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Introduction

This survey is intended as a brief introduction to the theory of hyperbolic buildings and their lattices.
Hyperbolic buildings are negatively curved geometric objects which also have a rich algebraic and combina-
torial structure, and the study of these buildings and the lattices in their automorphism groups involves a
fascinating mixture of techniques from many different areas of mathematics.

Roughly speaking, a hyperbolic building is obtained by gluing together many hyperbolic spaces which are
tiled by polyhedra. For the precise definition, together with background on general buildings and known
constructions of hyperbolic buildings, see Section 1 below.

Given a hyperbolic building ∆, we write G = Aut(∆) for the group of automorphisms, or cellular isome-
tries, of ∆. When the building ∆ is locally finite, the group G equipped with the compact-open topology
is naturally a locally compact topological group, and so has a Haar measure µ. In this topology on G, a
subgroup Γ < G is discrete if and only if it acts on ∆ with finite cell stabilisers. A lattice in G is a discrete
subgroup Γ < G such that µ(Γ\G) <∞, and a lattice Γ is cocompact (or uniform) if Γ\G is compact. The
Haar measure µ on G may be normalised so that the covolume µ(Γ\G) of a lattice Γ < G is given by the
formula

(0.1) µ(Γ\G) =
∑ 1

|StabΓ(v)|
where the sum is taken over a set of representatives for the orbits of the vertices of ∆ under the action of Γ.
A discrete subgroup Γ < G is then a lattice if and only if this sum converges, and is a cocompact lattice if
and only if Γ\G is compact.

For brevity, we will refer to lattices in the automorphism groups of hyperbolic buildings as lattices in
hyperbolic buildings. In Section 2 we describe known constructions of lattices in hyperbolic buildings,
then discuss many different questions concerning such lattices. Much of the study of lattices in hyperbolic
buildings is motivated by the well-developed theory of lattices in semisimple Lie groups.

We recommend that the reader consult also the survey Farb–Hruska–Thomas [24], which discusses more
general polyhedral complexes and their automorphism groups and lattices. In order to avoid repetition,
we have concentrated here on questions concerning lattices which are particularly pertinent to hyperbolic
buildings, and/or where there has been progress since [24] was written. We also provide greater detail than
[24] on hyperbolic Coxeter groups and constructions of hyperbolic buildings.

Acknowledgements. The author thanks the organisers of “Geometry, Topology and Dynamics in Negative
Curvature” for the opportunity to attend such a well-run and interesting conference, the London Mathemat-
ical Society for travel support and an anonymous referee for helpful comments. The author is indebted to
her coauthors on [24] and to many of the researchers cited below for numerous rewarding discussions.

1. Buildings and hyperbolic buildings

In this section we recall definitions and results concerning both general and hyperbolic buildings. We
begin with a summary of the relevant theory of Coxeter groups and Coxeter polytopes in Section 1.1, and
some background on polyhedral complexes in Section 1.2. Buildings and examples of spherical and Euclidean
buildings are discussed in Section 1.3 before we focus on hyperbolic buildings in Section 1.4. Some references
for the theory of buildings are Abramenko–Brown [1], Brown [11] and Ronan [53].

The author is supported in part by ARC Grant No. DP110100440.
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1.1. Coxeter groups and Coxeter polytopes. We mostly follow the reference Davis [19], particularly
Chapter 6, and concentrate on the hyperbolic case.

Recall that a Coxeter group is a group W with finite generating set S and presentation of the form

W = 〈s ∈ S | (st)mst = 1〉
where s, t ∈ S, mss = 1 for all s ∈ S and if s 6= t then mst is an integer ≥ 2 or mst = ∞, meaning that
the product st has infinite order. The pair (W,S) is called a Coxeter system. A Coxeter system (W,S) is
right-angled if for each s, t ∈ S with s 6= t, mst ∈ {2,∞}. Note that mst = 2 if and only if st = ts.

Let Xn be the n–dimensional sphere, n–dimensional Euclidean space or n–dimensional (real) hyperbolic
space. Many important examples of Coxeter groups arise as discrete reflection groups acting on Xn, as
follows. Let P be a convex polyhedron in Xn with all dihedral angles integer submultiples of π. Such a P
is called a Coxeter polytope. Let W = W (P ) be the group generated by the set S = S(P ) of reflections
in the codimension one faces of P . Then (W,S) is a Coxeter system and W is a discrete subgroup of the
isometry group of Xn (see [19, Theorem 6.4.3]). Moreover, the action of W tessellates Xn by copies of P .
For example, let P be a right-angled hyperbolic p–gon, p ≥ 5. Then the corresponding Coxeter system is
right-angled with p generators, one for each side of P , so that if s and t are reflections in distinct sides then
mst = 2 when these sides are adjacent, and otherwise mst =∞.

Suppose that Xn is the sphere or Euclidean space. Then Coxeter polytopes P ⊂ Xn exist and have
been classified in every dimension, and the corresponding Coxeter systems (W,S) are the spherical or affine
Coxeter systems, respectively (see [19, Table 6.1] for the classification).

If Xn is n–dimensional hyperbolic space Hn, then there is no complete classification of Coxeter polytopes.
Vinberg’s Theorem [65] establishes that compact hyperbolic Coxeter polytopes can exist only in dimension
n ≤ 29, although at the time of writing the highest dimension in which an example is known is n = 8 (due to
Bugaenko [12]). Finite volume hyperbolic Coxeter polytopes have also been investigated, with for example
Prokhorov [50] proving these can exist only in dimension n ≤ 995. For n ≤ 6 (respectively, n ≤ 19), there
are infinitely many essentially distinct compact (respectively, finite volume) hyperbolic Coxeter polytopes
(Allcock [2]). In dimension 3, Andreev’s Theorem [3] classifies compact hyperbolic Coxeter polytopes, but
in dimensions n ≥ 4 only special cases have been considered, and there seems little hope of a complete list.
Hyperbolic Coxeter polytopes which are simplices exist in dimensions n ≤ 4 only, and their classification is
given in [19, Table 6.2]. Right-angled compact hyperbolic polytopes also exist in dimensions n ≤ 4 only, and
there are infinitely many examples in each dimension n ≤ 4 (see [66]). A right-angled example in dimension 3
is the dodecahedron, which tessellates H3 as depicted on the cover of Thurston’s book [59], and a right-angled
example in dimension 4 is the 120–cell, which has 120 dodecahedral faces. For other special cases of compact
hyperbolic Coxeter polytopes, see for example the work of Esselmann [23], Felikson–Tumarkin [25, 26, 61],
Kaplinskaja [40] and Tumarkin [60, 62, 63], and for an overview of results in the finite volume case, see the
introduction to [2].

Let W = W (P ) be the Coxeter group generated by reflections in the faces of a hyperbolic Coxeter polytope
P . If P is compact then W is a word-hyperbolic group, that is, a group which is hyperbolic in the sense
of Gromov. (For background on word-hyperbolic groups, see [10]. Necessary and sufficient conditions for
word-hyperbolicity of Coxeter groups were established by Moussong [19, Corollary 12.6.3].) On the other
hand, some authors such as Humphreys [38] reserve “hyperbolic Coxeter group” for the case that P is a
compact simplex. In this survey, when necessary we will refer to the discrete reflection group W (P ), where
P is a (compact) hyperbolic Coxeter polytope, as a (cocompact) geometric hyperbolic Coxeter group.

1.2. Polyhedral complexes and links. Polyhedral complexes are generalisations of (geometric realisations
of) simplicial complexes. Roughly speaking, they are obtained by gluing together polyhedra from the constant
curvature space Xn (the sphere, Euclidean space or hyperbolic space), using isometries along faces. For the
formal definition of a polyhedral complex, see for example [24, Section 2.1]. We sometimes refer to 2–
dimensional polyhedral complexes as polygonal complexes.

The tessellation of Xn by copies of a Coxeter polytope P is a simple example of a polyhedral complex.
A metric tree is a 1–dimensional Euclidean polyhedral complex, and a product of two such trees is a 2–
dimensional Euclidean polygonal complex.

Let x be a vertex of an n–dimensional polyhedral complex X. The link of x, denoted Lk(x,X), is the
spherical (n−1)–dimensional polyhedral complex obtained by intersecting X with an n–sphere of sufficiently

2



small radius centred at x. For example, if X has dimension 2, then Lk(x,X) may be identified with the graph
whose vertices correspond to endpoints of edges of X that are incident to x, and whose edges correspond to
corners of faces of X incident to x. By rescaling so that for each x the n–sphere around x has radius 1, we
induce a canonical metric on each link.

The importance of links is that they provide a local condition for nonpositive or negative curvature of
polyhedral complexes, using the following result which combines several theorems of Gromov. For these
theorems as well as background on the nonpositive curvature condition CAT(0), and the negative curvature
condition CAT(−1), see [10].

Theorem 1.1 (Gromov). Let X be a contractible polyhedral complex of piecewise constant curvature κ. If
X has finitely many isometry types of cells, then X is CAT(κ) if and only if for all vertices x of X, the
link Lk(x,X) is a CAT(1) space. In particular, if X is a contractible Euclidean (respectively, hyperbolic)
polygonal complex with finitely many isometry types of cells, then X is CAT(0) (respectively, CAT(−1)) if
and only if every embedded loop in the graph Lk(x,X) has length at least 2π.

An important special case of a polyhedral complex is a (k, L)–complex, which is a polygonal complex in
which each face is a regular k–gon, for k ≥ 3 an integer, and the link at each vertex is a fixed finite graph
L. So long as k and L satisfy a simple condition, Ballmann–Brin [5] showed that a contractible CAT(0)
(k, L)–complex may be constructed by a “free” inductive process of adding k–gons to the previous stage.
Another construction of (k, L)–complexes for k even is the special case of the Davis–Moussong complex
described in [24, Section 3.6].

1.3. Buildings. We will adopt the following “geometric” definition of a building, which is the most appro-
priate for the hyperbolic case. Other definitions, using simplicial complexes or chamber systems, may be
found in, for example, [1] or [53].

Definition 1.2. Let Xn be respectively the n–dimensional sphere, n–dimensional Euclidean space or n–
dimensional hyperbolic space. Let P be a Coxeter polytope in Xn and let (W,S) be the corresponding
Coxeter system. A respectively spherical, Euclidean or hyperbolic building of type (W,S) is a polyhedral
complex ∆ equipped with a maximal family of subcomplexes, called apartments, so that each apartment is
isometric to the tessellation of Xn by copies of P , called chambers, and so that:

(1) any two chambers of ∆ are contained in a common apartment; and
(2) for any two apartments A and A′, there exists an isometry φ : A → A′ which fixes A ∩A′.

The tessellation of a single copy of Xn by images of P satisfies Definition 1.2 and is sometimes called a
thin building. We will mainly be interested in thick buildings, those where there is “branching”, that is,
where each codimension one face of each chamber is contained in at least three distinct chambers. Thick
buildings may be thought of as obtained by gluing together many copies of the same tessellation of Xn. A
building is right-angled if it is of type (W,S) a right-angled Coxeter system.

We now discuss some important examples of spherical and Euclidean buildings. Hyperbolic buildings will
be considered in Section 1.4 below.

1.3.1. Examples of spherical buildings. A first example of a spherical building is the complete bipartite graph
Kq,q, which is thick so long as q ≥ 3. The chambers are the edges of this graph, metrised as quarter-circles,
and the apartments are the embedded loops of length 2π. This is a (right-angled) building of type (W,S)
where

W = 〈s, t | s2 = t2 = (st)2 = 1〉
is the dihedral group of order 4, acting on the circle.

An example of a spherical building ∆ which is not right-angled is the flag complex of the projective
plane over the finite field Fq of order q, which may be constructed as follows. Let V be the vector space
Fq × Fq × Fq over Fq, let P be the collection of one-dimensional subspaces of V (the points of the projective
plane) and let L be the collection of two-dimensional subspaces of V (the lines). A point p ∈ P is defined
to be incident to a line l ∈ L if p ⊂ l. The building ∆ is then the bipartite graph with vertex set P tL and
edges corresponding to incidence. See for instance [53, Chapter 1, Example 3] for the verification that ∆ is
indeed a building, of type

W = 〈s, t | s2 = t2 = (st)3 = 1〉
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the symmetric group on three letters, which is isomorphic to the dihedral group of order 6, acting on the
circle. In particular, the apartments of ∆ are embedded cycles of 6 edges, and correspond to bases of V .
The standard apartment is that corresponding to the standard basis for V .

The structure of this spherical building is strongly connected with the structure of the group G = SL3(Fq),
in a way that generalises to many other pairings of buildings with groups. The action of G on V induces
a natural action on the building ∆. The stabilisers of edges of ∆ are the cosets of the upper-triangular
subgroup B < G, the (standard) Borel subgroup, and the stabilisers of vertices are the parabolic subgroups
of G. Thus the chambers of ∆ can be identified with the cosets G/B, and the vertices of ∆ can be identified
with the disjoint union G/P1 t G/P2, where P1 is the parabolic subgroup fixing the span of (1, 0, 0) and
P2 that fixing the span of (1, 0, 0) and (0, 1, 0). The pointwise stabiliser of the standard apartment is the
diagonal subgroup T < G, called the torus, and the setwise stabiliser of the standard apartment is the group
of monomial matrices N < G, that is, matrices with exactly one non-zero entry in each row and each column.
The normaliser of the torus T is the group N , with quotient N/T ∼= W , and the group W is called the Weyl
group.

The discussion in the previous paragraph could be summarised by saying that the group G = SL3(Fq) has
a (B,N)–pair, also known as a Tits system; there is then a building associated to G, of type its Weyl group,
which is constructed using cosets of important subgroups as indicated. (For the rather technical definition
of a (B,N)–pair, see for example [53, Chapter 5].) Other spherical buildings are associated to other finite
groups of Lie type, using their respective (B,N)–pairs.

All one-dimensional spherical buildings are generalised m–gons, meaning that they are graphs with di-
ameter m edges and shortest embedded circuit containing 2m edges. A finite, thick generalised m–gon
exists for m ∈ {2, 3, 4, 6, 8} only (Feit–Higman, see [53, Theorem 3.4]). Generalised 2–gons are complete
bipartite graphs. Generalised 3–gons are flag complexes of projective planes, and so there is no classification
known. There are many examples of finite generalised 4–gons, but only one or two known examples of finite
generalised 6– or 8–gons. For more on generalised m–gons, see for example [30, Chapter 5].

1.3.2. Examples of Euclidean buildings. A first example of a Euclidean building is the tree Tq of valence q,
metrised so that each edge has length say 1. The chambers are the edges of the tree, and the apartments
are the bi-infinite geodesics. This is a (right-angled) building of type (W,S) where

W = 〈s, t | s2 = t2 = 1〉

is the infinite dihedral group acting on the real line, with the generating reflections s and t fixing points
distance 1 apart. The product of trees Tq × Tq is a 2–dimensional right-angled Euclidean building with
apartments the tessellation of the Euclidean plane by unit squares, and associated Coxeter system the direct
product of two infinite dihedral groups.

Many Euclidean buildings (and all irreducible Euclidean buildings of dimension ≥ 3) are of “algebraic”
origin, as in the following example. Let K be a nonarchimedean local field, such the p–adics Qp or the field
of formal Laurent series Fq((t)). The group G = SLn(K) has a (B,N)–pair with associated Weyl group W
an affine Coxeter group, so that the action of W tessellates (n− 1)–dimensional Euclidean space. Thus the
group G has an associated Euclidean building of dimension (n−1). For instance the building for SL3(Qp) has
apartments the tessellation of the Euclidean plane by equilateral triangles. For further details and references
concerning Euclidean buildings, which are also known as affine buildings, see [24, Section 3.1].

1.3.3. Links of buildings. Let x be a vertex of an n–dimensional building. Then it is easy to verify that the
link of x is a spherical building of dimension (n − 1), with the induced apartment and chamber structure.
For example, the link of each vertex in Tq × Tq is the complete bipartite graph Kq,q, and the link of each
vertex in the building for SL3(Fq((t))) is the spherical building ∆ for SL3(Fq) from Section 1.3.1 above.

With the natural piecewise spherical structure, a spherical building is a CAT(1) space. This was shown by
Davis [18], generalising a result of Gromov [32] for right-angled spherical Coxeter systems and of Moussong for
all spherical Coxeter systems (see [19, Theorem 12.3.3]). By Theorem 1.1 above, it follows that Euclidean
(respectively, hyperbolic) buildings are CAT(0) spaces (respectively, CAT(−1) spaces). The result that
irreducible Euclidean buildings are CAT(0) was already well-known, and a proof can be found in [1, Section
11.2].
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1.4. Hyperbolic buildings. We first discuss examples and constructions of hyperbolic buildings. Many
of these constructions of hyperbolic buildings also yield lattices, as discussed in Section 2 below. We then
briefly discuss the classification of hyperbolic buildings.

A hyperbolic building ∆ of dimension 2 is sometimes called a Fuchsian building, since if ∆ has type (W,S)
then W may be regarded as a Fuchsian group. By the restrictions on the dimension of hyperbolic Coxeter
polytopes discussed in Section 1.1 above, hyperbolic buildings with compact (respectively, finite volume)
chambers can exist only in dimension n ≤ 29 (respectively, n ≤ 995), and right-angled hyperbolic buildings
with compact chambers exist only in dimensions 2, 3 and 4.

A first example of a hyperbolic building is Bourdon’s building Ip,q, defined and studied in [7]. Let P be
a regular right-angled hyperbolic p–gon, with p ≥ 5. Then P is a Coxeter polytope, and the building Ip,q
has type the associated right-angled Coxeter system. Thus Ip,q is a right-angled Fuchsian building with
apartments hyperbolic planes tessellated by copies of P . The link of each vertex of Ip,q is the complete
bipartite graph Kq,q, with q ≥ 2, and so by Theorem 1.1 above, Bourdon’s building is CAT(−1). Each edge
of Ip,q is contained in q chambers, thus Ip,q is thick for q ≥ 3. Bourdon’s building can be thought of as
a hyperbolic version of the product of trees Tq × Tq. However it is not globally a product space. It is a
(k, L)–complex with k = p and L = Kq,q, and as descibed in [7] may be constructed using the Ballmann–Brin
inductive process (see Section 1.2 above).

A slightly more general example is the right-angled Fuchsian building Ip,q where q = (qs)s∈S is a p–tuple
of integers qs ≥ 2, indexed by the generators of the Coxeter system (W,S) associated to the regular right-
angled p–gon P . The edges of Ip,q are assigned types s ∈ S, and the vertices then inherit types {s, t} ⊂ S
with mst = 2, so that the natural action of W on each apartment is type-preserving. The parameters qs
record that each edge of type s is contained in qs chambers, which makes the building regular. Each vertex
of type {s, t} has link the complete bipartite graph Kqs,qt .

Any regular right-angled building may be constructed using complexes of groups. (Note that not all
right-angled buildings are hyperbolic, since for example a product of trees is not a hyperbolic building.)
For the general theory of complexes of groups see [10], and for a summary of this theory in the context
of polyhedral complexes see [24, Section 2.3]. The construction for Ip,q that we now sketch appears in
Bourdon [8, Example 1.5.1(a)], was known earlier to Davis and Meier and is equivalent to a special case of
constructions given in [8, Section 5] and [19, Example 18.1.10]. Let the p–gon P and parameters q be as
in the previous paragraphs. For each s ∈ S let Gs be a group of order qs. A complex of groups over P
with universal cover the building Ip,q is obtained by assigning groups to the face, edges and vertices of P as
follows. The face group is trivial, the group on the edge of type s is Gs and the group on the vertex of type
{s, t} with mst = 2 is the direct product Gs×Gt. Very roughly speaking, the universal cover is obtained by
“unfolding” this orbifold-like data.

An example of a Fuchsian building which is not right-angled and is constructed using complexes of groups
is as follows. Let P be a regular hyperbolic k–gon, with k ≥ 6 even and all dihedral angles π

3 . The universal
cover of the following complex of groups over P , from Gaboriau–Paulin [28, Section 3.1], is a Fuchsian
building with apartments hyperbolic planes tessellated by copies of P , and the link of every vertex the
spherical building ∆ described in Section 1.3.1 above. Let G = SL3(Fq) and let B, P1 and P2 be the Borel
and parabolic subgroups of G as in Section 1.3.1 above. The face group is B, the edge groups alternate
between P1 and P2 and all vertex groups are G. In [28, Section 3.4] Gaboriau–Paulin also use complexes
of groups to construct some Fuchsian buildings with non-compact chambers. In [7, Example 1.5.3] Bourdon
uses complexes of groups to construct Fuchsian buildings with right-angled triangles as chambers.

Some additional constructions of Fuchsian buildings are as follows. Suppose L is a one–dimensional
spherical building and k ≥ 3 is even. Then a Davis–Moussong (k, L)–complex (see Section 1.2 above) may be
metrised as a hyperbolic building with all links L and all chambers k–gons. Vdovina [64] constructed various
Fuchsian buildings with even-sided chambers as universal covers of finite polygonal complexes whose links are
one-dimensional spherical buildings, with not necessarily the same link at each vertex, while Kangaslampi–
Vdovina [39] using similar techniques constructed Fuchsian buildings with chambers n–gons, n ≥ 3, and
links generalised 4–gons. Bourdon [7, Example 1.5.2] obtained certain Fuchsian buildings by “hyperbolising”
affine buildings.

Recall from Sections 1.3.1 and 1.3.2 above that some spherical and Euclidean buildings are obtained
as buildings for groups which have (B,N)–pairs. In similar fashion, some hyperbolic buildings arise as
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buildings for Kac–Moody groups. A Kac–Moody group Λ over a finite field Fq may be thought of as an
infinite-dimensional analogue of an algebraic group over a nonarchimedean local field. The group Λ has
twin (B,N)–pairs, which yield isomorphic twin buildings ∆+ and ∆−, with the group Λ acting diagonally
on the product ∆+ × ∆−. When the Weyl group W of Λ is a (cocompact) geometric hyperbolic Coxeter
group, then the associated buildings ∆± are hyperbolic buildings (with compact chambers). For example,
the building Ip,q+1 may be realised as a Kac–Moody building when q is a power of a prime. For further
details, see Carbone–Garland [15] and Rémy [51].

Apart from right-angled and Kac–Moody buildings, there are very few known constructions of hyperbolic
buildings of dimension greater than 2. Haglund–Paulin [36] have constructed some three–dimensional hy-
perbolic buildings using “tree-like” decompositions of the corresponding Coxeter systems, while Davis [20]
gives covering-theoretic constructions of some three-dimensional hyperbolic buildings, including some where
not all links are the same.

As discussed in Section 1.1 above, there is no complete classification of geometric hyperbolic Coxeter sys-
tems, and so there seems little hope of classifying general hyperbolic buildings. Even for Fuchsian buildings,
where the associated Coxeter systems are classified, the possible links L are generalised m–gons, which have
not been classified. Indeed even after fixing a Coxeter system (W,S) and the link L at each vertex, there may
be uncountably many hyperbolic buildings of type (W,S) with links L (see for example [28, Theorem 3.6]).
There are however cases in which “local data” does determine the building. For example, Bourdon’s building
Ip,q is the unique simply-connected polygonal complex such that all faces are right-angled hyperbolic p–gons,
and all links are Kq,q [7, 54]. For more on the question of uniqueness, see [24, Section 2.3].

2. Lattices

We now discuss lattices in hyperbolic buildings. The state of the theory is such that for many hyperbolic
buildings, the basic question of the existence of lattices in their automorphism groups is open. We thus
begin by describing known constructions of lattices in Section 2.1, then discuss a range of other questions
concerning lattices in Section 2.2.

2.1. Constructions of lattices. Let ∆ be a hyperbolic building, and recall the characterisation of lattices
in Aut(∆) from the introduction. It will be seen that much more is known about constructions of cocompact
lattices in Aut(∆) than about constructions of non-cocompact lattices.

If ∆ is the universal cover of a finite polyhedral complex, as for example in the constructions of Fuchsian
buildings due to Vdovina [64], then the fundamental group of that finite polyhedral complex is a cocompact
lattice in Aut(∆), since it acts freely and cocompactly on ∆.

Now suppose ∆ is the universal cover of a complex of finite groups, over a finite underlying polyhedral
complex Y . For instance, one of the constructions of Bourdon’s building Ip,q is as the universal cover of a
complex of finite groups over a right-angled hyperbolic p–gon P . Let Γ be the fundamental group of this
complex of groups. Roughly speaking, Γ is an amalgam of the finite groups associated to the cells of Y .
Then Γ is a cocompact lattice in Aut(∆), since Γ acts on ∆ with finite stabilisers and compact quotient Y .

In [27], Futer–Thomas constructed cocompact lattices in Aut(Ip,q) which are fundamental groups of
complexes of groups over Y a (tessellated) surface. They also showed that for some p and g, whether there
exists a cocompact lattice Γ < Aut(Ip,q) so that the quotient by the action of Γ is a genus g surface depends
upon the value of q. This is the only known case where the values of the parameters p and q affect the
existence of lattices in Aut(Ip,q).

Complexes of finite groups may also be used to construct non-cocompact lattices. In this case, the
underlying complex Y is infinite, and the assigned finite groups must have orders growing fast enough that
the series in Equation (0.1) above converges. For example, Thomas [55] obtained many cocompact and
non-cocompact lattices for right-angled buildings by constructing a functor from graphs of groups, with
tree lattices as their fundamental groups, to complexes of groups, with right-angled building lattices as their
fundamental groups. More elaborate complexes of groups were used by Thomas to construct both cocompact
and non-cocompact lattices for certain Fuchsian buildings in [56] and Davis–Moussong complexes in [57].

When ∆ is a Davis–Moussong (k, L)–complex, then there is an associated Coxeter group W (k, L), which
is not the type of the building ∆, and the group W (k, L) may be regarded as a cocompact lattice in Aut(∆).
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In [8, Example 1.5.2] Bourdon gives a lattice construction which “lifts” lattices for Euclidean buildings to
cocompact and non-cocompact lattices for certain Fuchsian buildings.

Now suppose that the hyperbolic building ∆ is the building for a Kac–Moody group Λ. Recall that Λ acts
diagonally on the product ∆+ ×∆−, where ∆± ∼= ∆. Carbone–Garland [15] and independently Rémy [51]
showed that the stabiliser in Λ of any point in the negative building ∆− is a non-cocompact lattice in the
automorphism group of the positive building ∆+. These stabilisers may also be considered as lattices in the

complete Kac–Moody group Λ̂ = Λ̂+, which is a totally disconnected locally compact group acting on ∆+,

and is obtained by completing Λ using one of several methods. Some of the lattices in Λ̂ constructed in
Gramlich–Horn–Mühlherr [31] are for hyperbolic buildings. We do not know of any other constructions of
lattices in complete Kac–Moody groups whose associated buildings are hyperbolic.

2.2. Questions about lattices. As mentioned in the introduction, many questions concerning lattices in
hyperbolic buildings are motivated by comparison with known results concerning lattices in semisimple Lie
groups. This background and motivation for the questions below is treated much more thoroughly in the
corresponding sections of [24], to which we refer the reader. In general, a lot more is known about cocompact
than about non-cocompact lattices in hyperbolic buildings. There are also cases where the behaviour of
compact and non-cocompact lattices is dramatically different. It does appear that there is greater “rigidity”
when the hyperbolic building has (compact) simplicial chambers, perhaps because the associated Coxeter
system then has the property, like all irreducible affine and finite Coxeter systems, that all mst are finite.

2.2.1. Classification. Once it is known that the automorphism group of a hyperbolic building ∆ admits
lattices, an immediate next question is to classify the lattices in Aut(∆) up to conjugacy. This has only
been done in special cases. For instance in [39], Kangaslampi–Vdovina classify the torsion-free groups which
act simply transitively on the vertices of Fuchsian buildings with triangular chambers and links the smallest
generalised 4–gon, and in [16], Carbone–Kangaslampi–Vdovina classify all such groups with torsion.

2.2.2. Commensurability and commensurators. Lattices may also be classified up to commensurability. Re-
call that two subgroups Γ1,Γ2 < G are commensurable if there exists g ∈ G so that gΓ1g

−1 ∩ Γ2 has
finite index in both gΓ1g

−1 and Γ2. Haglund [33, Theorem 1.1] proved that for p ≥ 6, all cocompact lat-
tices in Aut(Ip,q) are commensurable. In contrast, there are uncountably many commensurability classes of
non-cocompact lattices in Aut(∆) for ∆ a regular right-angled building (Thomas [46, Main Theorem 2(b)]).

The commensurator of a lattice Γ < G is the subgroup consisting of elements g ∈ G such that gΓg−1 and
Γ are commensurable. Haglund [34] and independently Kubena–Thomas [43] proved that for ∆ a regular
right-angled building, the commensurator of a canonical cocompact lattice is dense in G = Aut(∆). The
question of commensurators of non-cocompact lattices is wide open, even for Ip,q.

2.2.3. Covolumes. A basic question is to determine the set

{µ(Γ\G) | Γ < G is a lattice}

of covolumes of lattices in G. Aspects of this question have been considered by Thomas for certain right-
angled buildings [46], Fuchsian buildings [56] and Davis–Moussong complexes [57], but many cases remain
open. For instance, it would be interesting to determine whether the set of covolumes of cocompact lattices
in the Fuchsian buildings with triangular chambers considered in [39] has a positive lower bound.

2.2.4. Property (T) and finiteness properties. Ballmann–Świ ↪atkowski [6], Dymara–Januszkiewicz [21] and

Żuk [70] have shown that the automorphism groups of many hyperbolic buildings ∆ with simplicial chambers
have Kazhdan’s Property (T). On the other hand, Corollary 3 of [6] implies that the automorphism groups of
Fuchsian buildings with chambers p–gons, p ≥ 4, do not have Property (T). In higher dimensions, it follows
from Niblo–Reeves [48, Theorem B] that the automorphism groups of right-angled buildings do not have
Property (T), and Haglund–Paulin [35, Theorem 1.5] showed that the automorphism groups of hyperbolic
buildings with chambers “even” polytopes do not have Property (T).

A group G has Property (T) if and only if all of its lattices have Property (T), and it is a well-known
result of Kazhdan [42] that lattices with Property (T) are finitely generated. All cocompact lattices in a
hyperbolic building are finitely generated since they are fundamental groups of finite complexes of finite
groups. Infinite generation of some non-cocompact lattices for certain hyperbolic buildings was established
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by Thomas [57] and Thomas–Wortman [58]. It is not known whether for these buildings, there are any
non-cocompact lattices which are finitely generated.

Very little is known about higher finiteness properties for lattices in hyperbolic buildings, apart from a
recent result of Gandini [29] which bounds the homological finiteness length of non-cocompact lattices in
Aut(X) for X a locally finite contractible polyhedral complex. As a corollary, such lattices are not finitely
presentable. The examples of [57] and [58] show that Gandini’s bound is not sharp.

2.2.5. Residual finiteness, linearity and simplicity. These questions are of particular interest for cocompact
lattices in hyperbolic buildings with compact chambers, since such lattices are (finitely generated) word-
hyperbolic groups. Recall that a group Γ is residually finite if for all 1 6= γ ∈ Γ, there exists a finite
quotient Γ→ Γ such that γ is nontrivial. It is a theorem of Mal’cev [47] that every finitely generated linear
group is residually finite. A major open conjecture of Gromov states that all word-hyperbolic groups are
residually finite, while it is unknown whether every word-hyperbolic group is linear (see the introduction to
Kapovich–Wise [41]). Word-hyperbolic groups are never simple [32, 49].

An important result, due to Wise [67], is the residual finiteness of cocompact lattices which are funda-
mental groups of complexes of finite groups over hyperbolic p–gons, for p large enough (depending upon
the angles of the polygon). Combining this with [33, Theorem 1.1], Haglund proved that for p ≥ 6, all
cocompact lattices in Aut(Ip,q) are linear and thus residually finite. The case I5,q is open. As noted in
Kangaslampi–Vdovina [39], the residual finiteness and linearity of the cocompact lattices in Fuchsian build-
ings with triangular chambers is also open.

For non-cocompact lattices, nonlinear examples in Aut(Ip,q) were obtained by Rémy [52] using Kac–
Moody theory. A striking recent result of Caprace–Rémy [14] is the simplicity of many Kac–Moody groups
Λ, which are non-cocompact lattices in the product of their twin buildings ∆+ ×∆−.

2.2.6. Rigidity. Various rigidity questions for lattices in hyperbolic buildings overlap with questions about
the structure of the building itself and its boundary, and so we discuss these issues together here. This
section is only intended to be a list of some recent work in this area.

A careful proof of the folklore result that the visual boundary of a right-angled hyperbolic building is a
Menger sponge was provided by Dymara–Osajda in [22]. Bourdon [7, Theorems 1.1 and 1.2] determined the
conformal dimension of the visual boundary of Ip,q, and related this to its Hausdorff dimension. A version
of Mostow rigidity was also established by Bourdon [7, Theorem 1.3] for cocompact lattices in Ip,q, using
combinatorial Patterson–Sullivan measures. Bourdon–Pajot [9] established quasi-isometric rigidity for Ip,q,
and Xie [68] generalised this result to all Fuchsian buildings.

Since hyperbolic buildings are CAT(−1) spaces, several rigidity results for divergence groups apply to
lattices in hyperbolic buildings. As noted in the introduction to Burger–Mozes [13], the notion of a di-
vergence group comes from Patterson–Sullivan theory for Kleinian groups. If Aut(∆) acts cocompactly on
the hyperbolic building ∆, as is the case for most known constructions, then any nonelementary lattice
Γ < Aut(∆) is a divergence group [13, Corollary 6.5(2)]. Hersonsky–Paulin [37] generalised Mostow rigidity
to divergence groups acting by isometries on many CAT(−1) spaces, including some hyperbolic buildings,
and Burger–Mozes [13] established CAT(−1) super-rigidity results for divergence groups.

More recently, Daskalopoulos–Mese–Vdovina [17] studied harmonic maps from symmetric spaces into
target spaces including hyperbolic buildings, and as an application proved super-rigidity results for the
isometry groups of a class of complexes including hyperbolic buildings. Super-rigidity results for Kac–Moody
groups Λ were obtained by Caprace–Rémy in [14].

An important ingredient in some classical rigidity results is the Howe–Moore property for unitary repre-
sentations (see for example [69]), which concerns decay of matrix coefficients. This property was shown not
to hold for Aut(Ip,q) by Bader–Shalom [4, pp. 447–449], using Mackey theory.

Finally, the volume entropy of hyperbolic buildings considers the asymptotic growth of volumes of balls in
the building (by analogy with volume entropy for Riemannian manifolds). This topic has been investigated
by Hersonsky–Paulin [37], Leuzinger [45] and most thoroughly by Ledrappier–Lim [44], using the geodesic
flow on apartments and measures on suitable boundaries.
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[49] A. Y. Olshanskĭı, SQ-universality of hyperbolic groups, Mat. Sb., 186 (1995), pp. 119–132.
[50] M. N. Prokhorov, Absence of discrete groups of reflections with a noncompact fundamental polyhedron of finite volume
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