Skip to main content
Unit of study_

CIVL9410: Soil Mechanics

Semester 2, 2022 [Normal day] - Remote

This course provides an elementary introduction to Geotechnical Engineering, and provides the basic mechanics necessary for the detailed study of Geotechnical Engineering. This course aims to provide an understanding of: the nature of soils as engineering materials; common soil classification schemes; the importance of water in the soil and the effects of water movement; methods of predicting soil settlements, the stress-strain-strength response of soils, and earth pressures.

Unit details and rules

Unit code CIVL9410
Academic unit Civil Engineering
Credit points 6
Prohibitions
? 
None
Prerequisites
? 
None
Corequisites
? 
None
Assumed knowledge
? 

An understanding of simple statics, equilibrium, forces and bending moments, and of stress and strain and the relationship between them (CIVL9802 and CIVL9201). Familiarity with the use of spreadsheets (Excel, Mathcad) to obtain solutions to engineering problems, and with the graphical presentation of this data, and familiarity with word processing packages for report presentation. Familiarity with partial differential equations, and their analytical and numerical solution

Available to study abroad and exchange students

No

Teaching staff

Coordinator David Airey, david.airey@sydney.edu.au
Type Description Weight Due Length
Final exam (Take-home short release) Type D final exam hurdle task Final exam
Take home exam
45% Formal exam period 3 hours
Outcomes assessed: LO1 LO4 LO5 LO6 LO7 LO8 LO9
Tutorial quiz Pre-lab quiz
Short quizzes to test familiarity with experiment
2% Multiple weeks n/a
Outcomes assessed: LO1 LO9 LO7 LO5 LO4
Tutorial quiz Quiz
Short 15 minute numerical question at end of tutorial session each week .
10% Multiple weeks n/a
Outcomes assessed: LO1 LO9 LO8 LO7 LO5 LO4
Assignment Lab report
Professional style lab report
13% Multiple weeks n/a
Outcomes assessed: LO2
Assignment group assignment Computing assignment: Part 1
Excel spreadsheet development
15% Week 09 n/a
Outcomes assessed: LO3 LO5
Assignment Computing assignment: Part 2
2 page report describing results of parametric study
15% Week 10
Due date: 16 Oct 2022 at 23:59
n/a
Outcomes assessed: LO3 LO5
hurdle task = hurdle task ?
group assignment = group assignment ?
Type D final exam = Type D final exam ?

Assessment summary

  • Quizzes: In-class exercises are used to assess the student understanding of key concepts each week. Best 10 out of 12 will be taken.
  • Pre-lab Quizzes: Pre-laboratory online material is to be read before the sessions, and each laboratory is preceded by an online quiz.
  • Lab Report: Students submit one lab report on one out of their 5 sessions, one week after the session. Lab reports will address student development in their presentation and analysis skills. Students are expected to present a professional documentation of their experiments and analysis associated with the concepts learned within this unit.
  • Computing Assignments: Computing assignments are designed to reinforce theoretical concepts and develop the students` skills in the use of Excel. Assignment has 2 parts. Part 1 is to develop a spreadsheet to solve a design problem. Part 2 is to write a report describing the outcomes of the design exercise/parametric study.
  • Final Exam: The examination at the end of the semester will measure students’ understanding of the concepts covered during the semester within this unit. A mark of greater than 45% is needed to pass the unit.

Detailed information for each assessment can be found on Canvas.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range

Description

High distinction

85 - 100

 

Distinction

75 - 84

 

Credit

65 - 74

 

Pass

50 - 64

 

Fail

0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see sydney.edu.au/students/guide-to-grades.

For more information see guide to grades.

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

Academic integrity

The Current Student website  provides information on academic integrity and the resources available to all students. The University expects students and staff to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.  

We use similarity detection software to detect potential instances of plagiarism or other forms of academic integrity breach. If such matches indicate evidence of plagiarism or other forms of academic integrity breaches, your teacher is required to report your work for further investigation.

You may only use artificial intelligence and writing assistance tools in assessment tasks if you are permitted to by your unit coordinator, and if you do use them, you must also acknowledge this in your work, either in a footnote or an acknowledgement section.

Studiosity is permitted for postgraduate units unless otherwise indicated by the unit coordinator. The use of this service must be acknowledged in your submission.

Simple extensions

If you encounter a problem submitting your work on time, you may be able to apply for an extension of five calendar days through a simple extension.  The application process will be different depending on the type of assessment and extensions cannot be granted for some assessment types like exams.

Special consideration

If exceptional circumstances mean you can’t complete an assessment, you need consideration for a longer period of time, or if you have essential commitments which impact your performance in an assessment, you may be eligible for special consideration or special arrangements.

Special consideration applications will not be affected by a simple extension application.

Using AI responsibly

Co-created with students, AI in Education includes lots of helpful examples of how students use generative AI tools to support their learning. It explains how generative AI works, the different tools available and how to use them responsibly and productively.

WK Topic Learning activity Learning outcomes
Multiple weeks Flow Net Laboratory Practical (2 hr) LO1 LO2 LO8 LO9
Oedometer Laboratory Session Practical (2 hr) LO1 LO2 LO5 LO8 LO9
Shear Box Laboratory Session Practical (2 hr) LO1 LO2 LO7 LO8
Week 01 Introduction and Classification Lecture (2 hr) LO4
Classification Lecture and tutorial (2 hr) LO4
Classification tutorial Tutorial (1 hr) LO4
Week 02 Definitions and Compaction Lecture (1 hr) LO4 LO5 LO7 LO8
Definitions Lecture and tutorial (2 hr) LO4 LO5 LO7 LO8
Soil definitions Tutorial (1 hr) LO4 LO5 LO7 LO8
Soil Classification Laboratory Session Practical (2 hr) LO1 LO2 LO4
Week 03 Compaction and Effective Stress Lecture (2 hr) LO4 LO8
Effective Stress and Compaction Lecture and tutorial (2 hr) LO4 LO8
Effective stress and Compaction Tutorial (1 hr) LO4 LO8
Compaction Laboratory Session Practical (2 hr) LO1 LO2 LO4
Week 04 Water Flow through Soil Lecture (2 hr) LO8 LO9
Drawing Flow Nets Lecture and tutorial (2 hr) LO8 LO9
Drawing Flow Nets Tutorial (1 hr) LO9
Week 05 Flow Nets, Calculations and Piping Lecture (2 hr) LO8 LO9
Flow Net calculations Lecture and tutorial (2 hr) LO8 LO9
Flow Net Calculations Tutorial (1 hr) LO8 LO9
Week 06 One dimensional soil compression Lecture (2 hr) LO5 LO8
One dimensional compression Lecture and tutorial (2 hr) LO5 LO8
One dimensional compression Tutorial (1 hr) LO5 LO8
Week 07 One-dimensional Settlement Lecture (2 hr) LO5 LO8
One-dimensional settlement Lecture and tutorial (2 hr) LO5 LO8
One-dimensional settlement Tutorial (1 hr) LO5 LO8
Week 08 One-dimensional Consolidation Lecture (2 hr) LO5 LO8 LO9
One-dimensional consolidation Lecture and tutorial (2 hr) LO5 LO8 LO9
One-dimensional consolidation Tutorial (1 hr) LO5 LO8 LO9
Week 09 Elastic Soil Mechanics Lecture (2 hr) LO5 LO8
Elastic Soil Mechanics Lecture and tutorial (2 hr) LO5 LO8
Elastic Soil Mechanics Tutorial (1 hr) LO5 LO8
Week 10 Settlements of Elastic Soil Lecture (2 hr) LO5 LO6 LO8
Settlements for Elastic Soil Lecture and tutorial (2 hr) LO5 LO6 LO8
Settlements for Elastic Soil Tutorial (1 hr) LO5 LO6 LO8
Week 11 Soil Strength and Introduction to Critical State Soil Mechanics Lecture (2 hr) LO7 LO8
Soil Strength and Critical State Soil Mechanics Lecture and tutorial (2 hr) LO7 LO8
Soil Strength and Critical State Soil Mechanics Tutorial (1 hr) LO7 LO8
Week 12 Soil Stability - Retaining Walls - Rankine Lecture (2 hr) LO7 LO8 LO9
Soil Stability - Retaining Walls Lecture and tutorial (2 hr) LO7 LO8 LO9
Soil Stability - Retaining Walls Tutorial (1 hr) LO7 LO8 LO9
Week 13 Soil Stability - Retaining Walls - Coulomb Lecture (2 hr) LO7 LO8 LO9
Revision Lecture and tutorial (2 hr) LO4 LO5 LO6 LO7 LO8 LO9
Retaining Walls - Coulomb Tutorial (1 hr) LO7 LO8 LO9

Attendance and class requirements

Attendance and completion of all the laboratory classes is a requirement to pass the course.

Attendance at the 1 hour tutorial sessions is compulsory

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University's graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. demonstrate proficiency in handling experimental data, including strength parameters.
  • LO2. analyse and report the results of a laboratory experiment at a professional standard
  • LO3. develop and use a spreadsheet to analyse a geotechnical design problem
  • LO4. give an engineering classification of any piece of soil, and on this basis, predict how it will perform as an engineering material
  • LO5. calculate the settlements, and rates of settlement, under structures of various shapes and sizes
  • LO6. explain the advantages and limitations of the different methods of settlement calculation
  • LO7. determine the strength parameters appropriate to a range of stability problems, and understand the difference between total and effective stress approaches
  • LO8. understand the principle of effective stress, and be able to apply this to calculate the stresses causing soil deformation
  • LO9. calculate quantities of water flowing through the ground, and understand the effects that water flow has on the soil

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9

This section outlines changes made to this unit following staff and student reviews.

Slight increase in weighting to lab report/reduction in exam weighting.

Disclaimer

The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.