Skip to main content

During 2021 we will continue to support students who need to study remotely due to the ongoing impacts of COVID-19 and travel restrictions. Make sure you check the location code when selecting a unit outline or choosing your units of study in Sydney Student. Find out more about what these codes mean. Both remote and on-campus locations have the same learning activities and assessments, however teaching staff may vary. More information about face-to-face teaching and assessment arrangements for each unit will be provided on Canvas.

Unit of study_

AERO3261: Propulsion

This unit of study teaches the students the techniques used to propel aircraft. The students will learn to analyse various propulsion systems in use- propellers, gas turbines, etc. The topics covered include: Propulsion unit requirements for subsonic and supersonic flight; thrust components, efficiencies, additive drag of intakes; piston engine components and operation; propeller theory; operation, components and cycle analysis of gas turbine engines; turbojets; turbofans; turboprops; ramjets. Components: compressor, fan, burner, turbine, nozzle. Efficiency of components: Off-design considerations. Future directions: minimisation of noise and pollution; scram-jets; hybrid engines.

Code AERO3261
Academic unit Aerospace, Mechanical and Mechatronic
Credit points 6
Prerequisites:
? 
AMME2200 or (AMME2261 and AMME2262)
Corequisites:
? 
None
Prohibitions:
? 
None
Assumed knowledge:
? 
Good knowledge of fluid dynamics and thermodynamics

At the completion of this unit, you should be able to:

  • LO1. write an engineering report on an experimental test
  • LO2. discuss and present engine performance and design data in a written report
  • LO3. explain engine performance and different engine types in an oral exam
  • LO4. design and select a gas turbine engine type for a given application
  • LO5. select appropriate engine cycles and propellers for a given aircraft and flight conditions
  • LO6. carry out a cycle analysis of a gas turbine engine, including ramjet and turbo-fan engines
  • LO7. understand the working of various components of gas turbines and how their interaction results in the overall engine performance
  • LO8. identify relevant data to estimate performance of existing aircraft engines
  • LO9. solve systems of non-linear equations governing propeller performance
  • LO10. solve thermodynamic cycle calculations for both design point and off-design calculations.