This unit will introduce a wide range of modelling and simulation techniques for tackling real-world problems using a computer. Data is often expensive to obtain, so by harnessing the enormous computational processing power now available to us we can answer what if questions based on data we already have. You will learn how to break a problem down into its key components, identifying necessary assumptions for the purposes of simulation. You will learn how to develop suitable metrics within computational models, to allow comparison of simulation data with real-world data. You will learn how to iteratively improve simulations as you validate them against real results, and you will gain experience in identifying the types of exploratory questions that computational modelling opens up. Programming will be in python. You will learn how to generate probabilistic data, solve systems of differential equations numerically, and tackle complex adaptive systems using agent-based models. Dynamical systems ranging from traffic flow to social segregation will be considered. By doing this unit you will develop the skills to go behind your data, understand why the data you observe might be as it is, and test scenarios which might otherwise be inaccessible.
Unit details and rules
Academic unit | Physics Academic Operations |
---|---|
Credit points | 6 |
Prerequisites
?
|
None |
Corequisites
?
|
None |
Prohibitions
?
|
COSC1003 or COSC1903 or COSC2902 |
Assumed knowledge
?
|
HSC Mathematics; DATA1002, or equivalent programming experience, ideally in Python |
Available to study abroad and exchange students | Yes |
Teaching staff
Coordinator | Tristram Alexander, tristram.alexander@sydney.edu.au |
---|