Skip to main content
Unit of study_

CHNG4203: Major Industrial Project

This unit of study will give students a rich experience in carrying out a major project within an industrial environment, and in preparing and presenting detailed technical reports (both oral and written) on their work. The project is carried out under joint University/industry supervision and extends over several months, with the student essentially being engaged full-time on the project at the industrial site. Previous students have been placed with industries in areas including the mining industry, oil and gas processing, plastic and paint manufacture, food production, manufacturing and so on. Students will learn from this experience the following essential engineering skills: how to examine published and experimental data, set objectives, organise a program of work, and analyse results and evaluate these in relation to existing knowledge. Presentation skills will also be developed, which are highly relevant to many branches of engineering activity.

Details

Academic unit Chemical and Biomolecular Engineering
Unit code CHNG4203
Unit name Major Industrial Project
Session, year
? 
Semester 1, 2023
Attendance mode Supervision
Location Camperdown/Darlington, Sydney
Credit points 24

Enrolment rules

Prohibitions
? 
CHNG4811 OR CHNG4812 OR ENGG4000 OR CHNG4802
Prerequisites
? 
144 CP prior study with >65% WAM
Corequisites
? 
None
Assumed knowledge
? 

Passed at least 144 credit points. Students wishing to do this unit of study are required to discuss the matter with the Head of School prior to enrolment

Available to study abroad and exchange students

No

Teaching staff and contact details

Coordinator Timothy Langrish, timothy.langrish@sydney.edu.au
Administrative staff Please contact administrative staff in the General Office for administrative inquiries and support, specifically Agnes Constanti for 2023.
Type Description Weight Due Length
Presentation Poster presentation
Prespare & present poster on research project to staff, students, industry
8% Progressive
Due date: 22 Sep 2023 at 09:00
2-3 hours
Outcomes assessed: LO1 LO10 LO9 LO8 LO7 LO6 LO5 LO4 LO3 LO2
Presentation Presentation 2, Final, results and discussion
Oral presentation of entire project, particularly results and discussion
4% Progressive
Due date: 09 Jun 2023 at 09:00
15 minutes
Outcomes assessed: LO1 LO10 LO9 LO8 LO7 LO6 LO5 LO4 LO3 LO2
Presentation Presentation 1, Initial, literature review and research plan
Oral presentation, with slides, of literature review and research plan
4% Progressive
Due date: 10 Mar 2023 at 09:00
10 minutes
Outcomes assessed: LO1 LO10 LO9 LO8 LO7 LO6 LO5 LO4 LO3 LO2
Honours thesis Case Studies
Reports on Project Management and Professional Engineering, Risk Management
16% Progressive
Due date: 31 Jul 2023 at 17:00
up to 30 pages
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9 LO10
Honours thesis Thesis
Written report on research project in industry
68% Progressive
Due date: 31 Jul 2023 at 17:00
60-100 pages
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9 LO10

Project: Assessment total 24 credit points apportioned

  1. Thesis (16 cps)
  2. Case Studies (4 cps)
  3. Presentations (2 off) (2 cps)
  4. Poster (2 cps)

Detailed information for each assessment can be found on Canvas.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range

Description

High distinction

85 - 100

Exceptional standard of work, makes significant contribution to applied knowledge. Outstanding work of a publishable quality. 

Distinction

75 - 84

Distinctively excellent work at an advanced level. Excellent work, could be published with significant editing,

Credit

65 - 74

Solid work, addresses major issues, has achieved a significant part of the outcomes.

Pass

50 - 64

Satisfactory work with some gaps. Acceptable work with some mistakes.

Fail

0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see sydney.edu.au/students/guide-to-grades.

For more information see guide to grades.

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

This unit has an exception to the standard University policy or supplementary information has been provided by the unit coordinator. This information is displayed below:

10% per day for late thesis and case studies

Special consideration

If you experience short-term circumstances beyond your control, such as illness, injury or misadventure or if you have essential commitments which impact your preparation or performance in an assessment, you may be eligible for special consideration or special arrangements.

Academic integrity

The Current Student website provides information on academic integrity and the resources available to all students. The University expects students and staff to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.

We use similarity detection software to detect potential instances of plagiarism or other forms of academic integrity breach. If such matches indicate evidence of plagiarism or other forms of academic integrity breaches, your teacher is required to report your work for further investigation.

You may only use artificial intelligence and writing assistance tools in assessment tasks if you are permitted to by your unit coordinator, and if you do use them, you must also acknowledge this in your work, either in a footnote or an acknowledgement section.

Studiosity is permitted for postgraduate units unless otherwise indicated by the unit coordinator. The use of this service must be acknowledged in your submission.

WK Topic Learning activity Learning outcomes
Formal exam period Second presentation, emphasis on results and discussion Presentation (0.25 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9 LO10
Multiple weeks Fortnightly review of progress with supervisors One-to-one tuition (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9 LO10
Progressive Hand in written reports on research project and case studies Project (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9 LO10
Poster presentation Presentation (3 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9 LO10
Week 03 First presentation, literature review and research plan Presentation (0.15 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9 LO10
Weekly Conduct research project and do case studies in project management, risk management and design Independent study (40 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9 LO10

Attendance and class requirements

40 hours per week with the company at the company location, normally, and two oral presentations and one poster presentation in Sydney

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 24 credit point unit, this equates to roughly 480-600 hours of student effort in total.

Required readings

Literature review and project reports from the University of Sydney Library and from companies, as appropriate for each placement.

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University’s graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. formulate, plan and deliver an individual technical project addressing a real problem in an industry setting
  • LO2. document and report upon project work undertaken at professional engineering standard in spoken and written form
  • LO3. make effective use of computer-based tools of project planning
  • LO4. analyse chemical engineering technical issues critically, constructively and in depth, with reference to the literature and their own work
  • LO5. analyse and interpret technical results with due consideration of methods and assumptions involved
  • LO6. analyse and discuss organisational structure and its potential impact on project delivery
  • LO7. analyse and interpret quality control methods and expectations affecting the project and its operational context
  • LO8. assess risk factors affecting the project and its operational context
  • LO9. devise an appropriate methodology to attack the given technical task
  • LO10. model an industrial process design in a real operational setting, with due consideration of the modelling method used and its limitations

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9

Alignment with Competency standards

Outcomes Competency standards
LO1
Engineers Australia Curriculum Performance Indicators - EAPI
4.1. Advanced level skills in the structured solution of complex and often ill defined problems.
4.2. Ability to use a systems approach to complex problems, and to design and operational performance.
4.4. Skills in implementing and managing engineering projects within the bounds of time, budget, performance and quality assurance requirements.
4.5. An ability to undertake problem solving, design and project work within a broad contextual framework accommodating social, cultural, ethical, legal, political, economic and environmental responsibilities as well as within the principles of sustainable development and health and safety imperatives.
4.6. Skills in operating within a business environment, organisational and enterprise management and in the fundamental principles of business.
LO2
Engineers Australia Curriculum Performance Indicators - EAPI
3. PERSONAL AND PROFESSIONAL SKILLS DEVELOPMENT
3.1. An ability to communicate with the engineering team and the community at large.
3.2. Information literacy and the ability to manage information and documentation.
3.3. Creativity and innovation.
3.4. An understanding of and commitment to ethical and professional responsibilities.
3.6. An ability to function as an individual and as a team leader and member in multi-disciplinary and multi-cultural teams.
3.7. A capacity for lifelong learning and professional development and appropriate professional attitudes.
LO3
Engineers Australia Curriculum Performance Indicators - EAPI
3.3. Creativity and innovation.
3.7. A capacity for lifelong learning and professional development and appropriate professional attitudes.
4.4. Skills in implementing and managing engineering projects within the bounds of time, budget, performance and quality assurance requirements.
5.6. Skills in the design and conduct of experiments and measurements.
LO4
Engineers Australia Curriculum Performance Indicators - EAPI
1.2. Tackling technically challenging problems from first principles.
2.4. Advanced knowledge and capability development in one or more specialist areas through engagement with: (a) specific body of knowledge and emerging developments and (b) problems and situations of significant technical complexity.
3.2. Information literacy and the ability to manage information and documentation.
4.1. Advanced level skills in the structured solution of complex and often ill defined problems.
5.1. An appreciation of the scientific method, the need for rigour and a sound theoretical basis.
5.5. Skills in the development and application of mathematical, physical and conceptual models, understanding of applicability and shortcomings.
LO5
Engineers Australia Curriculum Performance Indicators - EAPI
1.2. Tackling technically challenging problems from first principles.
4.1. Advanced level skills in the structured solution of complex and often ill defined problems.
4.2. Ability to use a systems approach to complex problems, and to design and operational performance.
5.1. An appreciation of the scientific method, the need for rigour and a sound theoretical basis.
5.5. Skills in the development and application of mathematical, physical and conceptual models, understanding of applicability and shortcomings.
LO6
Engineers Australia Curriculum Performance Indicators - EAPI
3.6. An ability to function as an individual and as a team leader and member in multi-disciplinary and multi-cultural teams.
3.7. A capacity for lifelong learning and professional development and appropriate professional attitudes.
4.6. Skills in operating within a business environment, organisational and enterprise management and in the fundamental principles of business.
5.9. Skills in documenting results, analysing credibility of outcomes, critical reflection, developing robust conclusions, reporting outcomes.
LO7
Engineers Australia Curriculum Performance Indicators - EAPI
3.4. An understanding of and commitment to ethical and professional responsibilities.
3.6. An ability to function as an individual and as a team leader and member in multi-disciplinary and multi-cultural teams.
3.7. A capacity for lifelong learning and professional development and appropriate professional attitudes.
5.2. A commitment to safe and sustainable practices.
5.4. Skills in the selection and application of appropriate engineering resources tools and techniques, appreciation of accuracy and limitations;.
5.9. Skills in documenting results, analysing credibility of outcomes, critical reflection, developing robust conclusions, reporting outcomes.
LO8
Engineers Australia Curriculum Performance Indicators - EAPI
3.7. A capacity for lifelong learning and professional development and appropriate professional attitudes.
4.2. Ability to use a systems approach to complex problems, and to design and operational performance.
4.4. Skills in implementing and managing engineering projects within the bounds of time, budget, performance and quality assurance requirements.
5.2. A commitment to safe and sustainable practices.
5.8. Skills in recognising unsuccessful outcomes, sources of error, diagnosis, fault-finding and re-engineering.
LO9
Engineers Australia Curriculum Performance Indicators - EAPI
3.3. Creativity and innovation.
4.2. Ability to use a systems approach to complex problems, and to design and operational performance.
5.6. Skills in the design and conduct of experiments and measurements.
5.9. Skills in documenting results, analysing credibility of outcomes, critical reflection, developing robust conclusions, reporting outcomes.
Engineers Australia Curriculum Performance Indicators - EAPI
2.4. Advanced knowledge and capability development in one or more specialist areas through engagement with: (a) specific body of knowledge and emerging developments and (b) problems and situations of significant technical complexity.
4.5. An ability to undertake problem solving, design and project work within a broad contextual framework accommodating social, cultural, ethical, legal, political, economic and environmental responsibilities as well as within the principles of sustainable development and health and safety imperatives.
4.6. Skills in operating within a business environment, organisational and enterprise management and in the fundamental principles of business.
5.1. An appreciation of the scientific method, the need for rigour and a sound theoretical basis.
5.5. Skills in the development and application of mathematical, physical and conceptual models, understanding of applicability and shortcomings.
5.8. Skills in recognising unsuccessful outcomes, sources of error, diagnosis, fault-finding and re-engineering.
5.9. Skills in documenting results, analysing credibility of outcomes, critical reflection, developing robust conclusions, reporting outcomes.
Engineers Australia Curriculum Performance Indicators -
Competency code Taught, Practiced or Assessed Competency standard
1.1 A Developing underpinning capabilities in mathematics, physical, life and information sciences and engineering sciences, as appropriate to the designated field of practice.
1.2 A Tackling technically challenging problems from first principles.
2.1 A Appropriate range and depth of learning in the technical domains comprising the field of practice informed by national and international benchmarks.
2.2 A Application of enabling skills and knowledge to problem solution in these technical domains.
2.3 A Meaningful engagement with current technical and professional practices and issues in the designated field.
2.4 A Advanced knowledge and capability development in one or more specialist areas through engagement with: (a) specific body of knowledge and emerging developments and (b) problems and situations of significant technical complexity.
3.1 A An ability to communicate with the engineering team and the community at large.
3.3 A Creativity and innovation.
3.6 A An ability to function as an individual and as a team leader and member in multi-disciplinary and multi-cultural teams.
4.1 A Advanced level skills in the structured solution of complex and often ill defined problems.
4.2 A Ability to use a systems approach to complex problems, and to design and operational performance.
4.4 A Skills in implementing and managing engineering projects within the bounds of time, budget, performance and quality assurance requirements.
4.5 A An ability to undertake problem solving, design and project work within a broad contextual framework accommodating social, cultural, ethical, legal, political, economic and environmental responsibilities as well as within the principles of sustainable development and health and safety imperatives.
4.6 A Skills in operating within a business environment, organisational and enterprise management and in the fundamental principles of business.
5.2 A A commitment to safe and sustainable practices.
5.4 A Skills in the selection and application of appropriate engineering resources tools and techniques, appreciation of accuracy and limitations;.
5.6 A Skills in the design and conduct of experiments and measurements.
5.8 A Skills in recognising unsuccessful outcomes, sources of error, diagnosis, fault-finding and re-engineering.
5.9 A Skills in documenting results, analysing credibility of outcomes, critical reflection, developing robust conclusions, reporting outcomes.
Further documentation and reconsideration of student and supervisor rights and responsibilities has been carried out.

Students should contact the General Office for administrative inquiries and the Unit of Study Coordinator for academic inquiries.

Additional costs

Companies will normally pay travel costs for students (return airfare) and will arrange accommodation for students at the students' own cost. Food and other expenses in the placement should be covered by the student.

Site visit guidelines

Must adhere to all WHS requirements (as above).

Work, health and safety

Studens must follow both University WHS and company WHS regulations. Consult the Unit of Study Coordinator if there is any clash.

Disclaimer

The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.