Skip to main content
Unit of study_

CHEM3912: Materials Chemistry (Adv)

This course concerns the inorganic chemistry of solid-state materials: compounds that possess 'infinite' bonding networks. The extended structure of solid materials gives rise to a wide range of important chemical, mechanical, electrical, magnetic and optical properties. Consequently, such materials are of enormous technological significance as well as fundamental curiosity. In this course you will learn how chemistry can be used to design and synthesize novel materials with desirable properties. The course will start with familiar molecules such as C60 and examine their solid states to understand how the nature of chemical bonding changes in the solid state, leading to new properties such as electronic conduction. This will be the basis for a broader examination of how chemistry is related to structure, and how structure is related to properties such as catalytic activity, mechanical strength, magnetism, and superconductivity. The symmetry of solids will be used explain how their structures are classified, how they can transform between related structures when external conditions such as temperature, pressure and electric field are changed, and how this can be exploited in technological applications such as sensors and switches. Key techniques used to characterise solid-state materials will be covered, particularly X-ray diffraction, microscopy, and physical property measurements. CHEM3912 students attend the same lectures as CHEM3112 students, but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.

Code CHEM3912
Academic unit Chemistry Academic Operations
Credit points 6
Prerequisites:
? 
[(65 or greater in (CHEM2401 or CHEM2911 or CHEM2915)) AND (65 or greater in (CHEM2402 or CHEM2912 or CHEM2916))] OR (65 or greater in (CHEM2521 or CHEM2921 or CHEM2991))
Corequisites:
? 
None
Prohibitions:
? 
CHEM3112

At the completion of this unit, you should be able to:

  • LO1. demonstrate an understanding of the nature of a chemical bond in a solid state and how its structure is related to material properties including catalytic activity, mechanical strength, magnetism, and superconductivity
  • LO2. classify the structure of solid state materials with the help of symmetry and various spectroscopic techniques and apply the knowledge to examine how these structures can be transformed to technological applications.
  • LO3. perform safe laboratory manipulations and to handle glassware
  • LO4. find and analyse information and judge its reliability and significance
  • LO5. communicate scientific information appropriately both orally and through written work
  • LO6. engage in team and group work for scientific investigations and for the process of learning
  • LO7. demonstrate a sense of responsibility and independence as a learner and as a scientist
  • LO8. demonstrate basic skills in computing, numeracy and data handling.

Unit outlines

Unit outlines will be available 1 week before the first day of teaching for the relevant session.

There are no unit outlines available online for the current year.