Skip to main content
Unit of study_

BCMB3902: Protein Function and Engineering (Advanced)

2024 unit information

Proteins are the major doing molecules in biology. Their molecular make-up gives them a much more diverse set of properties than any other biological or synthetic polymer, leading to a vast array of different structures and functions. In this unit of study, you will learn about the structure, dynamics and interactions of proteins, and how those properties influence their myriad roles in nature. You will discover how these complex molecules are thought to have evolved, how they are made and dismantled, how they fold, and drive key processes inside and outside cells. You will also explore how the properties of proteins can be modulated by other molecules, or engineered to develop proteins with new functions or properties for use in biotechnology, medicine, bioremediation and industry. Our practicals, other guided and online learning sessions will introduce you to a wide range of currently utilised techniques for protein biochemistry ranging from protein visualization, quantification, purification and enzymatic activity, to in silico and virtual reality studies. By the end of this unit you will be equipped with senior level skills and knowledge to support your studies and careers in the cellular and molecular biosciences. Protein Function and Engineering (Advanced) has the same overall structure as BCMB3002, but students enrolled in BCMB3902 participate in a partially varied practical and tutorial program that focuses on developing skills in research, critical thinking, data analysis and communication.

Unit details and rules

Managing faculty or University school:

Life and Environmental Sciences Academic Operations

Code BCMB3902
Academic unit Life and Environmental Sciences Academic Operations
Credit points 6
Prerequisites:
? 
An average mark of 75 or above in [6 credit points from (BCMB2X02 or BCHM2X71) and 6 credit points from (BCHM2X71 or BCHM2X72 or BCMB2X01 or BCHM3XXX or BCMB3XXX or BIOL2X29 or BMED2401 or BMED2405 or GEGE2X01 or MBLG2X01 or MEDS2002 or MEDS2003 or PCOL2X21 or QBIO2001)]
Corequisites:
? 
None
Prohibitions:
? 
BCHM3X81 or BCMB3002
Assumed knowledge:
? 
Intermediate Biochemistry (2000 level)

At the completion of this unit, you should be able to:

  • LO1. outline the basic principles and describe in detail the constituent elements of protein structure; attribute these properties to protein and cell function.
  • LO2. describe the physical principles and chemical properties that drive protein structure, function, folding and biomolecular interactions
  • LO3. understand and predict how changes in protein sequence can affect structure and function and contribute to disease.
  • LO4. compare the various ways in which proteins can be designed or engineered; assess which properties of proteins and protein machines can be adapted to achieve a range of different activities or specificities
  • LO5. describe how the processes of protein synthesis, folding and degradation contribute to homeostasis in the cell; evaluate how disruptions to these processes are regulated.
  • LO6. examine the mechanisms through which enzymes can be regulated through naturally occurring and synthetic modulators.
  • LO7. explain, with examples, the difference between qualitative and quantitative measurements; determine which of the different techniques should be used; implement methods to visualize and characterise the properties of proteins in an accurate and reproducible manner.
  • LO8. collect experimental data and adapt, develop and trouble-shoot experimental procedures for novel contexts.
  • LO9. assess the quality of data, critically interpret and draw conclusions from data obtained in the laboratory.
  • LO10. summarise and identify the key points from biochemical data from a range of published sources; synthesise, analyse and communicate the findings. Judge its reliability and significance in the context of experimental data.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 1 2024
Normal day Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 1 2020
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Remote
Semester 1 2022
Normal day Camperdown/Darlington, Sydney
Semester 1 2022
Normal day Remote
Semester 1 2023
Normal day Camperdown/Darlington, Sydney

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.