Skip to main content

We are aiming for an incremental return to campus in accordance with guidelines provided by NSW Health and the Australian Government. Until this time, learning activities and assessments will be planned and scheduled for online delivery where possible, and unit-specific details about face-to-face teaching will be provided on Canvas as the opportunities for face-to-face learning become clear.

Unit of study_

AMME8501: System Dynamics and Control

This unit of study aims to allow students to develop an understanding of methods for modeling and controlling linear, time-invariant systems. Techniques examined will include the use of differential equations and frequency domain approaches to modeling of systems. This will allow students to examine the response of a system to changing inputs and to examine the influence of external stimuli such as disturbances on system behaviour. Students will also gain an understanding of how the responses of these mechanical systems can be altered to meet desired specifications and why this is important in many engineering problem domains. The study of control systems engineering is of fundamental importance to most engineering disciplines, including Electrical, Mechanical, Mechatronic and Aerospace Engineering. Control systems are found in a broad range of applications within these disciplines, from aircraft and spacecraft to robots, automobiles, computers and process control systems. The concepts taught in this course introduce students to the mathematical foundations behind the modelling and control of linear, time-invariant dynamic systems. In particular, topics addressed in this course will include: Techniques for modelling mechanical systems and understanding their response to control inputs and disturbances (this will include the use of differential equations and frequency domain methods as well as tools such as Root Locus and Bode plots); Representation of systems in a feedback control system as well as techniques for determining what desired system performance specifications are achievable, practical and important when the system is under control; Theoretical and practical techniques that help engineers in designing control systems, and an examination of which technique is best in solving a given problem.

Details

Academic unit Aerospace, Mechanical and Mechatronic
Unit code AMME8501
Unit name System Dynamics and Control
Session, year
? 
Semester 1, 2020
Attendance mode Normal day
Location Camperdown/Darlington, Sydney
Credit points 6

Enrolment rules

Prohibitions
? 
AMME9501
Prerequisites
? 
None
Corequisites
? 
None
Assumed knowledge
? 

AMME5500 or AMME9500. Students are assumed to have a good background knowledge in ordinary differential equations, Laplace transform methods, linear algebra and mathematical modeling of mechanical systems.

Available to study abroad and exchange students

No

Teaching staff and contact details

Coordinator Guodong SHI, guodong.shi@sydney.edu.au
Lecturer(s) Guodong SHI , guodong.shi@sydney.edu.au
Type Description Weight Due Length
Assignment group assignment Laboratory report
20% - n/a
Outcomes assessed: LO1 LO5 LO4 LO3 LO2
Final exam hurdle task Final Canvas Quiz
Canvas-based exam.
25% Formal exam period 2 hours
Outcomes assessed: LO1 LO2 LO3 LO4
Small continuous assessment Weekly problem sets
10% Multiple weeks n/a
Outcomes assessed: LO1 LO2 LO3 LO4
Assignment Design project 1
20% Week 07 n/a
Outcomes assessed: LO1 LO2 LO5
Assignment Design project 2
25% Week 12 n/a
Outcomes assessed: LO2 LO3 LO4 LO5
hurdle task = hurdle task ?
group assignment = group assignment ?
  • Weekly problem sets: The idea is that the weekly problem sets test straightforward application of mathematical techniques to example problems. Similar problems will be given as worked examples in the tutorials. Your score will be calculated from the best 10 out of 12 results.
  • Design projects: The design projects test these skills and additionally a broader range of abilities, including critical reasoning about mathematical modelling, experiment design, data visualisation, drawing conclusions from mathematics and empirical results, and written communication skills.
  • Laboratory report: The laboratory component allows hands-on experimentation with a real control system, and presents a series of increasingly challenging design problems. The laboratory is done in pairs, and a pdf report submitted at the end of semester.
  • Final exam: Students must pass the final exam in order to pass the subject.

Detailed information for each assessment can be found on Canvas.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range

Description

High distinction

85 - 100

 

Distinction

75 - 84

 

Credit

65 - 74

 

Pass

50 - 64

 

Fail

0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see sydney.edu.au/students/guide-to-grades.

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

This unit has an exception to the standard University policy or supplementary information has been provided by the unit coordinator. This information is displayed below:

The Assessment Procedures 2011 provide that any written work submitted after 11:59pm on the due date will be penalised by 5% of the maximum awardable mark for each calendar day after the due date. If the assessment is submitted more than ten calendar days late, a mark of zero will be awarded.

Special consideration

If you experience short-term circumstances beyond your control, such as illness, injury or misadventure or if you have essential commitments which impact your preparation or performance in an assessment, you may be eligible for special consideration or special arrangements.

Academic integrity

The Current Student website provides information on academic honesty, academic dishonesty, and the resources available to all students.

The University expects students and staff to act ethically and honestly and will treat all allegations of academic dishonesty or plagiarism seriously.

We use similarity detection software to detect potential instances of plagiarism or other forms of academic dishonesty. If such matches indicate evidence of plagiarism or other forms of dishonesty, your teacher is required to report your work for further investigation.

WK Topic Learning activity Learning outcomes
Week 01 Introduction to dynamics and feedback Lecture and tutorial (5 hr)  
Week 02 First-order dynamical systems Lecture and tutorial (5 hr)  
Week 03 First-order control systems Lecture and tutorial (5 hr)  
Week 04 Second and higher-order systems Lecture and tutorial (5 hr)  
Week 05 Second-order control systems Lecture and tutorial (5 hr)  
Week 06 Linear systems: general theory Lecture and tutorial (5 hr)  
Week 07 State-feedback control design Lecture and tutorial (5 hr)  
Week 08 State estimators and output feedback Lecture and tutorial (5 hr)  
Week 09 Transfer functions and frequency response Lecture and tutorial (5 hr)  
Week 10 Analysis via frequency response Lecture and tutorial (5 hr)  
Week 11 PID control Lecture and tutorial (5 hr)  
Week 12 Frequency-domain control design Lecture and tutorial (5 hr)  
Week 13 Perspectives on system analysis and control design Lecture and tutorial (5 hr)  

Attendance and class requirements

Attendance: Attendance and participation will be marked in the lab, and you will get zero for the lab component if you do not get the participation mark for your timetabled laboratory, unless you have a valid special consideration.

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University’s graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. mathematically model mechanical and other systems and determine their response characteristics based on the physical properties of the system and Laplace transform methods
  • LO2. understand how desired specifications of a mechanical system such as stability, overshoot, rise time, the time constant of a system, natural frequency and damping ratio can be represented mathematically and how they depend on system parameters
  • LO3. demonstrate an ability to design controllers and meet specifications using tools such as Root Locus, Bode Plots, and State Space; understand the relative strengths and weaknesses of each technique
  • LO4. understand the role of feedback in providing robustness to modelling uncertainty and external disturbances
  • LO5. analyse and design control loops using Matlab and Simulink software tools.

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9
(1) Short videos before/after the lectures on technical preliminaries/extensions. (2) More hands-on examples for Matlab. (3) Design Project 01 will be redesigned; Design Project 02 will have more technical support for system modeling.

Disclaimer

The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.