Skip to main content
Unit of study_

CHEM3913: Catalysis and Sustainable Process (Adv)

2020 unit information

At present rates of consumption, the resources of 5 planets would be needed for everyone on earth to enjoy our standard of living. Since so much of our consumption and waste involves chemical processes in some way, more efficient chemical processes are needed in a sustainable tomorrow. Catalysis is and will increasingly be at the heart of these sustainable processes. This unit examines the fundamentals of catalysis and its use to design sustainable processes. The course will initially focus on the organometallic fundamentals in order to show how they can be used to understand and design homogeneous catalytic processes from a molecular perspective, which, in turn, leads on to biocatalytic conversions where the enzyme is treated like a large ligand with a special surface, pointing towards the surface chemistry involved in supported catalysts - the next topic. Within this general discussion, the special case of the three-dimensional surface found in zeotypes will be developed and the acid/base and redox catalysis (the mainstay of the majority of industrial processes) in such confined spaces of molecular dimensions will be examined. The course will continue with examining the production of polymers as an example of a major industrial process. An introduction on polymer chemistry and polymer properties will be given, followed by the examination of the various synthetic routes and processes that yield to the production of polymers. The recent advances in polymer synthesis and the design of new materials of improved properties and function will be reviewed. The last part of this section will explore the various approaches designed to improve the sustainability of polymer synthesis, in particular for the specific case of free radical polymerization, with an emphasis on the design of novel catalysts. The course will conclude by examining a variety of case studies. All the preceding topics find their way into the discussion of the key role of catalysts in the design of sustainable chemical processes, rationalizing the choices behind catalyst design. CHEM3913 students attend the same lectures as CHEM3113 students, but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.

Unit details and rules

Managing faculty or University school:

Chemistry Academic Operations

Code CHEM3913
Academic unit Chemistry Academic Operations
Credit points 6
Prerequisites:
? 
[(65 or greater in (CHEM2401 or CHEM2911 or CHEM2915)) AND (65 or greater in (CHEM2402 or CHEM2912 or CHEM2916))] OR (65 or greater in (CHEM2521 or CHEM2921 or CHEM2991))
Corequisites:
? 
None
Prohibitions:
? 
CHEM3113
Assumed knowledge:
? 
None

At the completion of this unit, you should be able to:

  • LO1. demonstrate an understanding of the fundamental concepts behind organometallic chemistry and its application in catalytic processes behind C-C bond formation
  • LO2. demonstrate an understanding of polymer synthesis including step growth, chain growth, free radical, metal catalysed, ring opening, controlled radical processes and examine various approaches and case studies to improve its sustainability
  • LO3. perform safe laboratory manipulations and to handle glassware
  • LO4. find and analyse information and judge its reliability and significance
  • LO5. communicate scientific information appropriately both orally and through written work
  • LO6. engage in team and group work for scientific investigations and for the process of learning
  • LO7. demonstrate a sense of responsibility and independence as a learner and as a scientist
  • LO8. demonstrate basic skills in computing, numeracy and data handling.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

There are no availabilities for this year.
Session MoA ?  Location Outline ? 
Semester 1 2020
Normal day Camperdown/Darlington, Sydney

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.