Skip to main content
Unit of study_

DESC9115: Digital Audio Systems

2024 unit information

The objective of this unit is to provide both a strong theoretical understanding of digital audio and practical experience in applying these principles to digital audio systems. This unit offers a systematic approach to understanding digital audio systems. Beginning with basic principles the unit provides a knowledge base for understanding advanced digital audio components, systems and techniques. Examples of everyday audio signals are used and characterised in terms of their temporal and spectral properties. Practical application is emphasised and is supported through laboratory exercises that include programming as well as the use of current hardware and software packages. Topics include: principles of digital signals and systems, sampling and quantisation, convolution, discrete Fourier transform (DFT), z-transform, transfer functions and impulse responses, finite and infinite impulse responses filtering, audio system design, time-variant systems, audio data compression and real-time audio DSP. Having successfully completed this unit the student will have the tools to understand what happens to a digital audio signal when a given process is applied to it; how to best apply this process and how to successfully combine digital audio components.

Unit details and rules

Managing faculty or University school:

Architectural and Design Science

Code DESC9115
Academic unit Architectural and Design Science
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
None
Assumed knowledge:
? 
None

At the completion of this unit, you should be able to:

  • LO1. use the terminology associated with the digital sampling, processing, and reconstruction of analog audio signals. Demonstrate a basic knowledge of Sampling Theory, including audio signal sampling-rate conversion, and be able to argue for the suitability of particular solutions for storage and distribution of audio signals. Demonstrate knowledge of human auditory perception in the contexts of audio system design and Digital Signal Processing (DSP)
  • LO2. understand and be able to apply the Discrete Fourier Transform to time domain signals to determine their frequency composition. Demonstrate knowledge of Convolution and be able to correctly derive Transfer Functions and Impulse Responses from the analysis of audio systems
  • LO3. understand audio system design, and particularly two types of digital filters: the Finite-Impulse-Response (FIR) filter and the Infinite-Impulse-Response (IIR) filter
  • LO4. understand the analysis and design of Linear Time-invariant Systems related to the simulation of sound propagation through space
  • LO5. understand modern forms of audio data compression and demonstrate knowledge of advanced audio coding algorithms for storage and distribution of audio content
  • LO6. show familiarity with new areas of work involving digital audio systems, particularly in advanced applications development.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 1 2024
Normal evening Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 1 2020
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Remote
Semester 1 2022
Normal evening Camperdown/Darlington, Sydney
Semester 1 2022
Normal evening Remote
Semester 1 2023
Normal evening Camperdown/Darlington, Sydney
Semester 1 2023
Normal evening Remote

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.