an invariant for any finitely presentable group = by

q(m) = min{x(M)|M is a PDy complex with m (M) = 7}.

We may also define related invariants ¢X where the minimum is taken over the
class of PD4-complexes whose normal fibration has an X -reduction. There
are the following basic estimates for ¢°¢, which is defined in terms of PDI—
complexes.

Lemma 3.11 Let m be a finitely presentable group with a subgroup H of
finite index and let F' be a field. Then

(1) 1=PB1(H;F)+ Bo(H; F) < [ : H|(1 — defr);
(2) 2—2B1(H;F)+ B2(H; F) < [ : Hjg"%(m);
(3) ¢°“(m) < 2(1 —def(n));
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(4) if all cup products of pairs of elements of H?(m; F) are trivial then
% () = 2(1 — Bi(m; F) + Bo(m; F)), and if moreover H*(m;Fy) = 0
then q(m) > 2(1 — By (m;Fa) + Bo(m;Fy)) also.

Proof Let C be the 2-complex corresponding to a presentation for m of max-
imal deficiency and let C'i be the covering space associated to the subgroup
H. Then x(C) =1 —defr and x(Cy) = [7 : H]x(7). Condition (1) follows
since B1(H; F) = p1(Cu; F) and Bo(H; F) < Bo(Cuis F).

Condition (2) follows similarly on considering the Euler characteristics of a
PDj -complex M with (M) = 7 and of the associated covering space My .

The boundary of a regular neighbourhood of a PL embedding of C in R® is a
closed orientable 4-manifold realizing the upper bound in (3).

The image of H?(m;F) in H?(M;F) has dimension (a(m;F), and is self-
annihilating under cup-product if H*(m; F) = 0. In that case Bo(M;F) >
2B2(m; F'), which implies the first part of (4). The final observation follows
since all PD,,-complexes are orientable over Fs. O

Condition (2) was used in [HW85] to give examples of finitely presentable su-
perperfect groups which are not fundamental groups of homology 4-spheres.
(See Chapter 14 below.)

If 7 is a finitely presentable, orientable PD4-group we see immediately that
¢°%(r) = x(n). Multiplicativity then implies that ¢(7) = x(7) if K(m,1) is a
finite PD4-complex.

For groups of cohomological dimension at most 2 we can say more.

Theorem 3.12 Let X be a PD4-complex with fundamental group m such
that c.d.w < 2, and let Cy, = C(X;Z[r]). Then

(1) C, is Z[r]-chain homotopy equivalent to D, ® L[2]@ D*~*, where D, is a
projective resolution of 7, L[2] is a finitely generated projective module
L concentrated in degree 2 and D*~* is the conjugate dual of D,., shifted
to terminate in degree 2;

(2) m(X) = Le H?(m; Zlx));
(3) x(X) = 2x(m), with equality if and only if L = 0;
() Homs (P ZI), Zl)) = 0.
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Proof The chain complex C, gives a resolution of the augmentation module
0 — Im(35) = C1 — Cy = Z — 0.

Let D, be the corresponding chain complex with Dy = Cy, D; = C; and
Dy = Im(ag). Since c.d.w < 2 and Dy and D; are projective modules D5 is
projective, by Schanuel’s Lemma. Therefore the epimorphism from Cs to Ds
splits, and so C is a direct sum Cy = D@ (C/D),. Since X is a PDs-complex
C, is chain homotopy equivalent to C*~*. The first two assertions follow easily.

On taking homology with simple coefficients Q, we see that x(X) = 2x(w) +
dimgQ®, L. Hence x(X) > 2x(m). Since 7 satisfies the Weak Bass Conjecture
[Ec86] and L is projective, L = 0 if and only if dimgQ ®, L = 0.

Let 6 : Dy — Dj be the inclusion. Then H2(r;Z[r]) = Cok(é"), where 6 is
the conjugate transpose of §. Hence Homg(H?(m; Z[n)), Z[x]) = Ker(611).
But 6'f = §, which is injective, and so Homg)(H?(m; Z[x]), Z[r]) = 0. O

The appeal to the Weak Bass Conjecture may be avoided if X and K(m,1) are
homotopy equivalent to finite complexes. For then L is stably free, and so is 0
if and only if Z ®z;) L = 0, since group rings are weakly finite.

Similar arguments may be used to prove the following variation.

Addendum Suppose that c.d.pm < 2 for some ring R. Then R ® mo(M) =
P& H?(7; R[r]), where P is a projective R[r]-module, and x(M) > 2x(7; R) =
2(1 = B1(m; R) + P2(m; R)). If R is a subring of Q then x(M) = 2x(m; R) if
and only if wo(M) = H?(m; Z[r)). O

There are many natural examples of 4-manifolds with 71 (M) = 7 having non-
trivial torsion and such that c.d.om < 2 and x(M) = 2x(7). (See Chapters 10

and 11.) However all the known examples satisfy v.c.d.m < 2.

Corollary 3.12.1 If Hy(m;Fg) # 0 the Hurewicz homomorphism from mwo(M)
to Ho(M;F9) is nonzero.

Proof By the addendum to the theorem, Hy(M;F3) has dimension at least
2fB2(m), and so cannot be isomorphic to Ha(m;F2) unless both are 0. O

Corollary 3.12.2 If 7w = m;(P) where P is an aspherical finite 2-complex then
q(m) = 2x(P). The minimum is realized by an s-parallelizable PL 4-manifold.
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Proof If we choose a PL embedding j : P — R, the boundary of a regular
neighbourhood N of j(P) is an s-parallelizable PL 4-manifold with fundamen-
tal group 7 and with Euler characteristic 2y(P). O

By Theorem 2.8 a finitely presentable group is the fundamental group of an
aspherical finite 2-complex if and only if it has cohomological dimension < 2
and is efficient, i.e. has a presentation of deficiency [;(m; Q) — Sa(m; Q). It is
not known whether every finitely presentable group of cohomological dimension
2 is efficient.

In Chapter 5 we shall see that if P is an aspherical closed surface and M is
a closed 4-manifold with (M) = 7 then x(M) = q(n) if and only if M is
homotopy equivalent to the total space of an S?-bundle over P. The homotopy
types of such minimal 4-manifolds for = may be distinguished by their Stiefel-
Whitney classes. Note that if 7 is orientable then S? x P is a minimal 4-
manifold for 7 which is both s-parallelizable and also a projective algebraic
complex surface. Note also that the conjugation of the module structure in the
theorem involves the orientation character of M which may differ from that of
the PDy-group 7.

Corollary 3.12.3 If w is the group of an unsplittable u-component 1-link
then q(m) = 0. O

If 7 is the group of a p-component n-link with n > 2 then Hs(m; Q) = 0 and
so q(m) = 2(1 — p), with equality if and only if 7 is the group of a 2-link. (See
Chapter 14.)

Corollary 3.12.4 If 7 is an extension of Z by a finitely generated free normal
subgroup then ¢(m) = 0. O

In Chapter 4 we shall see that if M is a closed 4-manifold with 71 (M) such an
extension then x (M) = ¢(n) if and only if M is homotopy equivalent to a man-
ifold which fibres over S* with fibre a closed 3-manifold with free fundamental
group, and then 7 and w; (M) determine the homotopy type.

Finite generation of the normal subgroup is essential; F(2) is an extension of
Z by F(o0), and q(F(2)) = 2(F(2)) = —2.

Let 7w be the fundamental group of a closed orientable 3-manifold. Then 7 =
Fxv where F is free of rank r and v has no infinite cyclic free factors. Moreover
v = m(N) for some closed orientable 3-manifold N. If M is the closed 4-
manifold obtained by surgery on {n}xS* in N x S then M = Mo#(§"(S* x S3)
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is a smooth s-parallelisable 4-manifold with m (M) =2 7 and x(M) =2(1—r).
Hence ¢°%(7) = 2(1 —r), by part (4) of Lemma 3.11.

The arguments of Theorem 3.12 give stronger results in this case also.

Theorem 3.13 Let w be a finitely presentable PDs-group, and let M be
a PD,-complex with fundamental group w. Then q(m) = 2, and there are
finitely generated projective Z[r|-modules P and P’ such that mwo(M) @& P =
Ker(g,) ® P’, where ¢, : Z|w] — Z is the ring epimorphism defined by €,(g) =
w1 (M)(g)wi(m)(g), for all g € 7.

Proof Let N be a PDs-complex with fundamental group 7. We may suppose
that N = N,UD?, where N,N D3 = 52. Let X = N, x S'US? x D?. Then X
is a PD4-complex, x(X) =2 and m(X) = 7. Hence ¢(7) < 2. On the other
hand, ¢(7) > 2 by part (4) of Lemma 3.11, and so g(7) = 2.

Let C; = Ci(M;Z[r]), H; = Hi(C4) and Hj = Hj(HomZ[ﬂ(C’*,Z[ 1), and

for any left Z[r]-module L let 'L = Eazt ] , to simplify the notation.
Since 7 has one end, the chain complex Cl glves exact sequences

0—-Cy—C3—7Zy— Hy— 0 (3.1)

and 0272y —Cy—C1 —Cy—7Z— 0. (3.2)

Since m is a PDj3-group the augmentation module Z has a finite projective

resolution of length 3. On comparing sequence 3.2 with such a resolution and

applying Schanuel’s lemma we find that Z, is a finitely generated projective
Z[r]-module. Since 7 has one end, the UCSS reduces to an exact sequence

0— H? =5 "Hy - €37 — H? = e'Hy — 0 (3.3)

and isomorphisms H* = ¢?H, and e3Hy = e*Hy = 0. Poincaré duality for M
implies that H2 =0 and H* = Z. Hence sequence 3.3 reduces to

0— H? = "Hy - €37 — 0 (3.4)

and e' Hy = 0. On dualizing the sequence 3.1 and conjugating we get an exact
sequence of left modules

0= eVHy = eVZy — e9C5 = e0Cy — e2Hy =27 — 0. (3.5)

Schanuel’s lemma again implies that eOH, is a finitely generated projective
module. Now my(M) = H?, by Poincaré duality for M, and e3Z = 7Zwi(7)
since 7 is a PDs-group. Hence €37 = 7%, and the final assertion follows from
sequence 3.4 and Schanuel’s Lemma. O
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The invariant ¢°(7) has been determined for 7 a 3-manifold group with no 2-
torsion [SW21]. Does Theorem 3.13 extend to all free products of PDs-groups?

There has been some related work estimating the difference x(M) — |o(M)|
where M is a closed orientable 4-manifold M with 7(M) = = and where
o(M) is the signature of M. In particular, this difference is always > 0 if

@ () = 0. (See [JK93] and [Lii, Chapter 7.§3].) The minimum value of this
difference (p(m) = min{x(M) — |o(M)|}) is another numerical invariant of =,
which is studied in [Ko94].

3.4 Euler Characteristic 0

In this section we shall consider the interaction of the fundamental group and
Euler characteristic from another point of view. We shall assume that x(M) =0
and show that if 7 is an ascending HNN extension then it satisfies some very
stringent conditions. The groups Zx*,, shall play an important role. We shall
approach our main result via several lemmas.

We begin with a simple observation relating Euler characteristic and fundamen-
tal group which shall be invoked in several of the later chapters. Recall that if
G is a group then I(G) is the minimal normal subgroup such that G/I(G) is
free abelian.

Lemma 3.14 Let M be a PDj-space with x(M) < 0. If M is orientable
then H'(M;Z) # 0 and so © = w1 (M) maps onto Z. If H'(M;Z) =0 then 7
maps onto D.

Proof The covering space My corresponding to W = Ker(w;(M)) is ori-
entable and x(Mw) = 2 — 281 (Mw) + Bo(Mw ) = [r : W]x(M) < 0. Therefore
B1(W) = Bi(Mw) > 0 and so W/I(W) = Z", for some r > 0. Since I(W)
is characteristic in W it is normal in w. As [r: W] < 2 it follows easily that
m/I(W) maps onto Z or D. O

Note that if M = RP*RP*, then x(M) = 0 and 7(M) = D, but m(M)
does not map onto Z.

Lemma 3.15 Let M be a PD} -complex such that x(M) = 0 and © = 71(M)
is an extension of Z%,, by a finite normal subgroup F', for some m # 0. Then
the abelian subgroups of F are cyclic. If F' # 1 then 7 has a subgroup of finite
index which is a central extension of Z+, by a nontrivial finite cyclic group,
where n is a power of m.
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Proof Let M be the infinite cyclic covering space corresponding to the sub-
group I(m). Since M is compact and A = Z[Z] is noetherian the groups
Hl(]\/i\, Z) = H;(M;A) are finitely generated as A-modules. Since M is ori-
entable, x(M) = 0 and H;(M;Z) has rank 1 they are A-torsion modules,
by the Wang sequence for the projection of M onto M. Now Hg(]\/i; Z) =
Exth (I(m)/I(m),A), by Poincaré duality. There is an exact sequence

0—=T— I(m)/I(r) — I(Zx%n) 2 A/(t —m) — 0,

where T is a finite A-module. Therefore Ext}(I(w)/I(r)’,A) = A/(t—m) and
so Hy(I(m);Z) is a quotient of A/(mt — 1), which is isomorphic to Z[1] as a
group. Now I(m)/Ker(f) = Z[X] also, and H(Z[1];Z) = Z| L] ANZ[] = 0.
(See [Ro, page 334].) Hence Hy(I(w);Z) is finite, by an LHSSS argument, and
so is cyclic, of order relatively prime to m.

Let ¢t in 7 generate 7w/I(m) = Z. Let A be a maximal abelian subgroup of
F and let C = Cr(A). Then ¢ = [r : C] is finite, since F' is finite and
normal in 7. In particular, ¢t¢ is in C' and C maps onto Z, with kernel J,
say. Since J is an extension of Z[%] by a finite normal subgroup its centre
¢J has finite index in J. Therefore the subgroup G generated by (J and t4¢
has finite index in 7, and there is an epimorphism f from G onto Zx,,q, with
kernel A. Moreover I(G) = f~Y(I(Z%ma)) is abelian, and is an extension of
Z[X] by the finite abelian group A. Hence it is isomorphic to A & Z[-1]. (See
[Ro, page 106].) Now Hz(I(G);Z) is cyclic of order prime to m. On the other
hand Hy(I(G);Z) = (AN A) & (A® Z[1]) and so A must be cyclic.

If ' # 1 then A is cyclic, nontrivial, central in G and G/A = Zx*,q. |

Lemma 3.16 Let M be a finite PD,-complex with fundamental group .
Suppose that m has a nontrivial finite cyclic central subgroup F with quotient
G = n/F such that g.d.G =2, e(G) =1 and def(G) = 1. Then x(M) > 0. If
X(M) =0 and E = F)[G] is a weakly finite ring for some prime p dividing |F|
then  is virtually Z>.

Proof Let M be the covering space of M with group F', and let ¢, be the
number of g-cells of M, for ¢ > 0. Let C, = C,(M;E) = F, ® C,(M) be
the equivariant cellular chain complex of M with coefficients F, and let H, =
Hy(M;Z) = Hy(M;F,). For any left E-module H let e/H = ExtL(H,Z).

Since M is connected and F is cyclic Hy = Hy = F, and since G has one end
Poincaré duality and the UCSS give H3 = Hy = 0, an exact sequence

0 — e’F, — Hy — eHy — *Hy — Hy — ¢'Hy — 0
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and an isomorphism e?Hs 2 F,. Since g.d.G = 2 and def(G) = 1 the augmen-
tation module has a resolution
0=E =T 525 F, =0
The chain complex C, gives four exact sequences
0—+21 —-Cy—Cy—F,—=0,
0= 2y —Cy— 21 —TF,—0,
0— By —Zy— Hy — 0
and 0—-Cy —C3— By —0.
Using Schanuel’s Lemma several times we find that the cycle submodules 7
and Zy are stably free, of stable ranks ¢; — ¢g and cs — ¢1 + ¢g, respectively.
Dualizing the last two sequences gives two new sequences
0= e"By = %05 — 2Cy — e'By = 0
and 0— e’Hy — €°Zy — "By — ' Hy — 0,

~

and an isomorphism e'By =2 e?Hy = F,. Further applications of Schanuel’s
Lemma show that e’Bs is stably free of rank c3 — ¢4, and hence that e"H, is
stably free of rank co —c; +c¢p — (c3 —cs) = x(M). Since = maps onto the field
[F,, the rank must be non-negative, and so x(M) > 0.

If x(M) =0 and = = F,[G] is a weakly finite ring then e’Hy = 0 and so
eQIFp = e¢2H, is a submodule of F, = H;y. Moreover it cannot be 0, for otherwise
the UCSS would give Hy = 0 and then H; = 0, which is impossible. Therefore
62Fp =T,.

Since G is torsion-free and indicable it must be a PDy-group [DD, Theorem
V.12.2]. Since def(G) = 1 it follows that G = Z? or Z x_; Z, and hence that
7 is also virtually Z2. a

The hypothesis “Z = F)[G] is weakly finite” is satisfied if G is sofic [ES04]. In
particular, this is so if G’ is finitely generated, for then G’ is free, by Corollary
4.3.1 below, and so G is residually finite, and hence sofic. (There are at present
no known examples of groups which are not sofic!)

We may now give the main result of this section.

Theorem 3.17 Let M be a finite PD,-complex whose fundamental group m
is an ascending HNN extension with finitely generated base B. Then x(M) > 0,
and hence q(m) > 0. If x(M) =0 and B is F' P, and finitely ended then either
7 has two ends or = Z#y, or Z sy X(Z/2Z) for some m # 0 or £1 or 7 is
virtually Z? or M is aspherical.

Geometry & Topology Monographs, Volume 5 (2002)



3.4 FEuler Characteristic 0 65

Proof The L? Euler characteristic formula gives x(M) = 552) (M) > 0, since
Bi(Q)(M) = 32(2)(77) =0 for =0 or 1, by Lemma 2.1.

Let ¢ : B — B be the monomorphism determining m = Bx*4. If B is finite
then ¢ is an automorphism and so 7 has two ends. If B is F P, and has one
end then H*(m;Z[r]) = 0 for s < 2, by the Brown-Geoghegan Theorem. If
moreover x(M) =0 then M is aspherical, by Corollary 3.5.2.

If B has two ends then it is an extension of Z or D by a finite normal subgroup
F. As ¢ must map F isomorphically to itself, F' is normal in 7, and is the
maximal finite normal subgroup of . Moreover n/F = Zx,,, for some m # 0,
if B/F 27, and is a semidirect product Z %, x(Z/27), with a presentation
{a,t,u | tat™! = a™ tut™! = ua”, u® = 1, vau = a~1), for some m # 0 and
some 7 € Z, if B/F = D. (On replacing t by al"/?lt, if necessary, we may
assume that r =0 or 1.)

Suppose first that M is orientable, and that ' # 1. Then 7 has a subgroup
o of finite index which is a central extension of Zx,,« by a finite cyclic group,
for some g > 1, by Lemma 3.15. Let p be a prime dividing q. Since Z*,,q is a
torsion-free solvable group the ring = = F),[Z%,,¢| has a skew field of fractions
L, which as a right Z-module is the direct limit of the system {Zy | 0 # 0 € =},
where each =y = =, the index set is ordered by right divisibility (6 < ¢#) and
the map from =y to Zgp sends £ to ¢ [KLMS8S]. In particular, = is a weakly
finite ring and so = is virtually Z?, by Lemma 3.16.

If M is nonorientable then either wi(M)|r is injective, so m = Z *,, X(Z/27),
or 7 is virtually Z2. O

Is M still aspherical if B is assumed only finitely generated and one ended?

Corollary 3.17.1 Let M be a finite PD4-complex such that x(M) =0 and
m = w1 (M) is almost coherent and restrained. Then either m has two ends or
T Ty, or Zxm x(Z)27) for some m # 0 or +1 or « is virtually Z* or M
is aspherical.

Proof Let nt = Ker(wi(M)). Then 7" maps onto Z, by Lemma 3.14, and so
is an ascending HNN extension 7+ 2 Bk, with finitely generated base B. Since
7 is almost coherent B is F' P, and since m has no nonabelian free subgroup
B has at most two ends. Hence Lemma 3.16 and Theorem 3.17 apply, so either
7 has two ends or M is aspherical or 1 & Zx,, or Z %, x(Z/2Z) for some
m # 0 or £1. In the latter case /7 is isomorphic to a subgroup of the additive
rationals Q, and /7 = Cr(y/7). Hence the image of 7 in Aut(y/7) < Q* is
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infinite. Therefore 7 maps onto Z and so is an ascending HNN extension Bxg,
and we may again use Theorem 3.17. a

Does this corollary hold without the hypothesis that = be almost coherent?

There are nine groups which are virtually Z? and are fundamental groups of
PDy-complexes with Euler characteristic 0. (See Chapter 11.) Are any of the
groups Z *, x(Z/2Z) with |m| > 1 realized by PD4-complexes with y = 07
If 7 is restrained and M is aspherical must 7 be virtually poly-Z? (Aspheri-
cal 4-manifolds with virtually poly-Z fundamental groups are characterized in
Chapter 8.)

Let G is a group with a presentation of deficiency d and w : G — {£1} be
a homomorphism, and let (z;, 1 < i< m | r;, 1 <j < n) be a presentation
for G with m —n = d. We may assume that w(x;) = +1 for i < m — 1. Let
X =fm(Stx D3) if w=1and X = (™ (S x D3))j(S'x D3) otherwise. The
relators r; may be represented by disjoint orientation preserving embeddings
of S in 0X, and so we may attach 2-handles along product neighbourhoods,
to get a bounded 4-manifold Y with m(Y) = G, wi(Y) = w and x(Y) =
1 —d. Doubling Y gives a closed 4-manifold M with x(M) = 2(1 — d) and
(m1 (M), w1 (M)) isomorphic to (G, w).

Since the groups Zx,, have deficiency 1 it follows that any homomorphism
w : Z%py — {£1} may be realized as the orientation character of a closed 4-
manifold M with m (M) = Zx,, and x(M) = 0. In the orientable case such
manifolds are determined up to homeomorphism by 7 and wy [HKT09].

3.5 The intersection pairing

Let X be a PD4-complex with fundamental group 7 and let w = wy(X). In
this section it shall be convenient to work with left modules. Thus if L is a left
Z[r]-module we shall let LT = H omy (L, Z[r]) be the conjugate dual module.

If L is free, stably free or projective so is L.

Let H = H2(X;Z[r]) and II = m2(X), and let D : H — II and ev: H — II'
be the Poincaré duality isomorphism and the evaluation homomorphism, re-
spectively. The cohomology intersection pairing A : H x H — Z[r] is defined
by A(u,v) = ev(v)(D(u)), for all u,v € H. This pairing is w-hermitian:
Mgu, hv) = g\ (u,v)h and A(v,u) = A(u,v) for all u,v € H and g,h € .
Since A(u,e) =0 for all w € H and e € E = H?(m; Z[r]) the pairing A induces
a pairing A\x : H/E x H/E — Z|r], which we shall call the reduced intersec-
tion pairing. The adjoint homomorphism Ax : H/E — (H/E)! is given by
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Ax (W) ([u]) = Au,v) = ev(v)(D(u)), for all u,v € H. It is a monomorphism,
and \x is nonsingular if Ax is an isomorphism.

Lemma 3.18 Let X be a PDs-complex with fundamental group =, and let
E = H?(m; Z[~x)).

(1) If \x is nonsingular then H3(m;Z[r]) embeds as a submodule of ET;
(2) if Ax is nonsingular and H?(cx;Z[r]) splits then ET = H3(m; Z[x]);

(3) if H3(m;Z[r]) = 0 then Ay is nonsingular;

(4) if H3(m;Z[n]) = 0 and 11 is a finitely generated projective Z[r]-module

then £ = 0;
(5) if m is infinite and H'(m;Z[r]) and II are projective then c.d.m = 4.

Proof Let p : II — II/D(FE) and ¢q: H — H/E be the canonical epimor-
phisms. Poincaré duality induces an isomorphism ~ : H/E = II/D(FE). It is
straightforward to verify that p' ('yT)*l:\ xq = ev. If Ax is nonsingular then Ay
is an isomorphism, and so Coker(p’) = Coker(ev). The first assertion follows
easily, since Coker(p') < ET.

If moreover H?(cx;Z[n]) splits then so does p, and so ET = Coker(p').

If H?(m;Z[x]) = 0 then ev is an epimorphism and so p' is an epimorphism.
Since p' is also a monomorphism it is an isomorphism. Since ev and ¢ are
epimorphisms with the same kernel it folows that Ax = ~f(p")~!, and so Ax
is also an isomorphism.

If 1T is finitely generated and projective then so is IIf, and IT 2 ITT. If moreover
H3(m; Z[x]) = 0 then 1 = H = EQTIT. Hence F is also finitely generated and
projective, and E = ETt = 0.

If H'(m;Z[n]) and II are projective then we may obtain a projective resolution
of Z of length 4 from C, = C.(X) by replacing C3 and Cy by Cs @& II and
Cy & H(7; Z[r]), respectively, and modifying d3 and 04 appropriately. Since
H3(X;Z[r]) & HY(m; Z[r]) it is also projective. It follows from the UCSS that
H*(m;Z[x]) # 0. Hence c.d.m = 4. O

In particular, the cohomology intersection pairing is nonsingular if and only if
H?(m; Z[w]) = H3(m; Z[n]) = 0. If X is a 4-manifold counting intersections of
generic immersions of S? in X gives an equivalent pairing on II.

We do not know whether the hypotheses in this lemma can be simplified. For in-
stance, is H2(m; Z[x])! always 07 Does “II projective” imply that H3(r; Z[r]) =
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0?7 Projectivity of TIT and H?(m;Z[r]) = 0 together do not imply this. For
if 7 is a PD3 -group and w = w; () there are finitely generated projective
Z|r]-modules P and P’ such that I1® P = A(w) @ P’, where A(w) is the aug-
mentation ideal of Z[r], by Theorem 3.13, and so T is projective. However
H3(m; Z[n]) 2 Z # 0.

The module II is finitely generated if and only if 7 is of type F'P3. As observed
in the proof of Theorem 2.18, if 7 is a free product of infinite cyclic groups and
groups with one end and is not a free group then H'!(7;Z[r]) is a free Z[r]-
module. An argument similar to that for part(5) of the lemma shows that
c.d.m <5 if and only if 7 is torsion-free and p.d.z;; Il < 2.

If Y is a second PD4-complex we write Ax = Ay if there is an isomorphism
0 : 71 = m(Y) such that wi(X) = wi(Y)# and a Z[r]-module isomorphism
O : m(X) = 6*mo(Y) inducing an isometry of cohomology intersection pair-
ings. If f: X — Y is a 2-connected degree-1 map the “surgery kernel”
Ks(f) = Ker(ma(f)) and “surgery cokernel” K2(f) = Cok(H?2(f;Z[r])) are
finitely generated and projective, and are stably free if X and Y are finite
complexes [WI, Lemma 2.2]. (See also Theorem 3.2 above.) Moreover cap
product with [X] induces an isomorphism from K?2(f) to K2(f). The pairing
Ar = Alg2(p)xk2(y) is nonsingular [W1, Theorem 5.2].

Geometry & Topology Monographs, Volume 5 (2002)



69

Chapter 4

Mapping tori and circle bundles

Stallings showed that if M is a 3-manifold and f : M — S' a map which
induces an epimorphism f, : m (M) — Z with infinite kernel K then f is
homotopic to a bundle projection if and only if M is irreducible and K is
finitely generated. Farrell gave an analogous characterization in dimensions
> 6, with the hypotheses that the homotopy fibre of f is finitely dominated
and a torsion invariant 7(f) € Wh(m(M)) is 0. The corresponding results
in dimensions 4 and 5 are constrained by the present limitations of geometric
topology in these dimensions. (In fact there are counter-examples to the most
natural 4-dimensional analogue of Farrell’s theorem [We87].)

Quinn showed that if the base B and homotopy fibre F of a fibration p : M — B
are finitely dominated then the total space M is a Poincaré duality complex
if and only if both the base and fibre are Poincaré duality complexes. (The
paper [Go79] gives an elegant proof for the case when M, B and F are finite
complexes. The general case follows on taking products with copies of S! to
reduce to the finite case and using the Kiinneth theorem.)

We shall begin by giving a purely homological proof of a version of this result,
for the case when M and B are PD-spaces and B = K(G,1) is aspherical.
The homotopy fibre F' is then the covering space associated to the kernel of the
induced epimorphism from (M) to G. Our algebraic approach requires only
that the equivariant chain complex of F' have finite [n/2]-skeleton. In the next
two sections we use the finiteness criterion of Ranicki and the fact that Novikov
rings associated to finitely generated groups are weakly finite to sharpen this
finiteness hypotheses when B = S', corresponding to infinite cyclic covers of
M. The main result of §4.4 is a 4-dimensional homotopy fibration theorem
with hypotheses similar to those of Stallings and a conclusion similar to that
of Gottlieb and Quinn. The next two sections consider products of 3-manifolds
with S' and covers associated to ascendant subgroups.

We shall treat fibrations of PD4-complexes over surfaces in Chapter 5, by a
different, more direct method. In the final section of this chapter we consider
instead bundles with fibre S'. We give conditions for a PDs-complex to fibre
over a PDs-complex with homotopy fibre S, and show that these conditions
are sufficient if the fundamental group of the base is torsion-free but not free.
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4.1 PD,-covers of PD,-spaces

Let M be a PD,-space and p : 7 = m (M) — G an epimorphism with G a
PD,-group, and let M, be the covering space corresponding to v = Ker(p). If
M is aspherical and v is F'Py, 9 then v is a PDy_,-group and M, = K(v,1)
is a PD,,_,-space [Bi, Theorem 9.11]. In general, there are isomorphisms
HY(M,;Zlv]) = Hp—r—q(M,;Z[v]), by Theorem 1.19". However in the nonas-
pherical case it is not clear that there are such isomorphisms induced by cap
product with a class in H,_,(M,;Z[v]). If M is a PD,-complex and v is
finitely presentable M, is finitely dominated, and we could apply the Gottlieb-
Quinn Theorem to conclude that M, is a PD,_,-complex. We shall give
instead a purely homological argument which does not require 7w or v to be
finitely presentable, and so applies under weaker finiteness hypotheses.

A group G is a weak PD,-group if H"(G;Z[G]) is infinite cyclic if ¢ = r and is
0 otherwise [Ba80]. If r < 2 an F'P, group is a weak PD,-group if and only if
it is virtually a PD,-group. This is easy for r < 1 and is due to Bowditch when
r = 2 [Bo04]. Barge has given a simple homological argument to show that if G
is a weak PD,-group, M is a PD,-space and ng € H"(M;Z[G]) is the image
of a generator of H"(G;Z[G]) then cap product with [M,] = ng N [M] induces
isomorphisms with simple coefficients [Ba80]. We shall extend his argument
to the case of arbitrary local coefficients, using coinduced modules to transfer
arguments about subgroups and covering spaces to contexts where Poincaré
duality applies.

All tensor products N ® P in the following theorem are taken over Z.

Theorem 4.1 Let M be a PD,-space and p : m = 71 (M) — G an epimor-
phism with G a weak PD,-group, and let v = Ker(p). If C\.(M) is Z[v]-finitely
dominated then M, is a PD,,_,-space.

Proof Let C, be a finitely generated projective Z[r]-chain complex which is
chain homotopy equivalent to C'*(]\Aj ). Since C*(M ) is Z[v]-finitely dominated
there is a finitely generated projective Z[v|-chain complex E, and a pair of Z[v]-
linear chain homomorphisms 6 : E, — C,|, and ¢ : C,|, — E, such that ¢ ~
Ic, and ¢0 ~ I, . Let C? = Homg(Cy, Z[r]) and E? = Homyy,(Ey, Z[v)),

—

and let Z[r| = Homgy,(Z[r]|,, Z[v]) be the module coinduced from Z[v]. Then

—

there are isomorphisms ¥ : HY(E*) = HY(Cy;Z[n]), determined by 6 and
Shapiro’s Lemma.

The complex Z[G] @z Cx is an augmented complex of finitely generated pro-
jective Z[G]-modules with finitely generated integral homology. Therefore G
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is of type F Py [St96, Theorem 3.1]. Hence the augmentation Z[G]-module
Z has a resolution A, by finitely generated projective Z|G|-modules. Let
AY = Homgq(Ay, Z|G]) and let n € H"(A*) = H"(G;Z[G]) be a generator.
Let e¢c : Cy — A, be a chain map corresponding to the projection of p onto
G, and let ng = exn € H"(Cy; Z|G]). The augmentation A, — Z determines
a chain homotopy equivalence p: C, ® Ay —» CL ®Z = C,. Let 0 : G — 7 be
a set-theoretic section.

We may define cup-products relating the cohomology of M, and M, as follows.
Let e : Z[n]®Z[G] — Z[r] be the pairing given by e(a®g) = o(g).a(o(g)~?) for
all a : Z[r] — Z[v] and g € G. Then e is independent of the choice of section o

and is Z[r]-linear with respect to the diagonal left m-action on Z/[\W] ®Z[G]. Let
d:Cy — C,®C, be a m-equivariant diagonal, with respect to the diagonal left
m-action on C, @ Cy, and let j = (1®ecg)d : Cr — C, ® A,. Then pj = Idg,
and so j is a chain homotopy equivalence. We define the cup-product [f]Ung in
HPH(C?) = B (M3 Z[a]) by [f]Une = exd*(B([]) x16) = exi*(¥((f]) x1)
for all [f] € HP(E*) = HP(M,; Z[v]).

If C is aleft Z[r]-module let D = Homgy,)(C|,,Z[r]) have the left G-action
determined by (gA)(c) = o(g)\(o(g)~'c) for all c € C and g € G. If C is free
with basis {¢;|1 < i < n} there is an isomorphism of left Z[G]-modules © : D =
Z[x]"[1 given by ©(N)(g) = (a(9)-Ao(g) " c1),- -, 0(9)- Ao (g) en)), for all
A€ D and g € G, and so D is coinduced from a module over the trivial group.

Let DY = Homyy,(Cylv, Z[r]) and let p : E* ® Z|G] — D* be the Z-linear
cochain homomorphism defined by p(f®g)(c) = o(g) fé(o(g)~te) forall ¢ € Cy,
Ae D? fe Fl ge G and all gq. Then the G-action on D? and p are
independent of the choice of section o, and p is Z[G]-linear if E? ® Z[G] has
the left G-action given by ¢g(f ® ¢') = f ® g¢’ for all g,¢' € G and f € E1.

If X € D7 then \,(E,) is a finitely generated Z[v]|-submodule of Z[r]. Hence
there is a family of homomorphisms {f, € E9g € F'}, where F is a finite
subset of G, such that A,(e) = Xycrfy(e)o(g) for all e € E;. Let \j(e) =
o(g) L fy(¢o(g)0(e))o(g) for all e € By and g € F. Let ®(\) = Syepdy @ g €
E?1®Z|G]. Then ® is a Z-linear cochain homomorphism. Moreover [p®(\)] =
] for all [X] € HI(D*) and [®p(f )] = [f @g] for all [fg] € HI(E* RZIG]),
and so p is a chain homotopy equivalence. (It is not clear that ® is Z[G]-linear
on the cochain level, but we shall not need to know this).

We now compare the hypercohomology of G with coefficients in the cochain
complexes E* ® Z[G] and D*. On one side we have H"(G; E* @ Z[G]) =
Hyy (Homgg (Ax, E* ® Z[G])), which may be identified with Hy,(E* @ A*)
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since A, is finitely generated for all ¢ > 0. This is in turn isomorphic to
H""(E*) ® H"(G;Z|G]) = H" " (E*), since G acts trivially on E* and is a
weak PD,-group.

On the other side we have H"(G; D*) = H{y,,(Homgg)(A«, D*)). The cochain
homomorphism p induces a morphism of double complexes from E* ® A* to
Homgq(Ax, D*) by pP(f @ a)(a) = p(f ® a(a)) € DP for all f € EP, a € A
and a € A, and all p,q > 0. Let pP([f]) = [p""(f x n)] € HP*"(G; D*) for
all [f] € HP(E*). Then pP : HP(E*) — HPT"(G; D*) is an isomorphism, since
[f] = [f x n] is an isomorphism and p is a chain homotopy equivalence. Since
C) is a finitely generated projective Z[r]-module DP is a direct summand of a
coinduced module. Therefore H'(G; DP) = 0 for all i > 0, while H%(G; DP) =
Homg(Cp, Z[x]), for all p > 0. Hence H"(G; D*) = H"(C*) for all n.

Let f € EP, a € A, and ¢ € (), and suppose that n(a) = ¥ngg. Since
#F)@)(0) = p(f ©1(a))(c) = Sngo(g) fé(o(g) ) = ([f)Un)(c,a) it follows
that the homomorphisms from HP(E*) to HP*"(C*) given by cup-product with
7¢ are isomorphisms for all p.

Let [M] € Hp(M;Z") be a fundamental class for M, and let [M,] = ngN[M] €
H, .(M;Z* ® Z|G)) = H,_,(M,;Z*). Then cap product with [M,] induces
isomorphisms HP(M,; Z[v]) = H,—r—p(M,;Z[v]) for all p, since cN[M,] =
(cUng)N[M] in Hy—p—p(M;Z[r])) = Hy—p—p(My; Z]v]) = Hn,r,p(ﬂ; Z) for
c € HP(M,;Z[v]). Thus M, is a PD,,_,-space. O

Theorems 1.19” and 4.1 together give the following version of the Gottlieb-
Quinn Theorem for covering spaces.

Corollary 4.1.1 Let M be a PD,,-space and p: m = m(M) — G an epimor-
phism with G a PD,-group, and let v = Ker(p). Then M, is a PD,,_,-space
if and only if C(M)|, has finite [n/2]-skeleton.

Proof The conditions are clearly necessary. Conversely, if M,, has finite [n/2]-
skeleton then C, is Z[v]-finitely dominated, by Theorem 1.19’, and hence is a
PD,,_,-space, by Theorem 4.1. O

Corollary 4.1.2 The space M, is a PD,_,-complex if and only if it is ho-
motopy equivalent to a complex with finite [n/2]-skeleton and v is finitely
presentable. o

Corollary 4.1.3 If 7 is a PD,-group M isa PD,,_,-complex if and only if
H,(M;Z) is finitely generated for all ¢ < [n/2]. O
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Stark used [St96, Theorem 3.1] with the Gottlieb-Quinn Theorem to deduce
that if M is a PD,-complex and v.c.d.w/v < oo then 7/v is of type vFP,
and therefore is virtually a PD-group. Is there a purely algebraic argument to
show that if M is a PD,-space, v is a normal subgroup of m and C.(M) is
Z|v]-finitely dominated then 7 /v must be a weak PD-group?

4.2 Novikov rings and Ranicki’s criterion

The results of the above section apply in particular when G = Z. In this
case however we may use an alternative finiteness criterion of Ranicki to get a
slightly stronger result, which can be shown to be best possible. The results of
this section are based on joint work with Kochloukova (in [HK07]).

Let m be a group, p : m — Z an epimorphism with kernel v and ¢t € 7 an element
such that p(t) = 1. Let o : v — v be the automorphism determined by a(h) =
tht=! for all h in v. This automorphism extends to a ring automorphism (also
denoted by «) of the group ring R = Z[v], and the ring S = Z[r] may then be
viewed as a twisted Laurent extension, Z[r] = Z[v]4[t,t~!]. The Novikov ring

—

Z[r], associated to m and p is the ring of (twisted) Laurent series Yisakit!
for some a € Z, with coefficients x; in Z[v]. Multiplication of such series is
determined by conjugation in T if g € v then tg = (tgt~Y)t. If 7 is ﬁnltely

generated the Novikov rings Z[ ], are weakly finite [Ko0O6]. Let S, = Z[ I,
and S = Zlr|_,.

An a-twisted endomorphism of an R-module E is an additive function h : £ —
E such that h(re) = a(r)h(e) for all e € E and r € R, and h is an a-twisted
automorphism if it is bijective. Such an endomorphlsm h extends to a- -twisted
endomorphisms of the modules S ®g F, E+ = 5’+ ®pr E and E, =9 Qr E
by h(s®e) = tst™! @ h(e) for all e € E and s € S, Sy or S_, respectively.
In particular, left multiplication by ¢ determines a-twisted automorphisms of
S®pFE, E+ and E_ which commute with h.

If E is finitely generated then 1 — ¢t~'h is an automorphism of E_, with in-
verse given by a geometric series: (1 — t~'h)~! = S0t 7FRF. (If E is not
finitely generated this series may not give a function with values in E_, and
t —h = t(1 — t7'h) may not be surjective). Similarly, if k is an a~!-twisted
endomorphism of E then 1 —tk is an automorphism of E’+.

If P, is a chain complex with an endomorphism §: P, — P, let P,[1] be the
suspension and C(8), be the mapping cone. Thus C(8), = P,—1 & P,, and
9q(p,p') = (—0p, B(p) + 0p'), and there is a short exact sequence

0— P. = C(B)x — Pi[l] — 0.
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The connecting homomorphisms in the associated long exact sequence of ho-
mology are induced by §. The algebraic mapping torus of an a-twisted self
chain homotopy equivalence h of an R-chain complex F, is the mapping cone
C(1 —t71h) of the endomorphism 1 —¢~'h of the S-chain complex S ®p E.

Lemma 4.2 Let E, be a projective chain complex over R which is finitely
generated in degrees < ii and let h : E, — E, be an a-twisted chain homotopy
equivalence. Then Hy(S— ®5C(1 —t71h),) =0 for ¢ < d.

Proof There is a short exact sequence
0= S®prE,—C(1—2"'h), = S®pE.[l] —0.
Since F, is a complex of projective R-modules the sequence
0= B, — 8 ®sC1—t""h), — E,_[1] >0
obtained by extending coefficients is exact. Since 1—t~1'h induces isomorphisms
on E,_ for ¢ < d it induces isomorphisms on homology in degrees < d and an

epimorphism on homology in degree d. Therefore Hq(§_ ®sC(1—t"th),) =0
for g < d, by the long exact sequence of homology. a

The next theorem is our refinement of Ranicki’s finiteness criterion [HKO07].

Theorem 4.3 Let C, be a finitely generated projective S-chain complex.
Then i'C, has finite d-skeleton if and only if Hq(Si ®s Cy) =0 for ¢ < d.

Proof We may assume without loss of generality that Cj is a finitely generated
free S-module for all ¢ < d+ 1, with basis X; = {cgi}icr(q)- We may also
assume that 0 ¢ 0;(X;) for i < d+ 1, where 0; : C; — C;_; is the differential
of the complex. Let hy be the a®!-twisted automorphisms of i'C, induced by
multiplication by 2l in C,. Let

fo(ZFregs) = (0,28 @ regy) € (SR Cu) ® (S @R Cy).
Then f, defines S-chain homotopy equivalences from C, to each of C(1—z"1h)
and C(1 — zh_).

Suppose first that k, : i'C, — E, and g« By — i'C, are chain homotopy equiv-
alences, where F, is a projective R-chain complex which is finitely generated
in degrees < d. Then 64 = k,hig, are a®!-twisted self homotopy equiva-
lences of E,, and C(1—2z"'h,) and C(1 — zh_) are chain homotopy equivalent
to C(1 — z70;) and C(1 — 26_), respectively. Therefore Hq(g_ ®s Cy) =
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Hy(S_ ©5C(1—2710,)) =0 and Hy(Sy ©5Cy) = Hy(S, ®5C(1—260_)) =0
for ¢ < d, by Lemma 5, applied twice.
Conversely, suppose that Hl(gi ®sCy) =0 for all i < k. Adapting an idea from

[BR8S8], we shall define inductively a support function suppx for A € U;<q11C;
with values finite subsets of {27};ez so that

(1) suppx(0) =0;

(2) if x € Xo then suppx(27x) = 27;

(3) if z € X; for 1 <i<d+1 then suppx(2’x) = 27.suppx (0;(x));

(4) ifs=3; rjzl € S, where r; € R, suppx (sz) = Uy, zosuppx (27 2);

(5) fo<i<d+land A=} g, cx, So@ then

suppx (A) = Us, £0,0e X, SUPPX (S2.%).

Then suppx (0;(\)) C suppx(A) for all A € C; and all 1 < i < d+ 1. Since
X = Uj<q+1X; is finite there is a positive integer b such that

Usex, icdar1suppx () € {2/} bejch.

Define two subcomplexes C* and C~ of C which are 0 in degrees i > d + 2 as
follows:

(1) if i < d+1 an element A € C; is in CV if and only if suppx(\) C
{#7}j>-p; and

(2) ifi<d+1anelement A € C; isin C~ ifand only if suppx (\) C {27} ;<.
Then Ujcgp1 X; C (CHH 0 (¢4 and so (1)l U (0-)ld+1] = ¢ld+1]
where the upper index % denotes the %-skeleton. Moreover (CH)d+1 s a
complex of free finitely generated Rg[z]-modules, (C7)[4+1 is a complex of
free finitely generated Rq[z~']-modules, (CH)4H1 0 (C~)l4+1 is a complex of
free finitely generated R-modules and

C[d+1] =S ®Ra[z] (C+)[d+1] =5 ®Ra[z*1] (0_)[d+1]'
Furthermore there is a Mayer-Vietoris exact sequence
0 — (CHl+ A (cHldH o (oh)ld+l g (om)ld+Ht o old+) g,

Thus the (d+ 1)-skeletons of C', C* and C~ satisfy “algebraic transversality”
in the sense of [Rn95]. To prove the theorem it suffices to show that C* and
C~ are each chain homotopy equivalent over R to a complex of projective R-
modules which is finitely generated in degrees < d. As in [Rn95] there is an
exact sequence of R,[z~!]-module chain complexes

0 — (CT)H] 5 Ol g R, [[27Y] @, o1y (CT)EY 5 ogCletl g,
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Let 7 denot the inclusion of (C~)*+1 into the central term. Inclusions on each
component define a chain homomorphism

j (eI n e () g Ral[71] @, o1y (C7)

such that the mapping cones of 7 and j are chain equivalent R-module chain
complexes. The map induced by ¢ in homology is an epimorphism in degree d
and an isomorphism in degree < d, since Hy(S_ ®g Cl4+t1) =0 for i < d. In
particular all homologies in degrees < d of the mapping cone of i are 0. Hence
all homologies of the mapping cone of j are 0 in degrees < d. Then (C’*)[d“]
is homotopy equivalent over R to a chain complex of projectives over R whose
k-skeleton is a summand of (CT) N (C~)l¥. This completes the proof. O

The argument for the converse is entirely due to Kochloukova.

As an application we shall give a quick proof of Kochloukova’s improvement of
Corollary 2.5.1.

Corollary 4.3.1 [Ko06] Let 7 be a finitely presentable group with a finitely
generated normal subgroup N such that w/N = Z. Then def(m) = 1 if and
only if N is free.

Proof Let X be the finite 2-complex corresponding to an optimal presentation
of w. If def(G) = 1 then x(X) = 0 and X is aspherical, by Theorem 2.5. Hence
C, = C.(X) is a finite free resolution of the augmentation module Z. Let A
be the two Novikov rings corresponding to the two epimorphisms £p : 7 — Z
with kernel N. Then H;(A4 ®gz-Cx) = 0 for j < 1, by Theorem 4.3. But then
Hy(Ax @z Cy) is stably free, by Lemma 3.1. Since x(A+ ®z(r Cx) = x(Cx) =
X(X) = 0 and the rings A4 are weakly finite [Ko06] these modules are 0. Thus
Hj(As ®zjx Ck) = 0 for all j, and so C.l, is chain homotopy equivalent to a
finite projective Z[v]-complex [Rn95, Theorem 2]. In particular, N is F'P, and
hence is free [Bi, Corollary 8.6].

The converse is clear. O

4.3 Infinite cyclic covers

The mapping torus of a self homotopy equivalence f : X — X is the space
M(f) = X x [0,1]/ ~, where (z,0) ~ (f(x),1) for all z € X. The function
p([x,t]) = ™ defines a map p: M(f) — S! with homotopy fibre X, and the
induced homomorphism p, : 7 (M (f)) — Z is an epimorphism if X is path-
connected. Conversely, let E be a connected cell complex and let f: E — St
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4.3 Infinite cyclic covers 77

be a map which induces an epimorphism f, : 1 (E) — Z, with kernel v. Then
E, = Exg R ={(r,y) € ExR| f(x) = e¥¥}, and E ~ M(¢), where
¢ : B, — E, is the generator of the covering group given by ¢(z,y) = (z,y+1)
for all (z,y) in E,.

Theorem 4.4 Let M be a finite PD,,-space with fundamental group m and
let p: m — Z be an epimorphism with kernel v. Then M, is a PD,,1-space if
and only if x(M) =0 and C.(M,) = C.(M)|, has finite [(n — 1)/2]-skeleton.
Proof If M, isa PD,_;-space then C\(M,) is Z[v]-finitely dominated [Br72].
In particular, H,(M;A) = H.(M,;Z) is finitely generated. The augmentation
A-module Z has a short free resolution 0 - A - A — Z — 0, and it follows
easily from the exact sequence of homology for this coefficient sequence that
X(M) =0 [Mi68]. Thus the conditions are necessary.

Suppose that they hold. Let Ay be the two Novikov rings corresponding to
the two epimorphisms +p : 7 — Z with kernel v. Then H;(A+ ®z(x Cx) =0
for j < [(n —1)/2], by Theorem 4.3. Hence H;(At+ ®gzj5 Cx) = 0 for j >
n—[(n—1)/2], by duality. If n is even there is one possible nonzero module, in
degree m = n/2. But then H,,(A+ ®z(; Cs) is stably free, by the finiteness of
M and Lemma 3.1. Since x(A+ ®zr Cx) = x(Cx) = x(M) = 0 and the rings
A are weakly finite [Ko06] these modules are 0. Thus H;(A+ ®z(x Cx) = 0
for all j, and so C|, is chain homotopy equivalent to a finite projective Z[v]-
complex, by Theorem 4.4. Thus the result follows from Theorem 4.1. O

When n is odd [n/2] = [(n — 1)/2], so the finiteness condition on M, agrees
with that of Corollary 4.1.1 (for G = Z), but it is slightly weaker if n is even.
Examples constructed by elementary surgery on simple n-knots show that the
FPy,—1)/2) condition is best possible, even when 7 = 7Z and v = 1.

Corollary 4.4.1 Under the same hypotheses on M and 7, if n # 4 then M,
is a PD,,_1-complex if and only if it is homotopy equivalent to a complex with
finite [(n — 1)/2]-skeleton.

Proof If n <3 every PD,,_1-space is a PD,_1-complex, while if n > 5 then
[(n—1)/2] > 2 and so v is finitely presentable. O

If n < 3 we need only assume that M is a PD,-space and v is finitely generated.

It remains an open question whether every P Ds-space is finitely dominated.
The arguments of [Tu90] and [Cr00] on the factorization of PD3z-complexes
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into connected sums are essentially homological, and so every P Ds-space is a
connected sum of aspherical PDs-spaces and a PDs-complex with virtually
free fundamental group. Thus the question of whether every PDs-space is
finitely dominated reduces to whether every PDs-group is finitely presentable.

4.4 The case n =14

If M(f) is the mapping torus of a self homotopy equivalence of a P Ds-space
then x(M) =0 and 7 (M) is an extension of Z by a finitely generated normal
subgroup. These conditions characterize such mapping tori, by Theorem 4.4.
We shall summarize various related results in the following theorem.

Theorem 4.5 Let M be a finite PDy-space whose fundamental group m is
an extension of Z by a finitely generated normal subgroup v. Then

(1) x(M) > 0, with equality if and only if Ho(M,;Q) is finitely generated;
(2) x(M) =0 if and only if M, is a PDs-space;

(3) if x(M) =0 then M is aspherical if and only if v is a PDs-group if and
only if v has one end;

(4) if M is aspherical then x(M) = 0 if and only if v is a PDs-group if and
only if v is FPs.

Proof Since C,(M) is finitely dominated and QA = Q[t,t!] is noetherian
the homology groups Hy(M,;Q) are finitely generated as QA-modules. Since
v is finitely generated they are finite dimensional as Q-vector spaces if g < 2,
and hence also if ¢ > 2, by Poincaré duality. Now Hy(M,;Q) = Q" @ (QA)®
for some r,s > 0, by the Structure Theorem for modules over a PID. It follows
easily from the Wang sequence for the covering projection from M, to M, that
X(M)=s2>0.

The space M, is a PDs-space if and only if x(M) = 0, by Theorem 4.4.

Since M is aspherical if and only if M, is aspherical, (3) follows from (2) and
the facts that PDj3-groups have one end and a PDs-space is aspherical if and
only if its fundamental group has one end.

If M is aspherical and x(M) = 0 then v is a PD3-group. If v is a PDs-group
itis F'P. If M is aspherical and v is F'P, then v is a PDj3-group, by Theorem
1.19 (or Theorem 4.4), and so x(M) = 0. O
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In particular, if x(M) = 0 then ¢g(7) = 0. This observation and the bound
X(M) > 0 were given in Theorem 3.17. (They also follow on counting bases for
the cellular chain complex of M, and extending coefficients to Q(¢).)

If x(M) =0 and v is finitely presentable then M, is a PDs-complex. However
M, need not be homotopy equivalent to a finite complex. If M is a simple PD4-
complex and a generator of Aut(M, /M) = w/v has finite order in the group of
self homotopy equivalences of M, then M is finitely covered by a simple PDy-
complex homotopy equivalent to M, x S'. In this case M, must be homotopy
finite [Rn86].

If 1= v xZisa PDy-group with v finitely generated then x(7) = 0 if and
only if v is F'P,, by Theorem 4.5. However the latter conditions need not hold.
Let F' be the orientable surface of genus 2. Then G = 71(F') has a presentation
(a1,ag,b1,bs | [a1,b1] = [a2,b2]). The group m = G x G is a PDy4-group, and
the subgroup v < 7 generated by the images of (a1,a;) and the six elements
(z,1) and (1,z), for x = ag, by or be, is normal in 7, with quotient 7 /v = Z.
However x(7) =4 # 0 and so v cannot be F'P,.

It can be shown that the finitely generated subgroup N of F(2) x F(2) defined
after Theorem 2.4 has one end. However H?(F(2) x F(2); Z[F(2) x F(2)]) # 0.
(Note that ¢(F(2) x F(2)) =2, by Corollary 3.12.2.)

Corollary 4.5.1 Let M be a finite PDy-space with x(M) = 0 and whose
fundamental group 7 is an extension of Z by a normal subgroup v. If m has an
infinite cyclic normal subgroup C which is not contained in v then the covering
space M, with fundamental group v is a PDs-complex.

Proof We may assume without loss of generality that M is orientable and
that C is central in 7. Since 7/v is torsion-free CNyr =1, and so Cv = C x v
has finite index in w. Thus by passing to a finite cover we may assume that
m = C X v. Hence v is finitely presentable and so Theorem 4.5 applies. O

Since v has one or two ends if it has an infinite cyclic normal subgroup, Corol-
lary 4.5.1 remains true if C < v and v is finitely presentable. In this case v is
the fundamental group of a Seifert fibred 3-manifold, by Theorem 2.14.

Corollary 4.5.2 Let M be a finite PDy-space with x(M) = 0 and whose
fundamental group m is an extension of Z by a finitely generated normal sub-
group v. If v is finite then it has cohomological period dividing 4. If v has
one end then M is aspherical and so © is a PDy-group. If v has two ends then
v=7Z,7®(Z/2Z) or D. If moreover v is finitely presentable the covering
space M, with fundamental group v is a PDs-complex.

Geometry & Topology Monographs, Volume 5 (2002)
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Proof The final hypothesis is only needed if v is one-ended, as finite groups
and groups with two ends are finitely presentable. If v is finite then M ~ S3
and so the first assertion holds. (See Chapter 11 for more details.) If v has one
end we may use Theorem 4.5. If v has two ends and its maximal finite normal
subgroup is nontrivial then v = Z & (Z/2Z), by Theorem 2.11 ( applied to the
PDs3-complex M,). Otherwise v =2 Z or D. O

In Chapter 6 we shall strengthen this Corollary to obtain a fibration theorem
for 4-manifolds with torsion-free elementary amenable fundamental group.

Corollary 4.5.3 Let M be a finite PDy-space with x(M) = 0 and whose
fundamental group 7 is an extension of Z by a normal subgroup v = F(r).
Then M is homotopy equivalent to a closed PL 4-manifold which fibres over
the circle, with fibre #"S' x S? if wi(M)|, is trivial, and " S'xS? otherwise.
The bundle is determined by the homotopy type of M .

Proof Since M, is a PDs-complex with free fundamental group it is homotopy
equivalent to N = 7St x S2 if wy(M)|, is trivial and to #7S1xS? otherwise.
Every self homotopy equivalence of a connected sum of S%-bundles over S! is
homotopic to a self-homeomorphism, and homotopy implies isotopy for such
manifolds [La]. Thus M is homotopy equivalent to such a fibred 4-manifold,
and the bundle is determined by the homotopy type of M. a

The homotopy types of such mapping tori are determined by 7, w1 (M) and the
orbit of wa(M) under the action of Out(w). It is easy to see that Homeo(V)
maps onto Out(F(r), and all such triples (7, w;,w2) are realized [Hi20].

Corollary 4.5.4 Let M be a finite PDys-space with x(M) = 0 and whose
fundamental group 7 is an extension of Z by a torsion-free normal subgroup v
which is the fundamental group of a closed 3-manifold N. Then M is homotopy
equivalent to the mapping torus of a self homeomorphism of N .

Proof There is a homotopy equivalence f : N — M,, by Turaev’s Theorem.
(See §5 of Chapter 2.) The indecomposable factors of N are either Haken, hy-
perbolic or Seifert fibred 3-manifolds, by the Geometrization Conjecture (see
[B-P]). Let t : M, — M, be the generator of the covering transformations.
Then there is a self homotopy equivalence v : N — N such that fu ~tf. As
each aspherical factor of N has the property that self homotopy equivalences
are homotopic to PL homeomorphisms (by [Hm|, Mostow rigidity or [Sc83]),
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and a similar result holds for #"(S! x S2) (by [La]), u is homotopic to a home-
omorphism [HL74], and so M is homotopy equivalent to the mapping torus of
this homeomorphism. a

The hypothesis that M be finite is redundant in each of the last two corollaries,
since Ko(Z[r]) = 0. (See Theorem 6.3.) All known PDs-complexes with
torsion-free fundamental group are homotopy equivalent to 3-manifolds.

If the irreducible connected summands of the closed 3-manifold N = #;N; are
P?-irreducible and sufficiently large or have fundamental group Z then every
self homotopy equivalence of IV is realized by an unique isotopy class of home-
omorphisms [HL74]. However if N is not aspherical then it admits nontrivial
self-homeomorphisms (“rotations about 2-spheres”) which induce the identity
on v, and so such bundles are not determined by the group alone.

Let f: M — E be a homotopy equivalence, where F is a finite PD4-complex
with yx(E) = 0 and fundamental group 7 = v x Z, where v is finitely pre-
sentable. Then w1 (M) = f*wi(E) and cp, f.[M] = +cp,[E] in Hy(m; Z21F).
Conversely, if x(M) = 0 and there is an isomorphism 6 : 71 (M) = 7 such that
wi (M) = 0fw and 6y.cpr[M] = cgi[E] then E, and M, are PDs-complexes,
by Theorem 4.5. A Wang sequence argument as in the next theorem shows
that the fundamental triples of F, and M, are isomorphic, and so they are
homotopy equivalent, by Hendrik’s Theorem. What additional conditions are
needed to determine the homotopy type of such mapping tori? Our next result
is a partial step in this direction.

Theorem 4.6 Let E be a finite PD4-complex with x(E) = 0 and whose
fundamental group 7 is an extension of Z by a finitely presentable normal sub-
group v which is not virtually free. Let Il = H?(w;Z|n]). A PDy-complex M
is homotopy equivalent to E if and only if x(M) = 0, there is an isomorphism
6 from (M) to 7 such that wi(M) = w1 (E)0, 6* k(M) and ki(E) gener-
ate the same subgroup of H?(m;II) under the action of Out(m) X Autz(II),
and there is a lift ¢ : M — P»(E) of Ocpr such that ¢é.[M] = +fg.[FE] in
Hy(Py(E); 2 (P))

Proof The conditions are clearly necessary. Suppose that they hold. The in-
finite cyclic covering spaces N = E,, and M, are PDs-complexes, by Theorem
4.5, and m(E) = II and me(M) = 6*II, by Theorem 3.4. The maps ¢y and
cp induce a homomorphism between the Wang sequence for the fibration of
E over S' and the corresponding Wang sequence for K(m,1). Since v is not
virtually free Hs(cn;Z%* ) is a monomorphism. Hence Hy(cg;Z**¥)) and «a
fortiori Hy(fg; Z“’l(E)) are monomorphisms, and so Theorem 3.8 applies. O
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As observed in the first paragraph of §9 of Chapter 2, the conditions on 6 and
the k-invariants also imply that M, ~ E,,.

The original version of this book gave an exposition of the extension of Barge’s
argument to local coefficients for the case when G = Z, instead of the present
Theorem 4.1, and used this together with an L?-argument, instead of the
present Theorem 4.3, to establish the results corresponding to Theorem 4.5
for the case when v was FP5.

4.5 Products

If M = N x S', where N is a closed 3-manifold, then x(M) = 0, Z is a
direct factor of 71 (M), w1 (M) is trivial on this factor and the Pin~-condition
wy = w? holds. These conditions almost characterize such products up to
homotopy equivalence. We need also a constraint on the other direct factor of
the fundamental group.

Theorem 4.7 Let M be a finite PD4-complex whose fundamental group m
has no 2-torsion. Then M is homotopy equivalent to a product N x S, where
N is a closed 3-manifold, if and only if x(M) = 0, wa(M) = w(M)? and
there is an isomorphism 6 :  — v x Z such that wy(M)0~ Y|z = 0, where v is
a (2-torsion-free) 3-manifold group.

Proof The conditions are clearly necessary, since the Pin~-condition holds
for 3-manifolds.

If these conditions hold then the covering space M, with fundamental group v
is a PDj3-complex, by Theorem 4.5 above. Since v is a 3-manifold group and
has no 2-torsion it is a free product of cyclic groups and groups of aspherical
closed 3-manifolds. Hence there is a homotopy equivalence h : M, — N,
where N is a connected sum of lens spaces and aspherical closed 3-manifolds,
by Turaev’s Theorem. (See §5 of Chapter 2.) Let ¢ generate the covering
group Aut(M/M,) = Z. Then there is a self homotopy equivalence ¢ : N — N
such that ©¥h ~ h¢, and M is homotopy equivalent to the mapping torus
M(v). We may assume that v fixes a basepoint and induces the identity on
m1(N), since w1 (M) = v x Z. Moreover 1 preserves the local orientation, since
w1 (M)0~ 1tz = 0. Since v has no element of order 2 there are no two-sided
projective planes in N, and so % is homotopic to a rotation about a 2-sphere
[Hn]. Since wo(M) = wq(M)? the rotation is homotopic to the identity and so
M is homotopy equivalent to N x S*. O
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Let p be an essential map from S to SO(3), and let M = M(7), where
7: 5% x St — 5% x S is the twist map, given by 7(z,y) = (p(y)(z),y) for
all (x,y) in S2 x S'. Then m (M) =2 Z x Z, x(M) = 0, and w;(M) = 0,
but we(M) # wi(M)? = 0, so M is not homotopy equivalent to a product.
(Clearly however M (72) = S% x S! x St.)

To what extent are the constraints on v necessary? There are orientable 4-
manifolds which are homotopy equivalent to products N x S where v = 71 ()
is finite and is not a 3-manifold group. (See Chapter 11.) Theorem 4.1 implies
that M is homotopy equivalent to a product of an aspherical PDs-complex
with S! if and only if x(M) =0 and 71(M) = v x Z where v has one end.

There are 4-manifolds which are simple homotopy equivalent to S* x RP3 (and
thus satisfy the hypotheses of our theorem) but which are not homeomorphic
to mapping tori [We87].

4.6 Ascendant subgroups

In this brief section we shall give another characterization of aspherical PDy-
complexes with finite covering spaces which are homotopy equivalent to map-
ping tori.

Theorem 4.8 Let M be a PDy-complex. Then M is aspherical and has a
finite cover which is homotopy equivalent to a mapping torus if and only if
X(M) =0 and m = 7w (M) has an ascendant F P3 subgroup G of infinite index
and such that H*(G;Z[G]) = 0 for s < 2. In that case G is a PDs-group,
[ : Nz(G)] < 00 and e(N;(G)/G) = 2.

Proof The conditions are clearly necessary. Suppose that they hold and
that G = Gog < G1 < -+ < G3 = 7 is an ascendant sequence. Let v =
min{«a | [G4 : G] = oo}. Transfinite induction using the LHSSS with coefficients
Z|r] and Theorem 1.15 shows that H*(m; Z[r]) = 0 for s < 2. If + is finite then

52) (G,) = 0, since it has a finitely generated normal subgroup of infinite index
[Ga00]. Otherwise v is the first infinite ordinal, and [G41 : G;] < oo for all
j < ~y. In this case 6%2)(67’”) = ﬂ@(G)/[Gn : G| and so limy, s B%Q)(Gn) = 0.
It then follows from [Lii, Theorems 6.13 and 6.54(7)] that Biz)(Gv) =0. In
either case it then follows that B%Q)(GQ) = 0 for all v < a < 3, by Theorem
2.3 (which is part of [Lii, Theorem 7.2]). Hence M is aspherical, by Theorem
3.5.
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On the other hand H*(G,; W) = 0 for s < 3 and any free Z[G,]|-module W,
so c.d.Gy = 4. Hence |7 : G,] < 00, by Strebel’s Theorem. Therefore G is a
PDy-group. In particular, it is finitely generated and so v < oco. If y=p5+1
then [Gs : G] < oo. It follows easily that [1 : N;(G)] < co. Hence G is a
PDs-group and N (G)/G has two ends, by Theorem 3.10. O

The hypotheses on G could be replaced by “G is a PDs-group”, for then
[r: G] = 0o, by Theorem 3.12.

Theorem 5.8 below gives an analogue for PDy-complexes M such that x(M) =
0 and 71 (M) has an ascendant subgroup of infinite index which is a P Ds-group.

4.7 Circle bundles

In this section we shall consider the “dual” situation, of PD4-complexes which
are homotopy equivalent to the total space of a S'-bundle over a 3-dimensional
base N. Lemma 4.9 presents a number of conditions satisfied by such spaces.
(These conditions are not all independent.) Bundles ¢3¢ induced from Sl-
bundles over K (71(N), 1) are given equivalent characterizations in Lemma 4.10.
In Theorem 4.11 we shall show that the conditions of Lemmas 4.9 and 4.10
characterize the homotopy types of such bundle spaces E(c}€), provided 71 (V)
is torsion-free but not free.

Since BS! ~ K(7Z,2) any S!'-bundle over a connected base B is induced from
some bundle over P5(B). For each epimorphism v :  — v with cyclic kernel
and such that the action of u by conjugation on Ker(v) factors through multi-
plication by +1 there is an S*-bundle p(v) : X () — Y (y) whose fundamental
group sequence realizes 7 and which is universal for such bundles; the total
space E(p(vy)) is a K(u,1) space. (See [W1, Proposition 11.4]).

Lemma 4.9 Let p : E — B be the projection of an S'-bundle ¢ over a
connected cell complex B. Then

(1) x(E) =0;

(2) the natural map ps : m = m(E) — v = m(B) is an epimorphism with
cyclic kernel, and the action of v on Ker(p.) induced by conjugation in
7 is given by w = w1 (&) : m(B) — {£1} < Aut(Ker(ps));

(3) if B is a PD-complex wi(E) = p*(w1(B) + w);

(4) if B is a PDs-complex there are maps ¢ : E — Py(B) and
y : Po(B) — Y(ps) such that cp,gy = cy(p.)y, y¢ = p(p«)cg and
(¢,cp)«|E] = £G(fp«[B]), where G is the Gysin homomorphism from
Hs3(Py(B); Z¥1(B)) to Hy(Py(E); Z41(E));
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(5) If B is a PDs-complex cg.|E] = +G(cp«[B]), where G is the Gysin
homomorphism from Hg(u;Zwl(B)) to H4(7r;Zw1(E));

(6) Ker(p«) acts trivially on mo(E).

Proof Condition (1) follows from the multiplicativity of the Euler charac-
teristic in a fibration. If « is any loop in B the total space of the induced
bundle a*¢ is the torus if w(a) =1 and the Klein bottle if w(«) = —1; hence
gzg~' = 229 for g in m(F) and z in Ker(p,). Conditions (2) and (6)
then follow from the exact homotopy sequence. If the base B is a PD-complex
then so is E, and we may use naturality and the Whitney sum formula (ap-
plied to the Spivak normal bundles) to show that w;(E) = p*(w1(B) + w1 (§)).
(As p* : H'(B;Fs) — H'(E;F3) is a monomorphism this equation determines
w1(§).)

Condition (4) implies (5), and follows from the observations in the paragraph
preceding the lemma. (Note that the Gysin homomorphisms G in (4) and (5)
are well defined, since Hy(Ker(7y); Z*(#)) is isomorphic to Z*(5) by (3).) O

Bundles with Ker(p,) = Z have the following equivalent characterizations.

Lemma 4.10 Let p : E — B be the projection of an S'-bundle ¢ over a
connected cell complex B. Then the following conditions are equivalent:

(1) ¢ is induced from an S'-bundle over K(m1(B),1) via cp;
(2) for each map B : S?> — B the induced bundle B*¢ is trivial;
(3) the induced epimorphism p, : m1(E) — m1(B) has infinite cyclic kernel.

If these conditions hold then c¢(§) = c¢=, where ¢(§) is the characteristic class
of & in H*(B; Z") and Z is the class of the extension of fundamental groups
in H?(m(B);Z%) = H*(K (m1(B),1); Z?), where w = w1 (£).

Proof Condition (1) implies condition (2) as for any such map S the com-
posite c¢g3 is nullhomotopic. Conversely, as we may construct K (m(B),1) by
adjoining cells of dimension > 3 to B condition (2) implies that we may extend
¢ over the 3-cells, and as S'-bundles over S™ are trivial for all n > 2 we may
then extend & over the whole of K (m(B), 1), so that (2) implies (1). The equiv-
alence of (2) and (3) follows on observing that (3) holds if and only if 98 =0
for all such 3, where 9 is the connecting map from mo(B) to 71(S!) in the ex-
act sequence of homotopy for £, and on comparing this with the corresponding
sequence for B*E.
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As the natural map from the set of S'-bundles over K (m,1) with w; = w (which
are classified by H?(K(m,1);Z")) to the set of extensions of 7 by Z with 7
acting via w (which are classified by H?(7;Z")) which sends a bundle to the
extension of fundamental groups is an isomorphism we have ¢(§) = c(2). O

If N is a closed 3-manifold which has no summands of type S' x §% or S'x5?
(i.e., if m1(N) has no infinite cyclic free factor) then every S'-bundle over N
with w = 0 restricts to a trivial bundle over any map from S? to N. For if ¢ is
such a bundle, with characteristic class ¢(x) in H*(N;Z), and 8 : S? — N is
any map then 8. (c(8°€) 1 [S%]) = B.(5%c(€) N [S%]) = ¢(€) N A[5%] = 0, as the
Hurewicz homomorphism is trivial for such N. Since S, is an isomorphism in
degree 0 it follows that ¢(5*¢) = 0 and so B*¢ is trivial. (A similar argument
applies for bundles with w # 0, provided the induced 2-fold covering space Nv
has no summands of type S x S? or S1xS2.)

On the other hand, if 1 is the Hopf fibration the bundle with total space S'xS3,
base S x S? and projection idg1 x  has nontrivial pullback over any essential
map from S? to S' x S?, and is not induced from any bundle over K(Z,1).
Moreover, S' x S? is a 2-fold covering space of RP34RP3, and so the above
hypothesis on summands of N is not stable under passage to 2-fold coverings
(corresponding to a homomorphism w from 1 (N) to Z/27).

Theorem 4.11 Let M be a PD4-complex and N a PDs-complex whose
fundamental group is torsion-free but not free. Then M is homotopy equivalent
to the total space of an S'-bundle over N which satisfies the conditions of
Lemma 4.10 if and only if

(1) x(M) =0;

(2) there is an epimorphism 7 : ™ = m (M) — v = m(N) with Ker(y) = Z;

(3) wi(M) = (wi(N) + w)y, where w : v — Aut(Ker(y)) is determined by
the action of v on Ker(v) induced by conjugation in ;

(4) ki(M)=v"k1(N) (and so Po(M) =~ Py(N) X1y K(7,1));

(5)  fare[M] = £G(fn«[N]) in Hy(Py(M);Z¥* M) where G is the Gysin
homomorphism in degree 3.

If these conditions hold then M has minimal Euler characteristic for its funda-
mental group, i.e., q(w) = 0.

Remark The first three conditions and Poincaré duality imply that 7o (M) =
v*ma(N), the Z[r]-module with the same underlying group as m2(/N) and with
Z[r]-action determined by the homomorphism -.
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Proof Since these conditions are homotopy invariant and hold if M is the
total space of such a bundle, they are necessary. Suppose conversely that they
hold. As v is torsion-free N is the connected sum of a 3-manifold with free
fundamental group and some aspherical PD3s-complexes [Tu90]. As v is not free
there is at least one aspherical summand. Hence c.d.v = 3 and Hz(cy;Z** (V)
is a monomorphism.

Let p(v) : K(m,1) — K(v,1) be the S'-bundle corresponding to v and let
E = N X1y K(m,1) be the total space of the S1-bundle over N induced by
the classifying map ¢y : N — K(v,1). The bundle map covering cy is the
classifying map cp. Then m(F) 2 7 = m (M), wi(E) = (w1(N) + w)y =
w1(M), and x(F) =0 = x(M), by conditions (1) and (3). The maps cy and
cg induce a homomorphism between the Gysin sequences of the S'-bundles.
Since N and v have cohomological dimension 3 the Gysin homomorphisms in
degree 3 are isomorphisms. Hence Hy(cg;Z"'F)) is a monomorphism, and so
a fortiori Hy(fr; Z**(P)) is also a monomorphism.

Since x(M) = 0 and B?) (r) = 0, by Theorem 2.3, part (3) of Theorem 3.4
implies that mo(M) = H?(m; Z[r]). It follows from conditions (2) and (3) and
the LHSSS that mo(M) = mo(E) = v*me(N) as Z[r]-modules. Conditions (4)
and (5) then give us a map (¢, cpr) from M to Po(E) = Po(N) X g1y K(m, 1)
such that (¢, car)«[M] = £ fp«[F]. Hence M is homotopy equivalent to E, by
Theorem 3.8.

The final assertion now follows from part (1) of Theorem 3.4. O

As mo(N) is a projective Z[v]-module, by Theorem 2.18, it is homologically
trivial and so Hy(m;y*me(N) @ Z"1 M) = 0 if ¢ > 2. Hence it follows
from the spectral sequence for cp,(ys) that Hy(Py(M); v (M) maps onto
Hy(m; Z#7M)) | with kernel isomorphic to Ho(m;T'(m2(M))) @ Z*(M)) | where
[(ma(M)) = Hy(K (m2(M),2);Z) is Whitehead’s universal quadratic construc-
tion on ma(M). (See [Ba’, Chapter I].) This suggests that there may be another
formulation of the theorem in terms of conditions (1-3), together with some in-
formation on ki (M) and the intersection pairing on mo(M). If N is aspherical
conditions (4) and (5) are vacuous or redundant.

Condition (4) is vacuous if v is a free group, for then c.d.m < 2. In this
case the Hurewicz homomorphism from m3(N) to Hs(N;Z**(N)) is 0, and so
Hs(fn; 2% ™)) is a monomorphism. The argument of the theorem would then
extend if the Gysin map in degree 3 for the bundle P;(FE) — P»(N) were a
monomorphism. If v = 1 then M is orientable, 7 = Z and x(M) = 0, so
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M ~ S3 x S'. In general, if the restriction on v is removed it is not clear that
there should be a degree 1 map from M to such a bundle space E.

It would be of interest to have a theorem with hypotheses involving only M,
without reference to a model IN. There is such a result in the aspherical case.

Theorem 4.12 A finite PDy-complex M is homotopy equivalent to the total
space of an S'-bundle over an aspherical PDs-complex if and only if x(M) = 0
and m = w1 (M) has an infinite cyclic normal subgroup A such that w/A has
one end and finite cohomological dimension.

Proof The conditions are clearly necessary. Conversely, suppose that they
hold. Since 7/A has one end H*(w/A;Zr/A]) =0 for s < 1, and so an LHSSS
calculation gives H'(m;Z[r]) = 0 for ¢ < 2. Moreover B%Z) (m) = 0, by Theorem
2.3. Hence M is aspherical and 7 is a PD4-group, by Corollary 3.5.2. Since
A is FPy and c.d.m/A < oo the quotient 7/A is a PDs-group [Bi, Theorem
9.11]. Therefore M is homotopy equivalent to the total space of an S*-bundle
over the PDs-complex K(mw/A,1). O

Note that a finitely generated torsion-free group has one end if and only if it is
indecomposable as a free product and is neither infinite cyclic nor trivial.

In general, if M is homotopy equivalent to the total space of an S!'-bundle
over some 3-manifold then x(M) =0 and 7; (M) has an infinite cyclic normal
subgroup A such that m(M)/A is virtually of finite cohomological dimension.
Do these conditions characterize such homotopy types?
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Chapter 5

Surface bundles

In this chapter we shall show that a closed 4-manifold M is homotopy equiv-
alent to the total space of a fibre bundle with base and fibre closed surfaces if
and only if the obviously necessary conditions on the Euler characteristic and
fundamental group hold. When the base is S? we need also conditions on the
characteristic classes of M, and when the base is RP? our results are incom-
plete. We shall defer consideration of bundles over RP? with fibre T or Kb
and 0 # 0 to Chapter 11, and those with fibre S? or RP? to Chapter 12.

5.1 Some general results

If B, E and F are connected finite complexes and p : £ — B is a Hurewicz
fibration with fibre homotopy equivalent to F' then x(E) = x(B)x(F') and the
long exact sequence of homotopy gives an exact sequence

7T2(B) — 7T1(F) — 7T1(E) — 7T1(B) — 1

in which the image of mo(B) under the connecting homomorphism 0 is in the
centre of 71 (F). (See [Go68, page 51].) These conditions are clearly homotopy
invariant.

Hurewicz fibrations with base B and fibre X are classified by homotopy classes
of maps from B to the Milgram classifying space BE(X), where E(X) is the
monoid of all self homotopy equivalences of X, with the compact-open topology
[Mi67]. If X has been given a base point the evaluation map from E(X) to
X is a Hurewicz fibration with fibre the subspace (and submonoid) Ey(X) of
base point preserving self homotopy equivalences [Go68].

Let T and Kb denote the torus and Klein bottle, respectively.

Lemma 5.1 Let ' be an aspherical closed surface and B a closed smooth
manifold. There are natural bijections from the set of isomorphism classes of
smooth F'-bundles over B to the set of fibre homotopy equivalence classes of
Hurewicz fibrations with fibre F' over B and to the set ][ H?(B;(m (F)%),
where the union is over conjugacy classes of homomorphisms £ : m(B) —
Out(m1(F)) and ¢mi(F)¢ is the Z[m (F)]-module determined by &.
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90 Chapter 5: Surface bundles

Proof If (mi(F) = 1 the identity components of Diff(F) and E(F) are
contractible [EE69]. Now every automorphism of m;(F) is realizable by a dif-
feomorphism and homotopy implies isotopy for self diffeomorphisms of surfaces.
(See [ZVC, Chapter V].) Therefore mo(Dif f(F)) = mo(E(F)) = Out(mi(F)),
and the inclusion of Dif f(F') into E(F') is a homotopy equivalence. Hence
BDiff(F) ~ BE(F) ~ K(Out(m (F),1), so smooth F-bundles over B and
Hurewicz fibrations with fibre F' over B are classified by the (unbased) homo-
topy set

[B, K(Out(m(F),1))] = Hom(m1(B), Out(n1(F)))/ «,

where & « ¢ if there is an a € Out(m(F)) such that &'(b) = a&(b)a~! for all
be 7T1(B) .

If (m(F) # 1 then F = T or Kb. Left multiplication by T on itself in-
duces homotopy equivalences from T to the identity components of Dif f(T)
and E(T). (Similarly, the standard action of S* on Kb induces homotopy
equivalences from S! to the identity components of Diff(Kb) and E(Kb).
See [Go65, Theorem II1.2].) Let o : GL(2,Z) — Aut(T) < Dif f(T) be the
standard linear action. Then the natural maps from the semidirect product
T xq GL(2,Z) to Dif f(T) and to E(T') are homotopy equivalences. There-
fore BDiff(T) is a K(Z?,2)-fibration over K(GL(2,Z),1). It follows that
T-bundles over B are classified by two invariants: a conjugacy class of ho-
momorphisms £ : m(B) — GL(2,Z) together with a cohomology class in
H?(B;(Z?)%). A similar argument applies if F' = Kb. O

Theorem 5.2 Let M be a PD,-complex and B and F aspherical closed
surfaces. Then M is homotopy equivalent to the total space of an F-bundle
over B if and only if x(M) = x(B)x(F') and m = 71(M) is an extension of
m1(B) by mi(F). Moreover every extension of mi(B) by m(F) is realized by
some surface bundle, which is determined up to isomorphism by the extension.

Proof The conditions are clearly necessary. Suppose that they hold. If
(mi(F) = 1 each homomorphism & : m(B) — Out(mi(F)) corresponds to
an unique equivalence class of extensions of 71(B) by m1(F') [Ro, Proposition
11.4.21]. Hence there is an F-bundle p : E — B with m(E) = 7 realizing
the extension, and p is unique up to bundle isomorphism. If FF = T then
every homomorphism ¢ : m1(B) — GL(2,Z) is realizable by an extension (for
instance, the semidirect product Z* x¢ m(B)) and the extensions realizing ¢
are classified up to equivalence by H?(m(B);(Z*)%). As B is aspherical the
natural map from bundles to group extensions is a bijection. Similar arguments
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5.2 Bundles with base and fibre aspherical surfaces 91

apply if FF = Kb. In all cases the bundle space F is aspherical, and so w is
an F'F' PDy-group. Such extensions satisfy the Weak Bass Conjecture [C095,
Theorem 5.7]. Hence M ~ E, by Corollary 3.5.1. O

Such extensions (with x(F) < 0) were shown to be realizable by bundles in
[Jo79].

5.2 Bundles with base and fibre aspherical surfaces

In many cases the group 71 (M) determines the bundle up to diffeomorphism
of its base. Lemma 5.3 and Theorems 5.4 and 5.5 are based on [Jo94].

Lemma 5.3 Let G; and G2 be groups with no nontrivial abelian normal
subgroup. If H is a normal subgroup of G = G1 X (G2 which contains no
nontrivial direct product then either H < G1 x {1} or H < {1} x Ga.

Proof Let P; be the projection of H onto G;, for i = 1,2. If (h,h') € H,
g1 € G1 and g2 € Gy then ([h, ¢1],1) = [(h, 1), (¢91,1)] and (1,[K, go]) are in
H. Hence [Py, P] X [Pa, P] < H. Therefore either P, or P; is abelian, and so
is trivial, since P; is normal in G;, for 1 =1, 2. O

Theorem 5.4 Let m be a group with a normal subgroup K such that K and
w/K are PDs-groups with trivial centres.

(1) If Cx(K) =1 and K, is a non-trivial finitely generated normal subgroup
of w then Cr(K;) =1 also.

(2) The index [r : KC(K)] is finite if and only if m is virtually a direct
product of PDy-groups.

Proof (1) Let z € Cr(K;). If K1 < K then [K : Kj] < oo and (K; = 1.
Let M = [K : K1]!. Then f(k) = k= '2Mkz=M isin K; for all k in K. Now
f(kky) = k7 f(k)ky and also f(kk1) = f(kkik—'k) = f(k) (since K is a
normal subgroup centralized by z), for all k£ in K and k; in K;. Hence f(k) is
central in K1, and so f(k) =1 for all k in K. Thus 2™ centralizes K. Since
7 is torsion-free we must have z = 1. Otherwise the image of K; under the
projection p : 1 — w/K is a nontrivial finitely generated normal subgroup of
7/ K, and so has trivial centralizer. Hence p(z) = 1. Now [K, K] < KNK; and
so KN K; # 1, for otherwise K1 < Cr(K). Since z centralizes the nontrivial
normal subgroup K N K; in K we must again have z = 1.
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(2) Since K has trivial centre KC(K) = K x Cr(K) and so the condition is
necessary. Suppose that f : Gy X G2 — 7 is an isomorphism onto a subgroup
of finite index, where G7 and Gy are PDy-groups. Let H = K N f(Gy x G2).
Then [K : H] < oo and so H is also a PDy-group, and is normal in f(G1 xG2).
We may assume that H < f(G1), by Lemma 5.3. Then f(G;)/H is finite and
is isomorphic to a subgroup of f(G; x G2)/K < n/K, so H = f(G1). Now
f(G2) normalizes K and centralizes H, and [K : H] < oo. Hence f(G2)
has a subgroup of finite index which centralizes K, as in part (1). Hence
[m: KCr(K)] < 00. O

It follows immediately that if 7 and K are as in the theorem whether
(1) Cx(K)#1 and [r: KCr(K)] = o0;
(2) [r: KCr(K)] < oo; or
(3) Cr(K)=1

depends only on 7 and not on the subgroup K. In [Jo94] these cases are labeled
as types I, IT and III, respectively. (In terms of the action £ : 7/ K — Out(K):
if Im(&) is infinite and Ker(§) # 1 then 7 is of type I, if Im(&) is finite then 7
is of type II, and if £ is injective then 7 is of type III.)

Theorem 5.5 Let m be a group with a normal subgroup K such that K
and /K are virtually P Ds-groups with no non-trivial finite normal subgroup.
If /T =1 and Cr(K) # 1 then m has at most one other nontrivial finitely
generated normal subgroup K1 # K which contains no nontrivial direct product
and is such that 7w/K; has no non-trivial finite normal subgroup. In that case
KiNK =1 and [r: KC;(K)] < c0.

Proof Let p:m — w/K be the quotient epimorphism. Then p(Cr(K)) is a
nontrivial normal subgroup of 7/K, since K N Cr(K) = (K = 1. Suppose
that K7 < 7 is a nontrivial finitely generated normal subgroup which contains
no nontrivial direct product and is such that 7/K; has no non-trivial finite
normal subgroup. Let ¥ = K; N (KCr(K)). Since ¥ is normal in KCr(K) =
K x Cr(K) and ¥ < K7, either ¥ < K or ¥ < Cr(K), by Lemma 5.3.

If ¥ < K then p(K;) Np(Cx(K)) =1, and so p(K;) centralizes the nontrivial
normal subgroup p(Cr(K)) in /K. Therefore K1 < K and so [K : K;] < 0.
Since 7/K; has no non-trivial finite normal subgroup we find K; = K.

If ¥ < Cr(K) then K1 N K = 1. Hence [K, K] = 1, since each subgroup is
normal in 7, and so K1 < Cr(K). Moreover [7/K : p(K1)] < oo since p(K7) is
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a nontrivial finitely generated normal subgroup of /K, and so K; and Cr(K)
are PDy-groups and [ : KCr(K)| = [n/K : p(Cx(K))] < [7/K : p(K1)] < o0.

If K1 # K and K> is another such subgroup of 7 then K> also has finite index
in Cr(K), by the same argument. Since w/K; and 7/Ks have no non-trivial
finite normal subgroup it follows that K; = K. O

Corollary 5.5.1 [Jo93] Let o and 8 be automorphisms of 7, and suppose
that o( K)NK = 1. Then B(K) = K or o(K). In particular, Aut(K x K) =
Aut(K)? x (Z)27). i

Groups of type I have an unique such normal subgroup K, while groups of
type II have at most two such subgroups, by Theorem 5.5. We shall obtain a
somewhat weaker result for groups of type III as a corollary of Theorem 5.6.

We shall use the following corollary in Chapter 9.

Corollary 5.5.2 Let m be a PDy-group such that «/m = 1. Then the following
conditions are equivalent:

(1) m has a subgroup p = o x 3 where o and 8 are PDs-groups;

(2) 7 has a normal subgroup o = K x L of finite index where K and L are
PDy-groups and [r: Np(K)] < 2;

(3) m has a subgroup 7 such that [r:7] <2 and 7 < G x H where G and
H are virtually PDs-groups.

Proof Suppose that (1) holds. Then [7 : p] < oo, by Strebel’s Theorem. Let
N be the intersection of the conjugates of p in w. Then N is normal in 7 and
[ : N] < co. We shall identify o =2 avx {1} and 8 = {1} x § with subgroups of
w. Let K =anN and L = NN. Then K and L are PDs-groups, KNL =1
and 0 = K.L 2 K x L isnormal in N and has finite index in 7. Moreover N/K
and N/L are isomorphic to subgroups of finite index in § and «, respectively,
and so are also PDs-groups. If /7 = 1 all these groups have trivial centre,
and so any automorphism of N must either fix K and L or interchange them,
by Theorem 5.5. Hence o is normal in 7 and [r : N;(K)] < 2.

If (2) holds then N;(K) = Ni(L). Let 7 = N(K) and let pg : 7 = G =
7/Cr(K) and py : 7 — H = 7/Cx(L) be the natural epimorphisms. Then
pcli, prlr and (pg, pm) are injective and have images of finite index in G, H
and G x H respectively. In particular, G and H are virtually PDy-groups.

If (3) holds let @« = 7N (G x {1}) and f = 7N ({1} x H). Then « and
have finite index in G and H, respectively, and are torsion-free. Hence they
are PDs-groups and clearly o N8 = 1. Therefore p = a.80 = a x [. m]
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It can be shown that these three conditions remain equivalent under the weaker
hypothesis that © be a PDy-group which is not virtually abelian (using Lemma
9.4 for the implication (1) = (3)).

Theorem 5.6 Let m be a group with normal subgroups K and K; such that
K, K; and w/K are PDy-groups, w/K; is torsion-free and x(n/K) < 0. Then
either K1 =K or KiNK =1 and =2 K x Ky or x(K;) < x(n/K).

Proof Let p : m — w/K be the quotient epimorphism. If K; < K then
K, = K, as in Theorem 5.5. Otherwise p(K) has finite index in 7/K and so
p(K7) is also a PDy-group. As the minimum number of generators of a PDs-
group G is B1(G;Fa), we have x(K7) < x(p(K1)) < x(7/K). We may assume
that x (K1) = x(7/K). Hence x(K1) = x(7/K) and so p|k, is an epimorphism.
Therefore K; and w/K have the same orientation type, by the nondegeneracy
of Poincaré duality with coefficients Fo and the Wu relation w; Uz = 22 for
all z € HY(G;F3) and PDs-groups G. Hence K = 7/K. Since PDy-groups
are hopfian p|g, is an isomorphism. Hence [K,K;] < K N K; = 1 and so
T=KK 2K xn/K. |

Corollary 5.6.1 [Jo99] There are only finitely many such subgroups K < 7.

Proof We may assume that (K =1 and 7 is of type III. There is an epimor-
phism p: 7 — Z/x(n)Z such that p(K) = 0. Then x(Ker(p)) = x(7)?. Since
7 is not virtually a product K is the only normal P Ds-subgroup of Ker(p)
with quotient a PDs-group and such that x(K)? < x(Ker(p)). The corollary
follows since there are only finitely many such epimorphisms p. a

For each n > 1 there are such groups m with x(m) = 24n — 8 which have at
least 2™ distinct subgroups K such that K and 7/K are orientable [Sal5]. On
the other hand, Cor. 5.6.1 leads to an upper bound of y2, where Y = x(m).
Moreover, if x(m) > 16 then at most 2X(™) of these have |y(7/K)| > logy x(r).

The next corollary follows by elementary arithmetic.

Corollary 5.6.2 If K; # K and x(K;) = —1 then 1= K x K. ad
Corollary 5.6.3 Let M and M’ be the total spaces of bundles ¢ and &' with
the same base B and fibre ', where B and F are aspherical closed surfaces

such that x(B) < x(F). Then M’ is diffeomorphic to M via a fibre-preserving
diffeomorphism if and only if w1 (M'") = w1 (M). O
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Compare the statement of Melvin’s Theorem on total spaces of S?-bundles
(Theorem 5.13 below.)

We can often recognise total spaces of aspherical surface bundles under weaker
hypotheses on the fundamental group.

Theorem 5.7 Let M be a PD4-complex with fundamental group w. Then
the following conditions are equivalent:

(1) M is homotopy equivalent to the total space of a bundle with base and
fibre aspherical closed surfaces:

(2) m has an FP, normal subgroup K such that /K is a PDy-group and

mo(M) = 0;
(3) = has a normal subgroup N which is a PDy-group, /N is torsion-free
and mo(M) = 0.

Proof Clearly (1) implies (2) and (3). Conversely they each imply that 7 has
one end and so M is aspherical. If K is an FP3; normal subgroup in 7 and
w/K is a PDy-group then K is a PDs-group, by Theorem 1.19. If N is a
normal subgroup which is a PDy-group then «/N is virtually a PDs-group,
by Theorem 3.10. Since it is torsion-free it is a PDs-group and so the theorem
follows from Theorem 5.2. m|

If (N =1 then /N is an extension of C(N) by a subgroup of Out(N).
Thus we may argue instead that v.c.d.w/N < oo and n/N is F Py, so /N is
virtually a PDs-group [Bi, Theorem 9.11].

Corollary 5.7.1 The PDs-complex M is homotopy equivalent to the total
space of a T- or Kb-bundle over an aspherical closed surface, if and only if
x(M) =0 and 7 has a normal subgroup A = 7?2 or 7 x_1 7 such that 7/A is
torsion free.

Proof The conditions are clearly necessary. If they hold then M is aspherical,
by Theorem 2.2 and Corollary 3.5.2, and so this corollary follows from part (3)
of Theorem 5.7 O

Kapovich has given examples of aspherical closed 4-manifolds M such that
m1(M) is an extension of a P Dy-group by a finitely generated normal subgroup
which is not F P, [Kal3].
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Theorem 5.8 Let M be a PDj-complex whose fundamental group w has
an ascendant F' P, subgroup G of infinite index with one end and such that
X(M) =10. Then M is aspherical. If moreover c.d.G = 2 and x(G) # 0 then
G is a PDy-group and either [r : N;(G)] < oo or there is a subnormal chain
G < J < K <7 such that [r: K] <oo and K/J = J/G=7Z.

Proof The argument of the first paragraph of the proof of Theorem 4.8 applies
equally well here to show that M is aspherical.

Assume henceforth that c.d.G =2 and x(G) <0. If G < G < G, and c.d.G =
2 then [G : G] < oo, by Lemma 2.15. Hence G is FP and [G : G] < |x(G)],
since x(G) = [G : G]x(G). We may assume that G is maximal among all
groups of cohomological dimension 2 in an ascendant chain from G to w. Let
G =Gy < Gy < -+ < (G7=m be such an ascendant chain, with G = G, for
some finite ordinal n. Then [G,41 : G] = 0o and ¢.d.Gpy1 > 3.

If G is normal in 7 then G is a PDy-group and / G is virtually a PDy-group,
by Theorem 3.10. Moreover [r : N;(G)] < 0o, since G has only finitely many
subgroups of index [G': G]. Therefore 7 has a normal subgroup K < Ny (G)
such that [ : K] < co and K/G is a PDy -group.

Otherwise, replacing G,41 by the union of the terms G, which normalize G
and reindexing, if necessary, we may assume that G is not normal in Gpio. Let
h be an element of G,o such that hGh™! # G, and let H = G.hGh™'. Then
G is normal in H and H is normal in G, 11, so [H : G] = oo and c.d.H = 3.
Moreover H is F'P [Bi, Proposition 8.3], and H*(H;Z[H]) = 0 for s < 2, by
an LHSSS argument.

If c.d.Gp11 = 3 then G,4+1/H is locally finite [Bi, Theorem 8.2]. Hence it
is finite, by the Gildenhuys-Strebel Theorem. Therefore G,+; is FP and
H*(Gp+1;Z]Gpt1]) = 0 for s < 2. Since Gp41 is also ascendant in 7 it is
a PDs-group, [m : Nz (Gnpt1)] < oo and Np(Gp41)/Gn+1 has two ends, by
Theorem 4.8. Hence Gpi1 /GY has two ends also, and G is a PDs-group, by
Theorem 2.12. We may easily find subgroups J < Gp41 and K < N (Gp41)
such that G < J < K, J/G= K/J =7 and [r: K| < 0.

If c.d.Gpy1 = 4 then [r : G,41] is again finite and Gpn41 is a PDy-group.

Hence the result follows as for the case when G is normal in 7. O

Corollary 5.8.1 If x(M) =0, G isa PDy-group, x(G) # 0 and G is normal
in w then M has a finite covering space which is homotopy equivalent to the
total space of a surface bundle over T.
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Proof Since G is normal in m and M is aspherical M has a finite covering
which is homotopy equivalent to a K (G, 1)-bundle over an aspherical orientable
surface, as in Theorem 5.7. Since x(M) = 0 the base must be T'. |

If m/G is virtually Z? then it has a subgroup of index at most 6 which maps
onto Z2 or Z x_1 7.

Let G be a PDs-group such that (G = 1. Let 6 be an automorphism of G
whose class in Out(G) has infinite order and let A : G — Z be an epimorphism.
Let m = (G X Z) x4 Z where ¢(g,n) = (6(g),A\(g)+n) forall g € G and n € Z.
Then G is subnormal in 7 but this group is not virtually the group of a surface
bundle over a surface.

If 7 has an ascendant subgroup G which is a PDg-group with x(G) = 0 then
VG =2 72 is ascendant in m and hence contained in /7. In this case h(y/7) > 2
and so either Theorem 8.1 or Theorem 9.2 applies, to show that M has a finite
covering space which is homotopy equivalent to the total space of a T-bundle
over an aspherical closed surface.

5.3 Bundles with aspherical base and fibre S? or RP?

Let E*(S5?) denote the connected component of idg2 in E(S?), i.e., the sub-
monoid of degree 1 maps. The connected component of idg2 in Fy(S?) may be
identified with the double loop space Q252.

Lemma 5.9 Let X be a finite 2-complex. Then there are natural bijections
[X;BO(3)] = [X; BE(S?)] = H'(X;Fa) x H*(X;F2).

Proof As a self homotopy equivalence of a sphere is homotopic to the identity
if and only if it has degree +1 the inclusion of O(3) into E(S?) is bijective
on components. Evaluation of a self map of S? at the basepoint determines
fibrations of SO(3) and E*(S?) over S?, with fibre SO(2) and 0252, respec-
tively, and the map of fibres induces an isomorphism on ;. On comparing the
exact sequences of homotopy for these fibrations we see that the inclusion of
SO(3) in E*(S?) also induces an isomorphism on 7. Since the Stiefel-Whitney
classes are defined for any spherical fibration and w; and wo are nontrivial on
suitable S2-bundles over S' and S?, respectively, the inclusion of BO(3) into
BE(S?) and the map (w1, ws) : BE(S?) — K(Z/2Z,1) x K(Z/2Z,2) induces
isomorphisms on m; for ¢ < 2. The lemma follows easily. |
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Thus there is a natural 1-1 correspondance between S?-bundles and spherical
fibrations over such complexes, and any such bundle £ is determined up to
isomorphism over X by its total Stiefel-Whitney class w(§) = 14+w1(§)+w2(§).
(From another point of view: if wq(§) = w1(§’) there is an isomorphism of the
restrictions of £ and ¢ over the 1-skeleton X[, The difference wy(€) — ws(€')
is the obstruction to extending any such isomorphism over the 2-skeleton.)

Theorem 5.10 Let M be a PD4-complex and B an aspherical closed surface.
Then the following conditions are equivalent:

(1) m(M)=m(B) and x(M) = 2x(B);
(2) T (M) = (B) and M ~ S?;
(3) M is homotopy equivalent to the total space of an S?-bundle over B.

Proof If (1) holds then Hs(M;Z) = Hy(M;Z) = 0, as m1(M) has one end,
and mo(M) = H?(r; Z|x]), by Theorem 3.12. Since this is infinite cyclic, M is
homotopy equivalent to S2. If (2) holds we may assume that there is a Hurewicz
fibration h : M — B which induces an isomorphism of fundamental groups.
As the homotopy fibre of h is M, Lemma 5.9 implies that A is fibre homotopy
equivalent to the projection of an S?-bundle over B. Clearly (3) implies the
other conditions. a

We shall summarize some of the key properties of the Stiefel-Whitney classes
of such bundles in the following lemma.

Lemma 5.11 Let & be an S?-bundle over a closed surface B, with total space
M and projection p: M — B. Then

(1) ¢ is trivial if and only if w(M) = p*w(B);

(2) m (M) = m(B) acts on ma(M) by multiplication by wi(&);

(3) the intersection form on Hy(M;Fs3) is even if and only if wy(§) = 0;

(4) if ¢ : B' — B is a 2-fold covering map with connected domain B’ then
wa(q*§) = 0.

Proof (1) Applying the Whitney sum formula and naturality to the tangent
bundle of the B3-bundle associated to ¢ gives w(M) = p*w(B)Up*w(§). Since
p is a 2-connected map the induced homomorphism p* is injective in degrees
< 2 and so w(M) = p*w(B) if and only if w(§) = 1. By Lemma 5.9 this is so
if and only if & is trivial, since B is 2-dimensional.
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(2) It is sufficient to consider the restriction of & over loops in B, where the
result is clear.

(3) By Poincaré duality, the intersection form is even if and only if the Wu
class vo(M) = wo(M) +wi(M)? is 0. Now
v2(M) = p*(wi(B) +wi(€))? + p* (wa(B) + wi(B) Uwi () + wa(£))
(w2(B) + wi(B) Uwi(§) +wa(§) +wi(B)? + wi(§)*)
“(w2(8)),

since w1 (B) Un =n? and wy(B)? = wy(B), by the Wu relations for B. Hence
va(M) = 0 if and only if wy(§) = 0, as p* is injective in degree 2.

(4) We have g.(w2(q"¢) N [B']) = ¢.((q"w2(€)) N [B]) = wa(&) N q«[B'], by the
projection formula. Since g has degree 2 this is 0, and since g, is an isomorphism
in degree 0 we find wo(¢*¢) N [B’] = 0. Therefore wo(¢*¢) = 0, by Poincaré
duality for B’. O

*

=p
=p

Melvin has determined criteria for the total spaces of S%-bundles over a compact
surface to be diffeomorphic, in terms of their Stiefel-Whitney classes. We shall
give an alternative argument for the cases with aspherical base.

Lemma 5.12 Let B be a closed surface and w be the Poincaré dual of wi(B).
If u; and ug are elements of Hi(B;F3) \ {0,w} such that uj.u; = ug.ug then
there is a diffeomorphism f : B — B which is a composite of Dehn twists about
two-sided essential simple closed curves and such that f,(u1) = us.

Proof For simplicity of notation, we shall use the same symbol for a simple
closed curve u on B and its homology class in H;(B;F2). The curve u is
two-sided if and only if u.u = 0. In that case we shall let ¢, denote the
automorphism of Hj(B;Fs) induced by a Dehn twist about u. Note also that
wu =uw and ¢,(u) = u+ (u.v)v for all v and two-sided v in Hy(B;Fs).

If B is orientable it is well known that the group of isometries of the intersection
form acts transitively on Hj(B;F2), and is generated by the automorphisms
¢y - Thus the claim is true in this case.

If wi(B)? # 0 then B = RP*$T,, where T, is orientable. If uj.u; = ug.up = 0
then w; and wug are represented by simple closed curves in T,, and so are
related by a diffeomorphism which is the identity on the RP? summand. If
UL = ug.ug = 1 let v; = u; +w. Then v;.v; = 0 and this case follows from
the earlier one.
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Suppose finally that wi(B) # 0 but wy(B)? = 0; equivalently, that B = KbiT,,
where T, is orientable. Let {w,z} be a basis for the homology of the Kb
summand. In this case w is represented by a 2-sided curve. If ui.u1 = us.ugs =0
and uj.z = ug.z = 0 then u; and wue are represented by simple closed curves
in Ty, and so are related by a diffeomorphism which is the identity on the Kb
summand. The claim then follows if u.z = 1 for u = u; or wus, since we then
have ¢y (u).cp(u) = cyp(u).z2 = 0. If u.u # 0 and w.z = 0 then (u+2).(u+z2) =0
and cyqz(u) = z. If uu#0, u.z #0 and u # z then cyy,ywew(u) = z. Thus
if up.u1 = ug.us = 1 both u; and wuy are related to z. Thus in all cases the
claim is true. O

Theorem 5.13 (Melvin) Let & and ¢ be two S?-bundles over an aspherical
closed surface B. Then the following conditions are equivalent:

(1) there is a diffeomorphism f : B — B such that £ = f*¢';
(2) the total spaces E(§) and E(£') are diffeomorphic; and

(3) wi(§) = wi(§) if wi(§) =0 or wi(B), wi(§) Uwi(B) = wi(§) Uw(B)
and ws(§) = wz({').

Proof Clearly (1) implies (2). A diffeomorphism h : E — E’ induces an
isomorphism on fundamental groups; hence there is a diffeomorphism f: B —
B such that fp is homotopic to p’h. Now h*w(FE’) = w(FE) and f*w(B) =
w(B). Hence p*f*w(¢) = p*w(§) and so w(f*¢) = ffw(¢) = w(€). Thus
f*¢ =&, by Lemma 5.9, and so (2) implies (1).

If (1) holds then f*w(§) = w(€). Since wi(B) = wv1(B) is the character-
istic element for the cup product pairing from H'(B;F3) to H?(B;F3) and
H?(f;Fo) is the identity f*wi(B) = w1 (B), w1(&) Uwi(B) = w1(&) Uw(B)
and w2 (&) = wa(¢’). Hence(1) implies (3).

If wi(§) Uwi(B) = wi(§) Uwi(B) and wy(§) and wi(§') are neither 0 nor
w1 (B) then there is a diffeomorphism f : B — B such that f*wq(¢) = wy(§),
by Lemma 5.12 (applied to the Poincaré dual homology classes). Hence (3)
implies (1). O

Corollary 5.13.1 There are 4 diffeomorphism classes of S?-bundle spaces if
B is orientable and x(B) < 0, 6 if B = Kb and 8 if B is nonorientable and
x(B) < 0. O

See [Me84] for a more geometric argument, which applies also to S?-bundles
over surfaces with nonempty boundary. The theorem holds also when B = S?
or RP?; there are 2 such bundles over S? and 4 over RP?. (See Chapter 12.)
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Theorem 5.14 Let M be a PD,-complex with fundamental group w. The
following are equivalent:

(1) m##1 and mo(M) = Z.
(2) M ~ S2;

(3) M has a covering space of degree < 2 which is homotopy equivalent to
the total space of an S?-bundle over an aspherical closed surface;

(4) = is virtually a PDo-group and x(M) = 2x(r).

If these conditions hold the kernel K of the natural action of w on my(M) is a
PDs-group.

Proof Suppose that (1) holds. If  is finite and o (M) = Z then M ~ C P2,
and so admits no nontrivial free group actions, by the Lefshetz fixed point
theorem. Hence 7 must be infinite. Then Ho(M;Z) = Z, Hi(M;Z) = 0
and Hy(M;Z) = mo(M), while Hs(M;Z) = H'(m; Z[x]) and Hy(M;Z) = 0.
Now Homyy)(m2(M), Z[x]) = 0, since 7 is infinite and ma(M) = Z. Therefore
H?(r; Z[r)) is infinite cyclic, by Lemma 3.3, and so 7 is virtually a P Dy-group,
by Bowditch’s Theorem. Hence H3(M;Z) =0 and so M ~ S2. If C is a finite
cyclic subgroup of K then H,3(C;Z) = H,(C, HQ(M; Z)) for all n > 2, by
Lemma 2.10. Therefore C' must be trivial, so K is torsion-free. Hence K is a
PDs-group and (3) now follows from Theorem 5.10. Clearly (3) implies (2) and
(2) implies (1). The equivalence of (3) and (4) follows from Theorem 5.10. O

A straightfoward Mayer-Vietoris argument may be used to show directly that
if H%(7;Z[r]) = Z then 7 has one end.

Lemma 5.15 Let X be a finite 2-complex. Then there are natural bijections
[X; BSO(3)] = [X; BE(RP?)| = H?(X;Fy).

Proof Let (1,0,0) and [1 : 0 : 0] be the base points for S? and RP? re-
spectively. A based self homotopy equivalence f of RP? lifts to a based self
homotopy equivalence f* of S2. If f is based homotopic to the identity then
deg(fT) = 1. Conversely, any based self homotopy equivalence is based homo-
topic to a map which is the identity on RP'; if moreover deg(f*) = 1 then this
map is the identity on the normal bundle and it quickly follows that f is based
homotopic to the identity. Thus Eo(RP?) has two components. The diffeomor-
phism ¢ defined by g([z : y: z]) = [x : y : —z] is isotopic to the identity (rotate
in the (z,y)-coordinates). However deg(g™) = —1. It follows that E(RP?) is
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connected. As every self homotopy equivalence of RP? is covered by a degree
1 self map of S?, there is a natural map from E(RP?) to E*(S?).

We may use obstruction theory to show that 71 (Eg(RP?)) has order 2. Hence
71 (E(RP?)) has order at most 4. Suppose that there were a homotopy f;
through self maps of RP? with fo = f1 = idgpp2 and such that the loop f;(*)
is essential, where * is a basepoint. Let F be the map from RP? x S to
RP? determined by F(p,t) = fi(p), and let a and 8 be the generators of
HY(RP?Fy) and H'(S';Fy), respectively. Then F*a =a®1+1® f and so
(F*a)3 = o® ® B which is nonzero, contradicting a® = 0. Thus there can be
no such homotopy, and so the homomorphism from m(E(RP?)) to m (RP?)
induced by the evaluation map must be trivial. It then follows from the exact
sequence of homotopy for this evaluation map that the order of m (E(RP?)) is
at most 2. The group SO(3) = O(3)/(£I) acts isometrically on RP?. As the
composite of the maps on 7 induced by the inclusions SO(3) C E(RP?) C
E*(S?) is an isomorphism of groups of order 2 the first map also induces an

isomorphism. It follows as in Lemma 5.9 that there are natural bijections
[X; BSO(3)] = [X; BE(RP?)] = H*(X;F3). i

Thus there is a natural 1-1 correspondance between RP?-bundles and orientable
spherical fibrations over such complexes. The RP?-bundle corresponding to an
orientable S2-bundle is the quotient by the fibrewise antipodal involution. In
particular, there are two RP2-bundles over each closed aspherical surface.

Theorem 5.16 Let M be a PD4-complex and B an aspherical closed surface.
Then the following conditions are equivalent:

(1) m(M)=m(B) x (Z/2Z) and x(M) = x(B);
(2) m(M) = (B) % (Z/2Z) and M ~ S2;
(3) M is homotopy equivalent to the total space of an RP?-bundle over B.

Proof Suppose that (1) holds, and let w : m (M) — Z/2Z be the projection
onto the Z/2Z factor. Then the covering space associated with the kernel of w
satisfies the hypotheses of Theorem 5.10 and so M ~ S2.

If (2) holds the homotopy fibre of the map h from M to B inducing the
projection of 71(M) onto 71(B) is homotopy equivalent to RP?. The map h
is fibre homotopy equivalent to the projection of an RP?-bundle over B, by
Lemma 5.15.

If E is the total space of an RP2?-bundle over B, with projection p, then
X(F) = x(B) and the long exact sequence of homotopy gives a short exact
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sequence 1 — Z/2Z — m(FE) — m1(B) — 1. Since the fibre has a product
neighbourhood, j*w;(E) = wi(RP?), where j : RP? — E is the inclusion of
the fibre over the basepoint of B, and so wy(FE) considered as a homomorphism
from m (F) to Z/2Z splits the injection j.. Therefore 71 (E) = m1(B) x(Z/22)
and so (1) holds, as these conditions are clearly invariant under homotopy. O

We may use the above results to refine some of the conclusions of Theorem 3.9
on PDj-complexes with finitely dominated covering spaces.

Theorem 5.17 Let M be a PD,-complex with fundamental group =, and let
p: 7T — G be an epimorphism with F P, kernel v. Suppose that H?(G;Z[G])
is infinite cyclic. Then the following conditions are equivalent:

(1) Homgjy)(m2(M), Z[n]) = 0;
(2) C.(M)|, has finite 2-skeleton;

(3) the associated covering space M, is homotopy equivalent to a closed
surface;

(4) M has a finite covering space which is homotopy equivalent to the total
space of a surface bundle over an aspherical closed surface.

Proof By Bowditch’s Theorem G is virtually a PDs-group. Hence 7 has one
end and H?(m;Z[r]) is infinite cyclic, if v is finite, and is 0 otherwise, by an
LHSSS argument.

If (1) holds mo(M) = H2?(m;Z[x]), by Lemma 3.3. If (2) holds mo(M) =
Hy(M,; Z[v]) & H°(M,; Z[v]), by Theorem 1.19’. In either case, if v is finite
mo(M) = Z, while if v is infinite mo(M) = 0 and M is aspherical. Condition
(3) now follows from Theorems 5.10, 5.16 and 1.19, and (4) follows easily.

If (4) holds then  is infinite and mo(M) = mo(M,) = Z or is 0, and so (1)
holds. O

The total spaces of such bundles with base an aspherical surface have mini-
mal Euler characteristic for their fundamental groups (i.e., x(M) = q(7)), by
Theorem 3.12 and the remarks in the paragraph preceding it.

The F' P, hypothesis is in general necessary, as observed after Theorem 5.7. (See
[Ka98].) However it may be relaxed when G is virtually Z? and y(M) = 0.

Theorem 5.18 Let M be a finite PDs-complex with fundamental group .
Then M is homotopy equivalent to the total space of a surface bundle over T
or Kb if and only if 7 is an extension of Z? or 7 x_17Z (respectively) by a
finitely generated normal subgroup v and x(M) = 0.
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Proof The conditions are clearly necessary. If they hold the covering space
M, associated to the subgroup v is homotopy equivalent to a closed surface, by
Corollaries 4.5.2 and 2.12.1. The result then follows from Theorems 5.2, 5.10
and 5.16. |

In particular, if 7 is the nontrivial extension of Z? by Z/2Z then ¢(m) > 0.

5.4 Bundles over S?

Since S? is the union of two discs along a circle, an F-bundle over S? is
determined by the homotopy class of the clutching function in 7y (Dif f(F')).
(This group is isomorphic to (71(F) and hence to H?(S?%;¢r(F)).) On the
other hand, if M is a PD*-complex then cellular approximation gives bijections
H2(M;Z) = [M;CP>®] = [M;CP?, and amap f: M — CP? factors through
CP%?\ D* ~ S? if and only if deg(f) = 0. Thus if v € H?(M;Z) and is
generates H?(S%;7) then u = f*iy for some f: M — S? if and only if u? = 0.
The map is uniquely determined by u [Sp, Theorem 8.4.11].

Theorem 5.19 Let M be a PDjs-complex with fundamental group m and
F' a closed surface. Then M is homotopy equivalent to the total space of an
F-bundle over S? if and only if x(M) = 2x(F) and

(1) (when x(F) < 0) 7 21 (F), wi(M) = c¢i,wi(F) and wa(M) = wy(M)? =
(cpwi(F))?; or

(2) (when F=T) n = 7? and wi(M) = wa(M) =0, or 1 £ Z & (Z/nZ)
for some n >0 and, if n =1 or 2, w1 (M) =0; or

(3) (when F = Kb) 1 2Z x_17Z, wi(M) # 0 and wa(M) = w1 (M)? = 0,
or m has a presentation (x,y | yry~' = 271, ?" = 1) for some n > 0,
where wi(M)(z) =0 and wi(M)(y) = 1; or

(4) (when F = S?) m =1 and the index o(M) = 0; or

(5) (when F = RP?) m = Z/2Z, wi(M) # 0 and there is a class u of infinite
order in H*(M;Z) and such that u* = 0.

Proof Let pp : E — S? be such a bundle. Then y(E) = 2x(F) and
71 (E) = 7 (F)/0m3(S?), where Im(9) < ¢(mi(F) [Go68]. The characteristic
classes of E restrict to the characteristic classes of the fibre, as it has a product
neighbourhood. As the base is 1-connected F is orientable if and only if the
fibre is orientable. Thus the conditions on x, 7 and w; are all necessary. We
shall treat the other assertions case by case.
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(1) If x(F) < 0 any F-bundle over S? is trivial, by Lemma 5.1. Thus the
conditions are necessary. Conversely, if they hold then cps is fibre homotopy
equivalent to the projection of an S?-bundle ¢ with base F, by Theorem 5.10.
The conditions on the Stiefel-Whitney classes then imply that w(§) = 1 and
hence that the bundle is trivial, by Lemma 5.11. Therefore M is homotopy
equivalent to S? x F.

(2) If 0 = 0 there is a map ¢ : F — T which induces an isomorphism of
fundamental groups, and the map (pg,q) : E — S% x T is clearly a homotopy
equivalence, so w(FE) = 1. Conversely, if x(M) = 0, 7 = Z? and w(M) = 1
then M is homotopy equivalent to S? x T, by Theorem 5.10 and Lemma 5.11.

If x(M)=0and 7 = Z® (Z/nZ) for some n > 0 then the covering space
My 7z corresponding to the torsion subgroup Z/nZ is homotopy equivalent
to a lens space L, by Corollary 4.5.2. As observed in Chapter 4 the manifold
M is homotopy equivalent to the mapping torus of a generator of the group of
covering transformations Aut(Myz, /M) = Z. Since the generator induces the
identity on 71 (L) = Z/nZ it is homotopic to idy, if n > 2. This is also true
if n =1 or 2 and M is orientable. (See [Co, §29].) Therefore M is homotopy
equivalent to L x S, which fibres over S? via the composition of the projection
to L with the Hopf fibration of L over S?. (Hence w(M) = 1 in these cases
also.)

(3) Asinpart (2),if m(E) = Zx_1Z = m1(Kb) then E is homotopy equivalent
to S? x Kb and so wi(E) # 0, while wy(E) = 0. Conversely, if x(M) =
0, 7 = m(Kb), M is nonorientable and w;(M)? = wo(M) = 0 then M is
homotopy equivalent to S? x Kb. Suppose now that 7 and w; satisfy the
second alternative (corresponding to bundles with 9 # 0). Let ¢ : MT — M
be the orientation double cover. Then M™ satisfies the hypotheses of part (3),
and so there is a map p™ : M — S2 with homotopy fibre 7. Now H?(q;Z) is
an epimorphism, since H*(Z/2Z;7) = H*(Z/2Z; H*(M*;Z)) = 0. Therefore
pt = pq for some map p : M — S?. Comparison of the exact sequences of
homotopy for p* and p shows that the homotopy fibre of p must be Kb. As
in Theorem 5.2 above p is fibre homotopy equivalent to a bundle projection.

(4) There are just two S?-bundles over S?, with total spaces S? x S? and
S52xS% = CP?f — CP?, respectively. Thus the conditions are necessary. If
M satisfies these conditions then H?(M;Z) = 7Z? and there is an element u
in H%(M;Z) which generates an infinite cyclic direct summand and has square
wUu = 0. Thus v = f*iy for some map f: M — S2. Since u generates a direct
summand there is a homology class z in Ho(M;Z) such that uNz = 1, and
therefore (by the Hurewicz theorem) there is a map z : S? — M such that fz
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is homotopic to idg2. The homotopy fibre of f is 1-connected and has mo = 7Z,
by the long exact sequence of homotopy. It then follows easily from the spectral
sequence for f that the homotopy fibre has the homology of S?. Therefore f
is fibre homotopy equivalent to the projection of an S?-bundle over S2.

(5) Since m (Dif f(RP?)) = Z/2Z (see [EE69, page 21]) there are two RP?-
bundles over S%. Again the conditions are clearly necessary. If they hold we
may assume that u generates an infinite cyclic direct summand of H?(M;Z)
and that v = g*iy for some map g : M — S?. Let ¢ : Mt — M be the
orientation double cover and g = gq. Since H2(Z/2Z;7Z) = 0 the second
homology of M is spherical. Thus there is a map z = ¢z : S> — M such
that gz = gt 2% is homotopic to idgz2. Hence the homotopy fibre of gt is S?,
by case (5). Since the homotopy fibre of g has fundamental group Z/2Z and
is double covered by the homotopy fibre of g* it is homotopy equivalent to
RP?. Tt follows as in Theorem 5.16 that g is fibre homotopy equivalent to the
projection of an RP?-bundle over S2. |

Theorems 5.2, 5.10 and 5.16 may each be rephrased as giving criteria for maps
from M to B to be fibre homotopy equivalent to fibre bundle projections. With
the hypotheses of Theorem 5.19 (and assuming also that 9 = 0 if x(M) = 0)
we may conclude that a map f : M — S? is fibre homotopy equivalent to a
fibre bundle projection if and only if f*io generates an infinite cyclic direct
summand of H?(M;Z).

It follows from Theorem 5.10 that the conditions on the Stiefel-Whitney classes
are independent of the other conditions when 7 = 7 (F'). Note also that the
nonorientable S3- and RP3-bundles over S! are not T-bundles over S?, while
if M = CP?$CP? then m =1 and x(M) = 4 but o(M) # 0. See Chapter 12
for further information on parts (4) and (5).

5.5 Bundles over RP?

Since RP? = MbU D? is the union of a Mdbius band Mb and a disc D?, a
bundle p : E — RP? with fibre F is determined by a bundle over Mb which
restricts to a trivial bundle over dMb, i.e. by a conjugacy class of elements of
order dividing 2 in 7o(Homeo(F)), together with the class of a gluing map over
OMb = 0D? modulo those which extend across D? or Mb, i.e. an element of a
quotient of 71 (Homeo(F')). If F is aspherical mo(Homeo(F')) = Out(m (F)),
while 7 (Homeo(F)) = (m1(F) [Go65].
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We may summarize the key properties of the algebraic invariants of such bundles
with F' an aspherical closed surface in the following lemma. Let Z be the non-
trivial infinite cyclic Z/2Z-module. The groups H'(Z/2Z;Z), H'(Z/2Z;F>)

and H'(RP?%Z) are canonically isomorphic to Z/27.

Lemma 5.20 Let p: E — RP? be the projection of an F-bundle, where F' is
an aspherical closed surface, and let x be the generator of H'(RP?;7Z). Then

(1) x(E) = x(F);
(2) O(ma(RP?)) < (i (F) and there is an exact sequence of groups

0— m(E)—1Z 2, m(F) —» m(E) = Z/2Z — 1;

(3) if 9 = 0 then m1(FE) acts nontrivially on m(E) = Z and the covering
space Er with fundamental group w1 (F) is homeomorphic to S? x F,
so w1(E)|r ry = w1(Er) = wi(F) (as homomorphisms from 71(F) to
7Z/27) and we(Er) = w1 (Er)?;

(4) if 0 #0 then x(F) =0, m(F) has two ends, ma(FE) =0 and Z/2Z acts
by inversion on 9(Z);

(5) p*z®=0¢€ H3(E;p*Z).

Proof Condition (1) holds since the Euler characteristic is multiplicative in
fibrations, while (2) is part of the long exact sequence of homotopy for p.
The image of 0 is central by [Go68], and is therefore trivial unless x(F) = 0.
Conditions (3) and (4) then follow as the homomorphisms in this sequence are
compatible with the actions of the fundamental groups, and Fp is the total
space of an F-bundle over S?, which is a trivial bundle if & = 0, by Theorem
5.19. Condition (5) holds since H3(RP%Z) = 0. O

Let 7 be a group which is an extension of Z/2Z by a normal subgroup G, and
let t € m be an element which maps nontrivially to 7/G = Z/2Z. Then u = t2
is in G and conjugation by ¢ determines an automorphism « of G such that
a(u) = v and o? is the inner automorphism given by conjugation by wu.

Conversely, let a be an automorphism of G' whose square is inner, say o?(g) =
ugu! for all g € G. Let v = a(u). Then a?(g) = o?(alg)) = ua(g)c™ =
a(a?(g)) = va(g)v~! for all g € G. Therefore vu~! is central. In particular, if
the centre of G is trivial « fixes u, and we may define an extension

a1 >G—1l, = Z/2Z - 1

in which II, has the presentation (G,t, | tagty' = alg), t2 = u). If B is
another automorphism in the same outer automorphism class then {, and &g
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are equivalent extensions. (Note that if 8 = a.cj,, where ¢, is conjugation by
h, then B(a(h)uh) = a(h)uh and $%(g) = a(h)uh.g.(a(h)uh)~! for all g € G.)

Lemma 5.21 If x(F) < 0 or x(F) = 0 and 0 = 0 then an F-bundle
over RP? is determined up to isomorphism by the corresponding extension of
fundamental groups.

Proof If x(F) < 0 such bundles and extensions are each determined by an
element & of order 2 in Out(mi(F)). If x(F) = 0 bundles with 0 = 0 are
the restrictions of bundles over RP> = K(Z/2Z,1) (compare Lemma 4.10).
Such bundles are determined by an element £ of order 2 in Out(m(F)) and
a cohomology class in H?*(Z/2Z;(n1(F)¢), by Lemma 5.1, and so correspond
bijectively to extensions also. a

Lemma 5.22 Let M be a PD4-complex with fundamental group m. A map
f: M — RP? is fibre homotopy equivalent to the projection of a bundle over
RP? with fibre an aspherical closed surface if 71(f) is an epimorphism and
either

(1) x(M) <0 and m(f) is an isomorphism; or
(2) x(M)=0, m has two ends and m3(f) is an isomorphism.

Proof In each case 7 is infinite, by Lemma 3.14. In case (1) H?(m;Z[n]) is
infinite cyclic(by Lemma 3.3) and so 7 has one end, by Bowditch’s Theorem.
Hence M ~ S2. Moreover the homotopy fibre of f is aspherical, and its fun-
damental group is a surface group. (See Chapter X for details.) In case (2)
M ~ 53, by Corollary 4.5.2. Hence the lift f : M — S2 is fibre homotopy
equivalent to the Hopf map, and so induces isomorphisms on all higher homo-
topy groups. Therefore the homotopy fibre of f is aspherical. As mo(M) =0
the fundamental group of the homotopy fibre is a (torsion-free) infinite cyclic
extension of 7 and so must be either Z? or Z x_;7Z. Thus the homotopy fibre
of f is homotopy equivalent to T" or Kb. In both cases the argument of The-
orem 5.2 now shows that f is fibre homotopy equivalent to a surface bundle
projection. |

5.6 Bundles over RP? with 0 =0

Let F be a closed aspherical surface and p : M — RP? be a bundle with fibre
F', and such that mo(M) = Z. (This condition is automatic if x(F') < 0.) Then
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m = m (M) acts nontrivially on mo(M). The covering space M,, associated to
the kernel x of the action is an F-bundle over S?, and so M,. = S? x F, since all
such bundles are trivial. In particular, vo(M) € H?(m;F3), and vo(M)|, = 0.
The projection admits a section if and only if # =2 k x Z/27.

Our attempt (in the original version of this book) to characterize more general
surface bundles over RP? had an error (in the claim that restriction from
H?(RP?*7Z%) to H?(S%Z) is an isomorphism). We provide instead several
partial results. Further progress might follow from a better understanding
of maps from 4-complexes to RP?. The reference [Si67] cited in the former
(flawed) theorem of this section remains potentially useful here.

The product RP? x F is easily characterized.

Theorem 5.23 Let M be a closed 4-manifold with fundamental group =,
and let F' be an aspherical closed surface. Then the following are equivalent.

(1) M~ RP?x F;
2) 7= Z/2Z x m(F), x(M) = x(F) and vs(M) = 0;

3) m=Z/2Z x m(F), x(M) = x(F) and M ~ E, where E is the total
space of an F-bundle over RP?.

Proof Clearly (1) = (2) and (3). If (2) holds then M is homotopy equivalent
to the total space of an RP?-bundle over F, by Theorem 5.16. This bundle
must be trivial since vo(M) = 0. If (3) holds then there are maps ¢: M — F
and p : M — RP? such that m(p) and 7(q) are the projections of m onto
its factors and ma(p) is surjective. The map (p,q) : M — RP? x F is then a
homotopy equivalence. O

The implication (3) = (1) fails if F = RP? or S2.

The characterization of bundles with sections is based on a study of S%-orbifold
bundles. (See Chapter 10 below and [Hil3].)

Theorem 5.24 Let F' be an aspherical closed surface. A closed orientable 4-
manifold M is homotopy equivalent to the total space of an F-bundle over RP?
with a section if and only if m = 71(M) has an element of order 2, mo(M) = Z
and k = Ker(u) = 71 (F'), where u is the natural action of m on mo(M).

Proof The conditions are clearly necessary. Suppose that they hold. We may
assume that 7 is not a direct product xk x Z/2Z. Therefore M is not homotopy
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equivalent to an RP?-bundle space. Hence it is homotopy equivalent to the
total space E of an S?-orbifold bundle over a 2-orbifold B. (See Corollary
10.8.1 below.) The involution ¢ of F corresponding to the orbifold covering
has non-empty fixed point set, since 7 has torsion. Let My = S% x F/ ~,
where (s, f) ~ (=s,((f)). Then My is the total space of an F-bundle over
RP?, and th e fixed points of ¢ determine sections of this bundle.

The double cover of E corresponding to s is an S?-bundle over F. Since M
is orientable and x acts trivially on 7o (M), F must also be orientable and the
covering involution of F' over B must be orientation-reversing. Since 7 has
torsion X B is a non-empty union of reflector curves, and since F' is orientable
these are “untwisted”. Therefore M ~ Mg [Hil3, Corollary 4.8]. O

Orientability is used here mainly to ensure that B has a reflector curve.

When 7 is torsion-free M is homotopy equivalent to the total space of an
S2-bundle over a surface B, with 7 = 71(B) acting nontrivially on the fibre.
Inspection of the geometric models for such bundle spaces given in Chapter 10
below shows that if also va(M) # 0 then the bundle space fibres over RP?. Is
the condition ve(M) # 0 necessary?

5.7 Sections of surface bundles

If a bundle p : E — B with base and fibre aspherical surfaces has a section
then its fundamental group sequence splits. The converse holds if the action &
can be realized by a group of based self homeomorphisms of the fibre F'. (This
is so if FF =T or Kb.) The sequence splits if and only if the action factors
through Aut(m1(F)) and the class of the extension in H?(m(B);(mi(F)) is 0.
This cohomology group is trivial if x(F') < 0, and the class is easily computed
if x(F') =0. In particular, if B is orientable and F' = T then p has a section
if and only if Hy(E;Z) = H1(B;7Z) @ Ho(B;m(F)). (The T-bundles over T
which are coset spaces of the nilpotent Lie groups Nil® x R and Nil* do not
satisfy this criterion, and so do not have sections.)

If p, splits and s and s’ are two sections determining the same lift { :m1(B) —
Aut(m1(F)) then s'(g)s(g)~! is in (m(F), for all g € 71(B). Hence the
sections are parametrized (up to conjugation by an element of 7i(F)) by
H(m1(B);¢mi(F)). In particular, if x(F) < 0 and p,. has a section then
the section is unique up to conjugation by an element of m(F).

It follows easily from Theorem 5.19 that nontrivial bundles over S? with as-
pherical fibre do not admit sections.

See also [Hil5).
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Chapter 6

Simple homotopy type and surgery

The problem of determining the high-dimensional manifolds within a given
homotopy type has been successfully reduced to the determination of normal
invariants and surgery obstructions. This strategy applies also in dimension
4, provided that the fundamental group is in the class SA generated from
groups with subexponential growth by extensions and increasing unions [FT95].
(Essentially all the groups in this class that we shall discuss in this book are
in fact virtually solvable.) We may often avoid this hypothesis by using 5-
dimensional surgery to construct s-cobordisms.

We begin by showing that the Whitehead group of the fundamental group is
trivial for surface bundles over surfaces, most circle bundles over geometric 3-
manifolds and for many mapping tori. In §2 we define the modified surgery
structure set, parametrizing s-cobordism classes of simply homotopy equiva-
lences of closed 4-manifolds. This notion allows partial extensions of surgery ar-
guments to situations where the fundamental group is not elementary amenable.
Although many papers on surgery do not explicitly consider the 4-dimensional
cases, their results may often be adapted to these cases. In §3 we comment
briefly on approaches to the s-cobordism theorem and classification using sta-
bilization by connected sum with copies of S? x S? or by cartesian product
with R.

In §4 we show that 4-manifolds M such that © = (M) is torsion-free virtually
poly-Z and x(M) = 0 are determined up to homeomorphism by their funda-
mental group (and Stiefel-Whitney classes, if h(m) < 4). We also characterize
4-dimensional mapping tori with torsion-free, elementary amenable fundamen-
tal group and show that the structure sets for total spaces of RP?-bundles
over T or Kb are finite. In §5 we extend this finiteness to RP?-bundle spaces
over closed hyperbolic surfaces and show that total spaces of bundles with fibre
52 or an aspherical closed surface over aspherical bases are determined up to
s-cobordism by their homotopy type. (We shall consider bundles with base or
fibre geometric 3-manifolds in Chapter 13.)
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6.1 The Whitehead group

In this section we shall rely heavily upon the work of Waldhausen in [Wd78].
The class of groups Clis the smallest class of groups containing the trivial group
and which is closed under generalised free products and HNN extensions with
amalgamation over regular coherent subgroups and under filtering direct limit.
This class is also closed under taking subgroups [Wd78, Proposition 19.3]. If G
is in Clthen so is G x Z", and Wh(G) = K(Z|G]) = 0 [Wd78, Theorem 19.4].
The argument for this theorem actually shows that if G =2 A x¢ B and C' is
regular coherent then there are Mayer-Vietoris sequences:

Wh(A)®Wh(B) = Wh(G) — Ko(Z[C]) = Ko(Z[A])® Ko(Z[B)]) = Ko(Z[G]) =0
and similarly if G = Axc. (See [Wd78, §17.1.3 and §17.2.3].)

The class Cl contains all free groups and poly-Z groups and the class X of
Chapter 2. (In particular, all the groups Zx,, are in Cl.) Since every PDs-
group is either poly-Z or is the generalised free product of two free groups with
amalgamation over infinite cyclic subgroups it is regular coherent, and is in ClI.
Hence homotopy equivalences between S?-bundles over aspherical surfaces are
simple. The following extension implies the corresponding result for quotients
of such bundle spaces by free involutions.

Theorem 6.1 Let 7 be a semidirect product p x (Z/2Z) where p is a surface
group. Then Wh(m) =0.

Proof Assume first that 7 = p x (Z/2Z). Let I' = Z[p]. There is a cartesian
square expressing I'[Z/27] = Z[p x (Z/2Z)] as the pullback of the reduction of
coefficients map from I' to I'y = I'/2T" = Z/2Z][p] over itself. (The two maps
from I'[Z/2Z] to T send the generator of Z/2Z to +1 and —1, respectively.)
The Mayer-Vietoris sequence for algebraic K-theory traps Ki(I'[Z/2Z]) be-
tween K3(T'2) and K;(I')? [Mi, Theorem 6.4]. Now since c.d.p = 2 the higher
K-theory of R[p] can be computed in terms of the homology of p with co-
efficients in the K-theory of R (cf. the Corollary to Theorem 5 of the intro-
duction of [Wd78]). In particular, the map from Ky(I') to Ks(I'2) is onto,
while K (") = K1(Z) @ (p/p') and K1(T'2) = p/p’. It now follows easily that
K (T'[Z/2Z]) is generated by the images of K;(Z) = {£1} and p x (Z/2Z2),
and so Wh(p x (Z/2Z)) = 0.

If m = px(Z/27Z) is not such a direct product it is isomorphic to a discrete
subgroup of Isom(X) which acts properly discontinuously on X, where X = E?
or H2. (See [Zi].) The singularities of the corresponding 2-orbifold 7\X are
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either cone points of order 2 or reflector curves; there are no corner points and
no cone points of higher order. Let |7\ X| be the surface obtained by forgetting
the orbifold structure of 7\ X, and let m be the number of cone points. Then
X(|mT\X]) = (m/2) = xorp(m\X) < 0, by the Riemann-Hurwitz formula [Sc83’],
so either x(|m\X]|) < 0 or x(|7\X|) =1 and m > 2 or |7\ X| = S? and m > 4.

We may separate 7\ X along embedded circles (avoiding the singularities) into
pieces which are either (i) discs with at least two cone points; (ii) annuli with
one cone point; (iii) annuli with one boundary a reflector curve; or (iv) surfaces
with nonempty boundary, other than D? or the annulus. In each case the inclu-
sions of the separating circles induce monomorphisms on orbifold fundamental
groups, and so 7 is a generalized free product with amalgamation over copies
of Z of groups of the form (i) *™(Z/2Z) (with m > 2); (ii) Z x (Z/2Z); (iii)
Z®(Z)2Z); or (iv) F(r) (with r > 2), by the Van Kampen theorem for orb-
ifolds [Sc83]. The Mayer-Vietoris sequences for algebraic K-theory now give
Wh(mr) =0. O

The argument for the direct product case is based on one for showing that
WhZ & (Z/2Z)) =0 from [Kw86].

Not all such orbifold groups arise in this way. For instance, the orbifold fun-
damental group of a torus with one cone point of order 2 has the presentation
(z,y | [r,y]?> = 1). Hence it has torsion-free abelianization, and so cannot be a
semidirect product as above.

The orbifold fundamental groups of flat 2-orbifolds are the 2-dimensional crys-
tallographic groups. Their finite subgroups are cyclic or dihedral, of order
properly dividing 24, and have trivial Whitehead group. In fact Wh(xw) = 0 for
7 any such 2-dimensional crystallographic group [Pe98]. (If 7 is the fundamen-
tal group of an orientable hyperbolic 2-orbifold with k£ cone points of orders
{n1,...,nx} then Wh(rn) = @F [ Wh(Z/n;Z) [LS00].)

The argument for the next result is essentially due to F.T.Farrell.

Theorem 6.2 If 7 is an extension of mi(B) by m1(F) where B and F' are
aspherical closed surfaces then Wh(w) = Ko(Z[r]) = 0.

Proof If x(B) < 0 then B admits a complete riemannian metric of constant
negative curvature —1. Moreover the only virtually poly-Z subgroups of 71 (B)
are 1 and Z. If G is the preimage in 7 of such a subgroup then G is either
m1(F') or is the group of a Haken 3-manifold. It follows easily that for any n > 0
the group G x Z" is in Cl and so Wh(G x Z™) = 0. Therefore any such G
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is K-flat and so the bundle is admissible, in the terminology of [FJ86]. Hence
Wh(m) = Ko(Z[r]) = 0 by the main result of that paper.

If x(B) = 0 then this argument does not work, although if moreover x(F) =
0 then = is poly-Z, so Wh(n) = Ko(Z[r]) = 0 [FJ, Theorem 2.13]. We
shall sketch an argument of Farrell for the general case. Lemma 1.4.2 and
Theorem 2.1 of [FJ93] together yield a spectral sequence (with coefficients in
a simplicial cosheaf) whose E? term is Hi(X/m(B);Wh;(p_l(m(B)z))) and
which converges to Wh +i (r). Here p: m — m(B) is the epimorphism of the
extension and X is a certain universal m (B)-complex which is contractible and
such that all the nontrivial isotropy subgroups 71 (B)* are infinite cyclic and
the fixed point set of each infinite cyclic subgroup is a contractible (nonempty)
subcomplex. The Whitehead groups with negative indices are the lower K-
theory of Z[G] (i.e., Whl (G) = K,(Z|G]) for all n < —1), while Wh{(G) =
Ko(Z[G]) and Wk (G) = Wh(G). Note that Wh'_,,(G) is a direct summand of
Wh(G x Z""1). If i+ j > 1 then Whi ;(m) agrees rationally with the higher
Whitehead group Wh;y (7). Since the isotropy subgroups 71 (B)* are infinite
cyclic or trivial Wh(p~!(m1(B)*) x Z") = 0 for all n > 0, by the argument
of the above paragraph, and so Wh;-(p_l(m(B)m)) =0 if 7 < 1. Hence the

spectral sequence gives Wh(r) = Ko(Z[x]) = 0. O

A closed 3-manifold is a Haken manifold if it is irreducible and contains an
incompressible 2-sided surface. Every aspherical closed 3-manifold N is ei-
ther Haken, hyperbolic or Seifert-fibred, by the work of Perelman [B-P], and
so either has an infinite solvable fundamental group or it has a JSJ decom-
position along a finite family of disjoint incompressible tori and Klein bottles
so that the complementary components are Seifert fibred or hyperbolic. Every
closed 3-manifold with a metric of non-positive curvature is virtually fibred (i.e.,
finitely covered by a mapping torus), and so every aspherical closed 3-manifold
is virtually Haken [Agl3, PW18|.

If an aspherical closed 3-manifold has a JSJ decomposition with at least one
hyperbolic component then it has a metric of non-positive curvature [Lb95].
Otherwise it is a graph manifold: either it has solvable fundamental group or
it has a JSJ decomposition into Seifert fibred pieces. It is a proper graph
manifold if the minimal such J.SJ decomposition is non-trivial. A criterion for
a proper graph manifold to be virtually fibred is given in [Ne97].

Theorem 6.3 Let N be a connected sum of aspherical graph manifolds, and

let v =m(N) and m = v xg Z, where 6 € Aut(v). Then v x Z" is regular
coherent, and Wh(m x Z™) = Ko(Z[r x Z"]) =0, for all n > 0.
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Proof The group v is either polycyclic or is a generalized free product with
amalgamation along poly-Z subgroups (1, Z? or Zx_1Z) of fundamental groups
of Seifert fibred 3-manifolds (possibly with boundary). The group rings of
torsion-free polycyclic groups are regular noetherian, and hence regular coher-
ent. If G is the fundamental group of a Seifert fibred 3-manifold then it has
a subgroup G, of finite index which is a central extension of the fundamental
group of a surface B (possibly with boundary) by Z. We may assume that G is
not solvable and hence that x(B) < 0. If 9B is nonempty then G, = Z xF and
so is an iterated generalized free product of copies of Z?, with amalgamation
along infinite cyclic subgroups. Otherwise we may split B along an essential
curve and represent G, as the generalised free product of two such groups, with
amalgamation along a copy of Z2. In both cases G, is regular coherent, and
therefore so is G, since [G : G,] < 00 and c.d.G < o0.

Since v is the generalised free product with amalgamation of regular coherent
groups, with amalgamation along poly-Z subgroups, it is also regular coherent.
Hence so is vxXZ"™. Let N; be an irreducible summand of N and let v; = 71 (V;).
If N; is Haken then v; is in Cl and so Wh(y; x Z") = 0, for all n > 0.
Otherwise N; is a Seifert fibred 3-manifold which is not sufficiently large, and
the argument of [P180] extends easily to prove this. Since Ko(Z[o]) is a direct
summand of Wh(o x Z), for any group o, we have Ko(Z[v; x Z"]) = 0, for all
n 2 0. The Mayer-Vietoris sequences for algebraic K-theory now give, firstly,
Wh(v x Z") = Ko(Z[v x Z"]) = 0, and then Wh(r x Z") = Ko(Z[r x Z"]) = 0
also. |

All 3-manifold groups are coherent as groups [Hm]. If we knew that their group
rings were regular coherent then we could use [Wd78] instead of [FJ86] to give
a purely algebraic proof of Theorem 6.2, for as surface groups are free products
of free groups with amalgamation over an infinite cyclic subgroup, an extension
of one surface group by another is a free product of groups with Wh = 0,
amalgamated over the group of a surface bundle over S'. Similarly, we could
deduce from [Wd78] and the work of Perelman [B-P] that Wh(v xg Z) = 0 for
any torsion-free 3-manifold group v = 71(N) where N is a closed 3-manifold.

Theorem 6.4 Let N be a closed 3-manifold such that v = m(N) is torsion-

free, and let | be a group with an infinite cyclic normal subgroup A such that
w/A=v. Then Wh(u) = Wh(v) = 0.

Proof Let N = f#1<;<nN; be the factorization of N into irreducibles, and let
v = xi<i<nVi, where v; = m(N;). The irreducible factors are either Haken,
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hyperbolic or Seifert fibred, by the work of Perelman [B-P]. Let u; be the
preimage of v; in u, for 1 < i < n. Then p is the generalized free product
of the p;’s, amalgamated over infinite cyclic subgroups. For all 1 < i < n
we have Wh(u;) = 0, by [St84, Lemma 1.1] if K(v;,1) is Haken, by the main
result of [FJ86] if it is hyperbolic, by an easy extension of the argument of
[P180] if it is Seifert fibred but not Haken and by [Wd78, Theorem 19.5] if v; is
infinite cyclic. The Mayer-Vietoris sequences for algebraic K-theory now give

Wh(u) = Wh(v) =0 also. O

Theorem 6.4 may be used to strengthen Theorem 4.11 to give criteria for a
closed 4-manifold M to be simple homotopy equivalent to the total space of an
S'-bundle, if 71(M) is torsion-free.

6.2 The s-cobordism structure set

The TOP structure set for a closed 4-manifold M with fundamental group =
and orientation character w : m — {£1} is

Srop(M)={f: N — M| N a TOP 4—manifold, f a simple h.e.}/~,

where f1 ~ fo if fi = foh for some homeomomorphism h : Ny — No. If 7 is
“good” (e.g., if it is in SA) then Lf(m, w) acts on the structure set Spop(M),
and the orbits of the action w correspond to the normal invariants n(f) of
simple homotopy equivalences [FQ, FT95]. The surgery sequence

[SM; G/TOP] 7% Li(n,w) ~% Srop(M) L [M;G/TOP] % Lj(m,w)

may then be identified with the algebraic surgery sequence of [Rn]. The addi-
tions on the homotopy sets [X, G/TOP] derive from an H -space structure on
G/TOP. (In low dimensions this is unambiguous, as G/TOP has Postnikov
b-stage K(Z/2Z,2) x K(Z,4), which has an unique H-space structure.) We
shall not need to specify the addition on Srop(M).

As it is not yet known whether 5-dimensional s-cobordisms over other funda-
mental groups are products, we shall redefine the structure set by setting

Stop(M)={f:N — M| N aTOP 4—manifold, f a simple h.e.}/~,

where f| ~ fy if there is a map F': W — M with domain W an s-cobordism
with OW = Ny U Ny and F|n, = f; for i = 1,2. If the s-cobordism theorem
holds over 7 this is the usual TOP structure set for M. We shall usually write
L, (m,w) for L? (m,w) if Wh(m) =0 and L, (x) if moreover w is trivial. When
the orientation character is nontrivial and otherwise clear from the context we

Geometry & Topology Monographs, Volume 5 (2002)



6.2 The s-cobordism structure set 117

shall write L,(w,—). We shall say that a closed 4-manifold is s-rigid if it
is determined up to s-cobordism by its homotopy type. The homotopy set
[M; G/TOP] may be identified with the set of normal maps (f,b), where f :
N — M is a degree 1 map and b is a stable framing of T & f*¢, for some TOP
R"-bundle £ over M. If f: N — M is a homotopy equivalence, with homotopy
inverse h, let £ = h*vy and b be the framing determined by a homotopy from
hf toidy. Let f € [M, G /TOP] be the homotopy class corresponding to (f,b).
Let ko generate H2(G/TOP;Fy) = Z/2Z and ly generate H*(G/TOP;Z) =
Z, with image [l4] in H*(G/TOP;Fs). The function from [M;G/TOP] to
H2(M;Fy) @ H*(M;Z) which sends f to (f*(kz), f*(4)) is an isomorphism.
Let KS(M) € H*(M;F3) be the Kirby-Siebenmann obstruction to lifting the
TOP normal fibration of M to a vector bundle. If f is a normal map then

KS(M) — (f*) ' KS(N) = f*(k3 + [l]),
and f factors through G/PL if and only if this difference is 0 [KT02]. If M is

orientable then f*(14)([M]) = (¢(M) — o(N))/8, where o(M) is the signature
of the intersection pairing on Ha(M;Z), and so

(KS(M) = (f*) ' KS(N) = f*(k2)*)([M]) = (o(M) = o(N))/8  mod (2).

The Kervaire-Arf invariant of a normal map g : N2¢ — G/TOP is the image of
the surgery obstruction in Loy (Z/2Z,—) = Z/2Z under the homomorphism in-
duced by the orientation character, ¢(g) = Lag(w1(IN))(024(9)). The argument
of Theorem 13.B.5 of [WI]] may be adapted to show that there are universal
classes Kyi1o in H¥*2(G/TOP;Fy) (for i > 0) such that

c(9) = (w(M) U g*((1 + S¢* + S¢*Sq*)Kui42)) N [M].

Moreover Ky = kg, since ¢ induces the isomorphism mo(G/TOP) = Z/2Z. In
the 4-dimensional case this expression simplifies to

c(g) = (w2(M) U §* (k2) + §* (Sq*k2))([M]) = (w1 (M)* U §* (k2)) ([M]).
The codimension-2 Kervaire invariant of a 4-dimensional normal map ¢ is
kerv(g) = ¢*(k2). Its value on a 2-dimensional homology class represented

by an immersion y : Y — M 1is the Kervaire-Arf invariant of the normal map
induced over the surface Y.

The structure set may overestimate the number of homeomorphism types within
the homotopy type of M, if M has self homotopy equivalences which are not
homotopic to homeomorphisms. Such “exotic” self homotopy equivalences may
often be constructed as follows. Given « : S2 — M, let 5 : S* — M be the
composition anSn, where 7 is the Hopf map, and let s : M — M V S* be the
pinch map obtained by shrinking the boundary of a 4-disc in M. Then the
composite fo, = (idpys V B)s is a self homotopy equivalence of M.
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Lemma 6.5 [No64] Let M be a closed 4-manifold and let o : S*> — M be a
map such that o, [S?] # 0 in Hy(M;F3) and a*wo(M) = 0. Then kerv(f,) # 0
and so f, is not normally cobordant to a homeomorphism.

Proof Since a.[S?] # 0 thereis a u € Hay(M;Fy) such that a,[S?].u = 1. This
class may be realized as u = ¢,[Y] where Y is a closed surface and g : Y — M
is transverse to f,. Then g*kerv(ﬁ) [Y] is the Kervaire-Arf invariant of the
normal map induced over Y and is nontrivial. (See [CH90, Theorem 5.1] for
details.) O

The family of surgery obstruction maps may be identified with a natural trans-
formation from Lg-homology to L-theory. (In the nonorientable case we must
use w-twisted Lg-homology.) In dimension 4 the cobordism invariance of
surgery obstructions (as in [W1, §13B]) leads to the following formula.

Theorem 6.6 [Da05] There are homomorphisms Io : Ho(m; Z") — La(m, w)
and kg : Ha(m;F2) — La(m, w) such that for any f: M — G/TOP the surgery
obstruction is o4(f) = Io(care (f*(14) N [M])) + ko(car(kerv(f) N [M])). O

In the orientable case the signature homomorphism from Ly(7) to Z is a left
inverse for Iy : Z — L4(m), but in general Iy is not injective. This formula can
be made somewhat more explicit as follows.

Theorem 6.6’ [Da05] If f = (f,b) where f : N — M is a degree 1 map
then the surgery obstructions are given by

A~ N

o4(f) = Io((c(N) — o (M))/8) + ka(cas(kerv(f) N [M])), ifw=1, and
o4(f) = Io(KS(N) — KS(M) + kerv(f)?) + ra(car (kerv(f) N [M))), if w # 1.

(In the latter case we identify H*(M;Z), H*(N;Z) and H*(M;F3) with
Hy(m;Z") = Z/2Z.) O

The homomorphism o4 is trivial on the image of 7, but in general we do not
know whether a 4-dimensional normal map with trivial surgery obstruction
must be normally cobordant to a simple homotopy equivalence. (See however
[Kh07] and [YmO07].) In our applications we shall always have a simple homo-
topy equivalence in hand.

A more serious problem is that it is not clear how to define the action w in
general. We shall be able to circumvent this problem by ad hoc arguments in
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some cases. (There is always an action on the homological structure set, defined
in terms of Z[r|-homology equivalences [FQ].)

If we fix an isomorphism iz : Z — L5(Z) we may define a function I, : 7 —
Li(7) for any group m by I-(g9) = g«(iz(1)), where g, : Z = L5(Z) — Li(m) is
induced by the homomorphism sending 1 in Z to g in m. Then Iz = iz and I is
natural in the sense that if f : 7 — H is a homomorphism then Ls(f)I = I f.
As abelianization and projection to the summands of Z? induce an isomorphism
from L5(Z * Z) to Ls(Z)? [Ca73], it follows easily from naturality that I is a
homomorphism (and so factors through 7/7") [We83]. We shall extend this to
the nonorientable case by defining I} : Ker(w) — LE(m;w) as the composite of
Ier(w) With the homomorphism induced by inclusion.

Theorem 6.7 Let M be a closed 4-manifold with fundamental group m and
let w =wi(M). Given any v € Ker(w) there is a normal cobordism from idys
to itself with surgery obstruction I} (v) € Li(m,w).

Proof We may assume that v is represented by a simple closed curve with a
product neighbourhood U 2 S! x D3. Let P be the Eg manifold [FQ] and
delete the interior of a submanifold homeomorphic to D3 x [0,1] to obtain
P,. There is a normal map p : P, — D3 x [0,1] (rel boundary). The surgery
obstruction for p xidg1 in L5(Z) = Ly4(1) is given by a codimension-1 signature
[W1, §12B], and generates L5(Z). Let Y = (M \intU)x[0,1JUP, x S, where we
identify (U)x[0,1] = St xS?x[0,1] with S2x[0,1]x S! in 9P, x S!. Matching
together id|(M\th)X[0,1} and p x idg1 gives a normal cobordism @ from idys
to itself. The theorem now follows by the additivity of surgery obstructions and
naturality of the homomorphisms I . |

In particular, if 7 is in SA then the image of I acts trivially on Spop(M).

Corollary 6.7.1 Let )\, : Li(n) — L5(Z)? = Z? be the homomorphism in-
duced by a basis {A1,..., ¢} for Hom(w,Z). If M is orientable, f : My — M
is a simple homotopy equivalence and 6 € Ls(Z)® there is a normal cobordism
from f to itself whose surgery obstruction in Lg(w) has image 6 under \.

Proof If {v1,...,74} € 7 represents a “dual basis” for Hj(m;Z) modulo tor-
sion (so that A;(y;) = &;; for 1 < i, < d), then {A\(Ix(71)),.--, A(Ix(74))}
is a basis for Ls(Z)<. |

If 7 is free or is a P D -group the homomorphism A, is an isomorphism [Ca73].
In most of the other cases of interest to us the following corollary applies.
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Corollary 6.7.2 If M is orientable and Ker(\,) is finite then S7,p(M) is
finite. In particular, this is so if Coker(os) is finite.

Proof The signature difference maps [M;G/TOP] = H*(M;Z) ® H*(M;TFy)
onto L4(1) = Z and so there are only finitely many normal cobordism classes
of simple homotopy equivalences f : M; — M. Moreover, Ker(\,) is fi-
nite if o5 has finite cokernel, since [SM;G/TOP] = 7¢ @ (Z/2Z)?. Sup-
pose that F : N — M x I is a normal cobordism between two simple ho-
motopy equivalences F_ = F|0_N and Fy = F|04N. By Theorem 6.7
there is another normal cobordism F’ : N’ — M x I from F to itself with
Ai(o5(F")) = A(—05(F)). The union of these two normal cobordisms along
0+N = O_N' is a normal cobordism from F_ to Fy with surgery obstruc-
tion in Ker(A,). If this obstruction is 0 we may obtain an s-cobordism W by
5-dimensional surgery (rel 9). O

The surgery obstruction groups for a semidirect product @ = G Xy Z, may be
related to those of the (finitely presentable) normal subgroup G by means of
[W1, Theorem 12.6]. If Wh(mw) = Wh(G) = 0 this theorem asserts that there

is an exact sequence

e Ln(Gowle) T L (G wl6) = L, w) = L1 (Gwlg) - .

where ¢ generates m modulo G and 6, = L,,(0,w|g). The following result is
based on [W1, Theorem 15.B.1].

Theorem 6.8 Let M be a 4-manifold which is homotopy equivalent to a
mapping torus M (), where 0 is a self~homeomorphism of an aspherical closed
3-manifold N. If Wh(mi1(M)) = Wh(mi (M) x Z) =0 then M is s-cobordant
to M(0) and M is homeomorphic to R?.

Proof The surgery obstruction homomorphisms O'ZN are isomorphisms for all

large i [Roll]. Comparison of the Mayer-Vietoris sequences for Ly-homology
and L-theory (as in [St84, Proposition 2.6]) shows that o and UZMXSI are also
isomorphisms for all large i, and so Srop(M(©) x S') has just one element.
If h: M — M(©) is a homotopy equivalence then h x id is homotopic to a
homeomorphism M x S = M(©) x S!, and so M x R = M(©) x R. This

product contains s-cobordisms bounded by disjoint copies of M and M (©).

The final assertion follows from [FQ, Corollary 7.3B] since M is aspherical and
7 is 1-connected at oo [HoT77]. O
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It remains an open question whether aspherical closed manifolds with iso-
morphic fundamental groups must be homeomorphic. This has been verified
in higher dimensions in many cases, in particular under geometric assump-
tions [FJ], and under assumptions on the combinatorial structure of the group
[CaT3, St84, NS85]. We shall see that many aspherical 4-manifolds are deter-
mined up to s-cobordism by their groups.

There are more general “Mayer-Vietoris” sequences which lead to calculations
of the surgery obstruction groups for certain generalized free products and HNN
extensions in terms of those of their building blocks [Ca73, St87].

A subgroup H of a group G is square-root closed in G if g> € H implies
g € H, for g € G. A group 7 is square-root closed accessible if it can be
obtained from the trivial group by iterated HNN extensions with associated
subgroups square-root closed in the base group and amalgamated products
over square-root closed subgroups. In particular, finitely generated free groups
and poly-Z groups are square-root closed accessible. A geometric argument
implies that cuspidal subgroups of the fundamental group I' of a complete
hyperbolic manifold of finite volume are maximal parabolic subgroups, and
hence are square root closed in I'. If S is a closed surface with x(S) < 0 it may
be decomposed as the union of two subsurfaces with connected boundary and
hyperbolic interior. Therefore all PDs-groups are square-root closed accessible.

Lemma 6.9 Let 7 be either the group of a finite graph of groups, all of whose
vertex groups are infinite cyclic, or a square root closed accessible group of
cohomological dimension 2. Then I is an epimorphism. If M is a closed 4-
manifold with fundamental group 7 the surgery obstruction maps o4(M) and
o5(M) are epimorphisms.

Proof Since 7 is in Cl we have Wh(w) = 0 and a comparison of Mayer-
Vietoris sequences shows that the assembly map from H,(m;L{) to L. (m,w)
is an isomorphism [Ca73, St87]. Since c.d.w < 2 and Hj(Ker(w);Z) maps onto
Hi(m; Z") the component of this map in degree 1 may be identified with 7. In
general, the surgery obstruction maps factor through the assembly map. Since
c.d.m < 2 the homomorphism ¢y, : Hi(M;D) — H,(m; D) is onto for any local
coefficient module D, and so the lemma follows. O

The class of groups considered in this lemma includes free groups, PDs-groups
and the groups Zx*,,. Note however that if 7w is a PDy-group w need not be
the canonical orientation character.
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6.3 Stabilization and h-cobordism

It has long been known that many results of high dimensional differential topol-
ogy hold for smooth 4-manifolds after stabilizing by connected sum with copies
of 8% x §? [CS71, FQ80, La79, Qu83]. In particular, if M and N are h-
cobordant closed smooth 4-manifolds then M#(4%5% x S2) is diffeomorphic
to N#(4%5% x S?) for some k& > 0. In the spin case wz(M) = 0 this is
an elementary consequence of the existence of a well-indexed handle decom-
position of the h-cobordism [W164]. In [FQ, Chapter VII] it is shown that
5-dimensional TOP cobordisms have handle decompositions relative to a com-
ponent of their boundaries, and so a similar result holds for A-cobordant closed
TOP 4-manifolds. Moreover, if M is a TOP 4-manifold then KS(M) = 0 if
and only if MH(#*S? x S?) is smoothable for some k > 0 [LS71].

These results suggest the following definition. Two 4-manifolds M7 and My are
stably homeomorphic if M1#(1%S% x S?) and Myf(#S? x S?) are homeomorphic,
for some k, [ > 0. (Thus h-cobordant closed 4-manifolds are stably homeo-
morphic.) Clearly 7 (M), wy (M), the orbit of cpr[M] in Hy(my (M); Z%(M))
under the action of Out(m(M)), and the parity of x(M) are invariant under
stabilization. If M is orientable o(M) is also invariant.

Kreck has shown that (in any dimension) classification up to stable homeo-
morphism (or diffecomorphism) can be reduced to bordism theory. There are
three cases: If u@(]\? ) # 0 and wy(N) # 0 then M and N are stably homeo-
morphic if and only if for some choices of orientations and identification of the
fundamental groups the invariants listed above agree (in an obvious manner).
If wo(M) = wo(N) =0 then M and N are stably homeomorphic if and only if
for some choices of orientations, Spin structures and identification of the fun-
damental group they represent the same element in pr mTOP(K (m,1)). The
most complicated case is when M and N are not Spin, but the universal covers
are Spin. (See [Kr99, Te] for expositions of Kreck’s ideas, and see [Pol3] for an
application to 4-manifolds determined by Tietze-equivalent presentations.)

We shall not pursue this notion of stabilization further (with one minor excep-
tion, in Chapter 14), for it is somewhat at odds with the tenor of this book.
The manifolds studied here usually have minimal Euler characteristic, and of-
ten are aspherical. Each of these properties disappears after stabilization. We
may however also stabilize by cartesian product with the real line R, and there
is then the following simple but satisfying result.

Lemma 6.10 Closed 4-manifolds M and N are h-cobordant if and only if
M xR and N x R are homeomorphic.
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Proof If W is an h-cobordism from M to N (with fundamental group © =
71 (W)) then W x S is an h-cobordism from M x S' to N x S'. The torsion
is 0 in Wh(m x Z) [Co, Theorem 23.2], and so there is a homeomorphism from
M x S to N x S! which carries 71 (M) to 71 (N). Hence M x R =2 N x R.
Conversely, if M x R2= N xR then M x R contains a copy of N disjoint from
M x {0}, and the region W between M x {0} and N is an h-cobordism. 0O

6.4 Manifolds with 7 elementary amenable and y =0

In this section we shall show that closed manifolds satisfying the hypotheses of
Theorem 3.17 and with torsion-free fundamental group are determined up to
homeomorphism by their homotopy type. As a consequence, closed 4-manifolds
with torsion-free elementary amenable fundamental group and Euler character-
istic 0 are homeomorphic to mapping tori. We also estimate the structure sets
for RP%-bundles over T or Kb. In the remaining cases involving torsion com-
putation of the surgery obstructions is much more difficult. We shall comment
briefly on these cases in Chapters 10 and 11.

Theorem 6.11 Let M be a closed 4-manifold with x(M) = 0 and whose
fundamental group m is torsion-free, coherent, locally virtually indicable and
restrained. Then M is determined up to homeomorphism by its homotopy
type. If, moreover, h(n) = 4 then every automorphism of 7 is realized by a self
homeomorphism of M .

Proof By Theorem 3.17 either m =2 Z or Zx,, for some m # 0, or M is
aspherical, 7 is virtually poly-Z and h(m) = 4. Hence Wh(m) = 0, in all
cases. If m =2 Z or Zx,, then the surgery obstruction homomorphisms are
epimorphisms, by Lemma 6.9. We may calculate L4(7,w) by means of [WI,
Theorem 12.6], or more generally [St87, §3], and we find that if 7 = Z or
Z*gp then o4(M) is in fact an isomorphism. If m = Zxg,4; then there are
two normal cobordism classes of homotopy equivalences h : X — M. Let &
generate the image of H?(m;Fg) & Z/27 in H*(M;Fy) = (Z/2Z)?, and let
j : 8% — M represent the unique nontrivial spherical class in Ho(M;Fs). Then
€2 =0, since e.d.m = 2, and &N j[S?] = 0, since cpsj is nullhomotopic. It
follows that j.[S?] is Poincaré dual to &, and so va(M)Nj.[S?] = £2N[M] = 0.
Hence j*wa(M) = j*vo(M) + (j*w1(M))? = 0 and so f; has nontrivial normal
invariant, by Lemma 6.5. Therefore each of these two normal cobordism classes
contains a self homotopy equivalence of M.

If M is aspherical, 7 is virtually poly-Z and h(w) = 4 then Spop(M) has just
one element [FJ, Theorem 2.16]. The theorem now follows. O
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Corollary 6.11.1 Let M be a closed 4-manifold with x(M) = 0 and funda-
mental group © =2 7, 72 or Z x_17Z. Then M is determined up to homeomor-
phism by m and w(M).

Proof If 7 = Z then M is homotopy equivalent to S' x $3 or S'1xS3, by
Corollary 4.5.3, while if 7 = Z? or Z x_;Z it is homotopy equivalent to the
total space of an S2-bundle over T or Kb, by Theorem 5.10. |

Closed orientable 4-manifolds M with x(M) =0 and 7 = Zx,, are also deter-
mined up to homeomorphism by 7 and w(M) [Hi09, HKT09].

We may now give an analogue of the Farrell and Stallings fibration theorems
for 4-manifolds with torsion-free elementary amenable fundamental group.

Theorem 6.12 Let M be a closed 4-manifold whose fundamental group m is
torsion-free and elementary amenable. A map f : M — S' is homotopic to a
fibre bundle projection if and only if x(M) =0 and f induces an epimorphism
from w to Z with finitely generated kernel.

Proof The conditions are clearly necessary. Suppose that they hold. Let
v = Ker(mi(f)), let M, be the infinite cyclic covering space of M with funda-
mental group v and let ¢t : M, — M, be a generator of the group of covering
transformations. By Corollary 4.5.2 either v = 1 (so M, ~ S%) or v & Z
(so M, ~ S%? x S! or $2xS') or M is aspherical. In the latter case 7 is a
torsion-free virtually poly-Z group, by Theorems 1.11 and 9.23 of [Bi]. Thus
in all cases there is a homotopy equivalence f, from M, to a closed 3-manifold
N. Moreover the self homotopy equivalence f,tf, ! of N is homotopic to a
homeomorphism, g say, and so f is fibre homotopy equivalent to the canonical
projection of the mapping torus M(g) onto S'. It now follows from Theo-
rem 6.11 that any homotopy equivalence from M to M (g) is homotopic to a
homeomorphism. a

The structure sets of the RP2-bundles over T or Kb are also finite.

Theorem 6.13 Let M be the total space of an RP?-bundle over T or Kb.
Then Spop(M) has order at most 32.

Proof As M is nonorientable H*(M;Z) = Z/2Z and as (1(M;F3) = 3 and
X(M) = 0 we have H?(M;Fq) = (Z/2Z)*. Hence [M;G/TOP] has order 32.
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Let w = w1 (M). It follows from the Shaneson-Wall splitting theorem [W1, The-
orem 12.6] that Ly(m,w) & Ly(Z/2Z, =)D La(Z/2Z,—) =2 (Z/2Z)?, detected by
the Kervaire-Arf invariant and the codimension-2 Kervaire invariant. Similarly
Ls(m,w) = Ly(Z/2Z,—)% and the projections to the factors are Kervaire-Arf
invariants of normal maps induced over codimension-1 submanifolds. (In ap-
plying the splitting theorem, note that Wh(Z & (Z/2Z)) = Wh(n) = 0, by
Theorem 6.1 above.) Hence Srop(M) has order at most 128.

The Kervaire-Arf homomorphism ¢ is onto, since ¢(§) = (w? U §*(ko)) N [M],
w? # 0 and every element of H2(M;F3) is equal to §*(k2) for some normal
map §: M — G/TOP. Similarly there is a normal map fo : Xo — RP? with
o2(fa) #0 in Lo(Z/2Z,—). If M = RP? x B, where B =T or Kb is the base
of the bundle, then f, xidp : X9 x B — RP? x B is a normal map with surgery
obstruction (0,02(f2)) € La(Z/2Z,—) ® Lo(Z/2Z,—). We may assume that fo
is a homeomorphism over a disc A C RP?. As the nontrivial bundles may be
obtained from the product bundles by cutting M along RP? x A and regluing
via the twist map of RP? x S', the normal maps for the product bundles may
be compatibly modified to give normal maps with nonzero obstructions in the
other cases. Hence o4 is onto and so Spop(M) has order at most 32. ]

In each case Ha(M;F9) = Hao(m;Fa), so the argument of Lemma 6.5 does not
apply. However we can improve our estimate in the abelian case.

Theorem 6.14 Let M be the total space of an RP?-bundle over T'. Then
Stop(M) has order 8.

Proof Since 7 is abelian the surgery sequence may be identified with the
algebraic surgery sequence of [Rn], which is an exact sequence of abelian groups.
Thus it shall suffice to show that Ls(m,w) acts trivially on the class of idy; in
Stop(M).

Let A1, A2 : m — Z be epimorphisms generating Hom(mw,7Z) and let t1,to € 7
represent a dual basis for m/(torsion) (i.e., \i(t;) = 6;; for i =1,2). Let u be
the element of order 2 in 7 and let k; : Z® (Z/2Z) — 7 be the monomorphism
defined by k;(a,b) = at; + bu, for i = 1,2. Define splitting homomorphisms
p1.p2 by pilg) = ki '(g — Ni(g)ts) for all g € w. Then pik; = idga(z/22)
and p;ks_; factors through Z/2Z, for ¢ = 1,2. The orientation character
w = w1 (M) maps the torsion subgroup of = onto Z/2Z, by Theorem 5.13,
and t; and t9 are in Ker(w). Therefore p; and k; are compatible with w, for
i=1,2. As L5(Z/2Z,—) = 0 it follows that Ls(k1) and Ls(k2) are inclusions
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~Y

of complementary summands of Ls(m,w) = (Z/27)%, split by the projections
Ls(p1) and Ls(p2).

Let ~v; be a simple closed curve in T° which represents ¢; € w. Then ~;
has a product neighbourhood N; = S! x [~1,1] whose preimage U; C M is
homeomorphic to RP? x S' x [~1,1]. As in Theorem 6.13 there is a nor-
mal map f; : Xy — RP? x [~1,1]2 (rel boundary) with o4(fis) # 0 in
Ly(Z)2Z,—). Let Y; = (M \ intU;) x [~1,1] U X4 x S', where we identify
(0U;) x [-1,1] = RP? x St x S§% x [-1,1] with RP? x [-1,1] x S§% x S!
in 0X; x S'. If we match together id(apintU;)x[-1,1] and fi X idg1 we ob-
tain a normal cobordism @; from idy; to itself. The image of 05(Q;) in
Ly(Ker(\;),w) = Ly(Z/2Z,—) under the splitting homomorphism is o4(f4).
On the other hand its image in L4(Ker(As3_;),w) is 0, and so it generates the
image of Ls(ks—;). Thus Ls(m, w) is generated by o5(Q1) and o5(Q2), and so
acts trivially on idys. O

Does Ls(m,w) act trivially on each class in Spop(M) when M is an RP2-
bundle over Kb? If so, then Srop(M) has order 8 in each case. Are these
manifolds determined up to homeomorphism by their homotopy type?

6.5 Bundles over aspherical surfaces

The fundamental groups of total spaces of bundles over hyperbolic surfaces
all contain nonabelian free subgroups. Nevertheless, such bundle spaces are
determined up to s-cobordism by their homotopy type, except when the fibre
is RP?, in which case we can only show that the structure sets are finite.

Theorem 6.15 Let M be a closed 4-manifold which is homotopy equivalent
to the total space E of an F-bundle over B where B and F' are aspherical
closed surfaces. Then M is s-cobordant to E and M is homeomorphic to R?.

Proof If x(B) = 0 then m x Z is an extension of a poly-Z group (of Hirsch
length 3) by m1(F). Otherwise, m1(B) = F %z F', where the amalgamated
subgroup Z is square-root closed in each of the free groups F and F’. (See
the final paragraph on page 120.) In all cases m x Z is a square root closed
generalised free product with amalgamation of groups in Cl. Comparison of the
Mayer-Vietoris sequences for Ly-homology and L-theory (as in [St84, Proposi-
tion 2.6]) shows that Srop(E x S') has just one element. (Note that even when
X(B) = 0 the groups arising in intermediate stages of the argument all have

Geometry & Topology Monographs, Volume 5 (2002)



6.5 Bundles over aspherical surfaces 127

trivial Whitehead groups.) Hence M x S!' = E x S and so M is s-cobordant
to E by Lemma 6.10 and Theorem 6.2.

The final assertion follows from [FQ, Corollary 7.3B], since M is aspherical and
7 is 1-connected at oo [Ho77]. O

Davis has constructed aspherical 4-manifolds whose universal covering space is
not 1-connected at oo [Da83].

Theorem 6.16 Let M be a closed 4-manifold which is homotopy equivalent
to the total space E of an S 2—l/)\qndle over an aspherical closed surface B. Then
M is s-cobordant to E, and M is homeomorphic to S? x R?.

Proof Let 7 =m(E) = m(B). Then Wh(m) =0, and H,(m;Ly) = L. (7, w),
as in Lemma 6.9. Hence Ly(m,w) = Z @ (Z/22) if w = 0 and (Z/22)*
otherwise. The surgery obstruction map o4(F) is onto, by Lemma 6.9. Hence
there are two normal cobordism classes of maps h : X — E with o4(h) =
0. The kernel of the natural homomorphism from Hy(E;Fp) = (Z/27)? to
Hy(m; o) = Z/27 is generated by j.[S?], where j : S? — E is the inclusion
of a fibre. As j.[S?] # —0, while wy(E)(j.[S?) = j*w2(E) = 0 the normal
invariant of f; is nontrivial, by Lemma 6.5. Hence each of these two normal
cobordism classes contains a self homotopy equivalence of E.

Let f: M — E be a homotopy equivalence (necessarily simple). Then there is a
normal cobordism F' : V — Ex[0,1] from f to some self homotopy equivalence
of E. As I is an isomorphism, by Lemma 6.9, there is an s-cobordism W
from M to E, as in Corollary 6.7.2.

The universal covering space W is a proper s-cobordism from M to E
52 x R2. Since the end of E is tame and has fundamental group Z we may
apply [FQ, Corollary 7.3B] to conclude that W is homeomorphic to a product.
Hence M is homeomorphic to S? x R2. a

~

Let p be a PDy-group. As m = p x (Z/2Z) is square-root closed accessi-
ble from Z/2Z, the Mayer-Vietoris sequences of [Ca73] imply that Ls(w, w) =
Ly(Z/2Z,—) ® Ly(Z/2Z,—) and that Ls(m,w) = Ly(Z/2Z,—)?, where w =
pro:m — Z/2Z and B = B1(p;F2). Since these L-groups are finite the struc-
ture sets of total spaces of RP?-bundles over aspherical surfaces are also finite.
(Moreover the arguments of Theorems 6.13 and 6.14 can be extended to show
that o4 is an epimorphism and that most of Ls(mw, w) acts trivially on idg,
where F is such a bundle space.)
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Chapter 7

Geometries and decompositions

Every closed connected surface is geometric, i.e., is a quotient of one of the three
model 2-dimensional geometries E2, H? or S? by a free and properly discontinu-
ous action of a discrete group of isometries. Every closed irreducible 3-manifold
admits a finite decomposition into geometric pieces. (That this should be so
was the Geometrization Conjecture of Thurston, which was proven in 2003 by
Perelman, through an analysis of the Ricci flow, introduced by Hamilton.) In
§1 we shall recall Thurston’s definition of geometry, and shall describe briefly
the 19 4-dimensional geometries. Our concern in the middle third of this book
is not to show how this list arises (as this is properly a question of differen-
tial geometry; see [Isb5, Fi, Pa96] and [W185, WI86]), but rather to describe
the geometries sufficiently well that we may subsequently characterize geomet-
ric manifolds up to homotopy equivalence or homeomorphism. In §2 and §3
we relate the notions of “geometry of solvable Lie type” and “infrasolvmani-
fold”. The limitations of geometry in higher dimensions are illustrated in §4,
where it is shown that a closed 4-manifold which admits a finite decomposi-
tion into geometric pieces is (essentially) either geometric or aspherical. The
geometric viewpoint is nevertheless of considerable interest in connection with
complex surfaces [Ue90, Ue91, WI85, WI86]. With the exception of the geome-
tries S? x H?, H? x H?, H? x E? and SL x E! no closed geometric manifold
has a proper geometric decomposition. A number of the geometries support
natural Seifert fibrations or compatible complex structures. In §4 we character-
ize the groups of aspherical 4-manifolds which are orbifold bundles over flat or
hyperbolic 2-orbifolds. We outline what we need about Seifert fibrations and
complex surfaces in §5 and §6.

Subsequent chapters shall consider in turn geometries whose models are con-
tractible (Chapters 8 and 9), geometries with models diffeomorphic to S? x R?
(Chapter 10), the geometry S? x E! (Chapter 11) and the geometries with com-
pact models (Chapter 12). In Chapter 13 we shall consider geometric structures
and decompositions of bundle spaces. In the final chapter of the book we shall
consider knot manifolds which admit geometries.
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7.1 Geometries

An n-dimensional geometry X in the sense of Thurston is represented by a pair
(X,Gx) where X is a complete 1-connected n-dimensional Riemannian mani-
fold and Gx is a Lie group which acts effectively, transitively and isometrically
on X and which has discrete subgroups I' which act freely on X so that T\ X
has finite volume. (Such subgroups are called lattices.) Since the stabilizer of
a point in X is isomorphic to a closed subgroup of O(n) it is compact, and so
I"\X is compact if and only if I'\Gx is compact. Two such pairs (X, G) and
(X', G") define the same geometry if there is a diffecomorphism f : X — X'
which conjugates the action of G onto that of G’. (Thus the metric is only
an adjunct to the definition.) We shall assume that G is maximal among Lie
groups acting thus on X, and write Isom(X) = G, and Isom,(X) for the com-
ponent of the identity. A closed manifold M is an X-manifold if it is a quotient
X for some lattice in Gx. Under an equivalent formulation, M is an X-
manifold if it is a quotient I'\ X for some discrete group I' of isometries acting
freely on a 1-connected homogeneous space X = G/K, where G is a connected
Lie group and K is a compact subgroup of G such that the intersection of
the conjugates of K is trivial, and X has a G-invariant metric. The manifold
admits a geometry of type X if it is homeomorphic to such a quotient. If G is
solvable we shall say that the geometry is of solvable Lie type. If X = (X,Gx)
and Y = (Y, Gy ) are two geometries then X X Y supports a geometry in a nat-
ural way; Gxxy = Gx X Gy if X and Y are irreducible and not isomorphic,
but otherwise Gxxy may be larger.

The geometries of dimension 1 or 2 are the familiar geometries of constant
curvature: E!', E?, H? and S?. Thurston showed that there are eight maximal
3-dimensional geometries (E3, Nil®, H? x E!', SL, Sol?, H3, S? x E! and
S3.) Manifolds with one of the first five of these geometries are aspherical
Seifert fibred 3-manifolds or Sol*-manifolds. These are determined by their
fundamental groups, which are the PDjs-groups with nontrivial Hirsch-Plotkin
radical. A closed 3-manifold M is hyperbolic if and only if it is aspherical and
71(M) has no rank 2 abelian subgroup, while it is an S*-manifold if and only
if m (M) is finite, by the work of Perelman [B-P]|. (See §11.4 below for more
on S3-manifolds and their groups.) There are just four S? x E!-manifolds. For
a detailed and lucid account of the 3-dimensional geometries see see [Sc83].

There are 19 maximal 4-dimensional geometries; one of these (Solp,, ) is in
fact a family of closely related geometries, and one (F*) is not realizable by
any closed manifold [Fi]. We shall see that the geometry is determined by the
fundamental group (cf. [W186, K092]). In addition to the geometries of constant
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curvature and products of lower dimensional geometries there are seven “new”
4-dimensional geometries. Two of these have models the irreducible Riemannian
symmetric spaces CP? = U(3)/U(2) and H*(C) = SU(2,1)/S(U(2) x U(1)).
The model for the geometry F* is the tangent bundle of the hyperbolic plane,
which we may identify with R? x H?. Its isometry group is the semidirect
product R? x, SL*(2,R), where SL*(2,R) = {A € GL(2,R) | det A = +1},
and « is the natural action of SL*(2,R) on R2. The identity component acts
on R? x H? as follows: if u € R? and A = (¢%) € SL(2,R) then u(w,z) =
(u+ w,z) and A(w,z) = (Aw, ij:g) for all (w,z) € R? x H?. The matrix
D = ({°%) acts via D(w,2) = (Dw,—2). All H*(C)- and F*-manifolds are
orientable. The other four new geometries are of solvable Lie type, and shall
be described in §2 and §3.

In most cases the model X is homeomorphic to R*, and the corresponding ge-
ometric manifolds are aspherical. Six of these geometries (E*, Nil*, Nil? x E!,
Solfn’n, Sol§ and Sol}) are of solvable Lie type; in Chapter 8 we shall show man-
ifolds admitting such geometries have Fuler characteristic 0 and fundamental
group a torsion-free virtually poly-Z group of Hirsch length 4. Such manifolds
are determined up to homeomorphism by their fundamental groups, and every
such group arises in this way. In Chapter 9 we shall consider closed 4-manifolds
admitting one of the other geometries of aspherical type (H® x E!, SL x E!,
H? x E2, H? x H?, H*, H?(C) and F*). These may be characterised up to
s-cobordism by their fundamental group and Euler characteristic. However it
is unknown to what extent surgery arguments apply in these cases, and we do
not yet have good characterizations of the possible fundamental groups. Al-
though no closed 4-manifold admits the geometry F*, there are such manifolds
with proper geometric decompositions involving this geometry; we shall give
examples in Chapter 13.

Three of the remaining geometries (S? x E?, S x H? and S? x E!) have models
homeomorphic to $? xR? or $% xR. The final three (S*, CP? and S? xS?) have
compact models, and there are only eleven such manifolds. We shall discuss
these nonaspherical geometries in Chapters 10, 11 and 12.

7.2 Infranilmanifolds

The notions of “geometry of solvable Lie type” and “infrasolvmanifold” are
closely related. We shall describe briefly the latter class of manifolds, from
a rather utilitarian point of view. As we are only interested in closed mani-
folds, we shall frame our definitions accordingly. We consider the easier case of
infranilmanifolds in this section, and the other infrasolvmanifolds in §3.
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A flat n-manifold is a quotient of R™ by a discrete torsion-free subgroup of
E(n) = Isom(E") = R"™ x4, O(n) (where « is the natural action of O(n) on
R™). A group w is a flat n-manifold group if it is torsion-free and has a nor-
mal subgroup of finite index which is isomorphic to Z™. (These are necessary
and sufficient conditions for 7 to be the fundamental group of a closed flat
n-manifold.) The translation subgroup T(w) = 7 NR™ is the maximal abelian
normal subgroup of 7. Conjugation in 7 induces a faithful action of m/T(w)
on T(mw). On choosing an isomorphism T'(w) = Z" we may identify = /T'()
with a subgroup of GL(n,Z); this subgroup is called the holonomy group of m,
and is well defined up to conjugacy in GL(n,Z). We say that 7 is orientable
if the holonomy group lies in SL(n,Z); equivalently, 7 is orientable if the flat
n-manifold R™ /7 is orientable or if 7 < E(n)t = R"™ x, SO(n). If two dis-
crete torsion-free cocompact subgroups of F(n) are isomorphic then they are
conjugate in the larger group Aff(R") = R" x,GL(n,R), and the correspond-
ing flat n-manifolds are “affinely” diffeomorphic. There are only finitely many
isomorphism classes of such flat n-manifold groups for each n.

A nilmanifold is a coset space of a 1-connected nilpotent Lie group by a discrete
subgroup. More generally, an infranilmanifold is a quotient 7\N where N is
a l-connected nilpotent Lie group and w is a discrete torsion-free subgroup
of the semidirect product Aff(N) = N x, Aut(N) such that the translation
subgroup T'(m) = m# N N is a lattice in N and 7/7 N N is finite. Thus in-
franilmanifolds are finitely covered by nilmanifolds. It follows from the work
of Mal’cev that T'(w) = /7 and that the Lie group N is determined by /7
[Ma49]. Two infranilmanifolds are diffeomorphic if and only if their fundamen-
tal groups are isomorphic. The isomorphism may then be induced by an affine
diffeomorphism. The infranilmanifolds derived from the abelian Lie groups R"”
are just the flat manifolds. It is not hard to see that there are just three 4-
dimensional (real) nilpotent Lie algebras. (Compare the analogous argument of
Theorem 1.4.) Hence there are three 1-connected 4-dimensional nilpotent Lie
groups, R*, Nil3 x R and Nil%.

The group Nil® is the subgroup of SL(3,R) consisting of upper triangular

1 r ¢
matrices [r,s,¢] = [0 1 s|. It has abelianization R? and centre (Nil® =
0 01

Nil¥ = R. The elements [1,0,0], [0,1,0] and [0,0,1/q] generate a discrete
cocompact subgroup of Nil? isomorphic to I' ¢, and these are essentially the
only such subgroups. (Since they act orientably on R? they are PDj -groups.)
The coset space N, = Nil®/T, is the total space of the S!-bundle over S! x S*
with Euler number ¢, and the action of (Nil® on Nil® induces a free action
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of §1 = (Nil/(T'qy on N,. The group Nil* is the semidirect product R? xg R,
where 0(t) = [t,t,t2/2]. Tt has abelianization R? and central series (Nil* =
R < (,Nil* = Nil¥' ~ R2.

These Lie groups have natural left invariant metrics, and the isometry groups
are generated by left translations and the stabilizer of the identity. For Nil3
this stabilizer is O(2), and Isom(Nil®) is an extension of E(2) by R. Hence
Isom(Nil® x E') = Isom(Nil3) x E(1). For Nil* the stabilizer is (Z/22)?, and
is generated by two involutions, which send ((x,y,z),t) to (—(z,y,z2),t) and
((—z,y,2), —t), respectively. (See [Sc83’, WI86].)

7.3 Infrasolvmanifolds

The situation for (infra)solvmanifolds is more complicated. An infrasolvmani-
foldis a quotient M = I'\'S where S is a 1-connected solvable Lie group and I is
a closed torsion-free subgroup of the semidirect product Af f(S) = S x4 Aut(S)
such that T', (the component of the identity of I') is contained in the nilrad-
ical of S (the maximal connected nilpotent normal subgroup of S), I'/T'N S
has compact closure in Aut(S) and M is compact. The pair (5,T") is called a
presentation for M, and is discrete if I' is a discrete subgroup of Aff(S), in
which case 71 (M) = I'. Every infrasolvmanifold has a presentation such that
I'/T NS is finite [FJ97], but I" need not be discrete, and S is not determined

by 7. (For example, Z3 is a lattice in both R?® and E(2)* = C x5 R, where
a(t)(z) = e*™z forall t € R and z € C.)

Since S and T, are each contractible, X = T',\S is contractible also. It can be
shown that = = I'/T", acts freely on X, and so is a PD,,, group, where m is the
dimension of M = 7w\ X. (See [Au73, Chapter IIL.3] for the solvmanifold case.)
Since 7 is also virtually solvable it is thus virtually poly-Z of Hirsch length m
[Bi, Theorem 9.23], and x(M) = x(7) = 0.

Working in the context of real algebraic groups, Baues has shown in [Ba04] that

(1) every infrasolvmanifold has a discrete presentation with I'/T'N .S finite;

(2) infrasolvmanifolds with isomorphic fundamental groups are diffeomor-
phic.

He has also given a new construction which realizes each torsion-free virtu-
ally poly-Z group as the fundamental group of an infrasolvmanifold, a result
originally due to Auslander and Johnson [AJ76]. Farrell and Jones had shown
earlier that (2) holds in all dimensions except perhaps 4. However there is not
always an affine diffeomorphism [FJ97]. (Theorem 8.9 below gives an ad hoc
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argument, using the Mostow orbifold bundle associated to a presentation of
an infrasolvmanifold and standard 3-manifold theory, which covers most of the
4-dimensional cases.) Other notions of infrasolvmanifold are related in [K'Y13].

An important special case includes most infrasolvmanifolds of dimension < 4
(and all infranilmanifolds). Let 7,7 (R) be the subgroup of GL(n,R) consisting
of upper triangular matrices with positive diagonal entries. A Lie group S is
triangular if is isomorphic to a closed subgroup of T, (R) for some n. The
eigenvalues of the image of each element of S under the adjoint representation
are then all real, and so S is of type R in the terminology of [Go7l]. (It
can be shown that a Lie group is triangular if and only if it is 1-connected
and solvable of type R.) Two infrasolvmanifolds with discrete presentations
(Si,I';) where each S; is triangular (for ¢ = 1, 2) are affinely diffeomorphic
if and only if their fundamental groups are isomorphic [Le95, Theorem 3.1].
The translation subgroup S N T of a discrete pair with S triangular can be
characterised intrinsically as the subgroup of I' consisting of the elements g € I'
such that all the eigenvalues of the automorphisms of the abelian sections of the
lower central series for /T induced by conjugation by ¢ are positive [De97].

Let S be a connected solvable Lie group of dimension m, and let N be its
nilradical. If 7 is a lattice in S then it is torsion-free and virtually poly-Z of
Hirsch length m and 7 N N = /7 is a lattice in N. If S is 1-connected then
S/N is isomorphic to some vector group R", and 7/\/m = Z"™. A complete
characterization of such lattices is not known, but a torsion-free virtually poly-
Z group 7 is a lattice in a connected solvable Lie group S if and only if 7//7
is abelian. (See [Rg, Sections 4.29-31].)

The 4-dimensional solvable Lie geometries other than the infranil geometries
are Sol,‘ﬁm, Sol§ and Sol}, and the model spaces are solvable Lie groups with
left invariant metrics. The following descriptions are based on [WI186]. The
Lie group is the identity component of the isometry group for the geometries
Soly, ,, and Solj; the identity component of Isom(Sol3) is isomorphic to the
semidirect product (C&R) ., C*, where v(2)(u, z) = (2u, |z| ) for all (u,x)
in C®R and z in C*, and thus Solé admits an additional isometric action of

S, by rotations about an axis in C @ R 2R3, the radical of Solg.

Solfmn =R3 Xg,, , R, where m and n are integers such that the polynomial
fnn = X3—mX24nX —1 has distinct roots e?, ¢’ and e¢ (with a < b < ¢ real)
and O, ,(t) is the diagonal matrix diagle®, e, e]. Since O, 5 (t) = Opm(—t)
we may assume that m < n; the condition on the roots then holds if and only if
2y/n < m < n. The metric given by ds? = e 20tqy? 4 e_thdy2 +e2tdz2 4 qt2
(in the obvious global coordinates) is left invariant, and the automorphism of
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Sol;‘;ﬁhn which sends (z,y, z,t) to (px, qy,rz,t) is an isometry if and only if p? =
q¢> =12 =1. Let G be the subgroup of GL(4,R) of bordered matrices (18 f),
where D = diag[+e™, +e', +e”] and ¢ € R®. Then Soly, ,, is the subgroup of
G with positive diagonal entries, and G = Isom(Soly, ) if m #n. If m =n
then b = 0 and Solfmm = Sol® x E!', which admits the additional isometry
sending (x,v,2,t) to (z,y,2,—t), and G has index 2 in ITsom(Sol® x E'). The
stabilizer of the identity in the full isometry group is (Z/2Z)3 for Sol%, ,, if

m # n and Dgx(Z/2Z) for Sol*>xR. In all cases Isom(Soly, ,,) < Aff(Solf,;n).

In general Soly, ,, = Sol}, ., if and only if (a,b,c) = A(d/, ', ) for some A # 0.
Must A be rational? (Thié is a case of the “problem of the four exponentials” of
transcendental number theory.) If m # n then F, , = Q[X]/(fmn) is a totally
real cubic number field, generated over Q by the image of X. The images of X
under embeddings of F}, ,, in R are the roots e®, e and e, and so it represents
a unit of norm 1. The group of such units is free abelian of rank 2. Therefore
if A =r/s € Q* this unit is an 7* power in F,, (and its 7" root satisfies
another such cubic). It can be shown that |r| < logy(m), and so (modulo the
problem of the four exponentials) there is a canonical “minimal” pair (m,n)
representing each such geometry.

Soly = R3 x¢ R, where £(t) is the diagonal matrix diag[e’,ef,e?!]. Note
that if £(t) preserves a lattice in R?® then its characteristic polynomial has
integral coefficients and constant term —1. Since it has e’ as a repeated root
we must have £(t) = I. Therefore Sol3 does not admit any lattices. The metric
given by the expression ds? = e~ (dx? + dy?) + e*'dz? + dt? is left invariant,
and O(2) x O(1) acts via rotations and reflections in the (z,y)-coordinates and
reflection in the z-coordinate, to give the stabilizer of the identity. These actions
are automorphisms of Sold, so Isom(Solg) = Solgx(0(2)xO(1)) < Aff(Solg).
The identity component of I'som(Sold) is not triangular.

1 y =z
Sol} is the group of real matrices {0 t x| : ¢ >0, =, y, 2 € R}. The
0 0 1

metric given by ds? = t~2((14+22)(dt? + dy?) +t?(dz? + d2?) — 2tz (dtdz + dydz))
is left invariant, and the stabilizer of the identity is Dg, generated by the
isometries which send (¢, z,v, 2) to (t, —z,y, —z) and to t (1, —y, —x, zy —t2).
These are automorphisms. (The latter one is the restriction of the involution
Q of GL(3,R) which sends A to J(A")~1J, where J reverses the order of
the standard basis of R3.) Thus Isom(Sol}) = Sol{ x Dg < Aff(Sol}). The
orientation-preserving subgroup is isomorphic to the subgroup & of GL(3,R)
generated by Solf and the diagonal matrices diag[—1,1,1] and diag[1,1, —1].
(Note that these diagonal matrices act by conjugation on Solt.)
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Closed Solan— or Sol}-manifolds are clearly infrasolvmanifolds. The Solg case
is more complicated. Let 5(2)(u, z) = (e*u, e~ 2R¢()z) for all (u,z) in C®R and
zin C. Then I = (C®R) x5 C is the universal covering group of Isom(Soly).
If M is a closed Solé—manifold its fundamental group 7 is a semidirect product
73 x9 7, where (1) € GL(3,Z) has two complex conjugate eigenvalues \ # A
with |A| # 0 or 1 and one real eigenvalue p such that |p| = |[A\|72. (See Chapter
8.) If M is orientable (i.e., p > 0) then 7 is a lattice in Sy = (COR) xzR <
I, where 6(r) = 5(rlog(\)). In general, 7 is a lattice in Aff(S,+). The
action of I on Sol} determines a diffeomorphism S+ /7 = M, and so M is an
infrasolvmanifold with a discrete presentation.

7.4 Orbifold bundles

An n-dimensional orbifold B has an open covering by subspaces of the form
D" /G, where G is a finite subgroup of O(n). The orbifold B is good if B =
M\M, where T' is a discrete group acting properly discontinuously on a 1-
connected manifold M; we then write 7°%(B) = T'. It is aspherical if the
universal cover M is contractible. A good 2-orbifold B is a quotient of R?, S?
or H? by an isometric action of 7°"%(B), and so is flat, spherical or hyperbolic.
Moreover, if B is compact it is a quotient of a closed surface by the action of
a finite group. An orbifold is bad if it is not good.

Let F' be a closed manifold. An orbifold bundle with general fibre F' over B is
amap f: M — B which is locally equivalent to a projection G\(F x D") —
G\D", where G acts freely on F' and effectively and orthogonally on D™. If
the base B has a finite regular covering B which is a manifold, then p induces
a fibre bundle projection p : M — B with fibre F, and the action of the
covering group maps fibres to fibres. Conversely, if p; : My — By is a fibre
bundle projection with fibre F; and G is a finite group which acts freely on
M; and maps fibres to fibres then passing to orbit spaces gives an orbifold
bundle p : M = G\M; — B = H\B; with general fibre F' = K\F;, where
H is the induced group of homeomorphisms of B; and K is the kernel of the
epimorphism from G to H. We shall also say that f: M — B is an F'-orbifold
bundle and M is an F-orbifold bundle space.

Theorem 7.1 [Cb] Let M be an infrasolvmanifold. Then there is an orbifold
bundle p : M — B with general fibre an infranilmanifold and base a flat
orbifold.

Proof Let (S,T') be a presentation for M and let R be the nilradical of S.
Then A = S/R is a 1-connected abelian Lie group, and so A = R? for some
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d > 0. Since R is characteristic in S there is a natural projection g : Aff(S) —
Aff(A). Let T's =I'nS and I'r = I'N R. Then the action of I's on S induces
an action of the discrete group ¢(I's) = RI's/R on A. The Mostow fibration for
M; =Tg\S is the quotient map to By = q(I's)\ A, which is a bundle projection
with fibre F; = T'r\R. Now I, is normal in R [Rg, Theorem 2.3, Corollary
3], and I'r/T, is a lattice in the nilpotent Lie group R/T,. Therefore F} is a
nilmanifold, while B; is a torus.

The finite group I'/T's acts on Mj, respecting the Mostow fibration. Let T =
q(T'), K =T NKer(q) and B =T\A. Then the induced map p: M — B is an
orbifold bundle projection with general fibre the infranilmanifold F' = K\R =
(K/T,)\(R/T,), and base a flat orbifold. O

We shall call p: M — B the Mostow orbifold bundle corresponding to (S,T").
In Theorem 8.9 we shall use this construction to show that most 4-dimensional
infrasolvmanifolds are determined up to diffeomorphism by their fundamental
groups. (Our argument fails for two virtually abelian fundamental groups.)

The Gluck reconstruction of an S?-orbifold bundle p : M — B is the orbifold
bundle p” : M7 — B obtained by removing a product neighbourhood S? x D?
of a general fibre and reattaching it via the nontrivial twist 7 of S? x S'. It
can be shown that p is determined up to Gluck reconstruction by 7 = 7°"°(B)
and the action u : 7 — Aut(ma(M)), and that if B has a reflector curve then p
and p” are isomorphic as orbifold bundles over B. (See [Hil3].)

7.5 Geometric decompositions

An n-manifold M admits a geometric decomposition if it has a finite family
S of disjoint 2-sided hypersurfaces S such that each component of M \ US is
geometric of finite volume, i.e., is homeomorphic to I'\ X, for some geometry
X and lattice I'. We shall call the hypersurfaces S cusps and the components
of M \ US pieces of M. The decomposition is proper if S is nonempty.

Theorem 7.2 If a closed 4-manifold M admits a geometric decomposition
then either

(1) M is geometric; or

(2) M is the total space of an orbifold bundle with general fibre S* over a
hyperbolic 2-orbifold; or

(3) the components of M \ US all have geometry H? x H?; or
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(4) the components of M \ US have geometry H*, H? x E!, H? x E? or
SL x E'; or
(5) the components of M \ US have geometry H?(C) or F*.
In cases (3), (4) or (5) x(M) > 0 and in cases (4) or (5) M is aspherical.

Proof The proof consists in considering the possible ends (cusps) of complete
geometric 4-manifolds of finite volume. The hypersurfaces bounding a com-
ponent of M \ US correspond to the ends of its interior. If the geometry is
of solvable or compact type then there are no ends, since every lattice is then
cocompact [Rg]. Thus we may concentrate on the eight geometries S? x H?,
H? x E2, H2 x H2, SL x E!, H3 x E!, HY, H2(C) and F4. The ends of a
geometry of constant negative curvature H" are flat [Eb80]; since any lattice
in a Lie group must meet the radical in a lattice it follows easily that the ends
are also flat in the mixed euclidean cases H? x E', H? x E? and SL x E'. Sim-
ilarly, the ends of S? x H?-manifolds are S? x E!-manifolds. Since the elements
of PSL(2,C) corresponding to the cusps of finite area hyperbolic surfaces are
parabolic, the ends of F4-manifolds are Nil?-manifolds. The ends of H?(C)-
manifolds are also Nil?-manifolds [Go], while the ends of H? x H2-manifolds are
Sol?-manifolds in the irreducible cases [Sh63], H? x E!-manifolds if the pieces
are virtually products of a closed surface with a punctured surface, and non-
trivial graph manifolds otherwise. Clearly if two pieces are contiguous their
common cusps must be homeomorphic. If the piece is not virtually a product
of two punctured surfaces then the inclusion of a cusp into the closure of the
piece induces a monomorphism on fundamental group.

If M is a closed 4-manifold with a geometric decomposition of type (2) the
inclusions of the cusps into the closures of the pieces induce isomorphisms on
72, and a Mayer-Vietoris argument in the universal covering space M shows
that M is homotopy equivalent to S?. The natural foliation of S? x H? by
2-spheres induces a codimension-2 foliation on each piece, with leaves S? or
RP?. The cusps bounding the closure of a piece are S? x E!-manifolds, and
hence also have codimension-1 foliations, with leaves S? or RP?. Together
these foliations give a foliation of the closure of the piece, so that each cusp is a
union of leaves. The homeomorphisms identifying cusps of contiguous pieces are
isotopic to isometries of the corresponding S? x E'-manifolds. As the foliations
of the cusps are preserved by isometries M admits a foliation with leaves S? or
RP?. If all the leaves are homeomorphic then the projection to the leaf space
is a submersion and so M is the total space of an S%- or RP2?-bundle over a
hyperbolic surface. In Chapter 10 we shall show that S%- and RP?-bundles
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over aspherical surfaces are geometric. Otherwise, M is the total space of an
S2-orbifold bundle over a hyperbolic 2-orbifold.

If at least one piece has an aspherical geometry other than H? x H? then all
do and M is aspherical. Since all the pieces of type H*, H?(C) or H? x H?
have strictly positive Euler characteristic while those of type H? x E!, H? x E?,
SL x E! or F* have Euler characteristic 0 we must have x (M) > 0. O

In Theorem 10.2 we shall show every pair (B, ) with B an aspherical 2-orbifold
and u an action of 7 = 7°"*(B) on Z with torsion-free kernel is realized by an
S2-orbifold bundle p : M — B, with geometric total space. It can be shown
that every S2-orbifold bundle over B is isomomorphic to p or to its Gluck
reconstruction p”, and that M7 is also geometric if and only if either B has a
reflector curve, in which case p” = p as orbifold bundles, or 7 is not generated
by involutions. However, if B is the 2-sphere with 2k > 4 cone points of order
2 then M7 is not geometric. (See [Hill] and [Hil3].)

If in case (3) one piece is finitely covered by the product of a closed surface
and a punctured surface then all are, and M is aspherical. If one piece is
finitely covered by the product of two punctured surfaces then its boundary
is connected, and so there must be just two pieces. Such manifolds are never
aspherical, for as the product of two free groups has cohomological dimension 2
and the cusp is a nontrivial graph manifold the homomorphisms of fundamental
groups induced by the inclusions of the cusp into either piece have nontrivial
kernel. The simplest such example is the double of T, xT,, where T, =T \intD2
is the once-punctured torus.

Is there an essentially unique minimal decomposition? Since hyperbolic surfaces
are connected sums of tori, and a punctured torus admits a complete hyperbolic
geometry of finite area, we cannot expect that there is an unique decomposition,
even in dimension 2. Any PD,,-group satisfying maz-c (the maximal condition
on centralizers) has an essentially unique minimal finite splitting along virtually
poly-Z subgroups of Hirsch length n — 1 [Kr90, Theorem A2]. (The maz-c
condition is unnecessary [SS].) A compact non-positively curved n-manifold
(n > 3) with convex boundary is either flat or has a canonical decomposition
along totally geodesic closed flat hypersurfaces into pieces which are Seifert
fibred or codimension-1 atoroidal [LS00]. Which 4-manifolds with geometric
decompositions admit such metrics? (Closed SL x E!-manifolds do not [Eb82].)

If an aspherical closed 4-manifold M has a nontrivial geometric decomposition
then the subgroups of (M) corresponding to the cusps contain copies of Z?2,
and if M has no pieces which are reducible H? x H?-manifolds the cuspidal
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subgroups are polycyclic of Hirsch length 3. Closed H*- or H?(C)-manifolds
admit no proper geometric decompositions, since their fundamental groups have
no noncyclic abelian subgroups [Pr43]. Similarly, closed H? x E!-manifolds
admit no proper decompositions, since they are finitely covered by cartesian
products of H>-manifolds with S'. Thus closed 4-manifolds with a proper
geometric decomposition involving pieces of types other than S? x H?, H? x E?,
H? x H? or SL x E! are never geometric.

Many S? x H2-, H2 x H2-, H? x E2- and SL x E!-manifolds admit proper
geometric decompositions. On the other hand, a manifold with a geometric
decomposition into pieces of type H? x E? need not be geometric. For instance,
let G = (u,v,z,y | [u,v] = [z,y]) be the fundamental group of THT', the closed
orientable surface of genus 2, and let § : G — SL(2,Z) be the epimorphism
determined by 6(u) = (9 '), 6(z) = (% 1) and 6(v) = 6(y) = 1. Then the
semidirect product m = Z? xg G is the fundamental group of a torus bundle
over THT which has a geometric decomposition into two pieces of type H? x 2,
but is not geometric, since 7 has no subgroup of finite index with centre Z2.

It is easily seen that each S? x E!-manifold may be realized as the end of a
complete S? x H?-manifold with finite volume and a single end. However, if the
manifold is orientable the ends must be orientable, and if it is complex analytic
then they must be S? x S'. Every flat 3-manifold is a cusp of some (complete,
finite volume) H*-manifold [Ni98]. However if such a manifold has only one cusp
the cusp cannot have holonomy Z/3Z or Z/6Z [LR00]. The fundamental group
of a cusp of an SL x E!-manifold must have a chain of abelian normal subgroups
7. < 7? < 7Z3; thus if the cusp is orientable the group is Z? or Z? x_; Z. Every
Nil3-manifold is a cusp of some H?(C)-manifold [McR09]. The ends of complex
analytic H? x H2-manifolds with irreducible fundamental group are orientable
Sol?-manifolds which are mapping tori [Sh63]. Every orientable Sol3-manifold
is a cusp of some H? x H2-manifold [McRO8].

Let X = H*, H2(C) or H? x H?. A nontrivial element of I'som(X") which
acts freely on X must have a fixed point on 0, X, by the Brouwer fixed point
theorem. It is parabolic if it has an unique fixed point. Clearly if g* is parabolic
for some k > 1 then so is g, and they fix the same point of 0, X. A point
v € JooX represents a cusp of I\ X if T, = {g € I | g(v) = v} is a nontrivial
subgroup whose non-identity elements are parabolic. It follows immediately
that T', is square-root closed in I'. However cuspidal subgroups of pieces of
type H? x E2, F* or H3 x E' need not be square-root closed in the groups of
such pieces. For instance, the natural Seifert fibration of a piece of type H? x E2
may have base with cone point singularities of even order, or reflector curves.
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7.6 Realization of virtual bundle groups

Every extension of one PDs-group by another may be realized by some surface
bundle, by Theorem 5.2. The study of Seifert fibred 4-manifolds and singular
fibrations of complex surfaces lead naturally to consideration of the larger class
of torsion-free groups which are virtually such extensions. Johnson has asked
whether such virtual bundle groups may be realized by aspherical 4-manifolds.

Theorem 7.3 Let 7 be a torsion-free group with normal subgroups K < G <
7 such that K and G/K are PDy-groups and [ : G] < co. Then 7 is the
fundamental group of an aspherical closed smooth 4-manifold which is the total
space of an orbifold bundle with general fibre an aspherical closed surface over
a 2-dimensional orbifold.

Proof Let p: 7 — 7/K be the quotient homomorphism. Since 7 is torsion-
free the preimage in 7 of any finite subgroup of 7/K is a PDs-group. As the
finite subgroups of 7/K have order at most |7 : G], we may assume that 7/K
has no nontrivial finite normal subgroup, and so is the orbifold fundamental
group of some 2-dimensional orbifold B, by the solution to the Nielsen realiza-
tion problem for surfaces [Ke83|. Let F' be the aspherical closed surface with
m(F) = K. If 7/K is torsion-free then B is a closed aspherical surface, and
the result follows from Theorem 5.2. In general, B is the union of a punctured
surface B, with finitely many cone discs and regular neighborhoods of reflector
curves (possibly containing corner points). The latter may be further decom-
posed as the union of squares with a reflector curve along one side and with
at most one corner point, with two such squares meeting along sides adjacent
to the reflector curve. These suborbifolds U; (i.e., cone discs and squares) are
quotients of D? by finite subgroups of O(2). Since B is finitely covered (as an
orbifold) by the aspherical surface with fundamental group G/K these finite
groups embed in 7$""(B) = 7/K , by the Van Kampen Theorem for orbifolds.

The action of 7/K on K determines an action of 71(B,) on K and hence
an F-bundle over B,. Let H; be the preimage in 7 of 7¢"*(U;). Then H;
is torsion-free and [H; : K] < 0o, so H; acts freely and cocompactly on X2,
where X? = R? if y(K) = 0 and X2 = H? otherwise, and F' is a finite covering
space of HZ-\XQ. The obvious action of H; on X2 x D? determines a bundle
with general fibre F' over the orbifold U;. Since self homeomorphisms of F
are determined up to isotopy by the induced element of Out(K), bundles over
adjacent suborbifolds have isomorphic restrictions along common edges. Hence
these pieces may be assembled to give a bundle with general fibre F' over the
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orbifold B, whose total space is an aspherical closed smooth 4-manifold with
fundamental group . a

We can improve upon Theorem 5.7 as follows.

Corollary 7.3.1 Let M be a PDs-complex with fundamental group 7. Then
the following are equivalent.

(1) M is homotopy equivalent to the total space of an orbifold bundle with
general fibre an aspherical surface over an E2- or H?-orbifold;

(2) 7 has an F P, normal subgroup K such that w/K is virtually a PDs-
group and ma(M) = 0;

(3) = has a normal subgroup N which is a PDy-group and mo(M) = 0.

Proof Condition (1) clearly implies (2) and (3). Conversely, if they hold the
argument of Theorem 5.7 shows that K is a PDy-group and N is virtually a
PDs-group. In each case (1) now follows from Theorem 7.3. ]

It follows easily from the argument of part (1) of Theorem 5.4 that if 7 is a
group with a normal subgroup K such that K and n/K are PDy-groups with
(K = ((r/K) =1, p is a subgroup of finite index in 7 and L = K N p then
C,(L) =1 if and only if Cr(K) = 1. Since p is virtually a product of PDy-
groups with trivial centres if and only if 7 is, Johnson’s trichotomy extends to
groups commensurate with extensions of one centreless PDs-group by another.

Theorem 7.3 settles the realization question for groups of type I. (For suppose
7 has a subgroup ¢ of finite index with a normal subgroup v such that v and
o/v are PDy-groups with (v = ((0/v) = 1. Let G =Nhoh™! and K = vNG.
Then [r: G] < 00, G isnormal in 7, and K and G/K are PDs-groups. If G is
of type I then K is characteristic in G, by Theorem 5.5, and so is normal in 7.)
Groups of type II need not have such normal PDy-subgroups — although this
is almost true. In Theorem 9.9 we show that such groups are also realizable. It
is not known whether every type III extension of centreless PDy-groups has a
characteristic P Dg-subgroup.

If 7 is an extension of Z? by a normal PDsy-subgroup K with (K = 1 then
Cr(K) = /7, and [ : KCr(K)] < oo if and only if 7 is virtually K x Z?, so
Johnson’s trichotomy extends to such groups. The three types may be char-
acterized by (I) 7 =2 Z, (II) /7 = 72, and (III) /7 = 1. If Bi(7) = 2
the subgroup K is canonical, but in general m may admit such subgroups of
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arbitrarily large genus [Bu07]. Every such group is realized by an iterated
mapping torus construction. As these properties are shared by commensurate
torsion-free groups, the trichotomy extends further to torsion-free groups which
are virtually such extensions, but it is not known whether every group of this
larger class is realized by some aspherical closed 4-manifold.

The Johnson trichotomy is inappropriate if (K # 1, as there are then nontrivial
extensions with trivial action (# = 1). Moreover Out(K) is virtually free and so
f is never injective. However all such groups m may be realized by aspherical
4-manifolds, for either /7 = Z? and Theorem 7.3 applies, or 7 is virtually
poly-Z and is the fundamental group of an infrasolvmanifold. (See Chapter 8.)

Aspherical orbifold bundles (with 2-dimensional base and fibre) are determined
up to fibre-preserving diffeomorphism by their fundamental groups, subject to
conditions on x(F) and x°°(B) analogous to those of §2 of Chapter 5 [Vo77].

7.7 Seifert fibrations

A 4-manifold S is Seifert fibred if it is the total space of an orbifold bundle with
general fibre a torus or Klein bottle over a 2-orbifold. (In [Zn85, Ue90, Ue91] it
is required that the general fibre be a torus. This is always so if the manifold
is orientable. In [Vo77] “Seifert fibration” means “orbifold bundle over a 2-
dimensional base”, in our terms.) It is easily seen that x(S) = 0. (In fact S is
finitely covered by the total space of a torus bundle over a surface. This is clear
if the base orbifold is good, and follows from the result of Ue quoted below if
the base is bad.)

Let p : S — B be a Seifert fibration with closed aspherical base, and let
j + FF — S be the inclusion of the fibre over the basepoint of B. Let H =
gx(m(F)) and A = VH = Z2. Then j, : m(F) — 7 = m1(S) is injective, A
is a normal subgroup of 7 and 7/A is virtually a surface group. If moreover
B is hyperbolic H is the unique maximal solvable normal subgroup of 7, and
Vr = A. Let a: w/A — Aut(A) =2 GL(2,7Z) be the homomorphism induced
by conjugation in 7, A = Q ®z /7 the corresponding Q[r/A]-module and
eQ(p) € H?(n/A; A) the class corresponding to 7 as an extension of /A by A.
We shall call a and ¢@(p) the action and the (rational) Euler class of the Seifert
fibration, respectively. (When A = /7 we shall write e@(7) for e%(p)). Let #
be a normal subgroup of finite index in 7 which contains A and such that 7/A is
a PDJ -group. Then H?(r/A; A) = H(n/7; H*(7/A; A)) = HO(n)7; A/TA),
where I is the augmentation ideal of Q[#/A]. It follows that restriction to
subgroups of finite index which contain A is injective, and so whether e2(p)
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is 0 or not is invariant under passage to such subgroups. If a(7) = 1 (so «
has finite image) then H?(7/A; A) < A = Q%. (Note that if the general fibre
is the Klein bottle the action is diagonalizable, with image of order < 4, and
H?(m/A; A) 22 Q or 0. The action and the rational Euler class may also be
defined when the base is not aspherical, but we shall not need to do this.)

If X is one of the geometries Nil*, Nil?xE!, Sol>xE!, S2xE?, H?xE?, SL x E!
or F* its model space X has a canonical foliation with leaves diffeomorphic to
R? and which is preserved by isometries. (For the Lie groups Nil*, Nil?xR and
Sol? x R we may take the foliations by cosets of the normal subgroups (o Nil?,
¢(Nil3 xR and Sol3/.) These foliations induce Seifert fibrations on quotients by
lattices. All S? x E!'-manifolds are also Seifert fibred. Case-by-case inspection
of the 74 flat 4-manifold groups shows that all but three have rank 2 free
abelian normal subgroups, and the representations given in [B-Z] may be used
to show that the corresponding manifolds are Seifert fibred. The exceptions
are the semidirect products Gg Xy Z where 6 = j, cej and abcej. (See §3
of Chapter 8 for definitions of these automorphisms.) Closed 4-manifolds with
one of the other geometries are not Seifert fibred. (Among these, only Solfn’n
(with m # n), Solg, Sol{ and H? x E! have closed quotients M = I'\ X with
x(M) = 0, and for these the lattices T'" do not have Z? as a normal subgroup.)

The relationship between Seifert fibrations and geometries for orientable 4-
manifolds is as follows [Ue90, Ue91]:

Theorem [Ue| Let S be a closed orientable 4-manifold which is Seifert fibred
over the 2-orbifold B. Then

(1) If B is spherical or bad S has geometry S* x E! or §? x E?;

(2) If B is flat then S has geometry E*, Nil*, Nil? x E! or Sol® x E!;

(3) If B is hyperbolic then S is geometric if and only if the action o has
finite image. The geometry is then H? x E? if e2(71(S)) = 0 and SL x E!
otherwise.

(4) If B is hyperbolic then S has a complex structure if and only if B is
orientable and S is geometric.

Conversely, excepting only two flat 4-manifolds, any orientable 4-manifold ad-
mitting one of these geometries is Seifert fibred.

If the base is aspherical S is determined up to diffeomorphism by m(S); if
moreover the base is hyperbolic or S is geometric of type Nil* or Sol® x E!
there is a fibre-preserving diffeomorphism. m]
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We have corrected a minor oversight in [Ue90]; there are in fact two orientable
flat 4-manifolds which are not Seifert fibred. If the base is bad or spherical then
S may admit many inequivalent Seifert fibrations. (See also §10 of Chapter 8
and §2 of Chapter 9 for further discussion of the flat base and hyperbolic base
cases, respectively.)

In general, 4-manifolds which are Seifert fibred over aspherical bases are deter-
mined up to diffeomorphism by their fundamental groups. This was first shown
by Zieschang for the cases with base a hyperbolic orbifold with no reflector
curves and general fibre a torus [Zi69], and the full result is due to Vogt [Vo77].
Kemp has shown that a nonorientable aspherical Seifert fibred 4-manifold is ge-
ometric if and only if its orientable double covering space is geometric [Ke]. (See
also Theorems 9.4 and 9.5). Closed 4-manifolds which fibre over S* with fibre a
small Seifert fibred 3-manifold are also determined by their fundamental groups
[Oh90]. This class includes many nonorientable Seifert fibred 4-manifolds over
bad, spherical or flat bases, but not all.

The homotopy type of a S? x[E2-manifold is determined up to finite ambiguity by
its fundamental group (which is virtually Z?), Euler characteristic (which is 0)
and Stiefel-Whitney classes. There are just nine possible fundamental groups.
Six of these have infinite abelianization, and the above invariants determine
the homotopy type in these cases. (See Chapter 10.) The homotopy type of a
S3 x E'-manifold is determined by its fundamental group (which has two ends),
Euler characteristic (which is 0), orientation character w; and first k-invariant
in H*(m;m3). (See Chapter 11.)

Let S be a Seifert fibred 4-manifold with base an flat orbifold, and let ©# =
m1(S). Then x(S) = 0 and = is solvable of Hirsch length 4, and so S is
homeomorphic to an infrasolvmanifold, by Theorem 6.11 and [AJ76]. Every
such group 7 is the fundamental group of some Seifert fibred geometric 4-
manifold, and so S is in fact diffeomorphic to an infrasolvmanifold [Vo77]. (See
Chapter 8.§9 and Theorem 8.10 below.) The general fibre must be a torus if
the geometry is Nil* or Sol® x E!, since Out(m1(Kb)) is finite.

As H2 x E2- and SL x E!-manifolds are aspherical, they are determined up to
homotopy equivalence by their fundamental groups. (See Chapter 9.) Theorem
7.3 specializes to give the following characterization of the fundamental groups
of Seifert fibred 4-manifolds over hyperbolic bases.

Theorem 7.4 A group 7 is the fundamental group of a closed 4-manifold
which is Seifert fibred over a hyperbolic 2-orbifold if and only if it is torsion-
free, /7 =2 72, 7/ /7 is virtually a PDy-group and the maximal finite normal
subgroup of w/+/m has order at most 2. d
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If /7 is central ((m = Z?) the corresponding Seifert fibred manifold M ()
admits an effective torus action with finite isotropy subgroups.

7.8 Complex surfaces and related structures

In this section we shall summarize what we need from [BHPV, Ue90, Ue91,
WI186] and [GS], and we refer to these sources for more details.

A complex surface shall mean a compact connected complex analytic manifold
S of complex dimension 2. It is Kdhler (and thus diffeomorphic to a projective
algebraic surface) if and only if §;(S) is even. Since the Kéhler condition is
local, all finite covering spaces of such a surface must also have i even. If S
has a complex submanifold L = C'P! with self-intersection —1 then L may be
blown down: there is a complex surface 57 and a holomorphic map p: S — 5
such that p(L) is a point and p restricts to a biholomorphic isomorphism from
S\ L to S1\ p(L). In particular, S is diffeomorphic to S1#CP2. If there is no
such embedded projective line L the surface is minimal. Every surface has a
minimal model, and the model is unique if it is neither rational nor ruled.

For many of the 4-dimensional geometries (X, G) the identity component G, of
the isometry group preserves a natural complex structure on X, and so if 7 is a
discrete subgroup of G, which acts freely on X the quotient 7\ X is a complex
surface. This is clear for the geometries CP?, S?xS?, S?xE?, S? x H?, H? x E2,
H? x H? and H?(C). (The corresponding model spaces may be identified with
CP?, CP' x CP', CP' xC, CP' x H?, H?> x C, H? x H? and the unit ball
in C2, respectively, where H? is identified with the upper half plane.) It is also
true for Nil3 x E!, Solé, Solf, SL x E! and F*. In addition, the subgroups
R x U(2) of E(4) and U(2) xR of Isom(S? x E!) act biholomorphically on C?
and C2\ {0}, respectively, and so some E*- and S? x E!-manifolds have complex
structures. No other geometry admits a compatible complex structure. Since
none of the model spaces contain an embedded S? with self-intersection —1,
any complex surface which admits a compatible geometry must be minimal.

Complex surfaces may be coarsely classified by their Kodaira dimension &,
which may be —oo, 0, 1 or 2. Within this classification, minimal surfaces may
be further classified into a number of families. We have indicated in parentheses
where the geometric complex surfaces appear in this classification. (The dashes
signify families which include nongeometric surfaces.)

k = —oo: Hopf surfaces (S x E!, —); Inoue surfaces (Solg, Sol}); (other)
surfaces of class VII with By > 0 (-); rational surfaces (CP?, S? x S?); ruled
surfaces (S? x E2, §? x H?, -).
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k = 0: complex tori (E*); hyperelliptic surfaces (E*); Enriques surfaces (-);
K3 surfaces (-); Kodaira surfaces (Nil® x E!).

k = 1: minimal properly elliptic surfaces (SNIL x El, H? x E?).
x = 2: minimal (algebraic) surfaces of general type (H? x H?, H?(C), -).

A Hopf surface is a complex surface whose universal covering space is home-
omorphic to $3 x R = C?\ {0}. Some Hopf surfaces admit no compatible
geometry, and there are S? x E'-manifolds that admit no complex structure.
The Inoue surfaces are exactly the complex surfaces admitting one of the ge-
ometries Solg or Solf. Surfaces of class VIl have k = —co and 31 = 1, and are
not yet fully understood. (A theorem of Bogomolov asserts that every minimal
complex surface of class VII with 55(S) = 0 is either a Hopf surface or an Inoue
surface. See [T194] for a complete proof.)

A rational surface is a complex surface birationally equivalent to C'P?. Minimal
rational surfaces are diffeomorphic to CP? or to CP' x CP'. A ruled surface is
a complex surface which is holomorphically fibred over a smooth complex curve
(closed orientable 2-manifold) of genus g > 0 with fibre CP'. Rational and
ruled surfaces may be characterized as the complex surfaces S with x(S) = —oo
and B1(5) even. Not all ruled surfaces admit geometries compatible with their
complex structures.

A complex torus is a quotient of C? by a lattice, and a hyperelliptic surface is
one properly covered by a complex torus. If S is a complex surface which is
homeomorphic to a flat 4-manifold then S is a complex torus or is hyperelliptic,
since it is finitely covered by a complex torus. Since S is orientable and (;(.5)
is even m = m1(S) must be one of the eight flat 4-manifold groups of orientable
type and with 7 = Z* or I(n) = Z2. In each case the holonomy group is
cyclic, and so is conjugate (in GLT(4,R)) to a subgroup of GL(2,C). (See
Chapter 8.) Thus all of these groups may be realized by complex surfaces. A
Kodaira surface is a surface with 81 odd and which has a finite cover which

fibres holomorphically over an elliptic curve with fibres of genus 1.

An elliptic surface S is a complex surface which admits a holomorphic map p
to a complex curve such that the generic fibres of p are diffeomorphic to the
torus T'. If the elliptic surface S has no singular fibres it is Seifert fibred, and
it then has a geometric structure if and only if the base is a good orbifold.
An orientable Seifert fibred 4-manifold over a hyperbolic base has a geometric
structure if and only if it is an elliptic surface without singular fibres [Ue90].
The elliptic surfaces S with k(S) = —oo and £1(S) odd are the geometric
Hopf surfaces. The elliptic surfaces S with k(S) = —oo and (31(S) even are
the cartesian products of elliptic curves with CP?.
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All rational, ruled and hyperelliptic surfaces are projective algebraic surfaces, as
are all surfaces with x = 2. Complex tori and surfaces with geometry H? x E?
are diffeomorphic to projective algebraic surfaces. Hopf, Inoue and Kodaira
surfaces and surfaces with geometry SL x E! all have 81 odd, and so are not
Kaéhler, let alone projective algebraic.

An almost complex structure on a smooth 2n-manifold M is a reduction of
the structure group of its tangent bundle to GL(n,C) < GL*(2n,R). Such a
structure determines an orientation on M. If M is a closed oriented 4-manifold
and ¢ € H?(M;Z) then there is an almost complex structure on M with first
Chern class ¢ and inducing the given orientation if and only if ¢ = wy(M) mod
(2) and ¢* N [M] = 30(M) + 2x(M), by a theorem of Wu. (See [GS, Chapter
1. Appendix] for a recent account.)

A symplectic structure on a closed smooth manifold M is a closed nondegenerate
2-form w. Nondegenerate means that for all x € M and all w € T, M there is
a v € Ty M such that w(u,v) # 0. Manifolds admitting symplectic structures
are even-dimensional and orientable. A condition equivalent to nondegeneracy
is that the n-fold wedge w”" is nowhere 0, where 2n is the dimension of M.
The n* cup power of the corresponding cohomology class [w] is then a nonzero
element of H?"(M;R). Any two of a riemannian metric, a symplectic structure
and an almost complex structure together determine a third, if the given two
are compatible. In dimension 4, this is essentially equivalent to the fact that
SO(4)NSp(4) = SO(4)NGL(2,C) = Sp(4)NGL(2,C) = U(2), as subgroups of
GL(4,R). (See [GS] for a discussion of relations between these structures.) In
particular, Kahler surfaces have natural symplectic structures, and symplectic
4-manifolds admit compatible almost complex tangential structures. However
orientable Sol® x E!-manifolds which fibre over T' are symplectic [Ge92] but
have no complex structure (by the classification of surfaces) and Hopf surfaces
are complex manifolds with no symplectic structure (since B2 = 0).
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Chapter 8

Solvable Lie geometries

The main result of this chapter is the characterization of 4-dimensional infra-
solvmanifolds up to homeomorphism, given in §1. All such manifolds are either
mapping tori of self homeomorphisms of 3-dimensional infrasolvmanifolds or
are unions of two twisted I-bundles over such 3-manifolds. In the rest of the
chapter we consider each of the possible 4-dimensional geometries of solvable
Lie type.

In §2 we determine the automorphism groups of the flat 3-manifold groups,
while in §3 and §4 we determine ab initio the 74 flat 4-manifold groups. There
have been several independent computations of these groups; the consensus
reported on page 126 of [Wo] is that there are 27 orientable groups and 48
nonorientable groups. However the tables of 4-dimensional crystallographic
groups in [B-Z] list only 74 torsion-free groups, of which 27 are orientable and
47 are nonorientable. As these computer-generated tables give little insight into
how these groups arise, and as the earlier computations were never published
in detail, we shall give a direct and elementary computation, motivated by
Lemma 3.14. Our conclusions as to the numbers of groups with abelianization
of given rank, isomorphism type of holonomy group and orientation type agree
with those of [B-Z] and [LRT13]. (We refer to [LRT13] for details of some gaps
relating to the cases with §; = 0 in earlier versions of this book.)

There are infinitely many examples for each of the other geometries. In §5
we show how these geometries may be distinguished, in terms of the group
theoretic properties of their lattices. In §6, §7 and §8 we consider mapping
tori of self homeomorphisms of E3-, Nil3- and Sol®>-manifolds, respectively. In
§9 we show directly that “most” groups allowed by Theorem 8.1 are realized
geometrically and outline classifications for them, while in §10 we show that
“most” 4-dimensional infrasolvmanifolds are determined up to diffeomorphism
by their fundamental groups.

8.1 The characterization

In this section we show that 4-dimensional infrasolvmanifolds may be charac-
terized up to homeomorphism in terms of the fundamental group and Euler
characteristic.
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Theorem 8.1 Let M be a closed 4-manifold with fundamental group © and
such that x(M) = 0. The following conditions are equivalent:

(1) m is torsion-free and virtually poly-Z and h(m) = 4;

(2) h(ym) =3;

(3) m has an elementary amenable normal subgroup p with h(p) > 3, and
H?(m;Z[x]) = 0; and

(4) = is restrained, every finitely generated subgroup of m is FP3 and w
maps onto a virtually poly-Z group @ with h(Q) > 3.

Moreover, if these conditions hold then M is aspherical, and is determined up
to homeomorphism by 7, and every automorphism of w may be realized by a
self homeomorphism of M .

Proof If (1) holds then h(y/m) > 3, by Theorem 1.6, and so (2) holds. There
is an epimorphism A : # — Z or D, by Lemma 3.14. Then E = Ker(\| )
is locally nilpotent, normal, [r : E] = oo and h(E) > h(y/7) — 1. Hence (2)
implies (3), by Theorem 1.17. If (3) holds then 7 has one end, by Lemma
1.15, and Bgz) (m) =0, by Corollary 2.3.1. Hence M is aspherical, by Corollary
3.5.2. Hence 7 is a PDy4-group and 3 < h(p) < c.d.p < 4. In particular, p
is virtually solvable, by Theorem 1.11. If c.d.p = 4 then [r : p] is finite, by
Strebel’s Theorem, and so 7 is virtually solvable also. If c.d.p = 3 then c.d.p =
h(p) and so p is a duality group and is F'P [Kr86]. Therefore H(p;Q[r]) =
H(p;Q[p]) ® Q[r/p] and is 0 unless ¢ = 3. It then follows from the LHSSS
for 7 as an extension of 7/p by p (with coefficients Q[r]) that H*(m; Q[r]) =
H'(n/p;Qlr/p]) ® H*(p;Q|p]). Therefore H'(m/p;Q[r/p]) = Q, so 7/p has
two ends and we again find that 7 is virtually solvable. In all cases 7 is torsion-
free and virtually poly-Z [Bi, Theorem 9.23], and h(m) = 4.

If (4) holds then 7 is an ascending HNN extension m = Bx*4 with base FP3
and so M is aspherical, by Theorem 3.16. As in Theorem 2.13 we may deduce
from [BG85] that B must be a PD3s-group and ¢ an isomorphism, and hence
B and 7 are virtually poly-Z. Conversely (1) clearly implies (4).

The final assertions follow from Theorem 2.16 of [FJ]. O

Does the hypothesis h(p) > 3 in (3) imply H?(m;Z[r]) = 0? The examples
F x S' x S' where FF = S? or is a closed hyperbolic surface show that the
condition that h(p) > 2 is necessary. (See also §1 of Chapter 9.)

Corollary 8.1.1 The 4-manifold M is homeomorphic to an infrasolvmanifold
if and only if the equivalent conditions of Theorem 8.1 hold.
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Proof If M is homeomorphic to an infrasolvmanifold then y(M) = 0, 7 is
torsion-free and virtually poly-Z and h(m) = 4. (See Chapter 7.) Conversely, if
these conditions hold then 7 is the fundamental group of an infrasolvmanifold,
by [AJ76]. |

It is easy to see that all such groups are realizable by closed smooth 4-manifolds
with Euler characteristic 0.

Theorem 8.2 If 7 is torsion-free and virtually poly-Z of Hirsch length 4 then
it is the fundamental group of a closed smooth 4-manifold M which is either a
mapping torus of a self homeomorphism of a closed 3-dimensional infrasolvman-
ifold or is the union of two twisted I-bundles over such a 3-manifold. Moreover,
the 4-manifold M is determined up to homeomorphism by the group.

Proof The Eilenberg-Mac Lane space K(m,1) is a PDj-complex with Euler
characteristic 0. By Lemma 3.14, either there is an epimorphism ¢ : 7 — Z, in
which case 7 is a semidirect product G'xy9Z where G = Ker(¢), or 7 = G1*xgG2
where [G1 : G] = [G2 : G] = 2. The subgroups G, G; and G3 are torsion-
free and virtually poly-Z. Since in each case /G has Hirsch length 1 these
subgroups have Hirsch length 3 and so are fundamental groups of closed 3-
dimensional infrasolvmanifolds. The existence of such a manifold now follows
by standard 3-manifold topology, while its uniqueness up to homeomorphism
was proven in Theorem 6.11. O

The first part of this theorem may be stated and proven in purely algebraic
terms, since torsion-free virtually poly-Z groups are Poincaré duality groups.
(See [Bi, Chapter III].) If 7 is such a group then either it is virtually nilpotent
or /T = Z3 or I’y for some ¢, by Theorems 1.5 and 1.6. In the following
sections we shall consider how such groups may be realized geometrically. The
geometry is largely determined by +/m. We shall consider first the virtually
abelian cases.

8.2 Flat 3-manifold groups and their automorphisms

The flat n-manifold groups for n < 2 are Z, Z? and K = Z x_1Z, the Klein
bottle group. There are six orientable and four nonorientable flat 3-manifold
groups. The first of the orientable flat 3-manifold groups Gy - Gg is Gy = Z3.
The next four have I(G;) = Z? and are semidirect products Z* x7 Z where

T=-1, ((1) j) , ((1) _01) or ((1) _11 ), respectively, is an element of finite order
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in SL(2,7Z). These groups all have cyclic holonomy groups, of orders 2, 3, 4
and 6, respectively. The group Gg is the group of the Hantzsche-Wendt flat
3-manifold, and has a presentation

(v,y | zyPa™ =y 2, yay ™t = 272).

Its maximal abelian normal subgroup is generated by x2,4? and (zy)? and
its holonomy group is the diagonal subgroup of SL(3,Z), which is isomorphic
to (Z/2Z)?. (This group is the generalized free product of two copies of K,
amalgamated over their maximal abelian subgroups, and so maps onto D.)

The nonorientable flat 3-manifold groups By - By are semidirect products
K x¢ Z, corresponding to the classes in Out(K) = (Z/2Z)?. In terms of the
presentation (z,y | zyx~! = y~1) for K these classes are represented by the
automorphisms @ which fix y and send z to z,zy, ™! and ™'y, respectively.
The groups B; and By are also semidirect products Z2 x7Z, where T = ((1] 91)
or (1) has determinant —1 and T? = I. They have holonomy groups of order
2, while the holonomy groups of B3 and By are isomorphic to (Z/27)2.

All the flat 3-manifold groups either map onto Z or map onto D. The methods
of this chapter may be easily adapted to find all such groups. Assuming these
are all known we may use Sylow theory and some calculation to show that there
are no others. We sketch here such an argument. Suppose that 7 is a flat 3-
manifold group with finite abelianization. Then 0 = x(7) = 14 S2(m)—F3(7), so
B3(m) # 0 and 7 must be orientable. Hence the holonomy group F' = 7 /T'(7) is
a subgroup of SL(3,Z). Let f be a nontrivial element of F'. Then f has order
2, 3, 4 or 6, and has a +1-eigenspace of rank 1, since it is orientation preserving.
This eigenspace is invariant under the action of the normalizer Nr((f)), and
the induced action of Nr((f)) on the quotient space is faithful. Thus Ng({f))
is isomorphic to a subgroup of GL(2,Z) and so is cyclic or dihedral of order
dividing 24. This estimate applies to the Sylow subgroups of F', since p-groups
have nontrivial centres, and so the order of F' divides 24. If F' has a nontrivial
cyclic normal subgroup then 7 has a normal subgroup isomorphic to Z? and
hence maps onto Z or D. Otherwise F' has a nontrivial Sylow 3-subgroup C
which is not normal in F'. The number of Sylow 3-subgroups is congruent to
1 mod (3) and divides the order of F'. The action of F' by conjugation on
the set of such subgroups is transitive. It must also be faithful. (For otherwise
NgergNF(C)g™ # 1. As Np(C) is cyclic or dihedral it would follow that F
must have a nontrivial cyclic normal subgroup, contrary to hypothesis.) Hence
F must be Ay or Sy, and so contains V = (Z/2Z)% as a normal subgroup.
Suppose that G is a flat 3-manifold group with holonomy Ay4. It is easily seen
that G is the only flat 3-manifold group with holonomy (Z/2Z)?, and so we
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may assume that the images in SL(3,Z) of the elements of order 2 are diagonal
matrices. It then follows easily that the images of the elements of order 3
are (signed) permutation matrices. (Solve the linear equations wu = vw and
wv = wow in SL(3,Z), where u = diag[l,—1,—1] and v = diag[—1,—1,1].)
Hence G has a presentation of the form
(73, u,v,w | ux = 2U, YUy = U, 2UZ = U, TVT = V, YUY = VU, 20 = VZ, WT = 2W,
wy = zw,wz = yw, wu = vw, u® = z,w> = 2%°2°, (uw)? = 2Pylz").

It may be checked that no such group is torsion-free. Therefore neither A4 nor
Sy can be the holonomy group of a flat 3-manifold.

We shall now determine the (outer) automorphism groups of each of the flat
3-manifold groups. Clearly Out(G1) = Aut(G1) = GL(3,Z). If 2 <i <5 let
t € G; represent a generator of the quotient G;/I(G;) = Z. The automorphisms
of G; must preserve the characteristic subgroup I(G;) and so may be identified
with triples (v, A,€) € Z% x GL(2,Z) x {£1} such that ATA™! = T¢ and
which act via 4 on I(G;) = Z? and send t to tv. Such an automorphism is
orientation preserving if and only if € = det(A). The multiplication is given
by (v,A,e)(w,B,n) = (Ev + Aw,AB,en), where =2 = [ if n = 1 and E =
—T¢ if n = —1. The inner automorphisms are generated by (0,7,1) and
(T - 1)Z2,1,1).

In particular, Aut(Gy) = (Z?x,GL(2,7)) x{£1}, where « is the natural action
of GL(2,7) on Z?, for Z is always I if T = —I. The involution (0,1, —1) is
central in Aut(G2), and is orientation reversing. Hence Out(G2) is isomorphic
to ((Z/22)? xpa PGL(2,7)) x (Z/2Z), where Pa is the induced action of
PGL(2,Z) on (Z/22)2.

If n =3, 4 or 5 the normal subgroup I(G;) may be viewed as a module over the
ring R = Z[t]/(¢(t)), where ¢(t) = t2+t+1, t2+1 or t>—t+1, respectively. As
these rings are principal ideal domains and I(G;) is torsion-free of rank 2 as an
abelian group, in each case it is free of rank 1 as an R-module. Thus matrices
A such that AT = TA correspond to units of R. Hence automorphisms of
G; which induce the identity on G;/I(G;) have the form (v,+7™,1), for some
m € Z and v € Z*. There is also an involution (0,(9}),—1) which sends
t to t~1. In all cases € = det(A). It follows that Out(G3) = S5 x (Z/22),
Out(Gy) = (Z/2Z)? and Out(Gs) = Z/2Z. All these automorphisms are
orientation preserving.

The subgroup A of Gg generated by {z2,y?%, (zy)?} is the maximal abelian
normal subgroup of Gg, and Gg/A = (Z/2Z)?. Let a, b, ¢, d, e, f, i and
j be the automorphisms of Gg which send z to x= 1, z,z, 2, y%x, (vy)3x,y, vy
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and y to y,y~ !, (zy)%y, 2%y, v, (xy)?y, z, z, respectively. The natural homo-

morphism from Aut(Gs) to Aut(Gs/A) = GL(2,F2) is onto, as the images of
i and j generate GL(2,F3), and its kernel F is generated by {a,b,c,d,e, f}.
(For an automorphism which induces the identity on Gg/A must send x to
2?Py?4(29)? x, and y to 2%y (zy)?*y. The images of 22, y? and (zy)? are
then z%*2, y**2 and (zy)*"~®*2, which generate A if and only if p = 0
or —1,t=0or —1 and r = u — 1 or u. Composing such an automorphism
appropriately with a, b and ¢ we may acheive p =t = 0 and r = u. Then
by composing with powers of d, e and f we may obtain the identity automor-
phism.) The inner automorphisms are generated by bed (conjugation by x)
and acef (conjugation by y). Then Out(Gg) has a presentation

2 2

(a,b,c,e,i,7 | a®> =b* = = e =i?

=4%=1, a,b,¢, e commute, iai = b,
ici = ae, jaj ' = ¢, jbj Tt = abe, jcj ! = be, j3 = abee, (ji)* = be).

The generators a,b,c, and j represent orientation reversing automorphisms.
(Note that jej~! = be follows from the other relations. See [Zn90] for an
alternative description.)

The group B; = Z x K has a presentation
(t,x,y | te = at, ty = yt, zyz~! =y~ ).

An automorphism of B; must preserve the centre (B; (which has basis t,22)
and I(B7) (which is generated by y). Thus the automorphisms of By may be
identified with triples (A4, m,€) € Yo x Z x {1}, where Y5 is the subgroup of
GL(2,Z) consisting of matrices congruent mod (2) to upper triangular matrices.
Such an automorphism sends t to t*z?, x to t°z%™ and y to vy, and induces
multiplication by A on B;/I(B1) = Z?. Composition of automorphisms is
given by (A,m,e)(B,n,n) = (AB,m + en,en). The inner automorphisms are
generated by (I,1,—1) and (/,2,1), and so Out(By) = Y2 x (Z/2Z2).

The group Bs has a presentation
(t,x,y | tot™ =2y, ty = yt, zya™! =y~ ).

Automorphisms of By may be identified with triples (A4, (m,n),€), where A €
Yo, m,n € Z, e = £1 and m = (A1 — €)/2. Such an automorphism sends
t to t%ly™, x to t°z%™ and y to y°, and induces multiplication by A on
Bsy/I(By) = 7Z2. The automorphisms which induce the identity on Bo/I(Bs)
are all inner, and so Out(Bz) = Y.

The group Bs has a presentation

1

(t,z,y | tot P =27l ty =yt, ayz~! = y*1>.
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~Y

An automorphism of Bs must preserve I(Bs) = K (which is generated by
x,y) and I(I(Bs)) (which is generated by y). It follows easily that Out(B3) =
(Z/2Z)3, and is generated by the classes of the automorphisms which fix y and
send t to t71,¢,tx? and = to x,xy, x, respectively.

A similar argument using the presentation
(t,a,y |ttt =2ty ty =yt, ayazt =y~

for By shows that Out(By) = (Z/2Z)3, and is generated by the classes of the
automorphisms which fix y and send ¢ to t~ 'y~ ¢,ta? and = to x,27 !, x,

respectively.

8.3 Flat 4-manifold groups with infinite abelianization

We shall organize our determination of the flat 4-manifold groups 7 in terms
of I(m). Let m be a flat 4-manifold group, 8 = fi(7) and h = h(I(m)).
Then n/I(w) = ZP and h+ B = 4. If I(x) is abelian then C,(I(7)) is a
nilpotent normal subgroup of m and so is a subgroup of the Hirsch-Plotkin
radical /7, which is here the maximal abelian normal subgroup T'(w). Hence
Cr(I(m)) = T(m) and the holonomy group is isomorphic to 7/Cx(I()).

h =0 In this case I(7) =1, so 7 = Z* and is orientable.

h =1 In this case I(r) =2 Z and 7 is nonabelian, so 7/Cr(I(7)) = Z/2Z.
Hence n has a presentation of the form

(t,x,y, z | tat™ = 22 tyt™ = y2b, tat™ = 271 z,y, 2 commute),

for some integers a, b. On replacing x by zy or interchanging x and y if
necessary we may assume that a is even. On then replacing x by zz%? and y
by yz?l we may assume that a = 0 and b = 0 or 1. Thus 7 is a semidirect
product Z3 x7 Z, where the normal subgroup Z? is generated by the images of
x, y and z, and the action of ¢ is determined by a matrix T = ((01721)) _01) in

GL(3,Z). Hence 1 =2 Z x By = 7> x K or Z x By. Both of these groups are
nonorientable.

h =2 If I(r) & Z% and 7/Cr(I(7)) is cyclic then we may again assume
that 7 is a semidirect product Z3 xr Z, where T = (i 8), with u = () and
U € GL(2,7) is of order 2, 3, 4 or 6 and does not have 1 as an eigenvalue. Thus
U=-1, ((1) j), ((1) *01) or (? *11). Conjugating T' by (11,102) replaces u by
i+ (Io —U)v. In each case the choice a = b = 0 leads to a group of the form
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m = Z x G, where G is an orientable flat 3-manifold group with £;(G) = 1.
For each of the first three of these matrices there is one other possible group.
However if U = ((1) *11) then I, — U is invertible and so Z x (G5 is the only
possibility. All seven of these groups are orientable.

If I(7) = Z? and 7/Cyr(I(m)) is not cyclic then 7/Cy(I(7)) = (Z/2Z)?. There
are two conjugacy classes of embeddings of (Z/2Z)% in GL(2,Z). One has
image the subgroup of diagonal matrices. The corresponding groups m have
presentations of the form

(t,u,x,y | ter = xt, tyt ' =y weu b =27 wyuT =y a2y = g,

tut " tut = 2My"),

for some integers m, n. On replacing ¢ by tz~["/2lyl"/2 if necessary we may
assume that 0 < m,n < 1. On then replacing ¢ by tu and interchanging x and
y if necessary we may assume that m < n. The only infinite cyclic subgroups of
I(m) which are normal in 7 are the subgroups (z) and (y). On comparing the
quotients of these groups 7 by such subgroups we see that the three possibilities
are distinct. The other embedding of (Z/2Z)? in GL(2,7Z) has image generated
by —I and (9}). The corresponding groups m have presentations of the form

1 -1 -1 -1
=T ,uyu =Y o, XY = YT,

tut " tuTt = 2my™),

(tyu, vy | tot ™t =y, tyt ™ =z, uzu”

for some integers m, n. On replacing t by tzl(m /2 and u by wa™™, if

necessary, we may assume that m = 0 and n = 0 or 1. Thus there two such
groups. All five of these groups are nonorientable.

Otherwise, I(r) = K, I(I(r)) =2 Z and G = ©/I(I(x)) is a flat 3-manifold
group with £1(G) = 2, but with I(G) = I(x)/I(I(7)) not contained in G’
(since it acts nontrivially on I(I(7))). Therefore G = By = Z x K, and so has
a presentation
(t,w,y |t =at, ty =yt, aya™" =y},
If w: G — Aut(Z) is a homomorphism which restricts nontrivially to I(G)
then we may assume (up to isomorphism of G) that w(z) =1 and w(y) = —1.
Groups 7 which are extensions of Z x K by Z corresponding to the action with
w(t) = w (= %1) have presentations of the form
(t,x,y, 2 | tot™ = 22 tyt™! = g2l tat™ = 2%, aya! = y 12 22 = 22,
yay =20,

for some integers a,b and c. Any group with such a presentation is easily seen
to be an extension of Z x K by a cyclic normal subgroup. However conjugating
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the fourth relation leads to the equation

tot iyttt T = twya T =ty =ttt h)E

which simplifies to z2%2P2"% =1 = (y2°)712%¢ and hence to 2¢7%¢ = 2

Hence this cyclic normal subgroup is finite unless 2a = (1 — w)c.

Suppose first that w = 1. Then 2z?* = 1 and so we must have ¢ = 0. On
replacing ¢ by ¢z[/2l and x by z2[¢/? if necessary, we may assume that 0 <
b,c < 1. If b = 0 then # &£ Z x By or Z x By. Otherwise, after further
replacing x by txz, if necessary, we may assume that b = 1 and ¢ = 0. The
three possibilities may be distinguished by their abelianizations, and so there
are three such groups. In each case the subgroup generated by {t,z2, 2, 2} is
maximal abelian, and the holonomy group is isomorphic to (Z/22)2.

If instead w = —1 then 2%¢~® =1 and so we must have ¢ = a. On replacing

z by 2z and y by yz[t/2 | if necessary, we may assume that 0 < a,b < 1. If
b = 1 then after replacing = by txy, if necessary, we may assume that a = 0.
If a=b=0 then n/n’ = Z%>® (Z/2Z)?. The two other possibilities each have
abelianization Z? @ (Z/2Z), but one has centre of rank 2 and the other has
centre of rank 1. Thus there are three such groups. The subgroup generated
by {ty,z?, 42, 2z} is maximal abelian, and the holonomy group is isomorphic to
(Z/2Z)%. All of these groups 7 with I(7) = K are nonorientable.

h =3 In this case 7 is uniquely a semidirect product = = I(7) Xy Z, where
I(m) is a flat 3-manifold group and 6 is an automorphism of I(7) such that the
induced automorphism of I(7)/I(I(7)) has no eigenvalue 1, and whose image in
Out(I(m)) has finite order. (The conjugacy class of the image of 6 in Out(I (7))
is determined up to inversion by 7.)

Since T'(I(w)) is the maximal abelian normal subgroup of I(w) it is normal in
w. It follows easily that T'(w) N I(w) = T'(I(w)). Hence the holonomy group of
I(m) is isomorphic to a normal subgroup of the holonomy subgroup of 7, with
quotient cyclic of order dividing the order of # in Out(I(r)). (The order of the
quotient can be strictly smaller.)

If I(r) = Z3 then Out(I(7)) & GL(3,Z). If T € GL(3,Z) has finite order n
and B1(Z3 x7 Z) = 1 then either T = —I or n =4 or 6 and the characteristic
polynomial of T is (t+1)¢(t) with ¢(t) =t>+1, t*+t+1 or t? —t+1. In the
latter cases T is conjugate to a matrix of the form (_01 ff‘) , where A = ([1) _01 ) ,
((1) j) or ((1) _11 ), respectively. The row vector p = (mi,mz) is well defined
mod Z2(A + I). Thus there are seven such conjugacy classes. All but one pair
(corresponding to (9 7') and p ¢ Z*(A+ 1)) are self-inverse, and so there are
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six such groups. The holonomy group is cyclic, of order equal to the order of T'.
As such matrices all have determinant —1 all of these groups are nonorientable.

If I(7) 2 G; for 2 < i <5 the automorphism 6 = (v, A, €) must have e = —1,
for otherwise 81 (m) = 2. We have Out(Gs) = ((Z/2Z)?*x PGL(2,Z))x(Z/2Z).
The five conjugacy classes of finite order in PGL(2,Z) are represented by the
matrices I, (Y1), (94), (§ %) and (° 1). The numbers of conjugacy
classes in Out(G2) with e = —1 corresponding to these matrices are two, two,
two, three and one, respectively. All of these conjugacy classes are self-inverse.
Of these, only the two conjugacy classes corresponding to () and the three
conjugacy classes corresponding to ( 5 _01) give rise to orientable groups. The
holonomy groups are all isomorphic to (Z/27)?, except when A = ((1) _01) or
(% 1), when they are isomorphic to Z/4Z or Z/6Z ® Z/2Z, respectively.
There are five orientable groups and five nonorientable groups.

As Out(G3) = S3 x (Z/2Z), Out(Gy) = (Z/2Z)? and Out(G5) = Z/2Z, there
are three, two and one conjugacy classes corresponding to automorphisms with
€ = —1, respectively, and all these conjugacy classes are closed under inversion.
The holonomy groups are dihedral of order 6, 8 and 12, respectively. The six
such groups are all orientable.

The centre of Out(Gg) is generated by the image of ab, and the image of ce
in the quotient Out(Gg)/(ab) generates a central Z/2Z direct factor. The
quotient Out(Gg)/(ab, ce) is isomorphic to the semidirect product of a normal
subgroup (Z/2Z)? (generated by the images of a and ¢) with S3 (generated
by the images of ia and j), and has five conjugacy classes, represented by
1,a,1,j and ci. Hence Out(Gg)/{ab) has ten conjugacy classes, represented by
1,a,ce, e = iacei, i, cei, j, cej, ci and cice = ei. Thus Out(Gg) itself has between
10 and 20 conjugacy classes. In fact Out(Gg) has 14 conjugacy classes, of which
those represented by 1, ab, bce, e, ¢, cej, abcej and ei are orientation preserving,
and those represented by a, ce, cet, j,abj and ci are orientation reversing. All
of these classes are self inverse, except for j and abj, which are mutually
inverse (j~! = ai(abj)ia). The holonomy groups corresponding to the classes
1,ab,bce and e are isomorphic to (Z/2Z)?, those corresponding to a and ce
are isomorphic to (Z/2Z)3, those corresponding to i, ei, cei and ci are dihedral
of order 8, those corresponding to cej and abcej are isomorphic to A4 and the
one corresponding to j is isomorphic to (Z/22)% x Z/6Z = Ay x Z/2Z. There
are eight orientable groups and five nonorientable groups.

All the remaining cases give rise to nonorientable groups.

I(r) 2 Z x K. If amatrix A in Ty has finite order then as its trace is even the
order must be 1, 2 or 4. If moreover A does not have 1 as an eigenvalue then

Geometry & Topology Monographs, Volume 5 (2002)



8.4 Flat 4-manifold groups with finite abelianization 161

either A = —I or A has order 4 and is conjugate (in T2) to (:% %) Each of the
four corresponding conjugacy classes in Yo X Z/27 is self inverse, and so there
are four such groups. The holonomy groups are isomorphic to Z/nZ @& Z/27,
where n = 2 or 4 is the order of A.

I(r) =2 By. As Out(B) = Yy there are two relevant conjugacy classes
and hence two such groups. The holonomy groups are again isomorphic to
ZInZ ® Z/2Z, where n = 2 or 4 is the order of A.

I(m) = Bs or By. In each case Out(H) = (Z/2Z)3, and there are four outer
automorphism classes determining semidirect products with 5= 1. (Note that
here conjugacy classes are singletons and are self-inverse.) The holonomy groups
are all isomorphic to (Z/27)3.

8.4 Flat 4-manifold groups with finite abelianization

There remains the case when 7 /7’ is finite (equivalently, h = 4). By Lemma
3.14 if 7 is such a flat 4-manifold group it is nonorientable and is isomorphic
to a generalized free product J J, where ¢ is an isomorphism from G < J
to G < Jand [J:G]=][J: G] = 2. The groups G, J and J are then flat
3-manifold groups. If A and A are automorphisms of G and G which extend
to J and J respectively, then J * J and J x5 VS J are isomorphic, and so we

shall say that ¢ and A¢A are equivalent. The major difficulty is that some such
groups split as a generalised free product in several essentially distinct ways.

It follows from the Mayer-Vietoris sequence for m = Jx*4 J that H,(G;Q) maps
onto H(J;Q) & H,(J;Q), and hence that £1(J) + 81(J) < 81(G). Since Gs,
G4, Bs and By are only subgroups of other flat 3-manifold groups via maps
inducing isomorphisms on H;(—; Q) and G5 and Gg are not index 2 subgroups
of any flat 3-manifold group, we may assume that G = Z3, Gy, By or By. If
G is orientable at least one of J and J is orientable, for 0therw1se J *g J is
orientable. If j and j are the automorphisms of T'(J) and T'(J) determined
by conjugation in J and J, respectively, then 7 is a flat 4-manifold group if
and only if ® = jT(¢)"'jT(¢) has finite order. In particular, [tr(®)| < 3. At
this point detailed computation seems unavoidable. (We note in passing that
any generalised free product J *g J with G = G3, G4, B3 or By, J and J
torsion-free and [J : G] = [J : G] = 2 is a flat 4-manifold group, since Out(QG)
is then finite. However all such groups have infinite abelianization.)

Suppose first that G = Z2, with basis {x y,z}. Then J and J must have
holonomy of order < 2, and Bi(J) + $1(J) < 3. Hence we may assume that
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J >~ Gy and J = Go, By or By. In each case we have G = T(J) and G = T(j)
We may assume that J and J are generated by G and elements s and t,
respectively, such that s2 = z and t2 € G, and that the action of s on G has
matrix j = ((1) PI) with respect to the basis {z,y,z}. Fix an isomorphism
¢:G — G and let T = T(¢)"'jT(¢) = (¢ %) be the matrix corresponding
to the action of t on G. (Here v is a 2 x 1 column vector, & is a 1 x 2 row
vector and D is a 2 x 2 matrix, possibly singular.) Then 72 = I and so the
trace of T' is odd. Since j = I mod (2) the trace of ® = jT is also odd, and
so ® cannot have order 3 or 6. Therefore ®* = I. If ® = [ then n/7’ is
infinite. If ® has order 2 then ;7 = Tj and so vy =0, § = 0 and D? = I,.
Moreover we must have a = —1 for otherwise /7’ is infinite. After conjugating
T by a matrix commuting with j if necessary we may assume that D = Is or
(8%). (Since J must be torsion-free we cannot have D = (9 1).) These two
matrices correspond to the generalized free products G2 x4 B1 and G *4 Ga,
with presentations

(s,t,2 | st?s v =t72 s2s 1V =271 ts?t =572tz = 2t)
and (s,t,z | st?s 1 =t72 szst =27 t?t T =572 tat = 27,

respectively. These groups each have holonomy group isomorphic to (Z/27)2.
If ® has order 4 then we must have (j7)? = (j7)"2 = (T5)? and so (jT)?
commutes with j. After conjugating 7" by a matrix commuting with 7, if
necessary, we may assume that 7T is the elementary matrix which interchanges
the first and third rows. The corresponding group G *4 By has a presentation

(s,t,2 | st?s ™ =t72 5251 =271 15?7 = 2, tat7! = 57).

(The final relation is redundant, and so G2, B> has deficiency 0.) Its holonomy
group is isomorphic to the dihedral group of order 8.

If G = Gy then B1(J)+ B1(J) < 1, so we may assume that J = Gg. The other
factor J must then be one of Ga, G4, Gg, B3 or By, and then every amalga-
mation has finite abelianization. If J 22 G5 there are two index-2 embeddings
of G5 in J up to composition with an automorphism of J. (One of these was
overlooked in earlier versions of this book.) In all other cases the image of G
in J is canonical, and the matrices for j and j have the form (jEO1 ](\J,) where
N*=1T1¢e GL(2,Z), and T(¢) = (§ ) for some M € GL(2,Z). Calculation
shows that ® has finite order if and only if M is in the dihedral subgroup Dg of
GL(2,Z) generated by the diagonal matrices and (9 }). (In other words, either
M is diagonal or both diagonal elements of M are 0.) Now the subgroup of
Aut(G3) consisting of automorphisms which extend to Gg is (Z% x4 Dg) x {£1}.
Hence any two such isomorphisms ¢ from G to G are equivalent, and so there
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is an unique such flat 4-manifold group Gg *, J for each of these choices of
J =G4, Gg, B3 or By. The corresponding presentations are

(u,z,y |zur ™t =u™t, myfat =y 2 Y = dP(ay)? yaty =2
u(zy)? = (zy)*u),

U= (2y)% u(zy)’u ' =y~

yrly ! = gy 2

1 2

=%, wyu ,x=u?),

2

(u,z,y | yz?y~

(u,z,y | fnyx_l =y =x %, y2 = u2, yry = uru),

tay|ay?e =y 2 gty =272 2t =2y = (17 2)?, tay)? = (ay)?t),
and (t,z,y|ay’a ' =y % gty =272, 2% = P(ay)? P = (tT )%,
t(zy)? = (zy)°t),

respectively. The corresponding holonomy groups are isomorphic to (Z/2Z)3,
(Z/22)3, Dg, (Z)2Z)?, (Z/2Z)% and (Z/2Z)3, respectively.

If G = By or By then J and J are nonorientable and Bl(J)+B1(j) < 2. Hence
J and J are Bz or By. There are two essentially different embeddings of By
as an index 2 subgroup in each of Bsg or By. (The image of one contains I(B;)
while the other does not.) The group B is not a subgroup of By. However,
it embeds in Bj as the index 2 subgroup generated by {t, 22, xy}. Contrary to
our claim in earlier versions of this book that no flat 4-manifold groups with
finite abelianization are such amalgamations, there are in fact three, all with
GG = B;. However they are each isomorphic to one of the groups already given:
B3 *¢ B3 = B3 *¢ B4 = G6 *o B4 and B4 *o B4 = G@ *¢ B3. See [LRT13}

There remain nine generalized free products J ¢ J which are flat 4-manifold
groups with = 0 and with G orientable. The groups G2 *4 B1, G2 x4 G2 and
Ge *¢ Gg are all easily seen to be semidirect products of Gg with an infinite
cyclic normal subgroup, on which Gg acts nontrivially. It follows easily that
these three groups are in fact isomorphic, and so there is just one flat 4-manifold
group with finite abelianization and holonomy isomorphic to (Z/22)2.

The groups G2 x4 B2 and G *4 G4 are in fact isomorphic; the function sending
s toy, t to yu~! and z to uy?u~! determines an equivalence between the
above presentations. Thus there is just one flat 4-manifold group with finite
abelianization and holonomy isomorphic to Dsg.

The first amalgamation Gg *4 G2 and G *4 By are also isomorphic, via the
function sending v to zy~', x to xt~! and y to yt. Similarly, the second
amalgamation Gg x4 G2 and Gg *4 B3 are isomorphic; via the function sending
u to tyz, r to tz~! and y to ty. (These isomorphisms and the one in the
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paragraph above were found by Derek Holt, using the program described in
[HR92].) The translation subgroups of Gg *4 B3 and Gg *4 By are generated
by the images of U = (ty)?, X = 22, Y = y? and Z = (vy)? (with respect to
the above presentations). In each case the images of ¢, = and y act diagonally,
via the matrices diag[—1,1,—1,1], diag[l,1,—1,—1] and diag[—1,—1,1,—1],
respectively. However the maximal orientable subgroups have abelianization
Z & (Z)2)% and Z @ (Z/AZ) & (Z/2Z), respectively, and so Gg *4 Bs is not
isomorphic to G *4 Bs. Thus there are two flat 4-manifold groups with finite
abelianization and holonomy isomorphic to (Z/22)3.

In summary, there are 27 orientable flat 4-manifold groups (all with 8 > 0), 43
nonorientable flat 4-manifold groups with 5 > 0 and 4 (nonorientable) flat 4-
manifold groups with 8 = 0. All orientable flat 4-manifolds are Spin, excepting
for those with m = Gg x¢9 Z, where 6 = bee, e or ei [PS10].

8.5 Distinguishing between the geometries

If T is a lattice in a 1-connected solvable Lie group G with nilradical N then
I'N N and T'N N’ are lattices in N and N’ respectively, and h(T") = dim(G).
If G is also a linear algebraic group then I' is Zariski dense in . In particular,
' N and N have the same nilpotency class, and (I' = ' N (N. (See [Rg,
Chapter 2].) These observations imply that the geometry of a closed 4-manifold
M with a geometry of solvable Lie type is largely determined by the structure of
/7. (See also [WI186, Proposition 10.4].) As each covering space has the same
geometry it shall suffice to show that the geometries on suitable finite covering
spaces (corresponding to subgroups of finite index in 7) can be recognized.

If M is an infranilmanifold then [r : /7] < oco. If it is flat then /7 = Z*,
while if it has the geometry Nil® x E! or Nil* then /7 is nilpotent of class 2
or 3 respectively. (These cases may also be distinguished by the rank of (\/x.)
All such groups have been classified, and may be realized geometrically. (See
[De] for explicit representations of the Nil® x E!- and Nil*-groups as lattices
in Aff(Nil® x R) and Aff(Nil*), respectively.) If M is a Soly, - or Solg-
manifold then /7 = Z3. Hence h(m/y/7) = 1 and so 7 has a normal subgroup
of finite index which is a semidirect product /7 xyZ. It is easy to give geometric
realizations of such subgroups.

Theorem 8.3 Let 7 be a torsion-free group with /7 = Z3 and such that
w/\/m = 7. Then w is the fundamental group of a Solfn’n— or Sol3-manifold.
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Proof Let ¢t € 7 represent a generator of 7//m, and let 6 be the automor-
phism of /7 = Z3 determined by conjugation by t. Then 7 = /7 xg Z. If
the eigenvalues of 6 were roots of unity of order dividing k then the subgroup
generated by /7 and t* would be nilpotent, and of finite index in 7. Therefore
we may assume that the eigenvalues k, A, i of 8 are distinct and that neither
K nor A is a root of unity.

Suppose first that the eigenvalues are all real. Then the eigenvalues of 6% are
all positive, and 62 has characteristic polynomial X3 — mX? +nX — 1, where
m = trace(?) and n = trace(f~2). Since /7 = Z3 there is a monomorphism
f /7 — R such that f0 = Uf, where U = diag[s, A\, u] € GL(3,R). Let
_ (I _ :
F(g) = (Sf(ln)), for g € /m. If v = /T we extend F to 7 by setting

F(t) = (‘(1)’ (1)) In this case F' defines a discrete cocompact embedding of 7
in Isom(Soly, ). (See §3 of Chapter 7. If one of the eigenvalues is +1 then
m =n and the geometry is Sol® x E!.)

If the eigenvalues are not all real we may assume that A = k and p # =£1.
Let Ry € SO(2) be rotation of R? through the angle ¢ = Arg(x). There is

a monomorphism f : /7 — R3 such that f0 = ¥f where ¥ = ('H‘é% 2)

Let F(n) = (Igf(ln)>, for n € /7, and let F(¢t) = (¥ 7). Then F defines a

discrete cocompact embedding of 7 in ITsom(Sol]). |

If M is a Sol? . -manifold the eigenvalues of # are distinct and real. The
geometry is Sol® x E! (= Solfﬁz’m for any m > 4) if and only if 6 has 1 as a
simple eigenvalue. If M is a Solj-manifold two of the eigenvalues are complex
conjugates, and none are roots of unity.

The groups of E*-, Ni/3 x E!'- and Nil*-manifolds also have finite index sub-
groups o = 73 xg Z. We may assume that all the eigenvalues of 6 are 1, so
N = 0 —1 is nilpotent. If the geometry is E* then N = 0; if it is Nil3 x E! then
N # 0 but N? = 0, while if it is Nil* then N? # 0 but N3 = 0. (Conversely,
it is easy to see that such semidirect products may be realized by lattices in the
corresponding Lie groups.)

Finally, if M is a Sol‘ll—manifold then /m = T'; for some ¢ > 1 (and so is
nonabelian, of Hirsch length 3). Every group = = I'; Xy Z may be realized
geometrically. (See Theorem 8.7 below.)

If h(y/m) = 3 then 7 is an extension of Z or D by a normal subgroup v which
contains /7 as a subgroup of finite index. Hence either M is the mapping
torus of a self homeomorphism of a flat 3-manifold or a Nil?-manifold, or it is
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the union of two twisted I-bundles over such 3-manifolds and is doubly covered
by such a mapping torus. (Compare Theorem 8.2.)

We shall consider further the question of realizing geometrically such torsion-
free virtually poly-Z groups = (with h(7w) =4 and h(y/7) = 3) in §9.

8.6 Mapping tori of self homeomorphisms of E*-manifolds

It follows from the above that a 4-dimensional infrasolvmanifold M admits one
of the product geometries of type E*, Nil®> x E! or Sol® x E! if and only if
m1(M) has a subgroup of finite index of the form v x Z, where v is abelian,
nilpotent of class 2 or solvable but not virtually nilpotent, respectively. In
the next two sections we shall examine when M is the mapping torus of a
self homeomorphism of a 3-dimensional infrasolvmanifold. (Note that if M is
orientable then it must be a mapping torus, by Lemma 3.14 and Theorem 6.11.)

Theorem 8.4 Let v be the fundamental group of a flat 3-manifold, and let
0 be an automorphism of v. Then

1) /v is the maximal abelian subgroup of v and v/\/v embeds in Aut(\/v);
2) Out(v) is finite if and only if [v : /v] > 2;

3) the restriction homomorphism from Out(v) to Aut(\/v) has finite kernel;
4
5

if [v:/v] =2 then (t9|\5)2 has 1 as an eigenvalue;

~~ I~ ~ —~

)
)
)
) if [v:/v] =2 and 0| s has infinite order but all of its eigenvalues are
roots of unity then ((0|ﬁ)2 — 0?2 =0;

(6) if @ is orientation-preserving and ((0\\@)2 —1)3=0 but (9[\5)2 # I then
(0] 5 — 1) =0, and so B1(v 39 Z) > 2.

Proof It follows immediately from Theorem 1.5 that /v = Z? and is thus the
maximal abelian subgroup of v. The kernel of the homomorphism from v to
Aut(y/v) determined by conjugation is the centralizer C' = C,(y/v). As /v
is central in C' and [C : /v] is finite, C' has finite commutator subgroup, by
Schur’s Theorem (Proposition 10.1.4 of [Ro]). Since C' is torsion-free it must
be abelian and so C' = y/v. Hence H = v/\/v embeds in Aut(\/v) = GL(3,Z).
(This is just the holonomy representation.)

If H has order 2 then 6 induces the identity on H; if H has order greater than
2 then some power of # induces the identity on H, since /v is a characteristic
subgroup of finite index. The matrix 6| 5 then commutes with each element
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of the image of H in GL(3,Z), and assertions (2)—(5) follow from simple cal-
culations, on considering the possibilities for 7 and H listed in §3 above. The
final assertion follows on considering the Jordan normal form of 6] . |

Corollary 8.4.1 The mapping torus M(¢) = N x4 S1 of a self homeomor-
phism ¢ of a flat 3-manifold N is flat if and only if the outer automorphism
[¢«] induced by ¢ has finite order. O

If N is flat and [¢«] has infinite order then M (¢) may admit one of the other
product geometries Sol® x E! or Nil® x E!; otherwise it must be a Solfmn—,
Solg- or Nil4-manifold. (The latter can only happen if N = R3/Z3, by part
(v) of the theorem.)

Theorem 8.5 Let M be a closed 4-manifold with a geometry of solvable Lie
type and fundamental group «. If \/m = 73 and ©/\/7 is an extension of D
by a finite normal subgroup then M is a Sol® x E'-manifold.

Proof Let p: 7 — D be an epimorphism with kernel K containing /7 as a
subgroup of finite index, and let ¢ and u be elements of m whose images under
p generate D and such that p(t) generates an infinite cyclic subgroup of index
2 in D. Then there is an N > 0 such that the image of s = t" in 7/\/7
generates a normal subgroup. In particular, the subgroup generated by s and
/7 is normal in 7 and usu~! and s~! have the same image in 7/\/7. Let 6 be
the matrix of the action of s on /7, with respect to some basis /7 = Z3. Then
6 is conjugate to its inverse, since usu~! and s~! agree modulo /7. Hence one
of the eigenvalues of # is £1. Since 7 is not virtually nilpotent the eigenvalues
of 6 must be distinct, and so the geometry must be of type Sol® x E!. |

Corollary 8.5.1 If M admits one of the geometries Sol§ or Sol%, . with m #

m,n
n then it is the mapping torus of a self homeomorphism of R3/Z3, and so
7 2 73 %9 Z for some 0 in GL(3,7Z) and is a metabelian poly-Z group.

Proof This follows immediately from Theorems 8.3 and 8.4. O

We may use the idea of Theorem 8.2 to give examples of E*-, Nil*-, Nil® x E!-
and Sol? x E'-manifolds which are not mapping tori. For instance, the groups
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with presentations

(u,v,2,y,2 | xy = yx, xz = 2x, Yz = 2y, uru "t = xil, u? = Y, wzut = 271,
v =z, vav P =27 oyoTt =y,
_ _ _ 2 _ -1 _ -1 -1 _ -1
(u,v,2,y,2 | xy = yx, x2 = 20, Yz = 2y, u* =T, UYyu - =y -, uzu - =z -,
v =z, oyt =ov 7y vzt =27
— _ _ 2 _ 2 __
and (u,v,2,y,z | zy = yx, x2 = 2, Y2 = 2Y, U° = T, V* =Y,
uyu_1 = :U4y_1, vev~ ! = w_lyQ, weu = vzt = z_1>

are each generalised free products of two copies of Z? x_; Z amalgamated over
their maximal abelian subgroups. The Hirsch-Plotkin radicals of these groups
are isomorphic to Z* (generated by {(uv)?,z,y,z}), I's x Z (generated by
{uv,z,y,2}) and Z* (generated by {z,y,z}), respectively. The group with
presentation

(u,v,2,y,2 | xy = yx, x2 = 22, Yz = 2y, u? =z, uz = zu, uyu_1 = :Uy_l,

vev P =27 0? =y, vao ! = 0?2

is a generalised free product of copies of (Z x_1Z)xZ (generated by {u,y, z})
and Z? x_;Z (generated by {v,z, 2}) amalgamated over their maximal abelian
subgroups. Its Hirsch-Plotkin radical is the subgroup of index 4 generated by
{(uv)?,z,y, 2}, and is nilpotent of class 3. The manifolds corresponding to
these groups admit the geometries E*, Nil3 x E!, Sol? x E! and Nil*, respec-
tively. However they cannot be mapping tori, as these groups each have finite
abelianization.

8.7 Mapping tori of self homeomorphisms of Ni/>-manifolds
Let ¢ be an automorphism of I';, sending = to %P2 and y to zCy?z" for
some a,...,n in Z. The induced automorphism of T';/I(I';) & Z? has matrix
A= (95 € GL(2,Z) and ¢(z) = 2% 4. (In particular, the PD3z-group T,
is orientable, and ¢ is orientation preserving, as observed in §2 of Chapter 7.
See also §3 of Chapter 18 below.) Every pair (A, i) in the set GL(2,7Z) x Z>
determines an automorphism (with p = (m,n)). However Aut(I';) is not a
semidirect product, as

(A, 1)(B,v) = (AB, uB + det(A)v + qw(A, B)),

where w(A, B) is biquadratic in the entries of A and B. The natural map p :
Aut(T'y) — Aut(T'y/¢Ty) = GL(2,Z) sends (A, ) to A and is an epimorphism,
with Ker(p) = Z2. The inner automorphisms are represented by gKer(p), and
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Out(Ty) = (Z/qZ)? x GL(2,Z). (Let [A, u] be the image of (A4, ) in Out(T,).
Then [A, p][B,v] = [AB, uB + det(A)v].) In particular, Out(I'1) = GL(2,Z).

Theorem 8.6 Let v be the fundamental group of a Nil3-manifold N. Then
(1) v/\/v embeds in Aut(\/v/(\/v) = GL(2,7Z);

(2) v =v/{\/v is a 2-dimensional crystallographic group;
(3) the images of elements of © of finite order under the holonomy
representation in Aut(v/T) & GL(2,Z) have determinant 1;

(4) Owt() is infinite if and only if v = 7% or 7> x_1 (Z/27);
(5) the kernel of the natural homomorphism from Out(v) to Out(v) is finite.

(6) v is orientable and every automorphism of v is orientation preserving.

Proof Let h : v — Aut(y/v/{\/v) be the homomorphism determined by
conjugation, and let C' = Ker(h). Then /v/(\/v is central in C/{\/v and
[C/C/v = /v/(\/V] is finite, so C/(\/v has finite commutator subgroup, by
Schur’s Theorem (Proposition 10.1.4 of [Ro].) Since C' is torsion-free it fol-
lows easily that C' is nilpotent and hence that C' = y/v. This proves (1) and
(2). In particular, h factors through the holonomy representation for 7, and
gzg~t = 2%9) for all g € v and z € (\/v, where d(g) = det(h(g)). If g € v
is such that g # 1 and ¢g* € (/v for some k > 0 then ¢g* # 1 and so g
must commute with elements of (\/v, i.e., the determinant of the image of g
is 1. Condition (4) follows as in Theorem 8.4, on considering the possible finite
subgroups of GL(2,Z). (See Theorem 1.3.)

If (v # 1 then (v = (/v = Z and so the kernel of the natural homomorphism
from Aut(v) to Aut(v) is isomorphic to Hom(v/v',Z). If v/v' is finite this
kernel is trivial. If 7 = Z? then v = /v & Iy, for some ¢ > 1, and the kernel
is isomorphic to (Z/qZ)?. Otherwise ¥ 2 Z x_1Z, Z xD or D x, Z (where T
is the automorphism of D = (Z/2Z) x (Z/2Z) which interchanges the factors).
But then H?(;7Z) is finite, and so any central extension of such a group by Z
is virtually abelian, and thus not a Ni/3-manifold group.

If (v =1 then v/\/v < GL(2,Z) has an element of order 2 with determinant
—1. No such element can be conjugate to (9 (), for otherwise v would not be
torsion-free. Hence the image of v/y/v in GL(2,7Z) is conjugate to a subgroup of
the group of diagonal matrices (§ ), with |e] = |¢| = 1. If v//v is generated
by (§2) then v/¢\v = Z x_1Z and v = 7Z* xy Z, where 6 = (' /) for
some nonzero integer r, and N is a circle bundle over the Klein bottle. If
v/\/v = (Z/2Z)? then v has a presentation

(tyu, 2 | u? =z bzt = 271 wtu™! = 1722%),
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and N is a Seifert bundle over the orbifold P(22). It may be verified in each
case that the kernel of the natural homomorphism from Out(v) to Out(v) is
finite. Therefore (5) holds.

Since /v 2T, is a PDJ -group, [v: /V] < 0o and every automorphism of T,
is orientation preserving v must also be orientable. Since /v is characteristic
in v and the image of H3(\/v;Z) in H3(v;Z) has index [v : /v] it follows easily
that any automorphism of v must be orientation preserving. a

In fact every Nil3-manifold is a Seifert bundle over a 2-dimensional euclidean
orbifold [Sc83’]. The base orbifold must be one of the seven such with no
reflector curves, by (3).

Theorem 8.7 Let § = (A, 1) be an automorphism of I'y and m = T'y Xy Z.
Then

1 as finite order m) =4 and 7 is a lattice in Isom(Nil°> X ;
(1) If A has fi der h(y/m) = 4 and 1 Isom(Nil3 x E!)

(2) if A has infinite order and equal eigenvalues h(y/7) = 4 and 7 is a lattice
in Isom(Nil%);

(3) Otherwise /T =Ty and 7 is a lattice in Isom(Sol}).

Proof Let t € m represent a generator for 7/I'; = Z. The image of 6 in
Out(T,) has finite order if and only if A has finite order. If A¥ =1 for some
k > 1 the subgroup generated by I'; and t* is isomorphic to Iy xZ. If A
has infinite order and equal eigenvalues then A? is conjugate to (3%), for some
n # 0, and the subgroup generated by I'y and t? is nilpotent of class 3. In
each of these cases 7 is virtually nilpotent, and may be embedded as a lattice
in Isom(Nil® x E') or Isom(Nil*) [De].

Otherwise the eigenvalues «, 3 of A are distinct and not +1. Let e, f € R?

be the corresponding eigenvectors. Let (1,0) = z1e + zaof, (0,1) = yie +yaf,
T2 0

iw=z1e+ 2of and h = (xzyl—xlyg) Let F(z) = x|,

1
0 1
0 0 1
1 vy O 1 0 h ozﬁ 2
Fly)=10 1 wy1],F(»)=10 1 0] and F(t

0 0 1 0 0 1
Then F defines an embedding of 7 as a lattice in Isom(Sol}). a
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Theorem 8.8 The mapping torus M(¢) = N x, S of a self homeomorphism
¢ of a Nil3-manifold N is orientable, and is a Nil® x E'-manifold if and only
if the outer automorphism [¢.] induced by ¢ has finite order.

Proof Since N is orientable and ¢ is orientation preserving (by part (6) of
Theorem 8.6) M (¢) must be orientable.

The subgroup (/v is characteristic in v and hence normal in 7, and v/{\/v
is virtually Z2. If M(¢) is a Nil®> x E!-manifold then 7/(/v is also virtually
abelian. It follows easily that that the image of ¢, in Aut(v/(y/v) has finite
order. Hence [¢.] has finite order also, by Theorem 8.6. Conversely, if [¢,] has
finite order in Out(v) then 7w has a subgroup of finite index which is isomorphic
to v x Z, and so M (¢) has the product geometry, by the discussion above. O

Theorem 4.2 of [KLR83] (which extends Bieberbach’s theorem to the virtually
nilpotent case) may be used to show directly that every outer automorphism
class of finite order of the fundamental group of an E3- or Nil3-manifold is
realizable by an isometry of an affinely equivalent manifold.

Theorem 8.9 Let M be a closed Nil® x E!-, Nil*- or Sol{-manifold. Then
M is the mapping torus of a self homeomorphism of a Nil?-manifold if and
only if it is orientable.

Proof If M is such a mapping torus then it is orientable, by Theorem 8.8.
Conversely, if M is orientable then 7 = 71(M) has infinite abelianization, by
Lemma 3.14. Let p : @ — Z be an epimorphism with kernel K, and let ¢
be an element of 7w such that p(t) = 1. If K is virtually nilpotent of class
2 we are done, by Theorem 6.12. (Note that this must be the case if M is
a Sol{-manifold.) If K is virtually abelian then K = Z? or Gg, by part (5)
of Theorem 8.4. The action of ¢ on v/ K by conjugation must be orientation
preserving, since M is orientable. Since det(¢) = 1 and = is virtually nilpotent
but not virtually abelian, at least one eigenvalue must be +1. It follows easily
that 1(m) > 2. Hence there is another epimorphism with kernel nilpotent of
class 2, and so the theorem is proven. a

Corollary 8.9.1 Let M be a closed Sol{-manifold with fundamental group
m. Then B1(M) <1 and M is orientable if and only if ;(M) = 1.

Proof The first assertion is clear if 7 is a semidirect product I'y X Z, and

then follows in general. Hence if p: m — Z is an epimorphism Ker(p) must be
virtually nilpotent of class 2 and the result follows from the theorem. |
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If M is a Nil? x E'- or Nil*-manifold then £;(m) < 3 or 2, respectively, with
equality if and only if 7 is nilpotent. In the latter case M is orientable, and
is a mapping torus, both of a self homeomorphism of R3/Z3 and also of a self
homeomorphism of a Nil3-manifold. We have already seen that Nil? x E!-
and Nil*-manifolds need not be mapping tori at all. We shall round out this
discussion with examples illustrating the remaining combinations of mapping
torus structure and orientation compatible with Lemma 3.14 and Theorems
8.8 and 8.9. As the groups have abelianization of rank 1 the corresponding
manifolds are mapping tori in an essentially unique way. The groups with
presentations

7x7y72 mz:zx? yz:zy7 x :x ) y :y ) Z :yz
t tat ™ Loyt = gy ! -1

1

and (t,z,y,z | ayz ty Tt =2 2z = z2x, yz = 2y, tot L =a7 gt =y

are each virtually nilpotent of class 2. The corresponding Nil? x E!-manifolds
are mapping tori of self homeomorphisms of R?/Z3 and a Nil*-manifold, re-
spectively. The groups with presentations

(t,x,y, 2 | 22 = 2, yz = zy, tat ™ =27 tyt ™ = ay” ! b2t = g2l

1

and (t,x,y,z |zyz ly Tl =2 zr =2z, yz = 2y, tat L =27t tyt T =2y

are each virtually nilpotent of class 3. The corresponding Nil*-manifolds are
mapping tori of self homeomorphisms of R3/Z3 and of a Nil3>-manifold, respec-

tively. The group with presentation
(t,u,x,y, 2 | wyrly ™t = 22, xz = 2z, yz = 2y, tat = 2%y, tyt ™! = ay,

1

tz = zt, ut = 2, uru~t = Yy, uyu_l =z, utu! = t_1>

has Hirsch-Plotkin radical isomorphic to Iy (generated by {z,y, z}), and has
finite abelianization. The corresponding Sol{-manifold is nonorientable and is
not a mapping torus.

8.8 Mapping tori of self homeomorphisms of Sol*-manifolds
The arguments in this section are again analogous to those of §6.

Theorem 8.10 Let o be the fundamental group of a Sol®-manifold. Then

(1) o272 and o/\/o 2 Z or D;
(2) Out(o) is finite.
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Proof The argument of Theorem 1.6 implies that h(y/o) > 1. Since o is not
virtually nilpotent h( /o) < 3. Hence /o = Z?, by Theorem 1.5. Let E be
the preimage in o of the maximal finite normal subgroup of o/+/v, let ¢t be an
element of o whose image generates the maximal abelian subgroup of o/ F and
let 7 be the automorphism of F determined by conjugation by ¢. Let o1 be
the subgroup of o generated by F and t. Then o1 = F %, Z, [0: 0] <2, F is
torsion-free and h(F) = 2. If F # /o then F = Z x_,7Z. But extensions of Z
by Z x_1Z are virtually abelian, since Out(Z x_1Z) is finite. Hence F=\o
and so o/\/oc 2 Z or D.

Every automorphism of ¢ induces automorphisms of /o and of o/\/c. Let
Out™ (o) be the subgroup of Out(c) represented by automorphisms which in-
duce the identity on o/+4/o. The restriction of any such automorphism to
Vo commutes with 7. We may view /o as a module over the ring R =
Z[X]/(A(X)), where \(X) = X2 — tr(7)X + det(7) is the characteristic poly-
nomial of 7. The polynomial A is irreducible and has real roots which are not
roots of unity, for otherwise /o %, Z would be virtually nilpotent. Therefore
R is a domain and its field of fractions Q[X]/(A(X)) is a real quadratic num-
ber field. The R-module /o is clearly finitely generated, R-torsion-free and
of rank 1. Hence the endomorphism ring Endgr(y/0) is a subring of R, the
integral closure of R. Since R is the ring of integers in Q[X]/(A(X)) the group
of units R* is isomorphic to {1} x Z. Since 7 determines a unit of infinite
order in R* the index [R* : ()] is finite.

Suppose now that o/\/oc = Z. If f is an automorphism which induces the
identity on /o and on o/+/c then f(t) = tw for some w in y/o. If w is in the
image of 7—1 then f is an inner automorphism. Now /o /(7 —1)4/0 is finite, of
order det(t —1). Since 7 is the image of an inner automorphism of ¢ it follows
that Out® (o) is an extension of a subgroup of R*/(r) by \/o/(t — 1)\/o.
Hence Out(c) has order dividing 2[R* : (7)]det(T — 1).

If 0/y/o = D then o has a characteristic subgroup oy such that [0 : 01] = 2,
Vo < oy and 01/\/oc =2 7 = v/D. Every automorphism of ¢ restricts to an
automorphism of o;. It is easily verified that the restriction from Aut(o) to
Aut(o1) is a monomorphism. Since Out(o1) is finite it follows that Out(o) is
also finite. O

Corollary 8.10.1 The mapping torus of a self homeomorphism of a Sol®-
manifold is a Sol® x E'-manifold. a

The group with presentation

(w.y.t | oy = yo, tat™ = ay, tyt™" = x)
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is the fundamental group of a nonorientable Sol3-manifold ¥. The nonori-
entable Sol? x E'-manifold ¥ x S! is the mapping torus of ids, and is also the
mapping torus of a self homeomorphism of R3/Z3.

The groups with presentations

1 1

=z 7, zyz_l = y_l, tat ™! = Ty, tyt_l =z,
tzt™t = 27h),
1

(t,x,y,z | xy = yzx, zoz"

1

(t,x,y, 2 | zy = yx, 2ozt = 2%y, 2yz~t = xy, to = ot, tyt 1 =z y L,

tat™t =271,

(t,x,y, 2 | xy = yx, 22 = 2z, yz = 2y, tot~ L = 2%y, tyt ™ = ay, t2t71 =271

and (t,u,z,y | zy = yz, tot ™' = 2%y, tyt ™' = 2y, vaut =y,

uyu™t =z, utu~t = t71)

have Hirsch-Plotkin radical Z? and abelianization of rank 1. The corresponding
Sol? x E'-manifolds are mapping tori in an essentially unique way. The first two
are orientable, and are mapping tori of self homeomorphisms of the orientable
flat 3-manifold with holonomy of order 2 and of an orientable Sol®-manifold,
respectively. The latter two are nonorientable, and are mapping tori of ori-
entation reversing self homeomorphisms of R3/Z? and of the same orientable
Sol3-manifold, respectively.

8.9 Realization and classification

Let m be a torsion-free virtually poly-Z group of Hirsch length 4. If 7 is
virtually abelian then it is the fundamental group of a flat 4-manifold, by the
work of Bieberbach, and such groups are listed in §2-§4 above.

If 7 is virtually nilpotent but not virtually abelian then /7 is nilpotent of class
2 or 3. In the first case it has a characteristic chain /7' = 7Z < C = (/7 = Z2.
Let 0 : 1 — Aut(C) =2 GL(2,7Z) be the homomorphism induced by conjugation
in 7. Then Im(#) is finite and triangular, and so is 1, Z/2Z or (Z/2Z)?. Let
K = Cr(C) = Ker(f). Then K is torsion-free and (K = C, so K/C is a
flat 2-orbifold group. Moreover as K/vK acts trivially on ﬁ/ it must act
orientably on K /C, and so K/vK is cyclic of order 1, 2, 3, 4 or 6. As /7
is the preimage of VK in 7 we see that [r: /7] < 24. (In fact 7/\/7 = F or
F & (Z/2Z), where F is a finite subgroup of GL(2,Z), excepting only direct
sums of the dihedral groups of order 6, 8 or 12 with (Z/2Z) [De].) Otherwise
(if /7' £ (y/m) it has a subgroup of index < 2 which is a semidirect product
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73 x9 Z, by part (5) of Theorem 8.4. Since (#? — I) is nilpotent it follows that
n/\/m=1, Z/2Z or (Z/2Z)%. All these possibilities occur.

Such virtually nilpotent groups are fundamental groups of Nil? x E'- and Nil4-
manifolds (respectively), and are classified in [De]. Dekimpe observes that =
has a characteristic subgroup A = Z such that Q = 7/A is a Nil®>- or E3-
orbifold group and classifies the torsion-free extensions of such ) by Z. There
are 61 families of Nil3? x E!-groups and 7 families of Nil*-groups. He also gives
a faithful affine representation for each such group.

We shall sketch an alternative approach for the geometry Nil*, which applies
also to Solfn’n, Solé and Sol{. Each such group 7 has a characteristic subgroup
v of Hirsch length 3, and such that 7/v =2 Z or D. The preimage in 7 of \/7/v
is characteristic, and is a semidirect product v xg Z. Hence it is determined up
to isomorphism by the union of the conjugacy classes of # and =1 in Out(v),
by Lemma 1.1. All such semidirect products may be realized as lattices and

have faithful affine representations.

If the geometry is Nil* then v = C /m(GyT) = Z3, by Theorem 1.5 and part
(5) of Theorem 8.4. Moreover v has a basis x,y,z such that (z) = (/7
and (y,z) = (24/m. As these subgroups are characteristic the matrix of 6
with respect to such a basis is +£(I + N), where N is strictly lower triangular
and noinsy # 0. (See §5 above.) The conjugacy class of € is determined by
(det(0), |n21, |n32], [n31 mod (n32)]). (Thus @ is conjugate to ' if and only if
nsg divides 2ng3;.) The classification is more complicated if /v = D.

If the geometry is Solﬁ%n for some m # n then 7™ = Z3 xy Z, where the
eigenvalues of 6 are distinct and real, and not +1, by Corollary 8.5.1. The
translation subgroup m N Solfn’n is 73 x4 7, where A = 6 or 62 is the least
nontrivial power of 6 with all eigenvalues positive, and has index < 2 in 7.
Conversely, every such group is a lattice in [ som(Solfn’n), by Theorem 8.3.
The conjugacy class of 6 is determined by its characteristic polynomial Agy(t)
and the ideal class of v = Z3, considered as a rank 1 module over the order
A/(Ap(t)), by Theorem 1.4. (No such 6 is conjugate to its inverse, as neither
1 nor -1 is an eigenvalue.)

A similar argument applies for Solj, where we again have m = Z3 xg Z. Al-
though Solé has no lattice subgroups, any semidirect product Z3 xg Z where
f has a pair of complex conjugate roots which are not roots of unity is a lat-
tice in Isom(Solg), by Theorem 8.3. Such groups are again classified by the
characteristic polynomial and an ideal class.

If the geometry is Sol{ then /7 = I', for some g > 1, and either v = /7 or
v/\T=2/2Z and v/{/7 272 x_; (Z/27Z). (In the latter case v is uniquely
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determined by ¢.) Moreover 7 is orientable if and only if fi(r) = 1. In
particular, Ker(wi(r)) & v xgZ, for some 6 € Aut(v). Let A =0| s and let A
be its image in Aut(\/7/(\/7) =2 GL(2,Z). If v = \/7 the translation subgroup
mNSolf is T = I'yxpZ, where B = A or A? is the least nontrivial power of A
such that both eigenvalues of A are positive. If v # /7 the conjugacy class of
A is only well-defined up to sign. If moreover 7/v = D then A is conjugate to
its inverse, and so det(A) = 1, since A has infinite order. We can then choose
0 and hence A so that T = /7 x4 Z. The quotient w/T is a subgroup of Dsg,
since I'som(Sol}) = Solt x Ds.

Conversely, any torsion-free group with a subgroup of index < 2 which is such
a semidirect product v xg Z (with [v : I'j] < 2 and v as above) and which is
not virtually nilpotent is a lattice in Isom(Sol}), by an argument extending
that of Theorem 8.7. (See [Hi07].) The conjugacy class of € is determined up
to a finite ambiguity by the characteristic polynomial of A. The Sol}-lattices
are classified in [LT15, VT19]. In particular, it is shown there that each of the
possible isomorphism classes of subgroups of Dg is realized as 7/T for some 7.

In the remaining case Sol® x E! the subgroup v is one of the four flat 3-manifold
groups Z3, Z? x_; Z, By or By, and 0| /v has distinct real eigenvalues, one
being £1. The index of the translation subgroup 7N (Sol® x R) in 7 divides 8.
(Note that Isom(Sol® x E!') has 16 components.) Conversely any torsion-free
group with a subgroup of index < 2 which is such a semidirect product v xgZ
is a lattice in Isom(Sol® x E'), by an argument extending that of Theorem 8.3.
(See [Hi07].) The semidirect products N xy Z (with N = v or a Sol3-group)
may be classified in terms of conjugacy classes in Aut(N). (See also [Cb].)

Every Nil%- or Sol? x E'-manifold has an essentially unique Seifert fibration.
The general fibre is a torus, and so 7 has an unique normal subgroup A = 7?2
such that 7/A is a flat 2-orbifold group. It is easy to see that A < 7/. The
action has infinite image in Aut(A) = GL(2,7Z), for these geometries. Since
GL(2,Z) is virtually free the base orbifold B must itself fibre over S! or the
reflector interval I. Moreover, B = T' if and only if 51 (7) = 2, while B = Kb, A
or Mb if and only if B1(7) = 1. In the Nil* case, if B = T, A or Mb then M
must be orientable, by Theorem 8.7. Inspection of the tables of [De, Chapter
7] shows that there are Nil*-manifolds with B = T, Kb, A, Mb, S(2,2,2,2),
P(2,2) or D(2,2). In [Hil8] it is shown that the same seven bases may be
realized by Sol® x E!'-manifolds. Moreover, if M is a Sol® x E'-manifold with
m/7" finite then B = 5(2,2,2,2), P(2,2) or I(2,2), and such manifolds may
be classified in terms of certain matrices in GL(2,7Z).

We mention briefly another aspect of these groups. All E4-, Nil? x E'- Nil4-,
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Sold-, Soli- and Sol3 x E!-lattices are arithmetic. However, if m # n then no
Soly, ,,-lattice is arithmetic [Ts20, Theorem B].

8.10 Diffeomorphism

Geometric 4-manifolds of solvable Lie type are infrasolvmanifolds (see §3 of
Chapter 7), and infrasolvmanifolds are the total spaces of orbifold bundles
with infranilmanifold fibre and flat base, by Theorem 7.2. Baues showed that
infrasolvmanifolds are determined up to diffeomorphism by their fundamental
groups [Ba04]. In dimensions < 3 this follows from standard results of low
dimensional topology. We shall show that related arguments also cover most
4-dimensional orbifold bundle spaces. The following theorem extends the main
result of [Cb] (in which it was assumed that 7 is not virtually nilpotent).

Theorem 8.11 Let M and M’ be 4-manifolds which are total spaces of orb-
ifold bundles p: M — B and p' : M’ — B’ with fibres infranilmanifolds F and
F’ (respectively) and bases flat orbifolds, and suppose that m (M) = m (M') =
. If 7 is virtually abelian and [1(7) = 1 assume that 7 is orientable. Then
M and M' are diffeomorphic.

Proof We may assume that d = dim(B) < d' = dim(B’). Suppose first that
7 is not virtually abelian or virtually nilpotent of class 2. Then all subgroups
of finite index in 7 have 87 < 2, and so 1 < d < d < 2. Moreover m has
a characteristic nilpotent subgroup o such that h(w/7) = 1, by Theorems 1.5
and 1.6. Let v be the preimage in 7 of the maximal finite normal subgroup
of m/v. Then v is a characteristic virtually nilpotent subgroup (with /v = 1)
and w/v 2 7Z or D. If d =1 then m(F) =v and p : M — B induces this
isomorphism. If d = 2 the image of v in 7¢"%(B) is normal. Hence there is an
orbifold map ¢ from B to the circle S or the reflector interval I such that gp is
an orbifold bundle projection. A similar analysis applies to M’. In either case,
M and M’ are canonically mapping tori or unions of two twisted I-bundles,
and the theorem follows via standard 3-manifold theory.

If 7 is virtually nilpotent it is realized by an infranilmanifold M, [De]. Hence
we may assume that M’ = My, d' =4, h(y/m) =4 and /7 = Z or 1. If d=0
or 4 then M is also an infranilmanifold and the result is clear. If there is an
orbifold bundle projection from B to S* or I then M is a mapping torus or a
union of twisted I-bundles, and 7 is a semidirect product k xZ or a generalized
free product with amalgamation G x5 H, where [G : J] = [H : J) = 2. The
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model My then has a corresponding structure as a mapping torus or a union
of twisted I-bundles, and we may argue as before.

If B1(m) +d > 4 then 7¢"*(B) maps onto Z, and so B is an orbifold bundle
over S'. Hence the above argument applies. If there is no such orbifold bundle
projection then d # 1. Thus we may assume that d = 2 or 3 and that f;(m) <
4 —d. (If moreover [31(m) = 4 — d and there is no such projection then 7’/ N
m1(F) = 1 and so « is virtually abelian.) If d = 2 then M is Seifert fibred.
Since M’ is an infranilmanifold (and 7 cannot be one of the three exceptional
flat 4-manifold groups Gg xpZ with 6 = j, cej or abcej) it is also Seifert fibred,
and so M and M’ are diffeomorphic, by [Vo77].

If d = 3 then m(F) = Z. The group 7 has a normal subgroup K such that
7/K = Z or D, by Lemma 3.14. If m(F) < K then 7¢"*(B) maps onto Z
or D and we may argue as before. Otherwise m(F) N K =1, since Z and D
have no nontrivial finite normal subgroups, and so 7 is virtually abelian. If
B1(m) =1 then m(F)Na’ =1 (since 7/K does not map onto Z) and so 1 (F)
is central in 7. It follows that p is the orbit map of an S'-action on M. Once
again, the model My has an S'-action inducing the same orbifold fundamental
group sequence. Orientable 4-manifolds with S'-action are determined up to
diffeomorphism by the orbifold data and an Euler class corresponding to the
central extension of 7¢"(B) by Z [Fi78]. Thus M and M’ are diffeomorphic.
It is not difficult to determine the maximal infinite cyclic normal subgroups of
the flat 4-manifold groups 7 with (7)) = 0, and to verify that in each case
the quotient maps onto D. O

It is highly probable that the arguments of Fintushel can be extended to all
4-manifolds which admit smooth S'-actions, and the theorem is surely true
without any restrictions on 7. (Note that the algebraic argument of the final
sentence of Theorem 8.11 does not work for nine of the 30 nonorientable flat
4-manifold groups 7 with gi(7w) =1.)

If 7 is orientable then it is realized geometrically and determines the total space
of such an orbifold bundle up to diffeomorphism. Hence orientable smooth
4-manifolds admitting such orbifold fibrations are diffeomorphic to geometric
4-manifolds of solvable Lie type. Is this also so in the nonorientable case?
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Chapter 9

The other aspherical geometries

The aspherical geometries of nonsolvable type which are realizable by closed
4-manifolds are the “mixed” geometries H? x E2, SL x E!, H? x E! and the
“semisimple” geometries H? x H2, H* and H?(C). (We shall consider the
geometry F* briefly in Chapter 13.) Closed H? x E2- or SL x E!-manifolds
are Seifert fibred, have Euler characteristic 0 and their fundamental groups
have Hirsch-Plotkin radical Z?. In §1 and §2 we examine to what extent these
properties characterize such manifolds and their fundamental groups. Closed
H? x E!'-manifolds also have Euler characteristic 0, but we have only a conjec-
tural characterization of their fundamental groups (§3). In §4 we determine the
mapping tori of self homeomorphisms of geometric 3-manifolds which admit one
of these mixed geometries. (We return to this topic in Chapter 13.) In §5 we
consider the three semisimple geometries. All closed 4-manifolds with product
geometries other than H? x H? are finitely covered by cartesian products. We
characterize the fundamental groups of H? x H?-manifolds with this property:;
there are also “irreducible” H? x H?-manifolds which are not virtually products.
Relatively little is known about manifolds admitting one of the two hyperbolic
geometries.

Although it is not yet known whether the disk embedding theorem holds over
lattices for such geometries, we can show that the fundamental group and Euler
characteristic determine the manifold up to s-cobordism (§6). Moreover an
aspherical closed 4-manifold which is finitely covered by a geometric manifold
is homotopy equivalent to a geometric manifold.

9.1 Aspherical Seifert fibred 4-manifolds

In Chapter 8 we saw that if M is a closed 4-manifold with fundamental group
such that x(M) =0 and h(y/7) > 3 then M is homeomorphic to an infrasolv-
manifold. Here we shall show that if x(M) =0, h(y/7) =2 and [r: /7| = 0
then M is homotopy equivalent to a 4-manifold which is Seifert fibred over a
hyperbolic 2-orbifold. (We shall consider the case when x(M) =0, h(y/7) = 2
and [7: /7] < oo in Chapter 10.)
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Theorem 9.1 Let M be a PDj-complex with fundamental group w. If
X(M) = 0, m has an elementary amenable normal subgroup p with h(p) = 2
and H?(m;Z[r]) = 0 then M is aspherical and p is virtually abelian.

Proof Since 7 has one end, by Corollary 1.15.1, 69) () =0, by Theorem 2.3,
and H?(m;Z[r]) = 0, M is aspherical, by Corollary 3.5.2. In particular, p is
torsion-free and [ : p] = 0.

Since p is torsion-free elementary amenable and h(p) = 2 it is virtually solvable,
by Theorem 1.11. Therefore A = /p is nontrivial, and as it is characteristic
in p it is normal in 7. Since A is torsion-free and h(A) < 2 it is abelian, by
Theorem 1.5.

If h(A) =1 then A is isomorphic to a subgroup of Q and the homomorphism
from B = p/A to Aut(A) induced by conjugation in p is injective. Since
Aut(A) is isomorphic to a subgroup of Q* and h(B) = 1 either B = Z or
B =7Z&(Z/2Z). We must in fact have B = Z, since p is torsion-free. Moreover
A is not finitely generated and the centre of p is trivial. The quotient group
m/A has one end as the image of p is an infinite cyclic normal subgroup of
infinite index.

As A is a characteristic subgroup every automorphism of p restricts to an au-
tomorphism of A. This restriction from Aut(p) to Aut(A) is an epimorphism,
with kernel isomorphic to A, and so Aut(p) is solvable. Let C' = Cx(p) be the
centralizer of p in w. Then C is nontrivial, for otherwise m would be isomor-
phic to a subgroup of Aut(p) and hence would be virtually poly-Z. But then A
would be finitely generated, p would be virtually abelian and h(A) = 2. More-
over CNp=Cp=1,80 Cp=Cxpand cdC+cdp=cdCp<cdrm=4.
The quotient group 7/Cp is isomorphic to a subgroup of Out(p).

If c.d.Cp < 3 then as C is nontrivial and h(p) = 2 we must have ¢.d.C =1 and
c.d.p = h(p) = 2. Therefore C is free and p is of type F'/P [Kr86]. By Theorem
1.13 p is an ascending HNN group with base a finitely generated subgroup
of A and so has a presentation (a,t | tat™! = a") for some nonzero integer
n. We may assume |n| > 1, as p is not virtually abelian. The subgroup of
Aut(p) represented by (n — 1)A consists of inner automorphisms. Since n > 1
the quotient A/(n —1)A = Z/(n — 1)Z is finite, and as Aut(A) = Z[1/n]* it
follows that Out(p) is virtually abelian. Therefore 7 has a subgroup o of finite
index which contains C'p and such that o/Cp is a finitely generated free abelian
group, and in particular c.d.o/Cp is finite. As o is a PDy-group it follows from
[Bi, Theorem 9.11] that Cp is a PDs-group and hence that p is a PDy-group.
We reach the same conclusion if c¢.d.Cp = 4, for then [r : Cp] is finite, by
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Strebel’s Theorem, and so Cp is a PD4-group. As a solvable PDy-group is
virtually Z? our original assumption must have been wrong.

Therefore h(A) = 2. As every finitely generated subgroup of p is either iso-
morphic to Z x_1 Z or is abelian [p: A] < 2. O

If h(p) = 2, p is torsion-free and [r : p] = oo then H?(m;Z[r]) = 0, by
Theorem 1.17. Can the latter hypothesis in the above theorem be replaced by
“[m : p| = 00”? Some such hypothesis is needed, for if M = S% x T then
X(M) =0 and m = Z2.

Theorem 9.2 Let M be a PDy-complex with fundamental group w. If
h(y/m) =2, [7: /7] =00 and x(M) =0 then M is aspherical and \/m = 7.

Proof As H®(m;Z[r]) =0 for s < 2, by Theorem 1.17, M is aspherical, by
Theorem 9.1. We may assume henceforth that /7 is a torsion-free abelian
group of rank 2 which is not finitely generated.

Suppose first that [ : C] = oo, where C' = Cr(y/7). Then c.d.C < 3, by
Strebel’s Theorem. Since /7 is not finitely generated c.d.\/m = h(y/7)+1 =3
[Bi, Theorem 7.14]. Hence C = /m [Bi, Theorem 8.8], so the homomorphism
from 7/y/7 to Aut(y/7) determined by conjugation in 7 is a monomorphism.
Since /7 is torsion-free abelian of rank 2, Aut(/m) is isomorphic to a sub-
group of GL(2,Q) and therefore any torsion subgroup of Aut(y/m) is finite,
by Corollary 1.3.1. Thus if #'\/7/\/7 is a torsion group 7’\/7 is elementary
amenable and so 7 is itself elementary amenable, contradicting our assumption.
Hence we may suppose that there is an element g in 7’ which has infinite order
modulo /7. The subgroup (y/7,g) generated by /7 and g is an extension
of Z by /7 and has infinite index in 7, for otherwise m would be virtually
solvable. Hence c.d.(y/m,g) = 3 = h({\/7,g)), by Strebel’s Theorem. By [Bi,
Theorem 7.15], L = Ha(y/m;Z) is the underlying abelian group of a subring
Z[m~'] of Q, and the action of g on L is multiplication by a rational number
a/b, where a and b are relatively prime and ab and m have the same prime
divisors. But g acts on /7 as an element of GL(2,Q) < SL(2,Q). Since
L = /mAy/7 [Ro, 11.14.16], g acts on L via det(g) = 1. Therefore m =1 and
so L must be finitely generated. But then /7 must also be finitely generated,
again contradicting our assumption.

Thus we may assume that C' has finite index in . Let A < /7 be a subgroup of
/7 which is free abelian of rank 2. Then A; is central in C' and C/A is finitely
presentable. Since [ : C] is finite A has only finitely many distinct conjugates
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in 7, and they are all subgroups of (C. Let N be their product. Then N is a
finitely generated torsion-free abelian normal subgroup of 7 and 2 < A(NV) <
h(v/C) < h(y/m) = 2. An LHSSS argument gives H?(n/N;Z[r/N]) = Z, and
so m/N is virtually a PDs-group, by Bowditch’s Theorem. Since /7/N is a
torsion group it must be finite, and so /7 = Z2. O

Corollary 9.2.1 Let M be a closed 4-manifold with fundamental group .
Then M is homotopy equivalent to one which is Seifert fibred with general fibre
T or Kb over a hyperbolic 2-orbifold if and only if h(y/7) = 2, [1 : /7] = o0
and x(M) =0.

Proof This follows from the theorem together with Theorem 7.3. a

9.2 The Seifert geometries: H2 x E2 and SL x E!

A manifold with geometry H? x E? or SL x E! is Seifert fibred with base a hy-
perbolic orbifold. However not all such Seifert fibred 4-manifolds are geometric.
We shall show that geometric Seifert fibred 4-manifolds may be characterized
in terms of their fundamental groups. With [Vo77], Theorems 9.5 and 9.6 imply
the main result of [Ke], which is Corollary 9.6.2 below.

Theorem 9.3 Let M be a closed H? x E!-, SL x El- or H2 x E2-manifold.
Then M has a finite covering space which is diffeomorphic to a product N x S*.

Proof If M is an H? x E!'-manifold then m = 71 (M) is a discrete cocompact
subgroup of G = Isom(H? x E!). The radical of this group is Rad(G) = R,
and G,/Rad(G) =2 PSL(2,C), where G, is the component of the identity in G.
Since PSL(2,C) has no compact factor, A = 7N Rad(G) is a lattice subgroup
[Rg, Proposition 8.27]. Since R/A is compact the image of 7/A in Isom(H?)
is again a discrete cocompact subgroup. Hence /7 = A =< Z.

On passing to a 2-fold covering space, if necessary, we may assume that © <
Isom(H3) x R and (hence) (7 = /7. Projection to the second factor maps /7
monomorphically to R. Hence on passing to a further finite covering space, if
necessary, we may assume that = = v x Z, where v = 7 /y/7 = 71 (V) for some
closed orientable H-manifold N. (Note that we do not claim that 7 = v x Z
as a subgroup of PSL(2,C) x R.) The foliation of H? x R by lines is preserved
by m, and so induces an S'-bundle structure on M, with base N. As such
bundles (with aspherical base) are determined by their fundamental groups, M
is diffeomorphic to N x S*.
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Similar arguments apply if the geometry is X* = H? x E? or SL x E!. If
G = Isom(X*) then Rad(G) = R?, and PSL(2,R) is a cocompact subgroup
of G,/Rad(G). The intersection A = m N Rad(G) is again a lattice subgroup,
and /A has a subgroup of finite index which is a discrete cocompact subgroup
of PSL(2,R). Hence /7 = A = Z?. Moreover, on passing to a finite covering
space we may assume that (7 = /7 and 7//7 is a PDsy-group. If X* = H2x[E?
then projection to the second factor maps /7 monomorphically and 7 preserves
the foliation of H2 x R? by planes. If X4 = SL x E! then /7N Isom(SL) must
be nontrivial, since [ som(SAI[:) has no subgroups which are PDs-groups. (See
[Sc83’, page 466].) Hence m is virtually a product v x Z with v = m1(N)
for some closed orientable SL-manifold N. In each case, M is virtually a
product. O

There may not be such a covering which is geometrically a cartesian product.
Let v be a discrete cocompact subgroup of I'som(X) where X = H3 or SL
which admits an epimorphism « : v — Z. Define a homomorphism 6 : v x Z —
Isom(X x EY) by 0(g,n)(x,r) = (g(x),r +n + a(g)V2) for all g € v, n € Z,
xz € X and r € R. Then 6 is a monomorphism onto a discrete subgroup which
acts freely and cocompactly on X x R, but its image in FE(1) has rank 2.

Lemma 9.4 Let m be a finitely generated group with normal subgroups A <
N such that A is free abelian of rank r, [7 : N] < oo and N =2 A x N/A.
Then there is a homomorphism f : m — E(r) with image a discrete cocompact
subgroup and such that f|4 is injective.

Proof Let G =n/N and M = N% = A®(N/AN'). Then M is a finitely gen-
erated Z[G]-module and the image of A in M is a Z[G]-submodule. Extending
coefficients to the rationals Q gives a natural inclusion QA < QM since A is
a direct summand of M (as an abelian group), and QA is a Q[G]-submodule
of QM. Since G is finite Q[G] is semisimple, and so QA is a Q[G]-direct
summand of QM . Let K be the kernel of the homomorphism from M to QA
determined by a splitting homomorphism from QM to QA, and let K be the
preimage of K in w. Then K is a Z[G]-submodule of M and M/K = 7",
since it is finitely generated and torsion-free of rank r. Moreover K is a nor-
mal subgroup of m and ANK = 1. Hence H = 7r/l~( is an extension of G
by M/K and A maps injectively onto a subgroup of finite index in H. Let
T be the maximal finite normal subgroup of H. Then H/T is isomorphic to
a discrete cocompact subgroup of E(r), and the projection of 7 onto H/T is
clearly injective on A. |
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Theorem 9.5 Let M be a closed 4-manifold with fundamental group w. Then
the following are equivalent:

(1) M is homotopy equivalent to a H? x E2-manifold;

(2) 7 has a finitely generated infinite subgroup p such that |7 : N(p)] < oo,
VP =1, (Cx(p) = Z? and x(M) = 0;
(3) VA =Z2, [1: /7] =00, [1: Cr(\/T)] < 00, e¥(1) =0 and x(M) = 0.

Proof If M is a H? x E?-manifold it is finitely covered by B x T, where B is
a closed hyperbolic surface. Thus (1) implies (2), on taking p = 71 (B).

If (2) holds M is aspherical and so 7 is a PD4-group, by Theorem 9.1. Let
C = Cx(p). Then C is also normal in v = Ny (p), and CNp =1, since \/p = 1.
Hence p x C = p.C < 7. Now p is nontrivial. If p were free then an argument
using the LHSSS for H*(v; Q[v]) would imply that p has two ends, and hence
that \/p = p = Z. Hence c.d.p > 2. Since moreover 7Z? < C we must have
cd.p = cdC =2 and [r : p.C] < co. It follows easily that /7 = Z? and
[ : Cr(y/m)] < 00. Moreover m has a normal subgroup K of finite index which
contains /7 and is such that K 2 /7 x K/y/m. In particular, e2(K) = 0 and
so €Q(7r) = 0. Thus (2) implies (3).

If (3) holds M is homotopy equivalent to a manifold which is Seifert fibred over
a hyperbolic orbifold, by Corollary 9.2.1. Since e®(7) = 0 this manifold has a
finite regular covering which is a product B x T', with 71(T) = /7. Let H be
the maximal solvable normal subgroup of 7. Since m/4/7 has no infinite solvable
normal subgroup H/./7 is finite, and since 7 is torsion-free the preimage of
any finite subgroup of 7 /\/7 is /m or Z x_1 Z. Then [H : /7] < 2, m(B)
embeds in 7w/H as a subgroup of finite index and 7/H has no nontrivial finite
normal subgroup. Therefore there is a homomorphism h : 7 — Isom(H?) with
kernel H and image a discrete cocompact subgroup, by the solution to the
Nielsen realization problem for surfaces [Ke83]. By the lemma there is also a
homomorphism f : 7 — E(2) which maps /7 to a lattice. The homomorphism
(h, f) : # = Isom(H? x E?) is injective, since 7 is torsion-free, and its image is
discrete and cocompact. Therefore it is a lattice, and so (3) implies (1). O

A similar argument may be used to characterize SL x E!-manifolds.

Theorem 9.6 Let M be a closed 4-manifold with fundamental group . Then
the following are equivalent:

(1) M is homotopy equivalent to a SL x E! -manifold;
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(2) VT =Z2, [n: /7] =00, [1: Cr(y/T)] < 00, e¥(m) #0 and x(M) = 0.

Proof (Sketch) These conditions are clearly necessary. If they hold M is
aspherical and 7 has a normal subgroup K of finite index which is a central
extension of a PDy -group G by /7. Let e(K) € H?(G;Z?) = Z? be the class
of this extension. There is an epimorphism A : Z* — Z such that As(e(K)) = 0
in H%(G;Z), and so K/Ker(\) < G x Z. Hence K = v x Z, where v is a
SL-manifold group. Let A < /7 be an infinite cyclic normal subgroup of =
which maps onto K /v, and let H be the preimage in 7 of the maximal finite
normal subgroup of w/A. Then [H : A] <2, v embeds in 7/H as a subgroup
of finite index and 7/H has no nontrivial finite normal subgroup. Hence 7/H
is a SL-orbifold group [ZZ82, Satz 2.1]. (This is another application of [Ke83]).
A homomorphism f : 7 — FE(1) which is injective on H and with image a
lattice may be constructed and the sufficiency of these conditions may then be
established as in Theorem 9.5. |

Corollary 9.6.1 A group 7 is the fundamental group of a closed H? x E2- or
SLxE!-manifold if and only if it is a PD4-group, /7 = 7Z? and the action a has
finite image in GL(2,7). The geometry is H? x E? if and only if €Q(7) = 0. O

Corollary 9.6.2 [Ke|] An aspherical Seifert fibred 4-manifold is geometric if
and only if it is finitely covered by a geometric 4-manifold. O

A closed 4-manifold M is an H? x E2-manifold if and only if it is both Seifert
fibred and also the total space of an orbifold bundle over a flat 2-orbifold and
with general fibre a hyperbolic surface, for the two projections determine a
direct product splitting of a subgroup of finite index, and so e2(7) = 0.

Similarly, M is a product 7' x B with x(B) < 0 if and only if it fibres both as
a torus bundle and as a bundle with hyperbolic fibre.

9.3 H? x E!'-manifolds

An argument related to that of Theorem 9.5 (using the Virtual Fibration The-
orem [Agl3|, and using Mostow rigidity instead of [Ke83]) shows that a 4-
manifold M is homotopy equivalent to an H?® x E'-manifold if and only if
X(M) = 0 and m = 7 (M) has a normal subgroup of finite index which is
isomorphic to p x Z, where p has an infinite F'P, normal subgroup v of infinite
index, but has no noncyclic abelian subgroup. Moreover, v is then a PDs-
group, and every torsion free group 7 with such subgroups is the fundamental
group of an H? x E!-manifold.
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If every PDs-group is the fundamental group of a closed 3-manifold we could
replace the condition on v by the simpler condition that p have one end. For
then M would be aspherical and hence p would be a PDs-group. An aspheri-
cal 3-manifold whose fundamental group has no noncyclic abelian subgroup is
atoroidal, and hence hyperbolic [B-P].

The foliation of H3 x R by copies of H? induces a codimension 1 foliation of
any closed H? x E'-manifold. If all the leaves are compact then the manifold
is either a mapping torus or the union of two twisted I-bundles. Is this always
the case?

Theorem 9.7 Let M be a closed H? x E'-manifold. If (x = 7 then M is
homotopy equivalent to a mapping torus of a self homeomorphism of an H?3-
manifold; otherwise M is homotopy equivalent to the union of two twisted
I-bundles over H?-manifold bases.

Proof There is a homomorphism A : 7 — E(1) with image a discrete cocom-
pact subgroup and with A(y/7) # 1, by Lemma 9.4. Let K = Ker(\). Then
Kny/m=1,s0 K is isomorphic to a subgroup of finite index in 7/+/m. There-
fore K 22 m1(N) for some closed H®-manifold, since it is torsion-free. If (7 = Z
then Im(\) =2 Z (since (D = 1); if {(w =1 then Im(\) = D. The theorem now
follows easily. a

9.4 Mapping tori

In this section we shall use 3-manifold theory to characterize mapping tori with
one of the geometries H? x E, SL x E! or H? x E2.

Theorem 9.8 Let ¢ be a self homeomorphism of a closed 3-manifold N which
admits the geometry H? x E! or SL. Then the mapping torus M (¢) = N X¢S 1
admits the corresponding product geometry if and only if the outer automor-
phism [¢,] induced by ¢ has finite order. The mapping torus of a self homeo-
morphism ¢ of an H3-manifold N admits the geometry H? x E!.

Proof Let v = (V) and let ¢ be an element of m = 71 (M (¢)) which projects
to a generator of m(S'). If M(¢) has geometry SL x E! then after passing
to the 2-fold covering space M (¢$?), if necessary, we may assume that 7 is a
discrete cocompact subgroup of I som(glﬁ) xR. As in Theorem 9.3 the intersec-
tion of m with the centre of this group is a lattice subgroup L = Z2. Since the
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centre of v is Z the image of L in 7/v is nontrivial, and so 7 has a subgroup
o of finite index which is isomorphic to v x Z. In particular, conjugation by
tlm] induces an inner automorphism of v.

If M(¢) has geometry H? xE? a similar argument implies that 7 has a subgroup
o of finite index which is isomorphic to p x Z?, where p is a discrete cocompact
subgroup of PSL(2,R), and is a subgroup of v. It again follows that tlm:ol
induces an inner automorphism of v.

Conversely, suppose that N has a geometry of type H? x E! or SL and that
[¢«] has finite order in Out(r). Then ¢ is homotopic to a self homeomorphism
of (perhaps larger) finite order [Zn80] and is therefore isotopic to such a self
homeomorphism [Sc85, BO91|, which may be assumed to preserve the geomet-
ric structure [MS86]. Thus we may assume that ¢ is an isometry. The self
homeomorphism of N x R sending (n,r) to (¢(n),r + 1) is then an isometry
for the product geometry and the mapping torus has the product geometry.

If N is hyperbolic then ¢ is homotopic to an isometry of finite order, by Mostow
rigidity [Ms68], and is therefore isotopic to such an isometry [GMTO03], so the
mapping torus again has the product geometry. O

A closed 4-manifold M which admits an effective T-action with hyperbolic base
orbifold is homotopy equivalent to such a mapping torus. For then (7 = /7
and the LHSSS for homology gives an exact sequence

Hy(m/¢{m;Q) — Hi(¢m; Q) — Hy(m; Q).

As 7/¢r is virtually a PDs-group Ha(w/(m;Q) =2 Q or 0, so (w/{mr N7’ has
rank at least 1. Hence m = v Xy Z where (v = Z, v/{v is virtually a PDs-
group and [f] has finite order in Out(v). If moreover M is orientable then it
is geometric ([Ue90, Ue91] — see also §7 of Chapter 7). Note also that if M is

a SL x El-manifold then (7w = /7 if and only if 7 < Isomo(g\]lj x El).

Let F' be a closed hyperbolic surface and « : FF — F a pseudo-Anasov home-
omorphism. Let O(f,z) = (a(f),z) for all (f,z) in N = F x S'. Then
N is an H? x E!'-manifold. The mapping torus of © is homeomorphic to an
H? x E!'-manifold which is not a mapping torus of any self-homeomorphism n of
an HP-manifold. In this case [©,] has infinite order. However if N is a SL-
manifold and [¢,] has infinite order then M (¢) admits no geometric structure,
for then /7 = Z but is not a direct factor of any subgroup of finite index.

If (v 27Z and ((v/Cv) =1 then Hom(v/V',(v) embeds in Out(v), and thus
v has outer automorphisms of infinite order, in most cases [CR77].
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Let N be an aspherical closed X?-manifold where X3 = H?3, SL or H2 x E!, and
suppose that 81(NN) > 0 but N is not a mapping torus. Choose an epimorphism
A m(N) — Z and let N be the 2-fold covering space associated to the
subgroup A™1(2Z). If ¢ : N — N is the covering involution then pu(n,z) =
(e(n), z) defines a free involution on N x S, and the orbit space M is an
X3 x E!-manifold with B;(M) > 0 which is not a mapping torus.

9.5 The semisimple geometries: H? x H?, H! and H?(C)

In this section we shall consider the remaining three geometries realizable by
closed 4-manifolds. (Not much is known about H* or H2(C).)

Let P = PSL(2,R) be the group of orientation preserving isometries of H?.
Then Isom(H? x H?) contains P x P as a normal subgroup of index 8. If M is
a closed H? x H2-manifold then o(M) =0 and x(M) > 0, and M is a complex
surface if (and only if) (M) is a subgroup of P x P. It is reducible if it has a
finite cover isometric to a product of closed surfaces. The fundamental groups
of such manifolds may be characterized as follows.

Theorem 9.9 A group = is the fundamental group of a reducible H? x H?-
manifold if and only if it is torsion-free, /T = 1 and m has a subgroup of finite
index which is isomorphic to a product of PDs-groups.

Proof The conditions are clearly necessary. Suppose that they hold. Then 7 is
a PDy-group and has a normal subgroup of finite index which is a direct product
K.L 2 K x L, where K and L are PDs-groups and v = N;(K) = N;(L) has
index at most 2 in 7, by Corollary 5.5.2. After enlarging K and L, if necessary,
we may assume that L = C(K) and K = C(L). Hence v/K and v/L have no
nontrivial finite normal subgroup. (For if K is normal in v and contains K asa
subgroup of finite index then K;NL is finite, hence trivial, and so K7 < Cr(L).)
The action of v/L by conjugation on K has finite image in Out(K), and so
v/L embeds as a discrete cocompact subgroup of Isom(H?), by the Nielsen
conjecture [Ke83|]. Together with a similar embedding for v/K we obtain a
homomorphism from v to a discrete cocompact subgroup of I'som(H? x H?).

If [7:v] =2 let t be an element of 7 \ v, and let j : v/K — Isom(H?) be an
embedding onto a discrete cocompact subgroup S. Then tKt~! = L and con-
jugation by t¢ induces an isomorphism f : v/K — v/L. The homomorphisms
j and jo f~! determine an embedding J : v — Isom(H? x H?) onto a discrete
cocompact subgroup of finite index in S x S. Now 2 € v and J(#?) = (s,s),
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where s = j(t?K). We may extend J to an embedding of 7w in I'som(H? x H?)
by defining J(¢) to be the isometry sending (z,y) to (y,s.x). Thus (in either
case) 7 acts isometrically and properly discontinuously on H? x H?. Since 7 is
torsion-free the action is free, and so m = 71 (M), where M = 7\(H?x H?). O

Corollary 9.9.1 Let M be a H? x H?-manifold. Then M is reducible if and
only if it has a 2-fold covering space which is homotopy equivalent to the total
space of an orbifold bundle over a hyperbolic 2-orbifold.

Proof That reducible manifolds have such coverings was proven in the the-
orem. Conversely, an irreducible lattice in P x P cannot have any nontrivial
normal subgroups of infinite index, by Theorem IX.6.14 of [Ma]. Hence an
H? x H?-manifold which is finitely covered by the total space of a surface bun-
dle is virtually a cartesian product. |

Is the 2-fold covering space itself such a bundle space over a 2-orbifold? In
general we cannot assume that M is itself fibred over a 2-orbifold. Let G be
a PDy-group with (G = 1 and let A : G — Z be an epimorphism. Choose
x € A71(1). Then y = 2? is in K = A~!(2Z), but is not a square in K, and so
7= (K x K, t|t(k,)t7 " = (xlz™ 1, k) for all (k,1) € K x K,t* = (y,y)))
is torsion-free. A cocompact free action of G on H? determines a cocompact
free action of m on H? x H? by (k,1).(h1,h2) = (k.h1,1.he) and t(hy,hs) =
(x.hg, hy), for all (k,1) € K x K and (hy,hs) € H?> x H?>. The group 7 has

no normal subgroup which is a PDy-group. (Note also that if K is orientable
7\ (H? x H?) is a compact complex surface.)

We may use Theorem 9.9 to give several characterizations of the homotopy
types of such manifolds.

Theorem 9.10 Let M be a closed 4-manifold with fundamental group .
Then the following are equivalent:
(1) M is homotopy equivalent to a reducible H? x H?-manifold;

(2) 7 has an ascendant subgroup G which is F Py, has one end and such that
Cr(Q) is not a free group, ma(M) =0 and x(M) # 0;

(3) = has a subgroup p of finite index which is isomorphic to a product of
two PDq-groups and x(M)[r : p] = x(p) # 0.

(4) 7 is virtually a PDy-group, /7 = 1 and 7 has a torsion-free subgroup
of finite index which is isomorphic to a nontrivial product ¢ X T where

X(M)[r: o x 7] = (2= p1(0))(2 = pi(T)).
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Proof As H? x H2-manifolds are aspherical (1) implies (2), by Theorem 9.8.

Suppose now that (2) holds. Then 7 has one end, by transfinite induction, as in
Theorem 4.8. Hence M is aspherical and 7 is a PDy-group, since ma(M) = 0.
Since x(M) # 0 we must have /7 = 1. (For otherwise BZ-(Q)(TF) = 0 for
all ¢, by Theorem 2.3, and so x(M) = 0.) In particular, every ascendant
subgroup of 7 has trivial centre. Therefore G N C(G) = (G = 1 and so
G x Cr(GQ) = p = G.Cx(G) < m. Hence c.d.Cr(G) < 2. Since Cr(G) is
not free c.d.G x Cr(G) = 4 and so p has finite index in 7. (In particular,
[Cr(Cx(G)) : G] is finite.) Hence p is a PDy4-group and G and Cr(G) are
PDsy-groups, so 7 is virtually a product. Thus (2) implies (1), by Theorem 9.9.

It is clear that (1) implies (3). If (3) holds then on applying Theorems 2.2 and
3.5 to the finite covering space associated to p we see that M is aspherical,
so 7 is a PDy-group and (4) holds. Similarly, M is asperical if (4) holds. In
particular, 7 is a PD4-group and so is torsion-free. Since /7 = 1 neither o
nor 7 can be infinite cyclic, and so they are each PDy-groups. Therefore 7 is
the fundamental group of a reducible H? x H?-manifold, by Theorem 9.9, and
M ~ m\H? x H?, by asphericity. O

The asphericity of M could be ensured by assuming that m be PDj and
X(M) = x(m), instead of assuming that my(M) = 0.

For H? x H2-manifolds we can give more precise criteria for reducibility.

Theorem 9.11 Let M be a closed H? x H?-manifold with fundamental group
. Then the following are equivalent:

7w has a subgroup of finite index which is a nontrivial direct product;

72 < T;

7w has a nontrivial element with nonabelian centralizer;

TO({1} x P) # 1;

7O (P x {1}) # 1;

M is reducible.

Proof Since 7 is torsion-free each of the above conditions is invariant under
passage to subgroups of finite index, and so we may assume without loss of
generality that @ < P x P. Suppose that ¢ is a subgroup of finite index in
7 which is a nontrivial direct product. Since x (o) # 0 neither factor can be
infinite cyclic, and so the factors must be PDy-groups. In particular, Z? < o
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and the centraliser of any element of either direct factor is nonabelian. Thus
(1) implies (2) and (3).

Suppose that (a,b) and (a’,b’) generate a subgroup of 7 isomorphic to Z2.
Since centralizers of elements of infinite order in P are cyclic the subgroup of
P generated by {a,a’} is infinite cyclic or is finite. We may assume without
loss of generality that @’ = 1, and so (2) implies (4). Similarly, (2) implies (5).

Let g = (g1,92) € P x P be nontrivial. Since centralizers of elements of infinite
order in P are infinite cyclic and Cpxp({g)) = Cpr({g1)) x Cp({g2)) it follows
that if Cz((g)) is nonabelian then either g; or g» has finite order. Thus (3)
implies (4) and (5).

Let K1 =7mN ({1} x P) and Ko = 7N (P x{1}). Then K; is normal in 7, and
there are exact sequences

1K, —»>nm—L;, —1,

where L; = pr;(r) is the image of 7 under projection to the i** factor of P x P,
for =1 and 2. Moreover K; is normalised by L3_;, for : = 1 and 2. Suppose
that K7 # 1. Then K; is nonabelian, since it is normal in 7 and x(m) # 0. If
Lo were not discrete then elements of Lo sufficiently close to the identity would
centralize K. As centralizers of nonidentity elements of P are abelian, this
would imply that K7 is abelian. Hence L is discrete. Now Lo\ H? is a quotient
of m\H x H and so is compact. Therefore Lo is virtually a PDy-group. Now
c.d. Ko +wv.cd.Ly > c.dw =4, so c.d.Ks > 2. In particular, K9 # 1 and so a
similar argument now shows that c.d.K; > 2. Hence c.d.K; x Ko > 4. Since
K1 x Ky 2 K. Koy < 7 it follows that 7 is virtually a product, and M is finitely
covered by (K1\H?) x (K2\H?). Thus (4) and (5) are equivalent, and imply
(6). Clearly (6) implies (1). O

The idea used in showing that (4) implies (5) and (6) derives from one used
in the proof of [W185, Theorem 6.3]. Orientable reducible H? x H2-manifolds
with isomorphic fundamental group are diffeomorphic [Ca00].

If T is a discrete cocompact subgroup of P x P such that M = ['\H? x H? is
irreducible then I'N P x {1} =I'N {1} x P =1, by the theorem. Hence the
natural foliations of H? x H? descend to give a pair of transverse foliations of
M by copies of H%. Conversely, if M is a closed Riemannian 4-manifold with a
codimension 2 metric foliation by totally geodesic surfaces then M has a finite
cover which either admits the geometry H? x E? or H? x H?, or is the total
space of an S2- or T-bundle over a closed surface, or is the mapping torus of a
self homeomorphism of R3/Z3, S? x S1 or a lens space [Ca90].

Geometry & Topology Monographs, Volume 5 (2002)



192 Chapter 9: The other aspherical geometries

An irreducible H? x H2-lattice is an arithmetic subgroup of I'som(H? x H?), and
has no nontrivial normal subgroups of infinite index [Ma, Theorems IX.6.5 and
14]. Such irreducible lattices are rigid, and so the argument of [Wa72, Theorem
8.1] implies that there are only finitely many irreducible H? x H?-manifolds with
given Euler characteristic. What values of y are realized by such manifolds? If
M is a closed orientable H? x H2-manifold then (M) = 0, so x(M) is even,
and x(M) > 0 [WI86]. There are examples (“fake quadrics”) with 81 = 0 and
X(M) =4 [Dz13].

Irreducible arithmetic H? x H?-lattices are commensurable with lattices con-
structed as follows. Let I’ be a totally real number field, with ring of integers
Op. Let H be a skew field which is a quaternion algebra over F' such that
H ®, R = M>(R) for exactly two embeddings ¢ of F' in R. If A is an order in
H (a subring which is also a finitely generated Op-submodule and such that
F.A = H) then the quotient of the group of units A* by £1 embeds as a
cocompact irreducible H? x H2-lattice T'(A). (It is difficult to pin down a refer-
ence for the claim that this construction realizes all commensurability classes,
but it appears to be “well-known to the experts”. See [Sh63, Bo81].)

Much less is known about closed H*- or H?(C)-manifolds. There are only
finitely many such manifolds with a given Euler characteristic. (See [WaT72,
Theorem 8.1].) If M is a closed orientable H*-manifold then o(M) = 0, so
X (M) is even, and x(M) > 0 [Ko92]. The examples of [CMO05] and [Da85] have
B1 > 0, and so covers of these realize all positive multiples of 16 and of 26.
No closed H*-manifold admits a complex structure. If M is a closed H?(C)-
manifold it is orientable and x(M) = 30(M) > 0 [WI86]. The isometry group
of H2(C) has two components; the identity component is SU(2,1) and acts via
holomorphic isomorphisms on the unit ball

{(w,2) € C%: |w* + |2|* < 1}.

There are H?(C)-manifolds with 31 = 2 and y = 3 [CS10], and so all positive
multiples of 3 are realized. Since H* and H?(C) are rank 1 symmetric spaces
the fundamental groups can contain no noncyclic abelian subgroups [Pr43]. In
each case there are cocompact lattices which are not arithmetic. At present
there are not even conjectural intrinsic characterizations of such groups. (See
also [Rt] for the geometries H" and [Go| for the geometries H"(C).)

Each of the geometries H? x H?, H* and H?(C) admits cocompact lattices which
are not coherent. (See §4 of Chapter 4 above, [BM94] and [Kal3], respectively.)
Is this true of every such lattice for one of these geometries? (Lattices for the
other geometries are coherent.)
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9.6 Miscellany

A homotopy equivalence between two closed H"- or H"(C)-manifolds of dimen-
sion > 3 is homotopic to an isometry, by Mostow rigidity [Ms68]. Farrell and
Jones have established “topological” analogues of Mostow rigidity, for mani-
folds with a metric of nonpositive sectional curvature and dimension > 5. By
taking cartesian products with S', we can use their work in dimension 4 also.

Theorem 9.12 Let X* be a geometry of aspherical type. A closed 4-manifold
M with fundamental group m is s-cobordant to an X*-manifold if and only if
7 is isomorphic to a cocompact lattice in Isom(X*) and x(M) = x().

Proof The conditions are clearly necessary. If they hold cpy : M — w\X
is a homotopy equivalence, by Theorem 3.5. If X* is of solvable type cps is
homotopic to a homeomorphism, by Theorem 8.1. In most of the remaining
cases (excepting only SL x E! — see [Eb82]) the geometry has nonpositive sec-
tional curvatures, so Wh(n) = Wh(r x Z) =0 and M x S' is homeomorphic
to (m\X) x S! [FJ93’]. Hence M and 7\ X are s-cobordant, by Lemma 6.10.
The case X* = SL x E! follows from [NS85] if m < Isom,(SL x E!), so that
7\(SL x R) admits an effective T-action, and from [HR11] in general. O

If an aspherical closed 4-manifold M has a geometric decomposition then 7 =
w1 (M) is built from the fundamental groups of the pieces by amalgamation
along torsion-free virtually poly-Z subgroups. As the Whitehead groups of the
geometric pieces are trivial (by the argument of [FJ86]) and the amalgamated
subgroups are regular noetherian it follows from the K -theoretic Mayer-Vietoris
sequence of Waldhausen that Wh(w) = 0. Is M s-rigid? This is so if all the
pieces are H*- or H2(C)-manifolds or irreducible H? x H?-manifolds, for then
the inclusions of the cuspidal subgroups into the fundamental groups of the
pieces are square-root closed. (See [BJS17].)

For the semisimple geometries we may avoid the appeal to L?-methods to estab-
lish asphericity as follows. Since x(M) > 0 and 7 is infinite and residually finite
there is a subgroup o of finite index such that the associated covering spaces
M, and o\ X are orientable and x(M,) = x(c) > 2. In particular, H*(M,;Z)
has elements of infinite order. Since the classifying map ¢y, @ M, — o\ X is
2-connected it induces an isomorphism on H? and hence is a degree-1 map, by
Poincaré duality. Therefore it is a homotopy equivalence, by Theorem 3.2.

Theorem 9.13 An aspherical closed 4-manifold M which is finitely covered
by a geometric manifold is homotopy equivalent to a geometric 4-manifold.
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Proof The result is clear for infrasolvmanifolds, and follows from Theorems
9.5 and 9.6 if the geometry is H? x E? or SL x E!, and from Theorem 9.9 if M
is finitely covered by a reducible H? x H?-manifold. It holds for the other closed
H? x H2-manifolds and for the geometries H* and H?(C) by Mostow rigidity.
If the geometry is H? x E! then /7 = Z and 7/+/7 is virtually the group of a
H3-manifold. Hence 7/y/7 acts isometrically and properly discontinuously on
H?, by Mostow rigidity. Moreover as the hypotheses of Lemma 9.4 are satisfied,
by Theorem 9.3, there is a homomorphism A : 7 — D < I'som(IE!) which maps
/7 injectively. Together these actions determine a discrete and cocompact
action of 7 by isometries on H? x R. Since 7 is torsion-free this action is free,
and so M is homotopy equivalent to an H? x E!-manifold. a

The result holds also for S* and CP?, but is not yet clear for S? x E? or S x H2.
It fails for S* x E! or S? x S?. In particular, there is a closed nonorientable
4-manifold which is doubly covered by S? x S? but is not homotopy equivalent
to an S? x S?-manifold. (See Chapters 11 and 12.)

If 7 is the fundamental group of an aspherical closed geometric 4-manifold then

§2)(7r) =0 for s =0 or 1, and so Béz)(ﬂ) = x(m), by Theorem 1.35 of [Lii].
Hence def(7) < min{0, —x(m)}, by Theorems 2.4 and 2.5 (and since c.d.w > 2).
If 7 is orientable this gives def(m) < 261 (7) — f2(7) —2. When f1(7) < 1 this
is an improvement on the estimate def(mw) < f1(7) — fa2(w) derived from the
ordinary homology of a 2-complex with fundamental group 7. (In particular,
the fundamental groups of “fake complex projective planes” — compact complex
surfaces with the rational homology of CP?, but with geometry H?(C) — have
deficiency < —3.)
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Chapter 10

Manifolds covered by S? x R?

If the universal covering space of a closed 4-manifold with infinite fundamental
group is homotopy equivalent to a finite complex then it is either contractible
or homotopy equivalent to S? or S, by Theorem 3.9. The aspherical cases
have been considered in Chapters 8 and 9. In this chapter and the next we
shall consider the spherical cases. We show first that if M ~ S? then M has
a finite covering space which is s-cobordant to a product S? x B, where B is
aspherical, and 7 is the group of a S? x E2- or S? x H?-manifold. In §2 and
§3 we show that there are at most two homotopy types of such manifolds for
each such group 7 and action u : 7 — Z/2Z. In §4 we show that all S2-
and RP2-bundles over aspherical closed surfaces are geometric. We determine
the nine possible elementary amenable groups (corresponding to the geometry
S? xE?) in §5. Six have infinite abelianization, and in §6 we use Stiefel-Whitney
classes to distinguish the related homotopy types. After some remarks on the
homeomorphism classification, we show finally that every 4-manifold with fun-
damental group a PDsy-group admits a 2-connected degree-1 map to the total
space of an S2-bundle. For brevity, we shall let X? denote both E? and H?.

10.1 Fundamental groups

The determination of the closed 4-manifolds with universal covering space ho-
motopy equivalent to S? rests on Bowditch’s Theorem, via Theorem 5.14.

Theorem 10.1 Let M be a closed 4-manifold with fundamental group .
Then the following conditions are equivalent:

(1) m is virtually a PDy-group and x(M) = 2x(w);
(2) m##1 and ma(M) = 7Z;

(3) M has a covering space of degree dividing 4 which is s-cobordant to
S? x B, where B is an aspherical closed orientable surface;

(4) M is virtually s-cobordant to an S? x X2-manifold.

If these conditions hold then M is homeomorphic to S? x R?, and the kernel
of the action u : m — Aut(me(M)) = Z/2Z is a PDy-group.
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Proof If (1) holds then mo(M) = Z, by Theorem 5.10, and so (2) holds. If
(2) holds then the covering space associated to the kernel of the natural action
of m on me(M) is homotopy equivalent to the total space of an S2-bundle ¢
over an aspherical closed surface with w;(§) = 0, by Lemma 5.11 and Theorem
5.14. On passing to a 2-fold covering space, if necessary, we may assume that
wa(§) = w1 (M) = 0 also. Hence ¢ is trivial and so the corresponding covering

space of M is s-cobordant to a product S? x B with B orientable. It is clear
that (3) = (4) and (4) = (1).

The final observations follow from Theorems 6.16 and 5.14, respectively. O
This follows also from [Fa74] instead of [Bo04], if we know also that x (M) < 0.

Theorem 10.2 Let u: 7 — Z/2Z be a homomorphism such that x = Ker(u)
is a PDg-group. Then the pair (7, u) is realized by a closed S? x E?-manifold,
if 7 is virtually Z?, and by a closed S? x H?-manifold otherwise.

Proof Let X be R2, if 7 is virtually Z?, or the hyperbolic plane, otherwise.
If 7 is torsion-free then it is itself a surface group. If = has a nontrivial finite
normal subgroup then it is a direct product (Z/2Z) x k. In either case 7 is
the fundamental group of a corresponding product of surfaces. Otherwise 7 is
a semidirect product £ x (Z/2Z) and is a plane motion group, by a theorem
of Nielsen [Zi]. Thus there is a monomorphism f : 7 — Isom(X?) with image
a discrete subgroup which acts cocompactly on X, with quotient B = 7\ X an
X2-orbifold. The homomorphism

(u, f) : ™ — {£I} x Isom(X?) < Isom(S* x X?)

is then a monomorphism onto a discrete subgroup which acts freely and cocom-
pactly on S? x X . In all cases the pair (7, u) may be realised geometrically. O

The manifold M constructed in Theorem 10.2 is a cartesian product with S?
if u is trivial and fibres over RP? otherwise. If m % (Z/2Z) x k projection to
X induces an orbifold bundle projection from M to B with general fibre S2.

10.2 The first k-invariant

The main result of this section is that if 7 = 71(M) is not a product then
k(M) = B4(U?), where U € H'(m;F2) = Hom(m, Z/2Z) corresponds to the
action u : ™ — Aut(me(M)) and S is a “twisted Bockstein” described below.

We shall first show that the orientation character w and the action v of © on
7o determine each other.
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Lemma 10.3 Let M be a PD4-complex with fundamental group m # 1 and
such that mo(M) = Z. Then H?(m;Z[r]) = Z and wy(M) = u + v, where
w:m— Aut(me(M)) = Z/2Z and v : © — Aut(H?(m;Z[r))) = Z/2Z are the
natural actions.

Proof Since m # 1 it is infinite, by Theorem 10.1. Thus Homg(m2(M), Z[n]

o~

= 0 and so Poincaré duality determines an isomorphism D : H?(m;Z[r])
mo(M), by Lemma 3.3. Let w = w;(M). Then gD(c) = (—1)*@e¢g! =
(—1)v@+w9)e for all ¢ € H?(m;Z[x]) and g € w, and so u = v + w.

O

Note that u and w;(M) are constrained by the further conditions that x =
Ker(u) is torsion-free and Ker(w;(M)) has infinite abelianization if (M) < 0.
If 7 < Isom(X?) is a plane motion group then v(g) detects whether g € 7
preserves the orientation of X?. If m = (Z/2Z) x r then v|z/57 = 0 and
v]x = wi(k). If 7 is torsion-free then M is homotopy equivalent to the total
space of an S?-bundle ¢ over an aspherical closed surface B, and the equation
u=wi(M) + v follows from Lemma 5.11.

Let 5% be the Bockstein operator associated with the coefficient sequence
072" —7"—TFy — 0,

and let 3% be the composition with reduction mod (2). In general 8% is NOT
the Bockstein operator for the untwisted sequence 0 — Z — Z — Fo — 0, and
Bv is not Sq', as can be seen already for cohomology of the group Z/2Z acting
nontrivially on Z, as f(HY(Z/2Z;Fs)) = 0 if u is nontrivial.

Lemma 10.4 Let M be a PD4-complex with fundamental group w and such
that mo(M) =2 Z. If m has nontrivial torsion H*(M;Fq) = H*(m;Fy) for s < 2.
The Bockstein operator % : H?*(m;Fy) — H3(m;Z*) is onto, and reduction
mod (2) from H3(m;Z%) to H3(m;Fy) is a monomorphism. The restriction of
k1(M) to each subgroup of order 2 is nontrivial. Its image in H3(M;Z") is 0.

Proof These assertions hold vacuously if 7 is torsion-free, so we may assume
that 7 has an element of order 2. Then M has a covering space M homotopy
equivalent to RP?, and so the mod-2 Hurewicz homomorphism from mo(M)
to Ha(M;F2) is trivial, since it factors through HQ(]/W\; F3). Since we may
construct K (m, 1) from M by adjoining cells to kill the higher homotopy of M
the first assertion follows easily.

The group H?(w; Z*) has exponent dividing 2, since the composition of restric-
tion to H3(k;Z) = 0 with the corestriction back to H3(m;Z*) is multiplication
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by the index [7 : k]. Consideration of the long exact sequence associated to the
coefficient sequence shows that g* is onto. If f : Z/2Z — m is a monomorphism
then f*ki(M) is the first k-invariant of M/f(Z/QZ) ~ RP?, which generates
H3(Z/2Z;me(M)) = Z/2Z. The final assertion is clear. O

Lemma 10.5 Let a = +*Z/27 = (z;,1 <i < k| 2? =1V i) and let u(z;) =
—1 for all i. Then restriction from « to ¢ = Ker(u) induces an epimorphism
from H'(a;Z*) to H' (¢;Z).

Proof Let z =x; and y; = x12; for all i > 1. Then ¢ = Ker(u) is free with
basis {y2,...,yx} and so a = F(k — 1) x Z/2Z. If k = 2 then « is the infinite
dihedral group D and the lemma follows by direct calculation with resolutions.
In general, the subgroup D; generated by = and y; is an infinite dihedral group,
and is a retract of . The retraction is compatible with u, and so restriction
maps H'(a;Z") onto H'(Dy; Z"). Hence restriction maps H'(a;Z") onto each
summand H!((y;);Z) of H'(¢;Z), and the result follows. O

In particular, if k£ is even then z = Ilx; generates a free factor of ¢, and
restriction maps H'(a; Z%) onto H'((z);Z).

Theorem 10.6 Let B be an aspherical 2-orbifold with non-empty singular
locus, and let u : 7 = 7{"%(B) — Z/2Z be an epimorphism with torsion-free
kernel k. Suppose that B has r reflector curves and k cone points. Then
H?(mZ%) = (Z/2Z)" if k > 0 and H*(m; Z%) 2 7@ (Z/2Z) ! if k = 0. In all
cases 3“(U?) is the unique element of H3(mw;Z") which restricts non-trivially
to each subgroup of order 2.

Proof If g has order 2 in 7 then u(g) = —1, and so 8%(U?) restricts non-
trivially to the subgroup generated by g.

Suppose first that B has no reflector curves. Then B is the connected sum
of a closed surface G with S(2), the sphere with & cone points of order 2.
If B = 5(2;) then k > 4, since B is aspherical. Hence m = u xz v, where
p=x"27/27 and v = Z/27 x Z/2Z are generated by cone point involutions.
Otherwise m 2 i *z v, where u = +*Z/2Z and v = 71(G \ D?) is a non-trivial
free group. Every non-trivial element of finite order in such a generalized free
product must be conjugate to one of the involutions. In each case a generator
of the amalgamating subgroup is identified with the product of the involutions
which generate the factors of p and which is in ¢ = Ker(ul,).
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Restriction from p to Z induces an epimorphism from H!(u;Z%) to H(Z;7Z),
by Lemma 10.5, and so

H?(m; Z") = H?(u; 2*) & H(v; ") = 0,
by the Mayer-Vietoris sequence with coefficients Z*. Similarly,
H?(m; Fa) = H?(u; F2) & H?(v; Fa),

by the Mayer-Vietoris sequence with coefficients Fy. Let e; € H?(m;Fy) =
Hom(Hy)(r);Fy),Fs) correspond to restriction to the it" cone point. Then
{e1,...,ea442} forms a basis for H?(m;Fy) = F§g+2, and Ye; is clearly the
only element with nonzero restriction to all the cone point involutions. Since
H?(m;Z*) = 0 the u-twisted Bockstein maps H?(7;F3) isomorphically onto
H3(m;Z%), and so f%(U?) is the unique such element of H3(m;Z%).

Suppose now that r > 0. Then B = B, UrJ, where B, is a connected 2-
orbifold with r boundary components and k cone points, and J = S x [[0,1)
is a product neighbourhood of a reflector circle. Hence m# = nG, where G is a
graph of groups with underlying graph a tree having one vertex of valency r with
group v = 7{"*(B,), r terminal vertices, with groups v; = 7{"%(J) = Z® Z/2Z,
and r edge groups w; = Z. If k > 0 then restriction maps H'!(v;Z") onto
®H(w;;Z), and then H?(m;Z%) = GH*(v; Z%) = Z/2Z". However if k = 0
then H?(m;Z") =2 Z & (Z/2Z)"~'. The Mayer-Vietoris sequence now gives
H?(m;Fq) = H*(v; o) @ (HX(Z ® Z/2Z;Fy))" = Fo k.

The generator of the second summand of H?(Z @ Z/2Z;F,) is in the image
of reduction modulo (2) from H?*(Z & Z/2Z;Z"), and so is in the kernel of
£*. Therefore the image of 8“ has a basis corresponding to the cone points

and reflector curves, and we again find that 8“(U?) is the unique element of
H3(m; Z*) with non-trivial restriction to each subgroup of order 2. O

If 7 is torsion-free it is a PDy-group and so k1(M) and B%(U?) are both 0. If
m = (Z/2Z) X k then the torsion subgroup is unique, and u and w each split
the inclusion of this subgroup. In this case H3(m;Z") = (Z/2Z)?, and there are
two classes with nontrivial restriction to the torsion subgroup. Can it be seen a
priori (i.e., without appealing to Theorem 5.16) that the k-invariant must be
standard?

10.3 Homotopy type

Let M be the 4-manifold realizing (7, u) in Theorem 10.2. If u is trivial then
Py(M) ~ CP* x K(m,1). Otherwise, we may construct a model for P(M) as
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follows. Let ¢ be the involution of K(m,1) inducing the action of 7/k on k,
and let o be the involution of CP*> given by o(2) = [-Z1: %0 : -+ : Zp| for all
Z=lz0:21: 12y in CP® = lim CP". Then o extends the antipodal map
of S = CP'. Let

P=CP>*® x S8°x K(k,1)/(z,8,k) ~ (0(2), —s,((k)).

The diagonal map of S? into CP' x S? gives rise to a natural inclusion of M
into P. This map is 3-connected, and so may be identified with fj;.

Every PDy-complex X with m(X) = (Z/2Z) x k and ma(X) = Z is homotopy
equivalent to the total space of an RP?-bundle, and there are two such bundle
spaces for each pair (m,u), distinguished by ws. (See §5.3.) As this case is
well-understood, we shall assume in this section that m 2 (Z/27) x k. Hence
M is an S?-orbifold bundle space, and k(M) = 8“(U?), by Theorem 10.6.

Theorem 10.7 Let M be an S%-orbifold bundle space with m = w1 (M) # 1.
Then (7,u) is realized by at most two homotopy types of PDy-complexes X .

Proof Let p: P~ K(Z,2) — P be the universal covering of P = Py(M). The
action of m on my(M) also determines w; (M), by Lemma 10.3. As fy : M — P
is 3-connected we may define a class w in H'(P;Z/2Z) by fi,w = wi(M). Let
SPP(P) be the set of “polarized” PD,-complexes (X, f), where f: X — P is
3-connected and wi(X) = f*w, modulo homotopy equivalence over P. (Note
that as 7 is one-ended the universal cover of X is homotopy equivalent to S2).
Let [X] be the fundamental class of X in Hy(X;Z"). It follows as in [HK88,
Lemma 1.3] that given two such polarized complexes (X, f) and (Y, g) there
isamap h: X — Y with gh = f if and only if f.[X] = g.[Y] in Hy(P;Z").
Since X ~ Y ~ §? and f and g are 3-connected such a map h must be a
homotopy equivalence.

From the Cartan-Leray homology spectral sequence for the classifying map
cp: P — K(m 1) we see that there is an exact sequence

0 — Hy(m; Hy(P) ® Zw)/Im(ng) — H4(P;Z"))J — Hy(m; ZY),

where J = Ho(m; Hy(P;Z) QL") /Im(d3 5 +d3 ) is the image of Hy(P;Z) ® Z*
in Hy(P;Z"). On comparing this spectral sequence with that for cxy we see
that Hs(f;Z") is an isomorphism and that f induces an isomorphism from
Hy(X;Z") to Hy(P;Z")/J. Hence

J = Coker(Hy(f; Z")) = Hy(P, X; Z") = Ho(m; Hy(P, X;Z) @ "),
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by the exact sequence of homology with coefficients Z" for the pair (P, X).
Since Hy(P,X;Z) = Z as a m-module this cokernel is Z if w = 0 and Z/2Z7
otherwise. (In particular, d3, = d3, = 0, since EZ2, is Z or Z/2Z and H;(r;Z)
is finite for ¢« > 2.) In other words, p and fj; induce an isomorphism

Ho(m; Hy(P; Z)) ® Hy(M; Z") = Ho(m; Z%) @ Hy(M;Z") = Hy(P; ZY).

Let p = fy«[M] € Hy(P;Z"), and let G be the group of (based) self homotopy
equivalences of P which induce the identity on 7m and m2(P). Then G =
H?(m;Z*) [Ru92]. We shall show that there are at most 2 orbits of fundamental
classes of such polarized complexes (up to sign) under the action of G.

This is clear if w # 0, so we may assume that w = 0. Suppose first that
u =0, so 7 is a PDJ -group and k(M) = 0. Let S = K(m,1) and C =
CP>* = K(Z,2). Then P~ S x C,so [P,P]=[P,S]| x [P,C] and G =[S, (C].
The group structure on [S,C] is determined by the loop-space multiplication
m:CxC — C ~ QK(Z,3). This is characterized by the property m*z =
z®1+1® z, where z is a generator of H2(CP>;Z). The action of G on P
is given by g(s,c) = (s,m(g(s),c)) for all g € G and (s,c) € S x C.

Let o and v be fundamental classes for S and C P!, respectively. The inclusion
of CP! into C induces a bijection [S,CP1] = [S,C], and the degree of a rep-
resentative map of surfaces determines an isomorphism d : [S,C] = H%(7;Z).
Let j : S x CP! — S x C be the natural inclusion. Then w = j,(0c ® 7) is
the image of the fundamental class of S x C' in Hy(P;Z") and p = w mod-
ulo Ho(m; Hy(P;Z)®). Since jso = o + d(g)y and Gy = 7, it follows that
gsw = w + d(g)mu[y ®7].

Since m*(2?) = 22 ®1+22® 2z + 1 ® 22 and the restriction of 22 to CP! is
trivial it follows that m*(22)([y ® 7]) = 2, and so m.[y ® 7] = 2[CP?], where
[CP?] is the canonical generator of Hy(C'P>;Z). Hence there are two G-orbits
of elements in Hy(P;Z") whose images agree with p modulo Hy(m; H4(P;Z)).

In general let M, and P, denote the covering spaces corresponding to the
subgroup k, and let G, be the group of self homotopy equivalences of Pj.
Lifting self homotopy equivalences defines a homomorphism from G to G,
which may be identified with the restriction from H?(m;Z%) to H?(k;Z) = 7,
and which has image of index < 2 (see [Ts80]). Let ¢ : P, — P and qu :
M, — M Dbe the projections. Then g fasr, «[M,] = 2u modulo Hy(; H4(ﬁ; 7).
It follows easily that if ¢ € G and d(g|.) = d then §.(u) = p + d[CP?]. Thus
there are again at most two G-orbits of elements in Hy(P;Z") whose images
agree with p modulo Ho(m; Hy(P;Z)"). This proves the theorem. O
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It is clear from the above argument that the polarized complexes are detected
by the image of the mod-(2) fundamental class in Hy(P;Fs) = F3, which is
generated by the images of [M] and [CP?].

Theorem 10.8 Let M be a S?-orbifold bundle space with m = m (M) # 1.
Then the images of [M] and [M7] in H4(P2(M);F3) are distinct.

Proof We may assume that M is the geometric 4-manifold realizing (7, u), as

constructed in Theorem 10.2. Let x = Ker(u). The Postnikov map fys (given

by fu([s,2]) = [s,s,2] for (s,x) € S? x X) embeds M as a submanifold of
CP! x §%2 x K(k,1)/ ~in P = Po(M). The projection of CP>® x S x K(k,1)
onto its first two factors induces a map g : P — Q = CP*® x §%/(z,5) ~

(0(%), —s) which is in fact a bundle projection with fibre K(x,1). Since gfus

factors through S? the image of [M] in Hy(Q;F2) is trivial.

Let v : 82 x D2 — V C M be a fibre-preserving homeomorphism onto a
regular neighbourhood of a general fibre. Since V' is 1-connected fys|y factors
through CP>* x S x K(k,1). Let f; and fy be the composites of a fixed lift
of fayur : 8% x S1 — P with the projections to CP>™ and S, respectively.
Let F1 be the extension of f; given by

Fl([ZO : 2’1],d) = [dZ() 4 (1 — |d|)Z()]

for all [zo : 21] € S? = CP! and d € D?. Since fo maps S? x S to S? it is
nullhomotopic in S2, and so extends to a map Fy : S x D? — S3. Then the
map F': M™ — P given by f on M \ N and F'(s,d) = [Fi(s), Fa(s),d] for all
(s,d) € S x D? is 3-connected, and so F = fyr.

Now F; maps the open subset U = C x intD? with zy # 0 bijectively onto its
image in CP?, and maps V onto CP2. Let A be the image of C P! under the
diagonal embedding in CP! x CP! ¢ CP? x $3. Then (Fy, F3) carries [V,9V]
to the image of [CP? CP' in Hy(CP? x S3,A;Fy). The image of [V,0V]
generates Hy(M, M\ U;Fy). A diagram chase now shows that [M7] and [C P2
have the same image in Hy(Q;F2), and so [M7] # [M] in Hy(Py(M);F2). O

It remains to consider the action of Aut(P). Since M is geometric Aut(m) acts
isometrically. The antipodal map on the fibres defines a self-homeomorphism
which induces —1 on mo(M). These automorphisms clearly fix Hy(P;F2). Thus
it is enough to consider the action of G = H?(m;Z*) on H?(m;Z%).

Corollary 10.8.1 Every 4-manifold realizing (7,u) is homotopy equivalent
to M or M™. If B = X/m has no reflector curves then M™ # M.
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Proof The first assertion holds since the image of the fundamental class in
Hy(P2(M);Fy) must generate mod [CP?], and so be [M] or [M] + [CP?.

If B is nonsingular then Gluck reconstruction changes the self-intersection of
a section, and hence changes the Wu class vy(M). If B has cone points but
no reflector curves then H?(w; Z*) = 0, by Theorem 10.6, and so M™ % M, by
Theorem 10.8. |

If the base B has a reflector curve which is “untwisted” for u, then p and p™
are isomorphic as orbifold bundles over B, and so M7 = M. (See [Hil3].)

10.4 Bundle spaces are geometric

All S? x X2-manifolds are total spaces of orbifold bundles over X2-orbifolds. We
shall determine the S?- and RP?-bundle spaces among them in terms of their
fundamental groups, and then show that all such bundle spaces are geometric.

Lemma 10.9 Let J = (A,0) € O(3) x Isom(X?) be an isometry of order 2
which is fixed point free. Then A = —I. If moreover J is orientation reversing
then 0 = idx or has a single fixed point.

Proof Since any involution of R? (such as ) must fix a point, a line or be
the identity, A € O(3) must be a fixed point free involution, and so A = —1I.
If J is orientation reversing then 6 is orientation preserving, and so must fix a
point or be the identity. |

Theorem 10.10 Let M be a closed S? x X?-manifold with fundamental group
w. Then

(1) M is the total space of an orbifold bundle with base an X2-orbifold and
general fibre S or RP?;

(2) M is the total space of an S%-bundle over a closed aspherical surface if
and only if 7 is torsion-free;

(3) M is the total space of an RP%-bundle over a closed aspherical surface
if and only if m = (Z/2Z) x K, where K is torsion-free.

Proof (1) The group 7 acts freely and cocompactly on S? x R?, and is a
discrete subgroup of I'som(S? x X2) = O(3) x Isom(X?). In particular, N =
7N (0(3) x {1}) is finite and acts freely on S?, so has order < 2. Let p; and
p2 be the projections of I'som(S? x X?) onto O(3) and Isom(X?), respectively.
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Then po(7) is a discrete subgroup of Isom(X?) which acts cocompactly on
R?, and so has no nontrivial finite normal subgroup. Hence N is the maximal
finite normal subgroup of 7. Projection of S? x R? onto R? induces an orbifold
bundle projection of M onto po(w)\R? with general fibre N\S%. If N # 1
then N = Z/2Z and © = (Z/2Z) x k, where k = Ker(u) is a PDs-group, by
Theorem 5.14.

(2) The condition is clearly necessary. (See Theorem 5.10). The kernel of the
projection of 7 onto its image in I'som(X?) is the subgroup N. Therefore if 7
is torsion-free it is isomorphic to its image in Isom(X?), which acts freely on
R2. The projection p : S? x R? — R? induces a map r : M — 7\R?, and we
have a commutative diagram:

S2? x R2 2, R2

g l7
M =7\(S? x R?) —— 7\R?

where f and f are covering projections. It is easily seen that r is an S?-bundle
projection.

(3) The condition is necessary, by Theorem 5.16. Suppose that it holds. Then
K acts freely and properly discontinuously on R?, with compact quotient. Let
g generate the torsion subgroup of 7. Then p;(g) = —I, by Lemma 10.9. Since
p2(g)? = idge the fixed point set F' = {x € R? | pa(g)(x) = 2} is nonempty,
and is either a point, a line, or the whole of R?. Since p2(g) commutes with
the action of K on R? we have KF = F, and so K acts freely and properly
discontinuously on F'. But K is neither trivial nor infinite cyclic, and so we
must have F' = R2. Hence py(g) = idg2. The result now follows, as K\ (S?xR?)
is the total space of an S2-bundle over K\R?, by part (1), and g acts as the
antipodal involution on the fibres. a

If the S? x X?-manifold M is the total space of an S?-bundle ¢ then wy(¢) = u
and is detected by the determinant: det(p;(g)) = (—1)**(©) for all g € 7.

The total space of an RP?-bundle over B is the quotient of its orientation dou-
ble cover (which is an S%-bundle over B) by the fibrewise antipodal involution,
and so there is a bijective correspondance between orientable S?-bundles over
B and RP?-bundles over B.

Leti=(})) and j=(9)),andlet (4,3,C) € O3)xE(2) = O(3)x (R?x0(2))
be the S? x E2-isometry which sends (v,z) € S? x R? to (Av,Cx + ).
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Theorem 10.11 Let M be the total space of an S?- or RP%-bundle over T
or Kb. Then M admits the geometry S? x E2.

Proof Let R; € O(3) be the reflection of R? which changes the sign of the 7
coordinate, for i = 1,2,3. If A and B are products of such reflections then the
subgroups of Isom(S? x E?) generated by a = (4,i,I) and B = (B,j,I) are
discrete, isomorphic to Z? and act freely and cocompactly on S? x R?. Taking
(1) A=B=1I;
(2) A= RiR2,B= RiRs;
(3) A=R;,B=1;and
(4) A=R1,B=R1Ry
gives four S2-bundles 7; over the torus. If instead we use the isometries o =
(A, %i, ((1) 91)) and 8 = (B,j,I) we obtain discrete subgroups isomorphic to
7Z x _17Z which act freely and cocompactly. Taking
(1) A=R,B=1;
(2) A= Ry, B = RyRs;
(3) A=1I1,B=Ry;
(4) A= RiRy,B = Ry;
(5) A=B=1I;and
(6) A=I1,B=RiRy

ot

gives six S?-bundles &; over the Klein bottle.

To see that these are genuinely distinct, we check first the fundamental groups,
then the orientation character of the total space; consecutive pairs of genera-
tors determine bundles with the same orientation character, and we distinguish
these by means of the second Stiefel-Whitney classes, by computing the self-
intersections of sections of the bundle. (See Lemma 5.11.(3).) We shall use the
stereographic projection of $?> C R? = C x R onto CP! = CU {00}, to identify
the reflections R; : S2 — S2 with the antiholomorphic involutions:

Rl — R2 — Rg —1
2 —Z, Z—Z, zZ—Z .

Let T = {(s,t) € R? | 0 < s,t < 1} be the fundamental domain for the standard
action of Z2 on R?. Sections of &; correspond to functions o : T — S? such that
o(1,t) = A(o(0,t)) and o(s,1) = B(o(s,0)) for all (s,t) € 9F. In particular,
points of S? fixed by both A and B determine sections.
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As the orientable cases (71, 12, & and &) have been treated in [Ue90] we
may concentrate on the nonorientable cases. In the case of 73 fixed points of
A determine sections, since B = I, and the sections corresponding to distinct
fixed points are disjoint. Since the fixed-point set of A on S? is a circle all such
sections are isotopic. Therefore o -0 =0, so v2(M) = 0 and hence wa(n3) = 0.

We may define a 1-parameter family of sections for 74 by

ox(s,t) = AN(2t* — 1 +i(2s — 1)(2t — 1)).

Now o and oy intersect transversely in a single point, corresponding to s = &

2
and t = % Hence o -0 =1, so va(M) # 0 and wa(ns) # 0.

The remaining cases correspond to S2-bundles over Kb with nonorientable total
space. We now take & = {(s,t) € R? | 0 < s < 1,|t| < 1} as the fundamental
domain for the action of Z x_1Z on R?, and seek functions o : & — S? such
that o(3,t) = A(c(0,—t)) and o(s, 1) = B(o(s,—1)) for all (s,t) € 08K.

The cases of €3 and &5 are similar to that of n3: there are obvious one-parameter
families of disjoint sections, and so wz(€3) = wa(&5) = 0. However wq(&3) #
w1(&5). (In fact &5 is the product bundle).

The functions o(s,t) = A\(4s — 1 +it) define a 1-parameter family of sections
for &4 such that oy and o; intersect transversely in one point, so that -0 = 1.
Hence va(M) # 0 and so wa(&4) # 0.

For &g the functions oy (s,t) = A(4s—1)t+4(1—\)(4t> —1) define a 1-parameter
family of sections such that oy and o1(s,t) intersect transversely in one point,
so that o -0 = 1. Hence va(M) # 0 and so wa(&s) # 0.

Thus these bundles are all distinct, and so all S?-bundles over T" or Kb are
geometric of type S? x E2.

Adjoining the fixed point free involution (—1,0,I) to any one of the above ten
sets of generators for the S?-bundle groups amounts to dividing out the S?
fibres by the antipodal map and so we obtain the corresponding RP?-bundles.
(Note that there are just four such RP?-bundles — but each has several distinct
double covers which are S2-bundles). O

Theorem 10.12 Let M be the total space of an S%- or RP?-bundle over a
closed hyperbolic surface. Then M admits the geometry S? x H?.

Proof Let T be the closed orientable surface of genus g, and let T9 C H? be
a 2g-gon representing the fundamental domain of 7. The map Q@ : T9 — T
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that collapses 2g — 4 sides of T9 to a single vertex in the rectangle T induces
a degree-1 map () from 7T, to T that collapses g — 1 handles on 7Y to a single
point on 7. (We may assume the induced epimorphism from

7T1(Tg> = (al,bl,...,ag,bg ‘ HQ l[ai,bi] = 1)

1=
to Z? kills the generators a;,b; for j > 1). Hence given an S2-bundle ¢ over
T with total space Mg = T'¢\(S? x E?), where

Te = {(&(h), h) | h € m(T)} < Isom(S* x E?)

and ¢ : Z2 — O(3) is as in Theorem 10.11, the pullback Q*(¢) is an $2-bundle
over T,, with total space Meo = Teq\(S? x H?), where I'eq = {(€Q.(R),h) |
h € 1 (T9)} < Isom(S? x H?). As Q is a degree-1 map, it induces monomor-
phisms in cohomology, so w(&) is nontrivial if and only if w(ﬁ* (©)) = Q*w(¢)
is nontrivial. Hence all S?-bundles over T9Y for g > 2 are geometric of type
S? x H2.

Suppose now that B is the closed surface f?RP? = T§RP? = KbfRP?. Then
there is a map Q: T#RP? — RP? that collapses the torus summand to a single
point. This map Q is again a degree-1 map, and so induces monomorphisms
in cohomology. In particular Q* preserves the orientation character, that is
wl(ﬁ*(f)) = ﬁ*wl(RPQ) = w1 (B), and is an isomorphism on H?. We may
pull back the four S?-bundles & over RP? along Q to obtain the four bundles
over B with first Stiefel-Whitney class wl(ﬁ*f) either 0 or wq(B).

Similarly there is a map T:K biRP? — RP? that collapses the Klein bot-
tle summand to a single point. This map T has degree 1 mod (2) so that
T*w;(RP?) has nonzero square since wi(RP%)? # 0. Note that in this case
'/f*wl(RPz) # wi(B). Hence we may pull back the two S?-bundles & over
RP? with wi(§) = wi(RP?) to obtain a further two bundles over B with
wi(Y*(€))% = T*w1 (€)% £ 0, as T is a ring monomorphism.

There is again a map 0:K biRP? — Kb that collapses the projective plane
summand to a single point. Once again O is of degree 1 mod (2), so that we
may pull back the two S2-bundles ¢ over Kb with wq (&) = wy(Kb) along O to
obtain the remaining two $2-bundles over B. These two bundles ©*(£) have
w1(0%(€)) # 0 but wy (0%(€))2 = 0; as wy(Kb) # 0 but wy(Kb)2 =0 and O

is a monomorphism.
Similar arguments apply to bundles over §*RP? where n > 3.

Thus all S?-bundles over all closed aspherical surfaces are geometric. Further-
more since the antipodal involution of a geometric S2-bundle is induced by an
isometry (—1I,idg2) € O(3) x Isom(H?) we have that all RP?-bundles over
closed aspherical surfaces are geometric. a
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An alternative route to Theorems 10.11 and 10.12 would be to first show that
orientable 4-manifolds which are total spaces of S2-bundles are geometric, then
deduce that RP?-bundles are geometric (as above); and finally observe that
every S2-bundle space double covers an RP?-bundle space.

The other S? x X?-manifolds are S?-orbifold bundle spaces. It can be shown
that there are at most two such orbifold bundles with given base orbifold B and
action u, differing by (at most) Gluck reconstruction. If B has a reflector curve
they are isomorphic as orbifold bundles. Otherwise B has an even number of
cone points and the bundles are distinct. The bundle space is geometric except
when B is orientable and 7 is generated by involutions, in which case the action
is unique and there is one non-geometric orbifold bundle. (See [Hil3].)

If x(F) <0or x(F)=0and d = 0 then every F-bundle over RP? is geometric,
by Lemma 5.21 and the remark following Theorem 10.2.

It is not generally true that the projection of S? x X onto S? induces an
orbifold bundle projection from M to an S?-orbifold. For instance, if p and
o' are rotations of S? about a common axis which generate a rank 2 abelian
subgroup of SO(3) then (p,(1,0)) and (o, (0,1)) generate a discrete subgroup
of SO(3) xIR? which acts freely, cocompactly and isometrically on S%xR?. The
orbit space is homeomorphic to S? x T'. (It is an orientable S?-bundle over the
torus, with disjoint sections, detemined by the ends of the axis of the rotations).
Thus it is Seifert fibred over S?, but the fibration is not canonically associated
to the metric structure, for (p, p’) does not act properly discontinuously on S2.

10.5 Fundamental groups of S? x E2-manifolds

We shall show first that if M is a closed 4-manifold any two of the conditions
“X(M) =07, “m (M) is virtually Z2” and “my(M) = Z” imply the third, and
then determine the possible fundamental groups.

Theorem 10.13 Let M be a closed 4-manifold with fundamental group .
Then the following conditions are equivalent:

(1) 7 is virtually Z* and x(M) = 0;

(2) 7 has an ascendant infinite restrained subgroup and mwo(M) = 7Z;
(3) x(M)=0 and mo(M) = 7Z; and
(4)

4) M has a covering space of degree dividing 4 which is homeomorphic to

S22 xT.

(5) M is virtually homeomorphic to an S? x E2-manifold.

Geometry & Topology Monographs, Volume 5 (2002)



10.5 Fundamental groups of S? x E2-manifolds 209

Proof If 7 is virtually a PDy-group and either y(7) = 0 or m has an ascen-
dant infinite restrained subgroup then r is virtually Z?. Hence the equivalence
of these conditions follows from Theorem 10.1, with the exception of the asser-
tions regarding homeomorphisms, which then follow from Theorem 6.11. a

We shall assume henceforth that the conditions of Theorem 10.13 hold, and shall
show next that there are nine possible groups. Seven of them are 2-dimensional
crystallographic groups, and we shall give also the name of the corresponding
[E2-orbifold, following [Mo, Appendix A]. (The restriction on finite subgroups
eliminates the remaining ten E2-orbifold groups from consideration).

Theorem 10.14 Let M be a closed 4-manifold such that m = 7 (M) is
virtually Z? and x(M) = 0. Let F be the maximal finite normal subgroup of
w. If w is torsion-free then either

(1) 7 =+/m =7 (the torus); or
(2) m=7Z x_1Z (the Klein bottle).
If F =1 but 7 has nontrivial torsion and [r : \/7] = 2 then either
(3) "2 DXL (L& (Z)27))*y (Z®(Z)2Z)), with the presentation
(s,z,y |22 =9? =1, sz = x5, sy = ys) (the silvered annulus A ); or

(4) T2 DX, Z=Zxy (L& (Z/27Z)), with the presentation
(t,x | 2% =1, 2z = xt?) (the silvered Mébius band Mb ); or

(5) w=(Z*) x_1(Z/2Z) = D %z D, with the presentations
s,tyx |z =1, zsx =s -, xte =17, st =1s) and (setting y = x
t 2=1 Late=t71 st =t d i t
(s,z,y | 2?> =9? =1, xsx = ysy = s~ ') (the pillowcase S5(2222)).

If F =1 and [r: /7] =4 then either
(6) T= Dxy (Z®(Z/27)), with the presentations

(s,t,x|a® =1, xsz = s\ ate =t~ tst™' = s7) and
(setting y = at) (s,z,y | 22 = y*> =1, sz = s, ys = sy) (D(22)); or

(7) m = Z=xy D, with the presentations
(rys,x | 2?2 =1, zre =r~Y zsx =rs~ ! srs™! =r~1) and
(setting t = xs) (t,x | 2? =1, at?x =t72) (P(22)).

If F' is nontrivial then either
(8) mx7Z*®(Z/2Z); or
9) 7= (Zx_17Z)x(Z]2Z).
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Proof Let u:m — Aut(ma(M)) = Z* be the natural homomorphism. Since
x = Ker(u) is torsion-free it is either Z2 or Zx _1Z; since it has index at most 2
it follows that [ : \/7] divides 4 and F has order at most 2. If F' = 1 then /7 &
72 and m/\/T acts effectively on /7, so 7 is a 2-dimensional crystallographic
group. If F' # 1 then it is central in 7 and v maps F isomorphically to Z*,
so ™= (Z/27) X k. O

Each of these groups may be realised geometrically, by Theorem 10.2. It is easy
to see that any S? x E?-manifold whose fundamental group has infinite abelian-
ization is a mapping torus, and hence is determined up to diffeomorphism by its
homotopy type. (See Theorems 10.11 and 10.15). We shall show next that there
are four affine diffeomorphism classes of S? x E2-manifolds whose fundamental
groups have finite abelianization.

Let © be a discrete subgroup of I'som(S? x E?) = O(3) x E(2) which acts
freely and cocompactly on S? x R?. If Q = Dz D or D *z (Z @ (Z/27)) it
is generated by elements of order 2, and so p;(2) = {£I}, by Lemma 10.9.
Since p2(Q2) < E(2) is a 2-dimensional crystallographic group it is determined
up to conjugacy in Aff(2) = R? x GL(2,R) by its isomorphism type, € is
determined up to conjugacy in O(3) x Af f(2) and the corresponding geometric
4-manifold is determined up to affine diffeomorphism.

Although Z 7 D is not generated by involutions, a similar argument applies.
The isometries T = (T, %j, (3'?)) and X = (—I,%(i +j),—I) generate a
discrete subgroup of Isom(S? x E2) isomorphic to Z#*z D and which acts freely
and cocompactly on S? x R?, provided 72 = I. Since z? = (2t?)?2 = 1 this
condition is necessary, by Lemma 10.6. Conjugation by the reflection across the
principal diagonal of R? induces an automorphism which fixes X and carries
T to XT. Thus we may assume that 7T is orientation preserving, i.e., that
det(r) = —1. (The isometries 72 and XT then generate x = Ker(u)). Thus
there are two affine diffeomorphism classes of such manifolds, corresponding to

the choices 7 = —1I or Rj3.

None of these manifolds fibre over S1, since in each case 7 /7’ is finite. However
if 2 is a S? x E2-lattice such that p1(Q2) < {£I} then Q\(S? x R?) fibres over
RP? | since the map sending (v,x) € S? x R? to [£v] € RP? is compatible with
the action of Q. If p1 () = {£I} the fibre is w\R?, where w = QN ({1} x E(2));
otherwise it has two components. Thus three of these four manifolds fibre over
RP? (excepting perhaps only the case Q = Zxz D and R3 € p1(Q2)).
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10.6 Homotopy types of S? x E?-manifolds

Our next result shows that if M satisfies the conditions of Theorem 10.13 and
its fundamental group has infinite abelianization then it is determined up to
homotopy by 71 (M) and its Stiefel-Whitney classes.

Theorem 10.15 Let M be a closed 4-manifold such that m = m (M) is
virtually Z? and x(M) = 0. If /7’ is infinite then M is homotopy equivalent
to an S? x E2-manifold which fibres over S*.

Proof The infinite cyclic covering space of M determined by an epimorphism
A 7w — Z is a PDs-complex, by Theorem 4.5, and therefore is homotopy
equivalent to

(1) 5% x S (if Ker(\) = Z is torsion-free and wy(M)|ger(x) = 0),
(2) S%xS' (if Ker(X) = Z and wi(M)|ker(n) # 0),

(3) RP?x S (if Ker(\) 2 Z @ (Z/27)) or

(4) RP3{RP3 (if Ker(\) = D).

Therefore M is homotopy equivalent to the mapping torus M(¢) of a self
homotopy equivalence of one of these spaces.

The group of free homotopy classes of self homotopy equivalences E(S? x S1) is
generated by the reflections in each factor and the twist map, and has order 8.
The groups F(S?xS') and E(RP?x S') are each generated by the reflection in
the second factor and a twist map, and have order 4. (See [KR90] for the case
of §2xS'.) Two of the corresponding mapping tori of self-homeomorphisms of
52% ST also arise from self homeomorphisms of S? x S'. The other two have
nonintegral w;. As all these mapping tori are also S%- or RP?-bundles over
the torus or Klein bottle, they are geometric by Theorem 10.11.

The group E(RP3§RP3) is generated by the reflection interchanging the sum-
mands and the fixed point free involution (see [Ba’, page 251]), and has order 4.
Let a = (=1,0,(3'9)), 8= (I,i,I) v = (1,j,I) and 6 = (~I,j,I). Then the
subgroups generated by {«, 8,7}, {a, 3,0}, {a, 8y} and {«, Bd}, respectively,
give the four RP3$RP3-bundles. (Note that these may be distinguished by
their groups and orientation characters). a

A T-bundle over RP? with & = 0 which does not also fibre over S!' has

fundamental group D #z D, while the group of a Kb-bundle over RP? which
does not also fibre over S is D %z (Z @ (Z/2Z)) or Z+z D.
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When 7 is torsion-free every homomorphism from =« to Z* is the orientation
character of some M with fundamental group w. However if # = D X Z or
D x, Z the orientation character must be trivial on all elements of order 2,
while it is determined up to composition with an automorphism of 7 if F' #£ 1.

Theorem 10.16 Let M be a closed 4-manifold such that x(M) = 0 and
m = m1(M) is an extension of 7 by a finitely generated infinite normal subgroup
v with a nontrivial finite normal subgroup F'. Then M is homotopy equivalent
to the mapping torus of a self homeomorphism of RP? x S*'.

Proof The covering space M, corresponding to the subgroup v is a PDs-
space, by Theorem 4.5. Therefore M, ~ RP? x S', by Theorem 2.11. Since
every self-homotopy equivalence of RP?x S is homotopic to a homeomorphism
M is homotopy equivalent to a mapping torus. a

The possible orientation characters for the groups with finite abelianization
are restricted by Lemma 3.14, which implies that Ker(w;) must have infinite
abelianization. For D %z D we must have w(z) = wi(y) = —1 and wy(s) = 1.
For D %z (Z ® (Z/2Z)) we must have wi(s) = 1 and wy(z) = —1; since the
subgroup generated by the commutator subgroup and y is isomorphic to D x Z
we must also have wi(y) = 1. Thus the orientation characters are uniquely
determined for these groups. For Z*z D we must have wi(z) = —1, but w (¢)
may be either —1 or 1. As there is an automorphism ¢ of Z xz D determined
by ¢(t) = xt and ¢(z) = x we may assume that wq(¢) = 1 in this case.

In all cases, to each choice of orientation character there corresponds an unique
action of m on 7o (M), by Lemma 10.9. However the homomorphism from 7 to
Z/27 determining the action may differ from w;(M). (Note also that elements
of order 2 must act nontrivially, by Theorem 10.1).

In the first version of this book we used elementary arguments involving cochain
computations of cup product in low degrees and Poincaré duality to compute
the cohomology rings H*(M;Fs), k(M) = p*(U?) and vo(M) = U?, for the
cases with 7/7’ finite. The calculation of k1(M) has been subsumed into the
(new) Theorem 10.6 above, while va(M) is determined by m whenever 7 has
torsion but is not a direct product. (See [Hil3].)

Gluck reconstruction of the S? x E2-manifolds with group D 7z D or Z xz D
changes the homotopy type, by Corollary 10.8.1. The two geometric manifolds
with m 2 Z %7 D are Gluck reconstructions of each other, but there is a nonge-
ometric 4-manifold with 7 = D %z D and x = 0. The S? x E2-manifold with
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7 = Dxy (Z®(Z/2Z)) is isomorphic to its Gluck reconstruction, and thus
every closed manifold with m = D xy (Z & (Z/2Z)) and x = 0 is homotopy
equivalent to this manifold. In summary, there are 22 affine diffeomorphism
classes of closed S? x E2-manifolds and 23 homotopy types of closed 4-manifolds
covered by S? x R? and with Euler characteristic 0. (See [Hil3].)

10.7 Some remarks on the homeomorphism types

In Chapter 6 we showed that if 7 is Z? or Z x_1Z then M must be homeomor-
phic to the total space of an S?-bundle over the torus or Klein bottle, and we
were able to estimate the size of the structure sets when m = kx Z/2Z. We may
apply the Shaneson-Wall exact sequence and results on L. (D, w) from [CDO04]
to obtain L, (m,w) for 1 = DX Z or D x,Z. It follows also that L;(m,w) is not
finitely generated if m = Dz D or Dxy (Z® (Z/2Z)) and w is as in §5 above.
For these groups retract onto D compatibly with w|p. Although Z *z D does
not map onto D, Liick has shown that Li(Z %7 D,w) is not finitely generated
(private communication). (The groups L.(w) ® Z[%] have been computed for
all cocompact planar groups 7, with w trivial [L.S00].)

In particular, if 7 =2 D x Z and M is orientable then [SM;G/TOP] has rank
1, while L;(D x Z) has rank 3, and so Stop(M) is infinite. On the other hand,
if 7= D xZ and M is non-orientable then L;(D x Z,w) = 0 and so Stop(M)
has order at most 32.

If M is geometric then Aut(m) acts isometrically on M. The natural map
from mo(E(M)) to mo(E(P3(M))) has kernel of order at most 2, and hence
the subgroup which induces the identity on all homotopy groups is finitely gen-
erated, by Corollary 2.9 of [Ru92]. In particular, if 7 = D %z D, Z*z D or
D xy (Z® (Z/2Z)) this subgroup is finite. Thus mo(E(M)) acts on Srop(M)
through a finite group, and so there are infinitely many manifolds in the homo-
topy type of each such geometric manifold.

10.8 Minimal models

Let X be a PDs-complex with fundamental group 7. A PD4-complex Z is a
model for X if there is a 2-connected degree-1 map f : X — Z. It is strongly
manimal if Ax = 0. A strongly minimal PD4-complex Z is minimal with
respect to the partial order given by X > Y if Y is a model for X.

We shall show that every PD4-complex with fundamental group a P Dy-group
7 has a strongly minimal model which is the total space of an S?-bundle over
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the surface F' ~ K(m,1). (More generally, a PDs-complex X has a strongly
minimal model if and only if Ax is nonsingular and Cok(H?(cx;Z[nx])) is a
finitely generated projective Z[r|-module [Hi06’, Hi20].)

The group Z/2Z acts on C'P* via complex conjugation, and so a homomor-
phism u : 7 — Z/2Z determines a product action of 7 on F x CP>®. Let
L = L.(Z"2) = (F x CP>)/x be the quotient space. Projection on the first
factor induces a map ¢, = ¢, : L — F'. In all cases the fixed point set of the ac-
tion of w on C' P is connected and contains RP*°. Thus ¢, has cross-sections
o, and any two are isotopic. Let j : CP% — L be the inclusion of the fibre
over the basepoint of F'. If w is trivial L,(Z",2) =2 F x CP>.

The (co)homology of L with coefficients in a Z[r]-module is split by the ho-
momorphisms induced by ¢, and o. In particular, H?(L;Z") = H?(F;Z") @
H?(CP>;7), with the projections to the summands induced by ¢ and j. Let
wr be a generator of H2(F; Z*1(F)) 22 7, and let ¢ be a generator of H2(F;Z").
If u= wi(F) choose ¢ = wr; otherwise H?(F;Z") has order 2. Let [c]z de-
note the reduction mod (2) of a cohomology class ¢ (with coefficients Zw ()
or Z"). Then [¢]s = [wr]s in H*(F;Z/27). Let 1, € H*(L;Z") generate the
complementary Z summand. Then (1,)? and ¢, U ¢}¢ generate H*(L;Z).

The space L = Lp(Z",2) is a generalized Eilenberg-Mac Lane complex of
type (Z*,2) over K(mw,1), with characteristic element t,,. Homotopy classes
of maps from spaces X into L compatible with a fixed homomorphism 6 :
71(X) — 7 correspond bijectively to elements of H?(X;Z%), via the corre-
spondance f < f*i,. (See Chapter III.§6 of [Ba’]). In particular, E.(L) is
the subset of H?(L;Z") consisting of elements of the form (i, + k¢), for
k € Z. (Such classes restrict to generators of H2(L;Z) = Z). As a group
E(L) = H?(m; Z%) x {#+1}.

Let p : E — F be an S%-bundle over F. Then E =~ F x 8% and p may
be identified with the classifying map cg. If F, is the image of F x CP! in
L and p, = qu|g, then p, is an S%-bundle over F with wi(p,) = u, and
wa(py) = v2(E,) = 0, since cross-sections determined by distinct fixed points
are isotopic and disjoint. (From the dual point of view, the 4-skeleton of L is
E,Ucpr j(CP?) = E, U, D*, where n € m3(E,) = m3(5?) is the Hopf map).

Theorem 10.17 Let E be the total space of an S?-bundle over an aspherical
closed surface F', and let X be a PDj-complex with m(X) = m = m(F).
Then there is a 2-connected degree-1 map h : X — E such that cg = cxh if
and only if (¢%) lwi(X) = (¢g) " twi(E) and £ U ¢ H?(m;Fs) # 0 for some
¢ € H?(X;Fy) such that €2 =0 if vo(E) = 0 and &2 # 0 if vo(E) # 0.
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Proof Compatibility of the orientation characters is clearly necessary in order
that the degree be defined as an integer; we assume this henceforth. Since cx is
2-connected there is an a € Ho(X; Zx"1(F)) such that cx.a = [F], and since
7' @ 2exw(F) =2 701(X) there is an x € H?(X;Z") such that = N [X] = a,
by Poincaré duality. Hence (z U ciwp) N [X] = 1. Clearly either [z]3 = 0 or
[2]3 = [z]2 U ¢k [wrla-

The map f : E — L = L.(Z%2) corresponding to a class f*i, € H*(E;ZY)
which restricts to a generator for H2(S?%;Z) induces isomorphisms on m; and
7o, and so f = fp. (We may vary this map by composition with a self homotopy
equivalence of L, replacing f*t, by f*i, +kf*¢). Note also that ffi, Ucpwr
generates H*(E;Z"(X)) = 7.

The action of 7 on m3(E) = m3(S?) = I'w(Z) is given by 'y (u), and so is
trivial. Therefore the third stage of the Postnikov tower for E is a simple
K(Z,3)-fibration over L, determined by a map « : L — K(Z,4) corresponding
to a class in H*(L;Z). If L(m) is the space induced by k, = 12 +mt, U¢ then

L(m) is induced from L ~ C'P> by the canonical generator of H*(C'P>), and

P

so H3(L(m);Z) = H4(L(m);Z) = 0, by a spectral sequence argument. Hence

The map fg factors through a map gg : £ — L(m) if and only if fir, =0. We
then have m3(9r) = I'w(fE), which is an isomorphism. Thus gg is 4-connected,
and so is the third stage of the Postnikov tower for E. If vo(E) = 0 then fii2 =
2k (1, U @) for some k € Z, and so f factors through L(—2k); otherwise fg
factors through L(—2k —1), and thus these spaces provide models for the third
stages P3(E) of such S?-bundle spaces. The self homotopy equivalence of L
corresponding to the class (i, + k¢) in H?(L;Z") carries Ky, = (2 + mi, U ¢
to Kmiok, and thus cp () is fibre homotopy equivalent to crg) if m is even
and to cpy) otherwise.

Since P3(E) may also be obtained from FE by adjoining cells of dimension
> 5, maps from a complex X of dimension at most 4 to E compatible with
0 : m(X) — 7 correspond to maps from X to P3(E) compatible with 6
and thus to elements y € H?(X;Z") such that [y]2 = 0 if va(F) = 0 and
[y]3 = [y]2 U ¢’ [wr]2 otherwise. (In the next paragraph we omit 6 = m(cx)
from the notation.)

If g: X — E is a 2-connected degree-1 map then & = g*fj[t.]2 satis-
fies the conditions of the theorem, since cx ~ cgg, which factors through
P3(E). Conversely, let & be such a class. Reduction mod (2) maps H?(X;Z%)
onto H2(X;Fy), since H3(X;Z") = Hy(X;Z**(F)) = H'(7;Z) is torsion free.
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Therefore there is an x € H?(X;Z") such that [z]; = £. Since wp generates
a direct summand of H?(X;Z**(")), and (z Uwp)[X] is odd, we may choose
x so that (x Uwp)[X] = 1. Then xz = h*fi, for some h: X — E such that
cph = e¢x and (fht, U cpwr)hiX] = (z U ckwr)[X] = 1. Thus m(h) is an
isomorphism and h is a degree-1 map, and so h is 2-connected W1, Lemma
2.2]. O

We shall summarize related work on the homotopy types of PDs-complexes.

Theorem [Hi06'] There is a strongly minimal model for X if H3(m;Z[x]) = 0
and Homgjy (m2(X), Z[r]) is a finitely generated projective Z[r|-module. If Z
is strongly minimal wo(Z) = H?(m; Z|r]) and Az =0, and if vo(X) =0 and Z
is a model for X then v9(Z) = 0. |

These conditions hold if c.d.m < 2, and then x(Z) = ¢(m), by Theorem 3.12.
The strongly minimal PDy-complexes with 7 free, F'(r) x Z or a PDs-group
are given by Theorems 14.9, 4.5 and 5.10, respectively. (See also Theorem
10.17.) If v ()N() = 0 the minimal model may not be unique. For example, if C
is a compact complex curve of genus > 1 the ruled surface C' x CP! is strongly
minimal, but the blowup (C x CPl)ﬁ@Z also has the nontrivial bundle space as
a strongly minimal model. (Many of the other minimal complex surfaces in the
Enriques-Kodaira classification are aspherical, and hence strongly minimal in
our sense. However 1-connected complex surfaces are never strongly minimal,
since the unique minimal 1-connected PDj-complex is S*, which has no almost
complex structure, by the theorem of Wu cited on page 149 above.)

Theorem [Hi06’] Let m be a finitely presentable group with c.d.m < 2. Two
PD4-complexes X and Y with fundamental group 7, wi(X) = wi(Y) = w
and 7o (X) = mo(Y') are homotopy equivalent if and only if X and Y have a
common strongly minimal model Z and Ax = Ay . Moreover \x is nonsingular
and every nonsingular w-hermitean pairing on a finitely generated projective
Z[r]-module is the reduced intersection pairing of some such PD,-complex. O

In particular, a Spin 4-manifold with fundamental group a PDs-group 7 has a

well-defined strongly minimal model and so two such Spin 4-manifolds X and
Y are homotopy equivalent if and only if Ax = Ay .
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Chapter 11

Manifolds covered by S° x R

In this chapter we shall show that a closed 4-manifold M is covered by S3 x R
if and only if 7 = m (M) has two ends and x(M) = 0. Its homotopy type is
then determined by 7 and the first nonzero k-invariant k(M). The maximal
finite normal subgroup of 7 is either the group of a S*-manifold or one of the
groups Pjg, with a > 1 and (a,6) = 1 or Q(8a,b,c) x Z/dZ with a,b,c and
d odd. (There are examples of the latter type, and no such M is homotopy
equivalent to a S® x E!-manifold.) The possibilities for 7 are not yet known
even when F is a S3-manifold group and m/F = Z. Solving this problem may
involve first determining which k-invariants are realizable when F' is cyclic.

Manifolds which fibre over RP? with fibre 7' or Kb and 0 # 0 have universal
cover S% x R. In §6 we determine the possible fundamental groups, and show
that an orientable 4-manifold M with such a group and with x(M) = 0 must
be homotopy equivalent to a S? x E!'-manifold which fibres over RP2.

As groups with two ends are virtually solvable, surgery techniques may be
used to study manifolds covered by S® x R. However computing Wh(n) and
L.(m;wy) is a major task. Simple estimates suggest that there are usually
infinitely many nonhomeomorphic manifolds within a given homotopy type.

11.1 Invariants for the homotopy type

The determination of the closed 4-manifolds with universal covering space ho-
motopy equivalent to S is based on the structure of groups with two ends.

Theorem 11.1 Let M be a closed 4-manifold with fundamental group .
Then M ~ S3 if and only if m has two ends and x(M) = 0. If so

(1) M is finitely covered by S3 x S! and so M = $3 x R = R*\ {0};

(2) the maximal finite normal subgroup F of m has cohomological period
dividing 4, acts trivially on w3(M) = Z and the corresponding covering
space Mp has the homotopy type of an orientable finite PD3-complex;

(3) ifv: 7w — Aut(H!(m;Z[r])) is the natural action and w = wy(M) then
the action u : m — Aut(ms(M)) is given by u = v + w;
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(4) the homotopy type of M is determined by m, wi(M) and the orbit of
the first nontrivial k-invariant k(M) € H*(r;Z*) under Out(r) x {£1};

(5) the restriction of k(M) to H*(F;Z) is a generator;
(6) if 1/F = 7 then H(m;m3(M)) = HY(F;Z) = Z/|F|Z.

Proof If M ~ S3 then H'(7;Z[r]) is infinite cyclic and so 7 has two ends.
Hence 7 is virtually Z. The covering space M4 corresponding to an infinite
cyclic subgroup A is homotopy equivalent to the mapping torus of a self ho-
motopy equivalence of S® ~ M, and so x(M4) = 0. As |7 : A] < oo it follows
that x(M) =0 also.

Suppose conversely that x(M) =0 and = is virtually Z. Then Hg(M; 7) =7
and H4(M ;Z) = 0. Let My be an orientable finite covering space with fun-
damental group Z. Then x(Mz) = 0 and so Hs(My;Z) = 0. The homology
groups of M = My, may be regarded as modules over Z[t,t~!] = Z[Z]. Mul-
tiplication by t — 1 maps HQ(M ; Z) onto itself, by the Wang sequence for the
projection of M onto Mjy. Therefore HomZ[Z](Hg(M; Z),Z[Z]) = 0 and so

mo(M) = m3(Mz) = 0, by Lemma 3.3. Therefore the map from S3 to M
representing a generator of w3(M) is a homotopy equivalence. Since Mgz is
orientable the generator of the group of covering translations Aut(M /Mz) =7
is homotopic to the identity, and so My ~ M x S! ~ §3 x S'. Therefore
Mz = S3 x S', by surgery over Z. Hence M=~ 83 xR.

Let F' be the maximal finite normal subgroup of 7. Since F' acts freely on
M ~ 83 it has cohomological period dividing 4 and Mp = M/F is a PDs-
complex. In particular, M is orientable and F' acts trivially on w3(M). The
image of the finiteness obstruction for Mg under the “geometrically significant
injection” of Ko(Z[F]) into Wh(F x Z) of [Rn86] is the obstruction to Mg x S*
being a simple PD-complex. If f: Mrp — Mp is a self homotopy equivalence
which induces the identity on 7 (Mp) = F and on w3(Mp) = Z then f is
homotopic to the identity, by obstruction theory [P182]. Therefore mo(E(MF))
is finite and so M has a finite cover which is homotopy equivalent to My x S*.
Since manifolds are simple PD,-complexes M must be finite.

The third assertion follows from the Hurewicz Theorem and Poincaré duality, as
in Lemma 10.3. The first nonzero k-invariant lies in H*(m; Z%), since ma(M) =
0 and m3(M) = Z*, and it restricts to the k-invariant for Mp in H*(F;Z).
Thus (4) and (5) follow as in Theorem 2.9. The final assertion follows from the
LHSSS (or Wang sequence) for 7 as an extension of Z by F', since 7/F acts
trivially on H*(F;Z%). O
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The list of finite groups with cohomological period dividing 4 is well known (see
[Mi57, AM]). There are the generalized quaternionic groups Q(2"a, b, c) (with
n > 3 and a,b, c odd), the extended binary tetrahedral groups 7}, the extended
binary octahedral groups Oj, the groups Pjs,. (with r odd > 1), the binary
icosahedral group I*, the dihedral groups A(m,e) (with m odd > 1), and
the direct products of any one of these with a cyclic group Z/dZ of relatively
prime order. (In particular, a p-group with periodic cohomology is cyclic if p is
odd and cyclic or quaternionic if p = 2.) We shall give presentations for these
groups in §2.

Each such group F' is the fundamental group of some P Djs-complex [Sw60).
Such Swan complezes for F' are orientable, and are determined up to homotopy
equivalence by their k-invariants, which are generators of H*(F;Z) = Z/|F|Z,
by Theorem 2.9. Thus they are parametrized up to homotopy by the quotient
of (Z/|F|Z)* under the action of Out(F')x{%1}. The set of finiteness obstruc-
tions for all such complexes forms a coset of the “Swan subgroup” of Ko(Z[F])
and there is a finite complex of this type if and only if the coset contains 0.
(This condition fails if F' has a subgroup isomorphic to @(16,3,1) and hence
if F =0 x(Z/dZ) for some k > 1 or Pjs. with 3|r [DM85, Corollary 3.16].)
If X is a Swan complex for F then X x S! is a finite PDI—complex with
T (X x SY) 2 F xZ and x(X x S') =0.

Theorem 11.2 Let M be a closed 4-manifold such that m = w1 (M) has two
ends and with x(M) = 0. Then the group of unbased homotopy classes of self
homotopy equivalences of M is finite.

Proof We may assume that M has a finite cell structure with a single 4-cell.
Suppose that f : M — M is a self homotopy equivalence which fixes a base
point and induces the identity on m and on 73(M) = Z. Then there are no
obstructions to constructing a homotopy from f to idy; on the 3-skeleton My =
M\intD*, and since m4(M) = 74(S®) = Z/2Z there are just two possibilities
for f. It is easily seen that Out(r) is finite. Since every self map is homotopic
to one which fixes a basepoint the group of unbased homotopy classes of self
homotopy equivalences of M is finite. a

If 7 is a semidirect product F xgZ then Aut(w) is finite and the group of based
homotopy classes of based self homotopy equivalences is also finite.

11.2 The action of 7/F on F

Let F' be a finite group with cohomological period dividing 4. Automorphisms
of F' act on H.(F;Z) and H*(F;Z) through Out(F'), since inner automor-
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phisms induce the identity on (co)homology. Let Ji(F') be the kernel of the
action on H3(F';Z), and let J(F') be the subgroup of Out(F) which acts by
+1.

An outer automorphism class induces a well defined action on H*(S;Z) for each
Sylow subgroup S of F', since all p-Sylow subgroups are conjugate in F' and
the inclusion of such a subgroup induces an isomorphism from the p-torsion of
HY(F;Z) = Z/|F|Z to H*(S;Z) = Z/|S|Z, by Shapiro’s Lemma. Therefore
an outer automorphism class of F induces multiplication by » on H*(F;Z) if
and only if it does so for each Sylow subgroup of F', by the Chinese Remainder
Theorem.

The map sending a self homotopy equivalence h of a Swan complex Xg for F
to the induced outer automorphism class determines a homomorphism from the
group of (unbased) homotopy classes of self homotopy equivalences E(Xr) to
Out(F). The image of this homomorphism is J(F'), and it is a monomorphism
if |F'| > 2 [P182, Corollary 1.3]. (Note that [P182] works with based homotopies.)
If F =1 or Z/2Z the orientation reversing involution of X (~ S3 or RP3,
respectively) induces the identity on F'.

Lemma 11.3 Let M be a closed 4-manifold with universal cover S® xR, and
let F' be the maximal finite normal subgroup of m = w1(M). The quotient 7w/F
acts on w3(M) and H*(F;Z) through multiplication by +1. It acts trivially if
the order of F' is divisible by 4 or by any prime congruent to 3 mod (4).

Proof The group 7/F must act through +1 on the infinite cyclic groups
n3(M) and H3(Mp;7Z). By the universal coefficient theorem H*(F;Z) is iso-
morphic to Hs3(F;Z), which is the cokernel of the Hurewicz homomorphism
from m3(M) to Hs(Mp;Z). This implies the first assertion.

To prove the second assertion we may pass to the Sylow subgroups of F', by
Shapiro’s Lemma. Since the p-Sylow subgroups of F also have cohomological
period 4 they are cyclic if p is an odd prime and are cyclic or quaternionic
(Q(2™)) if p = 2. In all cases an automorphism induces multiplication by a
square on the third homology [Sw60]. But —1 is not a square modulo 4 nor
modulo any prime p = 4n + 3. a

Thus the groups m = F' x Z realized by such 4-manifolds correspond to outer
automorphisms in J(F) or Jy(F). We shall next determine these subgroups
of Out(F) for F a group of cohomological period dividing 4. If m is an integer
let I(m) be the number of odd prime divisors of m.

Z/dZ = (x| z% =1).
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Out(Z)dZ) = (Z/dZ)*. Hence J(Z/dZ) = {s € (Z/dZ)* | s* = +1}.
J(Z)dZ) = (Z)22)"D if d # 0 mod (4), (Z/2Z)"DtL if d = 4 mod (8),
and (Z/22)"D+2 if d =0 mod (8).

QEB) = (z,y | 2* = y* = (zy)?).

An automorphism of @ = Q(8) induces the identity on Q/Q’ if and only if it
is inner, and every automorphism of Q/Q’ lifts to one of Q. In fact Aut(Q) is
the semidirect product of Out(Q) = Aut(Q/Q’) = SL(2,F3) with the normal
subgroup Inn(Q) = Q/Q’ = (Z/2Z)%. Moreover J(Q) = Out(Q), generated
by the images of the automorphisms ¢ and 7, where ¢ sends z and y to y and
xy, respectively, and 7 interchanges x and y.

Q(8k) = (z,y | 2** = 4% yay ™t =271, where k > 1.

(The relations imply that % = y* = 1.) All automorphisms of Q(8k) are
of the form [i,s], where (s,2k) = 1, [i,s](z) = 2° and [i,s](y) = z'y, and
Aut(Q(8k)) is the semidirect product of (Z/4kZ)* with the normal subgroup
([1,1]) = Z/4kZ . Out(Q(8k)) = (Z/22) & ((Z/4kZ)* /(£1)), generated by the
images of the [0, s] and [1,1]. The automorphism [¢, s] induces multiplication
by 5% on H*(Q(2");Z) [Sw60]. Hence J(Q(8k)) = (Z/2Z)'*)*1 if k is odd and
(2/22)F)+2 if [ is even.

T = (Q(8), 2 | P 1, zzz "t =y, zyz~ ! = 2y), where k > 1.

Setting ¢ = zx2 gives the balanced presentation (t,z | t2x = wtat, t3° = 22).
Let p be the automorphism sending z, y and z to ¥y~ ', 2! and 22 respectively.
Let £, n and ¢ be the inner automorphisms of 77 determined by conjugation by
x, y and z, respectively. An induction on k shows that the image of 2 generates
(Z/3%Z)*, and so p has order 2.3*71. Then Aut(T}) has the presentation

k—1 — — —
(.6, L™ == =m0 =1, plp™" = pnp™t =TI =€),
Out(T}) = (Z/3kZ)*. The 3-Sylow subgroup generated by z is preserved by
p, and it follows that J(T}) = Z/2Z (generated by the image of P )

1

O; = (TF,w | w? = 2%, wrw™! = yz, wzw™' =271,  where k > 1.

(The relations imply that wyw™! =y~ !.) Let w,&,n and ¢ be the inner auto-

morphisms of O; determined by conjugation by w,x,y and z, respectively. As
we may extend p to an automorphism of Of via p(w) = w122, the restriction
from Aut(Oj) to Aut(T}) is onto. An automorphism in the kernel sends w

to wv for some v € T, which must be central in 7}. Hence the kernel is

generated by a and (3, where a(w) = w™' = wz?. Now a = ,03’6710.:(_2, and

so the image of p generates Out(Oj). The 2-Sylow subgroup is generated by
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u = zw and x, and is isomorphic to Q(16). As a(u) = u® and a(z) = x this
subgroup is preserved by «, and H 4(a|<u,x>;Z) is multiplication by 9. Hence
H4(p3k71; Z) is multiplication by 9 on the 2-primary torsion. As the order of
Out(O3) divides 2.3"! it follows that J(O}) = 1.

Z/aZ x_1 0 = (Of,u|u® =1, wuw ™ =u™!, 2,9, 2 = u)

Here (a,6) = 1. This is the group P .,, of [Mi57]. An automorphism of
this group induces automorphisms of the normal subgroup Z/aZ and of the
quotient Of. Tt is easily seen that Aut(Pp ,.,,) = Aut(Z/aZ) x Aut(Oj).

Since conjugation by w induces the inversion on Z/aZ, Out(Pyg 5._,,) =

Aut(Z/aZ) x 1 Out(Oy). Since J(Of) = 1, we have J(Pf 51 ,) = J1(Z/aZ).

IF=(y.z|(y2)* =y’ = 2°).

The map sending the generators y,z to (23) and (§ 1), respectively, induces
an isomorphism from I* to SL(2,F5). Conjugation in GL(2,F5) induces a
monomorphism from PGL(2,F5) to Aut(I*). The natural map from Aut(I*)
to Aut(I*/(I*) is injective, since I* is perfect. Now I*/(I* = PSL(2,F5) =
As. The alternating group As is generated by 3-cycles, and has ten 3-Sylow
subgroups, each of order 3. It has five subgroups isomorphic to A4 generated by
pairs of such 3-Sylow subgroups. The intersection of any two of them has order
3, and is invariant under any automorphism of As; which leaves invariant each
of these subgroups. It is not hard to see that such an automorphism must fix
the 3-cycles. Thus Aut(As) embeds in the group S5 of permutations of these
subgroups. Since |PGL(2,F5)| = |S5| = 120 it follows that Aut(I*) = S5 and
Out(I*) = Z/2Z. The outer automorphism class is represented by the matrix
w=(29) in GL(2,F5).

Lemma 11.4 [PI83] J(I*)=1.

Proof The element v = 2* = (}1) generates a 5-Sylow subgroup of I*.
It is easily seen that wyw™ = +2, and so w induces multiplication by 2 on
H2*(Z/5Z;7) = H(Z/5Z;7) = Z/5Z. Since H*(Z/5Z;7) = Z/5Z is gen-
erated by the square of a generator for H%(Z/5Z;7) we see that H*(w;Z) is
multiplication by 4 = —1 on 5-torsion. Hence J(I*) = 1. O

In fact H*(w;Z) is multiplication by 49 [P183].

A(mye) = (z,y | 2™ =9*> =1, yoy~! =27 1), where e > 1 and m > 1 is odd.

If m = 2n+1 then (z,y | 2™ = y*>*, ya"y~! = 2"*1) is a balanced presentation.

All automorphisms of A(m, e) are of the form [s, ¢, u|, where (s,m) = (t,2) =1,
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s, t,ul(x) = 2° and [s,t,u](y) = x"y’. Out(A(m,e)) is generated by the images

of [s,1,0] and [1,¢,0] and is isomorphic to (Z/2¢)* & ((Z/mZ)* /(£1)). Hence
J(A(m, 1)) = {s € (Z/mZ)* | s* = +£1}/(£1), J(A(m,2)) = (Z/22)"™)  and
J(A(m,e)) = (Z/22)™+1 if ¢ > 2.

Q(2%a,b,c) = (Q(2™),u | u®® =1, zu®™ = u™z, rute™" = u™°, Yus® = uy,
yuly™' = u7?), where a, b and ¢ are odd and relatively prime, and either
n = 3 and at most one of a, b and cis 1 or n > 3 and bc > 1.

An automorphism of G = Q(2"a,b,c¢) must induce the identity on G/G’.
If it induces the identity on the characteristic subgroup (u) = Z/abcZ and
on G/{u)y = Q(2") it is inner, and so Out(Q(2"a,b,c)) is a subquotient of
Out(Q(2")) x (Z/abcZ)*. In particular, Out(Q(8a,b,c)) = (Z/abcZ)*, and
J(Q(8a,b,c)) = (Z/22)"%) | (We need only consider n = 3, by §5 below.)

As Aut(G x H) = Aut(G) x Aut(H) and Out(G x H) = Out(G) x Out(H) if
G and H are finite groups of relatively prime order, we have J (G x Z/dZ) =
J+(G)x J4(Z/dZ). In particular, if G is not cyclic or dihedral J(G x Z/dZ) =
J+(G x Z/dZ) = J(G) x J4(Z/dZ). In all cases except when F' is cyclic or
Q(8) x Z/dZ the group J(F') has exponent 2 and hence 7 has a subgroup of
index at most 4 which is isomorphic to F' X Z.

11.3 Extensions of D

We shall now assume that 7/F = D, and so m = G *p H, where [G : F| =
[H : F] =2. Let u,v € D be a pair of involutions which generate D and let
s = uv. Then s "us"™ = us®", and any involution in D is conjugate to u or to
v = us. Hence any pair of involutions {u’,v'} which generates D is conjugate

to the pair {u,v}, up to change of order.

Theorem 11.5 Let M be a closed 4-manifold with x(M) = 0, and such that
there is an epimorphism p : m = m (M) — D with finite kernel F'. Let 4 and
0 be a pair of elements of m whose images u = p(u) and v = p(v) in D are
involutions which together generate D. Then

(1) M is nonorientable and 4,9 each represent orientation reversing loops;

(2) the subgroups G and H generated by F' and 4 and by F and 0, respec-
tively, each have cohomological period dividing 4, and the unordered pair
{G, H} of groups is determined up to isomorphisms by m alone;
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(3) conversely, m is determined up to isomorphism by the unordered pair
{G,H} of groups with index 2 subgroups isomorphic to F as the free
product with amalgamation m = G xp H ;

(4) = acts trivially on w3(M);

(5) the restrictions of k(M) generate the groups H*(G;Z) and H*(H;Z),
and H'(mZ) = {(¢,€) € (Z/|G|Z) ® (Z/|H|Z) | ¢ = ¢ mod (|F|)} =
(Z)2|F\Z)® (Z/27).

Proof Let § = uv. Suppose that @ is orientation preserving. Then the sub-
group o generated by @ and §? is orientation preserving, so the corresponding
covering space M, is orientable. As ¢ has finite index in 7 and o/¢’ is finite
this contradicts Lemma 3.14. Similarly, ¥ must be orientation reversing.

By assumption, 4% and 92 are in F, and [G : F] = [H : F] = 2. If F
is not isomorphic to @ x Z/dZ then J(F') is abelian and so the (normal)
subgroup generated by F and §2 is isomorphic to F x Z. In any case the
subgroup generated by F and §* is normal, and is isomorphic to F x Z if k
is a nonzero multiple of 12. The uniqueness up to isomorphisms of the pair
{G, H} follows from the uniqueness up to conjugation and order of the pair of
generating involutions for D. Since G and H act freely on M they also have
cohomological period dividing 4. On examining the list above we see that F
must be cyclic or the product of Q(8k), T(v) or A(m,e) with a cyclic group
of relatively prime order, as it is the kernel of a map from G to Z/2Z. It is
easily verified that in all such cases every automorphism of F' is the restriction
of automorphisms of G and H. Hence 7 is determined up to isomorphism as
the amalgamated free product G xp H by the unordered pair {G, H} of groups
with index 2 subgroups isomorphic to F' (i.e., it is unnecessary to specify the
identifications of F' with these subgroups).

The third assertion follows because each of the spaces Mg = M /G and My =
M /H are PDs-complexes with finite fundamental group and therefore are ori-
entable, and 7 is generated by G and H .

The final assertion follows from a Mayer-Vietoris argument, as for parts (5) and
(6) of Theorem 11.1. O

Must the spaces Mg and My be homotopy equivalent to finite complexes?
In particular, if 7 &2 D the k-invariant is unique, and so any closed 4-manifold

M with (M) = D and x(M) = 0 is homotopy equivalent to RPRP*.
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11.4 S3 x E'-manifolds

With the exception of A(m,1) (with m > 1), O (with k > 1), P, (with
r > 1) and Q(2"a,b,c) (with either n = 3 and at most one of a, b and ¢ being
1 or n >3 and be > 1) and their products with cyclic groups, all of the groups
listed in §2 have fixed point free representations in SO(4) and so act freely on
S3. (Cyclic groups, the binary dihedral groups Dj},, = A(m,2), with m odd,
and Df, = Q(8k,1,1), with £ > 1 and the three binary polyhedral groups
Ty, Of and I* are subgroups of S3.) We shall call such groups S*-groups. A
k-invariant in H*(F;Z) is linear if it is realized by an S®-manifold S3/F, while
it is almost linear if all covering spaces corresponding to subgroups isomorphic
to A(m,e) x Z/dZ or Q(8k) x Z/dZ are homotopy equivalent to S*-manifolds
[HMS86].

Let N be a S*-manifold with 7;(N) = F. Then the projection of Isom(N)
onto its group of path components splits, and the inclusion of I'som(N) into
Dif f(N) induces an isomorphism on path components. Moreover if |F| >
2 isometries which induce the identity outer automorphism are isotopic to
the identity, and so mg(Isom(N)) maps injectively to Out(F). The group
mo(Isom(N)) has order 2 or 4, except when F' = Q(8) x (Z/dZ), in which case
it has order 6 (if d =1) or 12 (if d > 1). (See [Mc02].)

Theorem 11.6 Let M be a closed 4-manifold with x(M) = 0 and © =
71 (M) = F x¢ 7, where F is finite. Then M is homeomorphic to a S* x E!-
manifold if and only if M is the mapping torus of a self homeomorphism of a
S3-manifold with fundamental group F, and such mapping tori are determined
up to homeomorphism by their homotopy type.

Proof Let p; and ps be the projections of Isom(S? x E!) = O(4) x E(1) onto
O(4) and E(1) respectively. If 7 is a discrete subgroup of Isom(S? x E') which
acts freely on S® x R then p; maps F' monomorphically and p1(F) acts freely
on S3, since every isometry of R of finite order has nonempty fixed point set.
Moreover, pa(m) < E(1) acts discretely and cocompactly on R, and so has no
nontrivial finite normal subgroup. Hence F' = 7N (0O(4) x{1}). If ¢ € 7 maps to
a generator of /F = 7 then conjugation by ¢ induces an isometry 6 of S3/F,
and M = M(6). Conversely, any self homeomorphism h of a S3-manifold is
isotopic to an isometry of finite order, and so M (h) is homeomorphic to a
S? x El-manifold. The final assertion follows from Theorem 3 of [Oh90]. |

Every Swan complex for Z/dZ is homotopy equivalent to a lens space L(d, s).
(This follows from Theorem 2.9.) All lens spaces have isometries which induce
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inversion on the group. If s = 41 mod (d) there are also isometries of L(d, s)
which induce multiplication by +s. No other nontrivial automorphism of Z/dZ
is realized by a simple self homotopy equivalence of L(d,s). (See §30 of [Co].)
However (Z/dZ) x5 Z may also be realized by mapping tori of self homotopy
equivalences of other lens spaces. If d > 2 a PDy-complex with this group and
Euler characteristic 0 is orientable if and only if s2 =1 mod (d).

If F is a noncyclic S3-group there is an unique orbit of linear k-invariants
under the action of Out(F') x {£1}, and so for each 6 € Aut(F) at most one
homeomorphism class of S? x E'-manifolds has fundamental group @ = F xgZ.
If F = Q(2%) or T} for some k > 1 then S3/F is the unique finite Swan
complex for F' [Th80]. In general, there may be other finite Swan complexes.
(In particular, there are exotic finite Swan complexes for 77.)

Suppose now that G and H are S3-groups with index 2 subgroups isomorphic to
F.If F, G and H are each noncyclic then the corresponding S3-manifolds are
uniquely determined, and we may construct a nonorientable S? x E!-manifold
with fundamental group ™ = G *p H as follows. Let u and v : S3/F — S3/F
be the covering involutions with quotient spaces S%/G and S®/H , respectively,
and let ¢ = uv. (Note that u and v are isometries of S3/F.) Then U([z,t]) =
[u(z),1 — t] defines a fixed point free involution on the mapping torus M/(¢)
and the quotient space has fundamental group 7. A similar construction works
if F is cyclic and G = H or if G is cyclic.

11.5 Realization of the invariants

Let F' be a finite group with cohomological period dividing 4, and let Xp
denote a finite Swan complex for F'. If 6 is an automorphism of F which
induces +1 on H3(F';Z) there is a self homotopy equivalence h of Xp which
induces [f] € J(F). The mapping torus M (h) is a finite PD4-complex with
T (M) = F xgZ and x(M(h)) = 0. Conversely, every PDs-complex M with
X(M) = 0 and such that 7 (M) is an extension of Z by a finite normal subgroup
F' is homotopy equivalent to such a mapping torus. Moreover, if 71 =2 F X Z
and |F| > 2 then h is homotopic to the identity and so M (h) is homotopy
equivalent to Xp x ST,

The question of interest here is which such groups 7 (and which k-invariants in
H*(F;7Z)) may be realized by closed 4-manifolds. The Spivak normal fibration
of a PD3-complex X i