Skip to main content

We are aiming for an incremental return to campus in accordance with guidelines provided by NSW Health and the Australian Government. Until this time, learning activities and assessments will be planned and scheduled for online delivery where possible, and unit-specific details about face-to-face teaching will be provided on Canvas as the opportunities for face-to-face learning become clear.

We are currently working to resolve an issue where some unit outline links are unavailable. If the link to your unit outline does not appear below, please use the link in your Canvas site. If no link is available on your Canvas site, please contact your unit coordinator.

Unit of study_

CSYS5010: Introduction to Complex Systems

Globalisation, rapid technological advances, the development of integrated and distributed systems, cross-disciplinary technical collaboration, and the emergence of "evolved" (as opposed to designed) systems are some of the reasons why many systems have begun to be described as complex systems in recent times. Complex technological, biological, socio-economic and socio-ecological systems (power grids, communication and transport systems, food webs, megaprojects, and interdependent civil infrastructure) are composed of large numbers of diverse interacting parts and exhibit self-organisation and/or emergent behaviour. This unit will introduce the basic concepts of "complex systems theory", and focus on methods for the quantitative analysis and modelling of collective emergent phenomena, using diverse computational approaches such as agent-based modelling and simulation, cellular automata, bio-inspired algorithms, and game theory. Students will gain theoretical knowledge of complex adaptive systems, coupled with practical skills in computational simulation and forecasting using a range of modern toolkits.

Code CSYS5010
Academic unit Civil Engineering
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
None

At the completion of this unit, you should be able to:

  • LO1. understand and analyse the dynamics of complex systems using intermediate critical analysis skills
  • LO2. analyse and evaluate models of complex systems using scientific programming and the 'Modelling Loop'
  • LO3. Create, using a scientific modelling language such as NetLogo, multi-agent models of complex systems
  • LO4. understand the nature, structure, function and evolution of complex systems and emergent behaviour in multiple different fields
  • LO5. select and apply different approaches to analysing complex systems in different domains (e.g. game theory, dynamical systems, genetic algorithms)
  • LO6. design and evaluate large systems that satisfy structural and functional criteria within given domains and contexts integrating complex systems approaches.

Unit outlines

Unit outlines will be available 2 weeks before the first day of teaching for 1000-level and 5000-level units, or one week before the first day of teaching for all other units.

There are no unit outlines available online for previous years.