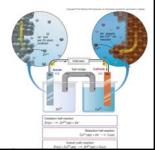


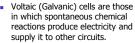
Electrochemistry & Redox

An oxidation-reduction (redox) reaction involves the transfer of electrons from the *reducing agent* to the *oxidising agent*.

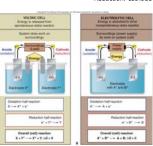
OXIDATION - is the LOSS of electrons $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}(aq)$ REDUCTION - is the GAIN of electrons $Cu^{2+}(aq) + 2e^{-}(aq) \rightarrow Cu(s)$


These represents the redox HALF-EQUATIONS

Voltaic Cells



- A voltaic electrochemical cell involves two half cells one containing an oxidising agent and the other a reducing agent.
- These cells are connected with a wire, to allow electron flow and a salt bridge to complete the circuit and maintain electrical neutrality.
- The PULL or DRIVING FORCE on the electrons is the cell potential (E_{cell}) or the electromotive force (emf) of the cell, measured in volts.


Electrochemical Cells

 $\Delta G < 0$

 Electrolytic cells are those in which electrical energy causes non-spontaneous chemical reactions to occur.

 $\Delta G > 0$

Anode: oxidation

Prover supply (and supply) again on system (set)
Compy Cont
Exercises with A" and S"
half-reaction L+ 6"
Peduction half-reaction e ⁺ + 6 ⁺ → 0

Balancing Redox Equations

• The concept of Oxidation Number is artificial. In simple ions it is equivalent to the charge on the ion.

Oxidation involves an increase in oxidation number Reduction involves a decrease in oxidation number

- As half cells, determine oxidation numbers and balance electrons.
- Combine half cells balancing gain/loss of electrons.
- Balance with H₂O and H⁺ or H₂O and OH⁻.
- Check charges balance.

$$\begin{array}{ccc} 0 \rightarrow + II & Zn(s) & \rightarrow Zn^{2+}(aq) + 2e^{\cdot}(aq) \\ + II \rightarrow 0 & Cu^{2+}(aq) + 2e^{\cdot}(aq) & \rightarrow Cu(s) \\ & & & \\ \hline Zn(s) + Cu^{2+}(aq) & \rightarrow Zn^{2+}(aq) + Cu(s) \end{array}$$

Standard Reduction Potentials

- In data tables half cells are written as reductions.
- Standard hydrogen electrode defined as $E^{\circ} = 0 \text{ V}$ (1 atm H₂, [H⁺] = 1 M, at all temperatures).
- The more negative *E*, the greater the tendency to release electrons (act as a reducing agent).

$$\begin{array}{lll} Fe^{3+} + e^{-} \rightarrow Fe^{2+} & E^{\circ} = 0.77 \text{ V} \\ Cu^{2+} + 2e^{-} \rightarrow Cu & E^{\circ} = 0.34 \text{ V} \\ 2H^{+} + 2e^{-} \rightarrow H_{2} \text{ (g)} & E^{\circ} = 0.00 \text{ V} \\ Zn^{2+} + 2e^{-} \rightarrow Zn & E^{\circ} = -0.76 \text{ V} \end{array}$$

5

Calculating Cell Potential

- When combining two half-reactions:
 - One half-cell reaction is reversed (thus the sign of the reduction potential is reversed).
 - Number of electrons lost must equal the number gained.
 - Note cell potential is an INTENSIVE PROPERTY i.e. when a halfreaction is multiplied by and integer E° stays the SAME.

E.g.
$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$
 $E^{\circ} = 0.77 \text{ V} \dots 1$ $Cu^{2+} + 2e^{-} \rightarrow Cu$ $E^{\circ} = 0.34 \text{ V} \dots 2$ reverse ...2 Cu $\rightarrow Cu^{2+} + 2e^{-}$ $E^{\circ} = -0.34 \text{ V}$ double ...1 $2Fe^{3+} + 2e^{-} \rightarrow 2Fe^{2+}$ $E^{\circ} = 0.77 \text{ V}$ add equations $2Fe^{3+} + Cu \rightarrow 2Fe^{2+} + Cu^{2+}$ $E^{\circ}_{cell} = 0.77 + (-0.34)$ $= 0.43 \text{ V}$

Question

Write a balanced equation for the oxidation of lactate to pyruvate and calculate the cell potential.

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 $E^\circ = 0.82 \text{ V}$
pyruvate + $2H^+ + 2e^- \rightarrow \text{lactate}$ $E^\circ = -0.19 \text{ V}$

7

$$\Delta G^{\circ} = -nFE^{\circ}_{max}$$

Example: Calculate ΔG° for a cell reaction: $Cu^{2+}(aq) + Fe(s) \rightarrow Cu(s) + Fe^{2+}(aq)$ Is this a spontaneous reaction?

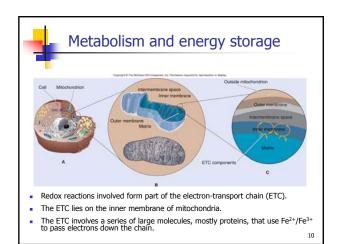
$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 $E^{\circ} = 0.34 \text{ V}$
 $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $E^{\circ} = -0.44 \text{ V}$

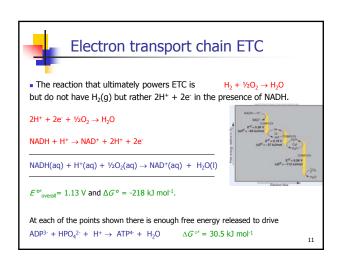
$$\text{Cu}^{2+}(\text{aq}) + \text{Fe(s)} \rightarrow \text{Cu(s)} + \text{Fe}^{2+}(\text{aq})$$

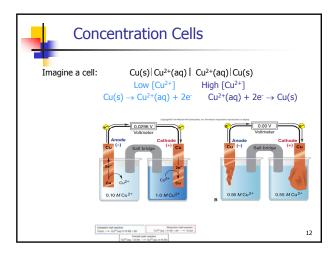
 $E^{\circ}_{\text{cell}} = 0.34 + (+0.44) = 0.78 \text{ V}$

$$\Delta G^{\circ} = -2 \times 96485 \times 0.78$$
 (F=96485 C mol⁻¹)
= -1.5 x 10⁵ J

This process is spontaneous as indicated by the negative sign of $\Delta G^{\, \rm o}$ and the positive sign for ${E^{\, \rm o}}_{\rm cell}.$

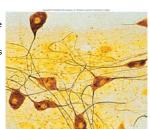

8




Glucose metabolism

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O \quad \Delta G^{\circ} = -2875 \text{ kJ mol}^{-1}$

- If all this energy was released at once it would totally swamp the cell.
- Instead energy in food used to create an electrochemical potential which is used to create the high energy molecule ATP.
- The energy can be released in small steps rather than all at once.



Concentration Cells

- Nerve cells operate as concentration cells.
- Inside cell [Na+] low, [K+] high; outside cell [Na+] high, [K+] low.
- Outer cell membrane is positive. One third of our ATP is used to maintain this difference.
- On nerve stimulation, Na+ enters cell, inner membrane becomes more positive, then K+ ions leave cell to reestablish positive potential on outside.
- These changes occur on a millisecond timescale.
- Large changes in charge in one region of the membrane stimulate the neighbouring region and the impulse moves down the length of the cell.

13

ATP Synthesis

 So far looked at electrons, but what about the protons?

 $NADH + H^+ \rightarrow NAD^+ + 2H^+ + 2e^-$

- · As redox processes occur, free energy used to force protons into the intermembrane space.
- · This creates a concentration cell across the membrane.
- Outside mitochondrion Outer membrane
- . When [H+] $_{intermembrane}/[H+]_{matrix}\sim 2.5\,$ a trigger allows protons to flow back across membrane and this spontaneous process drives the non-spontaneous formation of ATP.

Chemical Kinetics

 The rate of a reaction is the speed with which the concentrations of the molecules present change. The rate is given by the gradient of a concentration vs time graph.

L	
-	1

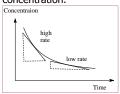
Decomposition of H₂O₂

 $2H_2O_2$ (aq) $\rightarrow 2H_2O + O_2$ (g)

■ Start 1.000 M H_2O_2 After 10 s $[H_2O_2]$ = 0.983 M ■ $\Delta[H_2O_2]$ = -0.017 M Time interval Δt = 10.0 s

Rate of reaction = Rate of change of [H₂O₂] = Δ [H₂O₂]/ Δ t = - 0.017/10.0 = -1.7 x 10⁻³ M s⁻¹

To avoid negative rates....


Rate is defined as $-\Delta$ [reactant]/ Δ t

16

Decomposition of H₂O₂

- \blacksquare The rate of removal of $\rm H_2O_2$ is $~2\rm H_2O_2$ (aq) $\rightarrow 2\rm H_2O$ (l) + O_2 (g) not constant.
- The lower the concentration of H₂O₂ the slower the rate.
- The rate is dependent on concentration.

Time s	∆ts	[H ₂ O ₂] M	Δ[H ₂ O ₂] Μ	Reaction rate x 10-4 M s-1
0		2.32		
	400		-0.60	15.0
400		1.72		
	400		-0.42	10.5
800		1.30		
	400		-0.32	8.0
1200		0.98		
	400		-0.25	6.3
1600		0.73		
	400		-0.19	4.8
2000		0.54		
	400		-0.15	3.8
2400		0.39		
	400		-0.11	2.8
2800		0.28		
	400			

1

The rate of reaction

The rate of reaction depends on (among other factors) ...

- Concentration of some or all of the molecules present
- Temperature
- The presence of a catalyst
- The 'rate equation' can only be determined by experiment, not from the stoichiometric equation

18

The Rate Equation

This relates the rate of reaction to the concentration terms which affect it.

For the general reaction: A + B \rightarrow M + N

$$-d[A]/dt = k[A]^x[B]^y$$

- Rate constant, *k*, is a characteristic of the reaction and depends on temperature
- 'Order' of the reaction is given by x + y.
- x is the order with respect to A, y is the order with respect to B etc.

19

Example

$$H_2(g) + 2 ICl(g) \rightarrow 2 HCl(g) + I_2(s)$$

Rate =
$$-d[H_2] / dt = k[H_2][ICI]$$
 (by experiment)

 This reaction is first order with respect to H₂, first order with respect to ICl and second order overall.

Ouestion:

For the reaction: $2NO_2(g) + F_2(g) \rightarrow 2NO_2F(g)$ Rate = $k[NO_2][F_2]$

What is the order of reaction with respect to NO₂, F₂ and the overall order of reaction?

20

Determine the Rate Equation

$$O_2(g) + 2NO(g) \rightarrow 2NO_2(g)$$

	$[O_2] / M$	[NO] / M	Initial Rate / M s ⁻¹
1	1.10 x 10 ⁻²	1.30 x 10 ⁻²	3.21 x 10 ⁻³
2	2.20 x 10 ⁻²	1.30 x 10 ⁻²	6.40 x 10 ⁻³
3	1.10 x 10 ⁻²	2.60 x 10 ⁻²	12.8 x 10 ⁻³
4	3 30 v 10-2	1 30 v 10-2	0.60 v 10-3

Rate =
$$k[O_2]^x[NO]^y$$

keep one conc constant, alter other conc and see what happens to rate.

```
Determine the Rate Equation
                    O_2(g) + 2NO(g) \rightarrow 2NO_2(g)
          [O_2]/M
                              [NO] / M
                                                           Initial Rate / M s-1
          1.10 x 10<sup>-2</sup> 1.30 x 10<sup>-2</sup>
                                                            3.21 x 10<sup>-3</sup>
         2.20 x 10<sup>-2</sup> 1.30 x 10<sup>-2</sup>
1.10 x 10<sup>-2</sup> 2.60 x 10<sup>-2</sup>
3.30 x 10<sup>-2</sup> 1.30 x 10<sup>-2</sup>
2
                                                             6.40 x 10<sup>-3</sup>
3
                                                            12.8 x 10<sup>-3</sup>
                                                             9.60 x 10<sup>-3</sup>
          Rate = k[O_2]^x[NO]^y
            1
          double double therefore x = 1 (2 = (2)<sup>1</sup>)
                                                                                           22
```

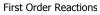
```
Determine the Rate Equation
                  O_2(g) + 2NO(g) \rightarrow 2NO_2(g)
        [O_2]/M
                          [NO] / M
                                                   Initial Rate / M s<sup>-1</sup>
        1.10 x 10<sup>-2</sup>
                         1.30 x 10<sup>-2</sup>
                                                    3.21 x 10<sup>-3</sup>
1
        2.20 x 10<sup>-2</sup> 1.30 x 10<sup>-2</sup>
                                                     6.40 x 10<sup>-3</sup>
2
        1.10 x 10<sup>-2</sup> 2.60 x 10<sup>-2</sup>
                                                    12.8 x 10<sup>-3</sup>
                                                    9.60 x 10<sup>-3</sup>
        3.30 x 10<sup>-2</sup> 1.30 x 10<sup>-2</sup>
        Rate = k[O_2]^1[NO]^y
                              1
        four times
                             double therefore y = 2 (4 = (2)^2)
                                                                               23
```

```
Determine the Rate Equation
                  O_2(g) + 2NO(g) \rightarrow 2NO_2(g)
                                                      Initial Rate / M s<sup>-1</sup>
         [O_2] / M
                            [NO] / M
         1.10 x 10<sup>-2</sup> 1.30 x 10<sup>-2</sup>
                                                       3.21 x 10<sup>-3</sup>
1
2
         2.20 x 10<sup>-2</sup> 1.30 x 10<sup>-2</sup>
                                                        6.40 x 10<sup>-3</sup>
3
         1.10 x 10<sup>-2</sup> 2.60 x 10<sup>-2</sup>
                                                        12.8 x 10<sup>-3</sup>
         3.30 x 10<sup>-2</sup> 1.30 x 10<sup>-2</sup>
                                                        9.60 x 10<sup>-3</sup>
         Rate = k[O_2]^1[NO]^2 substitute values to get k
         3.21 \times 10^{-3} = k (1.10 \times 10^{-2})(1.30 \times 10^{-2})^2
         Rate constant, k = 1.73 \times 10^3 \text{ s}^{-1}\text{M}^{-2}
```


Question:

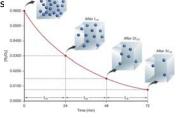
Determine the rate equation and value of the rate constant for the reaction:

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$


	$[NO_2] / M$	[CO] / M	Initial Rate / M s-1
1	0.10	0.10	0.0050
2	0.40	0.10	0.080
3	0.10	0.20	0.0050

25

Half Life, t_{1/2}


The half life of a reaction is the time required for the concentration to fall to half its initial value. For first order reactions this is a constant.

$$t_{1/2} = \text{Ln 2} / k$$

and

 $Ln[A]=Ln[A]_o-kt$

Example

An antibiotic breaks down in the body with a first order rate constant of $k=1.9 \times 10^{-2} \, \mathrm{min^{-1}}$. How long does it take for the concentration to drop to 10% of the initial value?

rearrange $Ln[A]=Ln[A]_{o}-kt$ to give $Ln([A]/[A]_{o})=-kt$

We do not know the actual concentrations but can use the ratio of concentrations:

Ln $(10/100) = -(1.9 \times 10^{-2}) t$

Ln $0.1 = -2.303 = -(1.9 \times 10^{-2}) t$

and $t = 2.303 / 1.9 \times 10^{-2} = 120 \text{ min}$

Question

The radioactive isotope ¹⁵O is used in medical imaging and has a half life of 122.2 seconds. What percentage is left up after 10 minutes?

Use $k = \text{Ln2/t}_{\text{V}_2}$ and $\text{Ln[A]=Ln[A]}_{\text{o}}$ -kt

Note: $Ln\{ [A]/[A]_o \} = -kt$ and $[A]/[A]_o$ is amount left.

28

Reaction Mechanisms

A balanced chemical equation describes the overall chemical reaction

e.g.
$$2 \text{ NO}_2 (g) + F_2 (g) \rightarrow 2 \text{ NO}_2 F (g)$$

A reaction mechanism is a series of 'elementary' reaction steps that add up to give a detailed description of a chemical reaction.

e.g.
$$NO_2$$
 + F_2 \rightarrow NO_2F + F Step 1 O_2 + O_2 + O_2 Step 2 O_2 + O_2 + O_2 P Overall

2

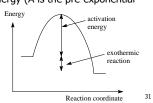
Reaction Mechanisms

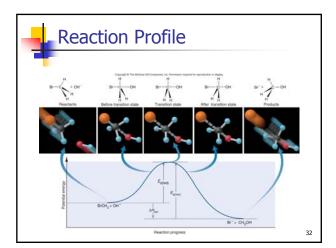
A rate determining step in a reaction mechanism is an elementary process that is the slowest step in the mechanism

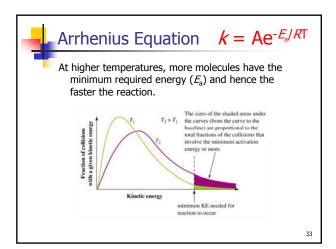
e.g. Step 1
$$NO_2$$
 + $F_2 \rightarrow NO_2 F$ + F (slow)

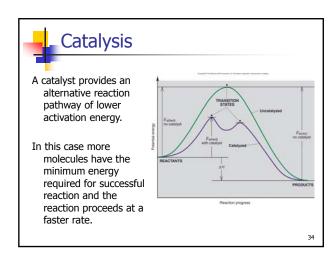
 In simple reactions, the exponents in the rate equation are the same as the coefficients of the molecules of the rate determining elementary process. So in this case,

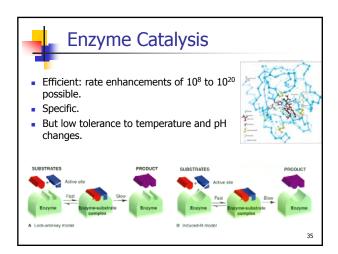
Rate =
$$k[NO_2][F_2]$$


• Note the overall reaction is: $2NO_2(g) + F_2(g) \rightarrow 2NO_2F(g)$


P


Arrhenius Equation $k = Ae^{-E_a/RT}$


- The activation energy, E_a, of a reaction is the minimum amount of energy that the reacting molecules must possess if the reaction is to be successful.
- The Arrhenius equation describes the temperature dependence of the rate constant that is exponentially related to the activation energy (A is the pre-exponential factor, or the "A factor").


 Energy

